
Design and Implementation of a Cloud-Native
Platform for Financial Big Data Processing

Course

Ping Yu(B), Ye Tao, Jie Zhang, and Ying Jin

Department of Computer Science and Technology, Nanjing University, Nanjing, China
{yuping,taoye,zhangj,jinying}@nju.edu.cn

Abstract. With the advent of big data, financial technology steps into amore intel-
ligent era. The demand for big data-related financial application development and
operation continues to expand. Hadoop and Spark are popular parallel computing
frameworks that are adopted as big data processing platforms, but the time cost of
their environment deployment is a significant expense for beginners. BDKit, a big
data application development and operation platform based on container cloud, is
proposed in this paper, aiming to provide customized and scalable cloud service
solutions for teaching practice. It is based on Kubernetes ecosystem and relies
on the powerful self-repair and load balancing capability provided by Kubernetes
to ensure the stable operation of users’ virtual clusters. At the same time, BDKit
encapsulates a variety of Docker images to achieve the construction of big data
application development and operation environment according to the components
required by different users. The services provided by BDKit can greatly reduce
the pressure of preparing big data processing environment and help to achieve the
purpose of teaching students according to their aptitude.

Keywords: Big Data · Fintech · Kubernetes · Docker · Cloud-Native

1 Introduction

In recent years, artificial intelligence, big data, cloud computing and other computer
technologies have been widely applied in the financial industry, making financial tech-
nology to step into a more intelligent and digital era. At the same time, a large number
of universities began to train interdisciplinary talents in the field of computer science
and financial engineering. Interdisciplinary major of computer science and financial
engineering focuses on the integration of economics, finance, computer technology and
other disciplines. It mainly aims to cultivate students to master fintech and data science,
with knowledge in data processing, data mining, programming, software engineering
and artificial intelligence.

As one of the major compulsory courses for junior students, financial big data pro-
cessing course focuses on big data technologies (Hadoop [1], Spark [2], HBase [3], Hive
[4], etc.) and their applications on large volume of financial data. It requires students to
have mastered the fundamentals of computer science, such as programming languages

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Hong and Y. Weng (Eds.): ICCSE 2022, CCIS 1813, pp. 180–193, 2023.
https://doi.org/10.1007/978-981-99-2449-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-2449-3_17&domain=pdf
https://doi.org/10.1007/978-981-99-2449-3_17


Design and Implementation of a Cloud-Native Platform 181

(C++, Java or Python), data structure and algorithm, data base and distributed comput-
ing. Different from any course offered by financial engineering majors or other basic
computer courses, it is a comprehensive course with an emphasis on practice. It aims
to systematically cultivate students’ capability of big data processing program design,
development, and parameter tuning through a series of experiments. It challenges stu-
dents because most of them lack training on large-scale computer systems. Due to the
particularity of big data processing technology requiring multiple machine nodes, it is
very difficult to set up a parallel computing cluster both technically and in terms of man-
power and material resources. It costs students and teaching assistants much time on the
first step of installing and configuring big data processing platforms, such as Hadoop and
HBase, even in pseudo distributed mode. Based on three years of teaching experience,
we find it is necessary to provide an online platform for students to rapidly access the
big data processing cluster environment.

Cloud computing provides utilities for using computing resources without installing
andmaintaining them on-premises [5].Most of the existing large cloud service providers
only provide basic system level services, but users still need to build and configure their
own environment. Even large cloud service providers such as Ali Cloud and Tencent
Cloud, which provide parallel computing environment images such as Hadoop for direct
deployment, are mainly oriented to high-performance computing needs of enterprises
and large-granularity requirements of direct executing applications rather than teaching
and learning purposes, so the granularity of services provided is too large. It is not suitable
for individual learners in terms of performance and price. At present, some scholars and
teaching staff have carried out exploration in the construction of big data experimental
platform [6–8]. However, these big data development and training platforms for teaching
are uneven in technology, and generally have the following problems: (1) Someplatforms
are oriented toweb serviceswith high level abstraction,which is often just the executor of
Hadoop and Spark programs, so that users lose the opportunity to access the underlying
cluster. It is difficult for users to debug and tune their programs. (2) Some platforms are
based on VM images and the resource usage is high and the performance is low. The
number of cluster nodes and software components is usually fixed, and the degree of
customization and extensibility is low. For example, it is difficult to efficiently process
streaming financial data on the platform that lacks stream computing components such
as Apache Storm [9] or Flink [10].

