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Abstract. With the rapid expansion of E-education, knowledge tracing
(KT) has become a fundamental mission which traces the formation of
learners’ knowledge states and predicts their performance in future learnng
activates. Knowledge states of each learner are simulated by estimating
their behavior in historical learning activities. There are often numerous
questions in online education systems while researches in the past fails
to involve massive data together with negative historical data problems,
which is mainly limited by data sparsity issues and models. From the model
perspective, previous models can hardly capture the long-term depen-
dency of learner historical exercises, and model the individual learning
behavior in a consistent manner is also hard to accomplish. Therefore, in
this paper, we develop an Improved Temporal Convolutional Neural Net-
work with Self Attention Mechanism for Knowledge Tracing (SATCN). It
can take the historical exercises of each learner as input and model the
individual learning in a consistent manner that means it can realize person-
alized knowledge tracking prediction without extra manipulations. More-
over, with the self attentionmechanismourmodel can adjustweights adap-
tively, thus to intelligently weaken the influence of those negative historical
data, and highlight those historical data that have greater impact on the
prediction results. We also take attempt count and answer time two fea-
tures into account, considering proficiency and forgetting of the learners
to enrich the input features. Empirical experiments on three widely used
real-world public datasets clearly demonstrate that our framework outper-
forms the presented state-of-the-art models.

Keywords: Knowledge Tracing · Temporal Convolutional Neural
Network · Self Attention Mechanism

1 Introduction

Knowledge Tracing(KT) is a foremost task of on-line education, which propose
to trace learners’ knowledge states based on their historical learning trajecto-
ries. The success of knowledge tracing can benefit both personalized learning
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and adaptive learning so that has attracted prodigious attention over the past
decades [1–3].

The KT task can be defined as a supervised sequential sequence learning
task: according to learners’ historical exercise interactions X = {x1, x2, ..., xt},
predicting their future interaction xt+1 [4]. In the question-answering system,
the tth interaction is expressed as a tuple xt = (qt, at), where qt is the label
of exercise that the learner attempts at a certain timestamp t and at is the
correctness of the learner’s answer about qt. at ∈ {0, 1}, where correct answer is
recorded as 1 and incorrect answer is recorded as 0. The purpose is predicting
the probability of learners will be able to answer the future exercise correctly,
i.e., predicting p(at+1|qt+1,Xt).

In the previous studies, many efforts have been made towards knowledge
tracing. Among them, Bayesian Knowledge Tracing (BKT) is one of the most
representative early works [2]. However, BKT is a highly restricted structured
model. Recent years, benefit from the high capacity and effective representation
learning of deep neural networks, the first KT model based on deep learning
named Deep Knowledge Tracing (DKT) [4] has become BKT’s alternative model,
and its excellent performance boost leads us to inspect limitations of BKT. DKT
is the first KT method based on deep learning that utilizes Long Short-term
Memory (LSTM) [5] which is an excellent variant of recurrent neural networks
(RNNs) to trace learners’ knowledge states. The latest progress in deep learning
has developed a series of deep KT models. Two representative deep KT models
are Dynamic Key-Value Memory Networks (DKVMN) [6] and Sequential Key-
Value Memory Networks (SKVMN) [7], which leverages Memory-Augmented
Neural Networks (MANNs) [8] and hop-LSTM respectively to solve knowledge
tracing.

For the purpose of learning high-quality KT models, a substantial amount
of comprehensive data is inevitably required for ensuring the stability of neu-
ral networks during training. However, the practical educational scenes usually
encounter negative historical data problem, which is ubiquitous in learning pro-
cess. To be more specific, as shown in Fig. 1, a learner want to solve an exercise
on “Quadratic equation” (e5) which belongs to the knowledge concept “Equa-
tions”. We can see that there are four exercises have been finished, and they are
linear equations (e1), arithmetic (e2), plane geometry (e3), and solid geometry
(e4) respectively. The goal of prediction is whether quadratic equation(e5) can
be done right. Obviously, the correctness of the first two exercises should have
greater impact on the prediction result than the last two exercises. However, the
impact of each exercise is often treated equally, which is apparently irrational. In
addition, if the correctness of the latest two exercises (e3, e4) is not optimistic,
then they would become negative historical data for prediction results.