Therefore, we hope to propose a cloud-native solution named as BDKit for financial
big data processing course. It can provide services at appropriate levels of abstraction,
so that on the one hand, it can build a customized virtual cluster according to the needs
of students to provide the parallel computing environment, and on the other hand, it can
ensure students to have fully independent operation of the cluster environment. Besides
big data practice, students also get the opportunity of learning about cloud computing
technology if they wish.



182 P. Yu et al.

This paper provides the following contributions:

• We propose a big data teaching platform based on container cloud. It supports the
creation of Hadoop/Spark clusters and the online development, running, and moni-
toring of big data applications such as MapReduce, Spark, and Hive. With the help of
BDKit, students can put more efforts on big data program design and optimization.

• Wedesign a series of basic experiments and some comprehensive projects for students
to apply big data technology in financial big data processing. Students are more
confident with the technology needs of the fintech after course training.

• The cloud-native solution has stimulated students’ interest in big data and cloud com-
puting. Based on students’ feedback, it proves to be effective for interdisciplinary
major of computer science and financial engineering.

2 Platform Design

2.1 Requirements

With the maturity of open-source big data frameworks like Hadoop and Spark, and
the ecosystem of big data components built around them, it’s getting easier to develop
applications that can handlemassive amounts of data.However, the hardware acquisition,
environment construction and state management of the cluster are still quite tedious and
difficult. Even if a user has enough hardware to build a cluster, setting up a cluster and
configuring the environment can be a huge and complex task, especially for beginners,
if the user is not familiar with Linux commands or other related tools.

Based on three years of teaching practice, we found that the junior students have
common difficulties in preparing big data clusters. Theywere puzzled by various system-
level problems and had to put much time on solving them. The frustration diminished
their interest in learning big data technology even though they were good at program-
ming and algorithms. After investigation, the most frequent problems are summarized
in Table 1.

In fact, solving these problems is not the key point of this course. In order to simplify
the construction and deployment of the big data framework and provide users with a real
distributed environment with convenient access and rich computing components, it is
particularly important to build an integrated online platform for teaching and practicing.

With specific consideration on financial scenarios, financial data generally has the
characteristics of “stream data” and needs to be processed quickly in a short time. It
is necessary to include streaming computing components in the supporting platform.
However, there are different frameworks available in the big data community, including
Spark streaming, Storm and Flink. The platform is thus expected to be open for different
frameworks. In addition to this, operability of the platform is also important. As big
data technology is strongly connected with cloud computing, a cloud-native platform
will be user-friendly to students to understand the combination of these two mainstream
technologies.



Design and Implementation of a Cloud-Native Platform 183

Table 1. Common problems

No. Problem Possible Cause

1 Name Node disappears after restarting
computer

The fold of hadoop.tmp.dir disappears
after restart

2 Name Node disappears after starting
HDFS

The configuration of hdfs-site.xml is wrong

3 Resource Manager disappears when
executing MapReduce task

VM or docker does not allocate enough
memory or computer has not enough
memory

4 MapReduce or spark task stucks Computing resources are insufficient

5 No hbase master found when shutting
down HBase

The pid file is deleted by operating system

6 HMaster can not start HBase environment setting has error

2.2 Platform Overview

BDKit is based on Kubernetes ecology [11, 12], which can automatically reschedule,
restart and replication, thus has strong self-repair capability. At the same time, it relies
on the Docker [13–15] virtualization technology and abstracts each node as a pod. A
virtual Hadoop/Spark cluster consists of multiple nodes. Each user can create more than
one node according to different application scenarios. On the one hand, it greatly saves
system resources compared to the virtual machine method. It provides a more fine-
grained computing needs of cloud services to users. On the other hand, users can control
the virtual cluster that belongs to oneself completely through a web-based terminal with
root authority. In this way, students can get more in-depth exposure to the cluster, and
customize the cluster at a higher level. With different images prepared in advance, we
can provide instances of different environments according to users’ requirements, so
that users can select Hadoop and Spark ecological components on demand. In addition,
BDKit also provides a shared data set, which can bemounted by disk to facilitate all users
of the platform to directly access the data set prepared by the platform administrator,
generally the teacher or teaching assistants, for experiments according to their teaching
needs. Finally, it also integrates popular web-based interactive code editor services (e.g.,
VsCode code-server [16] and Jupyter notebook [17]) and UI components of Hadoop and
Spark monitor for online development and monitoring. To facilitate code management,
BDKit adopts Git [18] service to enable pulling code from remote repositories and
pushing modified code. Even if one deletes his/her cluster, all application codes are still
available in the his/her remote repository.

2.3 Layered Architecture

As shown in Fig. 1, BDKit consists of four logical layers, bottom-up namely
virtualization layer, business layer, API interface layer and view layer.



184 P. Yu et al.

(1) VirtualizationLayer:BDKit runs on top of aKubernetes cluster, relying onKuber-
netes for clustermanagement. It exposes all ports through the abstraction of services.
To meet the differentiated needs of users, BDKit provides various docker images
pre-installing a variety of big data development components. Users can directly
choose the appropriate image when creating a cluster, or compose different compo-
nents on demand to get a customized cluster. For example, a user can get a cluster of
the last version of Hadoop and Spark frameworks together with a specific version
of Anaconda [19] and Jupyter notebook.

Fig. 1. Layered architecture of BDKit

(2) Business Layer: It is the kernel part of BDKit. We design and implement a big data
processing cluster operator based on Operator SDK [20]. The operator defines the
controller of Hadoop/Spark cluster and all relevant cluster resources. It is in charge
of creating, manipulating and deleting clusters.

• ClusterArchitecture: The architecture ofHadoop/Spark cluster created byBDKit
refers to the master-slave mode of Hadoop, that is, it contains one master node
and multiple slave nodes. The master node, including Name Node and Resource
Manager, manages metadata of the HDFS and scheduling tasks. Slave nodes
include Data nodes and Node Managers. They store actual data and manage the
single node. Based on the master-slave mode, the master and slave nodes are
deployed to run in independent pods. On the Kubernetes platform, the commu-
nication between pods is handled by a service. A headless service of the same
name is deployed for each pod in the cluster. In addition, the cluster also sets
up NodePort service for the master pod to expose the pod interior for Web UI
viewing, and Hadoop/Spark cluster management. Figure 2 shows the logical
architecture of the cluster.

• Cluster Operator: Kubernetes allows developers to extend the Kubernetes API
with CustomResourceDefinition (CRD). Each custom resource requires a con-
troller to perform specific operations. Operator SDK is a toolkit to manage
Kubernetes native applications, called Operators, in an effective, automated,
and scalable way [20]. Based on the operator framework, BDKit defines big data



Design and Implementation of a Cloud-Native Platform 185

Fig. 2. Logical architecture of Hadoop/Spark cluster

CRD for Hadoop/Spark cluster resources, and constructs a controller to oper-
ate Hadoop/Spark cluster resources at business layer, e.g., automatic deploying
and monitoring of cluster resources. Figure 3 shows the workflow of the clus-
ter controller to construct a Hadoop/Spark cluster. When the cluster instance
is available, it creates PVC and Git container as needed and create a master
pod with relevant services. It checks whether the number of exiting slave pods
(foundNum) equals the expected slave node number (expectNum) defined by
the user. If not equal, the controller will create or delete slave pods to ensure
foundNum is the same as expectNum.

Fig. 3. Cluster controller workflow

(3) API Interface Layer: To separate concerns of front-end and back-end, BDKit
designs an API interface layer to define APIs to listen to GET/POST requests
from front-end clients, and invoke back-end API handlers to process the requests
including cluster creation, deletion, etc. Its functions include:



186 P. Yu et al.

• Authentication: Themodule is responsible for user login authentication and login
status detection. BDKit implements permission authentication based on LDAP
user authentication mechanism. It makes use of the middleware mechanism to
judge the route type after receiving the request. If the route is private, the token
is obtained from the request parameters and its validity is verified. Only the
request that passes the token check is processed.