Therefore, in this paper, we conduct principled studies on above issues, and
propose an Improved Temporal Convolution Neural Network with Self-Attention
Mechanism for Knowledge Tracing (SATCN). Firstly, SATCN can accomplish
the time series prediction task while capturing long term dependency, which can
take full advantage of time information in learning data. In addition, the input
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Fig. 1. Left sunfigure shows sequence of exercises that one learner attempted in a
timestep and right sunfigure demonstrates knowledge concept corresponding to each
exercise.

sequence is each learner’s exercises they finished instead of treating all learners
as a whole or taking much fewer skills as input like previous models, which
eases the problem of data sparsity to a certain extent. This is because lots of
questions only correspond to much fewer skills. This is also why our model can
achieve personalization without additional processing by training and testing
each learner’s exercise sequence in a consistent manner. We also consider the
attempt count and answer time to simulate learners’ proficiency and forgetting to
enrich the input features. It can be observed from the original data that learners
often give correct answer in the first attempt if they have already mastered
related knowledge, while questions they tried many times are rarely answered
correctly. Thus, we can speculate that learners haven’t mastered the relevant
knowledge but want to guess the correct answer. Answer time is the time interval
between learners start answering questions and submitting answer. It reflects
learners’ proficiency in the relevant knowledge to a certain extent. As we all
known, the more proficient in the relevant knowledge, the more likely they answer
the questions correctly and harder to forget. We build a self-attention layer
between the input layer and the hidden layer to enable the model can adjust
weights adaptively, then it is able to deal with a series of problems caused by
negative historical data, so as to achieve more accurate predictions.

Our main contributions are summarized as follows:

(1) The KT task is creatively described as a time series forecasting task and
an Improved Temporal Convolutional Neural Network with Self Attention
Mechanism for Knowledge Tracing (SATCN) is proposed by improving
DeepTCN architecture, which can better simulate the learning process of
learners.

(2) By designing a novel data processing and training method, our model can
relieve the problem of data sparseness and can model learning process in a
consistent manner. At the same time, it can achieve personalized prediction
without requiring other operations.

(3) Our model can automatically discover and reduce the influence of negative
data on prediction results by accomplished with Self Attention Mechanism.
Simultaneously, by considering the characteristics of data we take proficiency
and forgetting into consideration to enrich the input features and bring a
performance boost of our model.
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2 Related Work

2.1 Knowledge Tracing

KT is a necessary task in Intelligent Education System (ITS) [9]. The current
knowledge tracing methods can be roughly divided into three categories: the first
is KT methods based on probability graph, then KT methods based on logistic
regression and KT methods based on deep learning. We mainly study the last
KT methods in this paper.

KT methods based on probability graph mainly refer to Bayesian Knowl-
edge Tracing (BKT) [2]. BKT is a Hidden Markov Model (HMM) with hidden
variables. Subsequential works include contextualization of slip and guess prob-
ability estimation [10], problem difficulty [11], and personalization [12,13]. The
most commonly used KT methods based on logistic regression are Item Response
Theory (IRT) [14] and Performance Factors Analysis (PFA) [15]. The main idea
of IRT is to estimate the probability that learners can answer questions correctly
base on their learning ability and item’s difficulty. While PFA expands the static
knowledge assumption, and it can model multiple features simultaneously with
its basic structure.