• Cluster Management: BDKit APIs provide comprehensive cluster management
interfaces for the front end, including cluster creation, deletion, query and other
functions. The above functions are based on the interfaces provided by the
operator in business layer.

• Facilities: In addition to cluster management interfaces, the layer also provides
interfaces for obtaining image list, data set list, current user information, and
cluster container status, etc.

(4) View Layer: As a cloud service, BDKit provides web UI which is platform inde-
pendent. Users can access it anytime from any device through a web browser. The
view layer hides complex cluster deployment details for users, and provides con-
cise and efficient operation and intuitive monitoring of big data related tasks, thus
improves users’ development efficiency. It is based on React development frame-
work and Ant Design Pro UI framework to design web interfaces and implement
the acquisition and display of back-end data. Its modules are as follows:

• Cluster Configuration: If there is no cluster instance, the homepage displays a
list of available images for the user to select. It also allows users to customize
their own image by composing different components. Figure 4 shows the page of
image self-definition. When the image is chosen or composed, the user can cus-
tomize the number of slave nodes in the cluster, the address of the Git repository,
and the public data set provided by the platform. Big data computing compo-
nents are also composable and customizable. Figure 5 is the cluster resource
configuration page.

• Cluster Overview: When a cluster is created, the homepage displays the overall
cluster status and provides shortcuts for accessing VsCode code-server, HDFS,
etc.

• Component Monitoring: In addition to providing ports to access management
interfaces such as HDFS and Yarn, BDKit integrates web UIs of Hadoop
and Spark on the monitoring page to check the status of big data computing
components.

• Dataset Overview: This module lists the public dataset configured by the plat-
form administrators (e.g., the teacher or teaching assists). They have the privilege
to upload experimental dataset to the platform. Students can only browse and
mount the dataset to their cluster.



Design and Implementation of a Cloud-Native Platform 187

Fig. 4. Image self-definition page

Fig. 5. User cluster resource configuration page

3 Experiments

The teaching objectives of financial big data processing course includes letting students:
(1) be more in-depth understanding of the basic principles of big data processing; (2) be
more familiar about emerging technologies in the field of big data; (3) be more confident
with finance technology needs.

To achieve the objectives in a semester with 72 class hours in total, we arrange the
teaching contents into five stages, accompanied with four experiments and one final
project.

3.1 Experiments Design

Table 2 shows the class teaching contents and corresponding experiments in the last
semester. The last column defines the experimental environment options.



188 P. Yu et al.

Table 2. Experiments design

Stage Teaching Contents Experiments Environments

1 Introduction to Hadoop
and HDFS

Installing Hadoop in a
standalone mode and
learning HDFS operations

Standalone

2 Basic and advanced
MapReduce
Programming

Massive text data
processing with inverted
index and word
co-occurrence in
MapReduce

Distributed Cluster or
BDKit

3 Introduction to NoSQL
database, HBase and Hive

Learning HBase/Hive
operation and programming

Distributed Cluster or
BDKit

4 Introduction to Spark
ecosystem and stream
computing

Massive data aggregation
and classification in Spark

Distributed Cluster or
BDKit

5 Introduction to financial
big data processing

Individual loan default
forecast (final project)

Distributed Cluster or
BDKit

• Experiment 1: After introduction of Hadoop and HDFS, we assign an experiment
of Hadoop installation and HDFS operation. As a first step to big data technology
ecosystem, we require students to install Hadoop in standalone mode in their own
computers. Linux is recommended as the default operating system. After that, we
suggest them to install Hadoop andHDFS in pseudo distributedmode. For the students
who are interested in parallel computing, we suggest them to construct a distributed
cluster by means of virtual machine or docker.

• Experiment 2: The most important part of this course is training big data process-
ing skills. We put many efforts on teaching how to design MapReduce programs
with a series of examples, such as wordcount, sorting, word co-occurrence, inverted
indexing, page rank, etc. After basic programming training, we introduce how to
design parallel machine learning algorithms for big data analysis with MapReduce
framework. In the second experiment, we ask students to process massive text data
(e.g., Shakespeare’s collected work) to accomplish the tasks of inverted indexing and
word co-occurrence. Since Hadoop is implemented in Java, Java is the recommended
programming language. Python is also allowed if the students are not familiar with
Java.