In 2015, Chris Piech et.al. firstly applied RNNs in KT models which increased
the AUC by 25%. The appearance of DKT [4] subverts BKT’s transcendent sta-
tus in KT area. Since then, KT models based on deep learning have attracted
the attention of large number researchers. Apart from enriching model features,
subsequent improvement works further rely on more powerful neural networks.
For example, DKVMN [6] has one static matrix called key and the other dynamic
matrix called value, which unlike standard memory-augmented neural networks
only supports a single memory matrix or two static memory matrices. There-
fore, DKVMN can solve the problem that existing methods fail to accurately
determine which concepts learners are good at or unfamiliar with when mod-
eling the knowledge state of each predefined concept. SAKT [16] is the first
model uses the attention mechanism, which can solve the problem that other
models can’t generalize well when dealing with sparse data. SAINT [17] imi-
tates the encoder-decoder structure of Transformer [18], and inputs exercise and
response separately, where the exercise sequence is fed into encoder, the outputs
of encoder and response sequence are fed into decoder. Several works [19,20] try
to introduce graph structure into knowledge tracking, so that KT models can
process non-Euclidean data. GKT [19] uses graph neural network [21] to trans-
form the KT task into a time-series node-level classification mission in graph
structure. While GIKT [20] utilizes three-layer Graph Convolutional Network
(GCN) [22] to generalize the high-order relationship between problems and skills
before training.

However, all of the above models face the same data sparsity problem with
few features, and don’t make full use of the temporal information in the data.
Negative historical data problems are ignored in these models, and they can’t
model the individual learning behavior in a consistent manner. In this paper, our
model alleviates the data sparseness from two perspectives: data processing and
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feature enrichment, which enable our model simulates proficiency and forgetting
while simulating interactions. The network architecture that can make full use
of implicit time information for training would be used, at the same time, it
can adjust weights adaptively to solve negative historical data problems with
self-attention mechanism.

2.2 Deep Temporal Convolutional Neural Network

DeepTCN [23] is a probabilistic forecasting framework based on convolutional
neural network (CNN) [24] for multiple related time series forecasting. This
framework consists of stacked residual blocks based on dilated causal convolu-
tional nets with encoder-decoder structure, which are constructed to capture the
temporal dependencies of input series with expansive receptive field and to cap-
ture long-range temporal dependencies with fewer number of layers. DeepTCN
has powerful representation learning capabilities, so that it is capable of learn-
ing complex patterns like regularity, internal and inter-date influence, and to
exploit those patterns for more accurate forecasts. When exercises data is sparse
or unavailable this capability will show its powerful ability which is common in
our study.

A general probabilistic forecasting problem for multiple related time series
can be described as follows: Given a set of time series y1:t = {y

(i)
1:t}

N

i=1, the future

time series are y(t+1):(t+Ω) = {y
(i)
(t+1):(t+Ω)}

N

i=1
, where N is the number of series,

t is the length of the historical observations and Ω is the length of the forecasting
horizon. Therefore, prediction results and be described as:

P (y(t+1):(t+Ω)|y1:t) =
∏Ω

ω=1
p(yt+Ω |y1:t,X(i)

t+ω, i = 1, ..., N) (1)

Our primary motivation for using DeepTCN is the success of CNNs and
adaptability of DeepTCN in this task. DeepTCN is a non-autoregressive prob-
ability prediction framework for great quantity correlated time series, which
can learn the latent correlations among sequences and model their interactions.
Specially, it is able to handle data sparsity and cold start problems that are com-
mon in complex real-world forecasting situations, and has high scalability and
extensibility. Extensive empirical researches show that DeepTCN outperforms
the state-of-the-art methods in both point prediction and probability prediction
tasks. By using this framework, our model can capture long-term dependen-
cies with expansive receptive field, and it can excavate temporal information in
data automatically. Especially, it’s able to deal with historical data sparse or
unavailable problem well which is ubiquitous in KT task.

3 Proposed Method

3.1 Input Representation

Our model is used to predict whether learners will be able to answer the future
exercise xt+1 correctly based on their historical interactions X = {x1, x2, ..., xt}.
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The architecture of SATCN is shown in Fig. 2, the interaction tuple xt is a
quintuple tuple, and the meaning of each notation is presented in Table 1.

Table 1. Notations

Notations Description

st the tth learner in all learners
et the tth exercise solved by the learner
at the correctness of et
act the attempt count of et
att the amount of time that a learner spent on et

Fig. 2. The architecture of SATCN.

The embedding layer in SATCN maps each input vector xi to latent space
to generate its embedding vector. Specifically, it maps all the five features of xi

to high-dimensional vector space, then the connection operation is performed,
which aims to turn the vector xi into an embedding vector with a fixed dimension
of 512. At each timestamp t + 1, embedding layer uses Exercise embedding to
embed the exercise that the learner is currently trying to solve into the query
space to obtain the corresponding query qi, and uses Interaction embedding
to embed historical interactions xt into the key and value space to obtain the
corresponding ki and vi (see Fig. 3).
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Fig. 3. Embedding layer.

3.2 Self-attention Layer

The purpose of self-attention layer is to acquire the query, key, and value cor-
responding to the input from the embedding layer, and calculate the atten-
tion weight. We use Qin,Kin and Vin represent the sequence of query, key and
value respectively. The multi-head attention network utilizes different projection
matrices to perform h different projections on the same input sequence to maps
Qin,Kin and Vin into the latent space, which can be described as:

Qi = [qi
1, ..., q

i
k] = QinWQ

i (2)

Ki = [ki
1, ..., k

i
k] = KinWK

i (3)

Vi = [vi
1, ..., v

i
k] = VinWV

i (4)

Herein, q, k, v represent projected queries, keys and values respectively. We
employ scaled dot-product attention mechanism. The correlation between value
and given query is determined by the dot product between query and the key
corresponding to the value.

There are total 8 attention heads and each of them(headi) is the product of
matrix QiK

t
i√

d
after Softmax operation and values Vi.

headi = Softmax(
QiK

t
i√

d
)Vi (5)

where d is the dimension of query and key, which is used to scale.
The 8 attention heads multiply by WO after connection to aggregate the out-

put of different attention heads, which is the final output of multi-head attention
network, i.e., attention weights.

MultiHead(Qin,Kin, Vin) = Concat(head1, ..., headh)WO (6)

3.3 Encoder: Dilated Causal Convolutions

In the encoder part, stacked dilated causal convolutions are constructed to simu-
late the stochastic process of historical observation and output h

(i)
t . Causal con-

volutions refer to the convolutions that the output at time can only be obtained
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from the input, similar to the Mask mechanism in Transformer. Dilated causal
convolutions allow the application of filters in a range of more than its length
by skipping input value with a certain step. In the situation of univariate series,
given the one-dimension input series x, the output of dilated convolutions at
location t with kernel ω is feature map s,which can be described as:

s(t) = (x ∗d ω)(t) =
∑K−1

k=0
ω(k)x(t − d · k) (7)

where d is the dilation factor, and K is the kernel size. The network can retain
very broad receptive field by stacking more than one dilated convolution, and
capture long-term temporal dependencies with less layers. As shown in Fig. 2,
there are dilated causal convolutions with dilation factors d = {1, 2, 3} in the
left, and the size of the kernel K = 2. The receptive field with a size of 8 is
constructed by stacking three layers.

The details of each layer in encoder are shown in Fig. 4, where there are two
dilated convolution modules in each layer, and they are exactly the same(with
same kernel size K and dilation factor d). Every two layers of dilated causal
convolutions assemble a residual block. Each layer of dilated causal convolutions
is followed by batch normalization and rectified nonlinear unit (ReLU). The
difference is that the output of the batch normalization which at the location
of the second dilated causal convolution layer would be used as the input of
the residual block, then the second ReLU. In the case of capturing long-term
dependencies, the residual block helps train the network more stable and efficient.
At the same time, the rectified nonlinear unit (ReLU) is corrected to obtain
better prediction accuracy.

Fig. 4. Encoder module.