• Experiment 3: NoSQL is a new scheme of database design that enables the storage
and querying of data outside the traditional structures in RDBMS [21]. In the third
stage, we clarify the principles of NoSQL database and compare NoSQL with SQL,
taking an example of HBase. HBase is built on top of HDFS that provides a way
of storing sparse data sets, which is commonly used in many big data applications.
We also introduce Hive which is a data warehouse in the Hadoop ecosystem. Hive
facilitates reading, writing, andmanaging large datasets residing in distributed storage
by using SQL. To let students better understand NoSQL database and data warehouse,



Design and Implementation of a Cloud-Native Platform 189

we assign the tasks of creating big tables, storing data inHBase andHive,manipulating
and querying data with a series of operations.

• Experiment 4: Spark is a unified engine for executing data engineering, data science,
and machine learning on single-node machines or clusters [2]. It is now the most
widely-used computing engine for big data. In this stage,we introduce the fundamental
principles of Spark and its important libraries, including Spark SQL, Spark ML,
GraphX and Spark Streaming. We ask students to do massive data aggregation and
classification by use of SparkML. By collecting streaming data with a data sever such
as Kafka [22], students are able to complete the stream computing task with Spark
Streaming.

• Final Project: Financial innovation upgrades the need of making full use of big data
technology and practicing big data thinking. In the end, we discuss big data appli-
cations in financial field with some real-world cases, such as credit risk forecasting,
insurance fraud identification, bank customer portrait. We design a final project which
derives from a big data competition. It takes personal credit in financial risk control
as the background, and predicts the possibility of default according to the informa-
tion of the loan applicant, so as to judge whether the loan is approved or not. The
training data selected in this project is the default record data of a network credit loan
product. The project consists of four tasks which involve data statistics (MapReduce
and Spark programming), data online analytical processing (Hive or Spark SQL) and
machine learning (Spark ML). In the past semesters, we have chosen different topics
for the final project, including sentiment analysis of securities news, prediction of
e-commerce returned customers, etc.

Except the first experiment, all other work should be done in a distributed cluster.
BDKit provides convenient computing environment for the students who have difficulty
in setting up a cluster with sufficient resources.

3.2 Experiments Feedback

In the end of last semester, we made a survey among the students about the time spent in
each experiment and got some feedback about BDKit. In the class, 12 students (Group
1) finished all work by using their own computers. 20 students (Group 2) learned to use
BDKit after a short tutorial given by the teaching assistant. They did Exp. 2–4 and the
final project (Exp. No. 5 in Table 3) based on BDKit. Table 3 shows the average time
costing on each experiment by the two groups. It shows that BDKit can help students to
save much time and effort, especially on cluster setting up and framework configuration.
Figure 6 is a snapshot of Kubernetes pods creating by BDKit. Each student was assigned
at least three pods to execute big data processing tasks.AmongGroup2, only two students
selected Jupyter notebook as the code editor, all others chose VsCode. In the terminal
of VsCode, they could control their Hadoop/Spark cluster with command line tools.



190 P. Yu et al.

Table 3. Time cost (hour)

Exp. No Expected Time Average Time without BDKit
(Group 1)

Average Time with BDKit
(Group 2)

1 2 6.8 /

2 6 16.3 7.4

3 4 8.1 3.2

4 6 8.9 5.1

5 12 19.3 10.3

Fig. 6. Snapshot of pods created by BDKit

4 Evaluation

BDKit is deployed in cs-cloud, which is a cloud supercomputing platform of Nanjing
University. BDKit runs in a Kubernetes cluster with 1 master node and 2 worker nodes.
The master node is allocated 48 core CPU and 128 GB memory. Each worker node has
8 core CPU and 16 GB memory. The cluster is scalable by easily adding or removing
worker nodes. Due to the access restriction, it can only be visited from campus network
now. User accounts are registered by teaching assistants in advance.