SATCN: An Improved Temporal Convolutional Neural Network 11

3.4 Decoder: Residual Neural Network

The decoder module is composed of Resnet-v and a dense layer. The Resnet-v
module is the variant of residual neural network, which is used to capture the
information of two inputs (one is hidden outputs and the other is exogenous
variables) from the encoder. It can be described as:

δ
(i)
t+ω = R(X(i)

t+ω) + h
(i)
t (8)

In which h
(i)
t is hidden outputs, X

(i)
t+ω is exogenous variables, and the hidden out-

puts of resnet-v is δ
(i)
t+ω. R(•) is the residual function acting on exogenous vari-

ables. It explains the residuals between the predict value and the true value, and
plays the role of transfer function at the same time. Simply speaking, resnet-v
combines hidden outputs h

(i)
t and exogenous variables X

(i)
t+ω processed by resid-

ual function, and generates new hidden outputs.
Figure 5 shows the detailed structure of the decoder. The first dense layer

and batch normalization are used to project the exogenous variables X
(i)
t+ω, then

ReLU is used for activation. There are the second dense layer and batch nor-
malization subsequently. All of them construct the residual function R(X(i)

t+ω)
acting on exogenous variables X

(i)
t+ω. At last, use a dense layer to map the hidden

outputs δ
(i)
t+ω that generated by Resnet-v to obtain the predicted probability.

Fig. 5. Decoder module.

3.5 Network Training

The model is trained by minimizing the quantile loss Lq(y, ŷq). For a specific
quantile q, the true value and predicted value is y and ŷq respectively, and its
loss function can be described as:

Lq(y, ŷq) = q(y − ŷq)+ + (1 − q)(ŷq − y)+ (9)
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where (y)+ = max(0, y) and q ∈ (0, 1). Given a set of quantile levels Q =
{q1, ..., qm}, the objective of training is to minimize the total quantile loss LQ:

LQ =
∑m

j=1
Lqj(y, ŷqj) (10)

4 Experiments

4.1 Datasets

ASSIST2009: This dataset is collected from ASSITments in 2009 ∼ 2010
school year which is an online education platform. We screen learners on the
condition of each learner’s exercise sequence no less than 400, and then intercept
the first 400 as the historical exercise sequence of each learner.

ASSIST2012: This dataset is also collected from ASSITments, which contains
learning data in 2012 ∼ 2013 school year. We select exercise sequence of each
learner in case of sequence length no less than 400.

Junyi Academy: This dataset is collected from Junyi Academy in 2015, which
is an online education website provides learning materials and practice platform
about various science subjects. We totally choose 800 learners and their exercise
sequence length no less than 800.

The statistical data of all datasets are shown in Table 2.

Table 2. The statistical data of all datasets

ASSIST2009 ASSIST2012 Junyi Academy

Student Number 876 800 800

Question Number 24879 31689 616

Exercise Number 400 400 800

Attempt Count 400 29 333

Answer Time(ms) 173301 11864 262582

4.2 Baseline Models

The Baseline Models we compared are:

DKT [4]: Deep Knowledge Tracing (DKT) is the first KT model based on deep
learning, which utilizes LSTM of recurrent neural network to process KT task.

DKT+ [25]: This model is the variant of DKT, which introduce regularization
terms corresponding to reconstruction and waviness into the loss function of
DKT to robust the consistency of prediction.
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DKVMN [6]: This model improves MANN by using Dynamic Key-Value Mem-
ory to construct Dynamic Key-Value Memory Network, which is been recognized
as an excellent KT improvement model based on deep learning.

SAKT [16]: Inspired by Transformer, it is the first KT model use self-attention
mechanism.

4.3 Implementation Details

We take the correctness of each question as the main element, and the remaining
four data (learner id, question id, attempt count and answer time) are embed as
covariates. Suppose the exercise sequence length of each learner is Q, then the
input data is a Q ∗ 5 matrix, and each column represents learner id, question
id, correctness, attempt count and answer time respectively. The input data will
become a vector with 512 dimensions after embedding layer, and we train and
test for every single learner. We uniformly set the last 30 exercise sequence as
test datasets, and the other Q − 30 exercise sequence as train datasets.

We set LR as 0.001, and keep the dropout rate as 0.1 to avoid overfitting. The
performance of all models evaluate by calculating the area under the ROC curve
(AUC) and its standard deviation. We randomly choose 10 consecutive epochs
from the result after the model converged and report the mean and standard
deviation of AUC.

4.4 Results and Analysis

The area under the ROC curve(AUC) demonstrate every model’s prediction
performance: AUC with high value means high prediction accuracy and better
prediction performance, and the standard deviation of AUC reflects model’s
stability: the smaller the standard deviation, the better the stability. We compare
our model with standard DKT, DKT+, DKVMN and SAKT model, and the
overall performance of all models is shown in Table 3.

Table 3. Test AUC for all datasets

Datasets ASSIST2009 ASSIST2012 Junyi Academy

Model mean std mean std mean std
DKT [4] 0.797 0.0099 0.669 0.0082 0.855 0.0246
DKT+ [25] 0.787 0.0089 \ \ \ \
DKVMN [6] 0.672 0.0214 0.682 0.0014 0.574 0.0524
SAKT [16] 0.704 0.0117 0.718 0.0106 0.795 0.0611
SATCN[our] 0.811 0.0005 0.800 0.0011 0.874 0.0003

In ASSIST09, the average AUC of DKT can reach 0.797, but its variant model
DKT+ only reaches 0.787. DKVMN and SAKT reach 0.672, 0.704 respectively,
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and SATCN reaches the best average AUC with 0.811. Comparing with DKT,
DKT+, DKVMN and SAKT, SATCN improves by 1.76%, 3.05%, 20.68% and
15.20%. At the same time, DKVMN shows the most obvious fluctuation with the
maximum standard deviation. The other 3 baseline models’ stability is better
but still inferior to SATCN. Our SATCN model surpasses previous models both
in accuracy and stability at this data set.

In ASSIST12, the performance of DKT is severely degraded and its AUC
only reaches 0.669, while the performance and stability of DKVMN and SAKT
have lightly improved, and their AUC reach 0.682 and 0.718 respectively. Our
model reaches 0.800 that improve by 19.58%, 17.30% and 14.42% comparing
with DKT, DKVMN and SAKT. Meanwhile the stability of SATCN reaches the
best performance.

In JunyiAcademy, DKT and SAKT represent good AUC with 0.855 and
0.795, which means they show the best model performance. But DKVMN dis-
plays poor AUC with 0.574, and all baseline models exhibit the worst stability.
While our model shows the best AUC with 0.874, and the best stability simul-
taneously. Comparing with DKT, DKVMN and SAKT, SATCN improves by
2.22%, 52.26% and 9.94%, respectively.

Restricted by devices, memory space and computing power DKT+ model
need in ASSIT12 and JunyiAcademy can’t be satisfied, so we couldn’t get the
result.

We can summarize from the experimental results in Table 3 that DKT,
SAKT and SATCN reach the best performance in JunyiAcademy which con-
tains the longest interaction sequence and the minimal question type, and they
show poorer performance in ASSIST09 and ASSIST12 which include shorter
interaction sequence and more question type. We find that the more question
type involved under the same length of interaction sequence length, the worse
the performance, while DKVMN shows the opposite effect.

We think longer interaction sequence and less question type means more
frequent interactions in each question, and neural network is good at capturing
these interactions. Meanwhile the more question type involved under the same
length of interaction sequence length means many questions would be answer
only once and their interaction is not obvious. Therefore, more details about the
above experimental results are revealed in Table 3. The original work of DKVMN
[6] also find that it will achieve better performance when there are large number
of different questions. We think it’s involved with external memory, because it
can capture low-frequent interactions better than neural network. Even if the
neural network captures low-frequent interactions, it also has great probability
of forgetting and dropout.

To conclude, the performance of SATCN in all datasets outperform other
baseline models, especially in JunyiAcademy which contains more frequent inter-
actions about each exercise. The experimental results indicate that our model
can capture exercise interactions better and make more accurate prediction.



SATCN: An Improved Temporal