4.1 Performance Evaluation

To verify that BDKit works as we expect, we use BDKit for the most basic WordCount
MapReduce task to test its performance under different volumes of inputs. The exper-
imental design is as follows: The user first created a Hadoop cluster containing one
master and two slaves on BDKit, and then processed the text files of different sizes as
input for WordCount. The time command in Linux was used to measure the actual expe-
rience time of the user. The size of the text files varied from 1MB to 800 MB. When the
input file size is 800MB, the actual execution time on BDKit is about 100s. Moreover,
it can be seen from Fig. 7 that the processing time increases linearly with the input size,



Design and Implementation of a Cloud-Native Platform 191

indicating that the BDKit platform can meet the performance requirement of teaching
and learning.

Fig. 7. WordCount execution time on BDKit

4.2 Comparison

There are mainly two types of big data platforms on the market: commercial cloud
platform and educational training platform.

Compared with commercial cloud platform such as Amazon EC2 and Ali Cloud,
BDKit provides students with customizable experiment environment. They are free to
compose different components on demand. All datasets used in the experiments can be
uploaded in advance. cStor is a popular educational big data platform [23]. Its technol-
ogy stack largely overlaps with BDKit, but differs in the actual experience. cStor only
provides SSH remote login interface and VIM for users. It does not support specific
component and resource customization. BDKit provides VsCode and integrates with
complete compilation packaging environment and code version control system. Jupyter
Notebook is also available for Python developers. BDKit is more friendly to students.
As a platform based on a new technology stack, it is also open for research objectives.

4.3 Teaching Effect

Financial big data processing course was initiated in 2017. It is a compulsory course of
computer and finance interdisciplinary experimental class. We started to develop BDKit
in late 2019 based on the requirements collected from three classes of students (2017–
2019). It was put into use in September 2020. During two semesters of trial, we got
some bug reports and improvement suggestions from students. Most students gave their
approval to BDKit in their final semester report. Two students from business school
and department of mathematics took this course as an elective one. They said that they
wouldn’t have finished the experiments without BDKit. It is worth mentioning that three
students from the experimental class took part in the development and maintenance of
BDKit. They had more interest in software technology than financial engineering. They



192 P. Yu et al.

learned to develop and test cloud-native applications in their spare time. BDKit helps to
achieve the purpose of teaching students according to their aptitude.

Based on the graduation report from two classes of students (2020 and 2021), at least
one third of the students chose computer science for further study or employment. This
course was awarded “a good course in my mind” by graduates in 2019.

5 Conclusion

In the era of digital economy and the new international situation, the integration of com-
puter and finance is becomingmore andmore important. High-level talents in the field of
financial engineering must be compound talents with solid foundation of computer tech-
nology and finance. Nowadays, a growing number of universities offer double majors in
computer science and finance, such as Tsinghua university and Nanjing University. The
project has attracted many top students since its inception. It requires to explore a new
path of interdisciplinary talent training of the two challenging subjects. Financial big
data processing course is an attempt to blend the two disciplines, as a teaching program
with fintech features. It focuses on training students to apply big data processing skills
in financial data analysis.

To overcome the problems of complex big data computing cluster and high thresh-
old of operation, this paper designed and implemented an online experimental platform
named BDKit. It is a container cloud-based platform for developing and running big data
applications. It supports the creation of Hadoop/Spark clusters and the online develop-
ment, running, andmonitoring of big data applications. It can realize personalized cluster
configuration andminute-level cluster creation, greatly reducing theworkload of big data
application developers. BDKit needs to pursue higher stability and security while ensur-
ing its functional availability. In the next step, we will upload some typical financial data
processing cases to the platform as learning materials. User registration will be open
when we deploy it on a public cloud.

Acknowledgements. This work is supported by the National Natural Science Foundation of
China (Grant No. 62072225) and the reform of university computer empowerment education in
the new era project (Research on the reform of university computer empowerment education in
New Liberal Arts) founded by University Computer Course Teaching Steering Committee of the
Ministry of Education.

We would also like to thank all the students who participated in the development of BDKit.
They are Kai Wang, Manjie Yuan, Yitong Zhao, Maidi Wang, Dongyu Wang and Haogang Wang.

References

1. Hadoop. http://hadoop.apache.org
2. Spark. http://spark.apache.org
3. HBase. http://hbase.apache.org
4. Hive. http://hive.apache.org
5. Cloud Computing. https://www.ibm.com/cloud/learn/cloud-computing

http://hadoop.apache.org
http://spark.apache.org
http://hbase.apache.org
http://hive.apache.org
https://www.ibm.com/cloud/learn/cloud-computing


Design and Implementation of a Cloud-Native Platform 193

6. Rabkin, A., Reiss, C., Katz, R., et al.: Experiences teachingMapReduce in the cloud. In: 43rd
ACMTechnical Symposium on Computer Science Education, pp. 601–606. ACMPress, New
York (2012). https://doi.org/10.1145/2157136.2157310

7. Eckroth, J.: Teaching big data with a virtual cluster. In: 47th ACM Technical Symposium on
Computer Science Education, pp. 175–180. ACM Press, New York (2016). https://doi.org/
10.1145/2839509.2844651

8. Ngo, L.B., Duffy, E.B., Apon, A.W.: Teaching HDFS/MapReduce systems concepts to under-
graduates. In: 2014 IEEE International Parallel & Distributed Processing Symposium Work-
shops, pp. 1114–1121. IEEE Press, New York (2014). https://doi.org/10.1109/IPDPSW.201
4.124

9. Apache Storm. http://storm.apache.org
10. Apache Flink. http://flink.apache.org
11. Brewer, E.A.: Kubernetes and the path to cloud native. In: 6th ACM Symposium on Cloud

Computing, p. 167. ACMPress, NewYork (2015). https://doi.org/10.1145/2806777.2809955
12. Kubernetes. https://kubernetes.io/docs/concepts/overview/kubernetes-api/
13. Docker. https://www.docker.com
14. Bhimani, J., Yang, Z., Leeser,M.,Mi, N.: Accelerating big data applications using lightweight

virtualization framework on enterprise cloud. In: 2017 IEEEHighPerformanceExtremeCom-
puting Conference, pp. 1–7. IEEE Press, New York (2017). https://doi.org/10.1109/HPEC.
2017.8091086

15. Shah, J., Dubaria, D.: Building modern clouds: using docker, kubernetes & Google cloud
platform. In: 9thAnnualComputing andCommunicationWorkshop andConference, pp. 184–
189, IEEE Press, New York (2019). https://doi.org/10.1109/CCWC.2019.8666479

16. VS Code in the browser. https://github.com/coder/code-server
17. Jupyter Notebook. https://jupyter.org
18. Git. https://git-scm.com
19. Anaconda. https://www.anaconda.com
20. Operator SDK Integration with Operator Lifecycle Manager. https://sdk.operatorframework.

io/docs/olm-integration/
21. NoSQL Databases. https://www.ibm.com/cloud/learn/nosql-databases
22. Apache Kafka. https://kafka.apache.org
23. cStor. http://www.cstor.cn/proTextdetail_13713.html

https://doi.org/10.1145/2157136.2157310
https://doi.org/10.1145/2839509.2844651
https://doi.org/10.1109/IPDPSW.2014.124
http://storm.apache.org
http://flink.apache.org
https://doi.org/10.1145/2806777.2809955
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://www.docker.com
https://doi.org/10.1109/HPEC.2017.8091086
https://doi.org/10.1109/CCWC.2019.8666479
https://github.com/coder/code-server
https://jupyter.org
https://git-scm.com
https://www.anaconda.com
https://sdk.operatorframework.io/docs/olm-integration/
https://www.ibm.com/cloud/learn/nosql-databases
https://kafka.apache.org
http://www.cstor.cn/proTextdetail_13713.html

	Design and Implementation of a Cloud-Native Platform for Financial Big Data Processing Course
	1 Introduction
	2 Platform Design
	2.1 Requirements
	2.2 Platform Overview
	2.3 Layered Architecture

	3 Experiments
	3.1 Experiments Design
	3.2 Experiments Feedback

	4 Evaluation
	4.1 Performance Evaluation
	4.2 Comparison
	4.3 Teaching Effect

	5 Conclusion
	References




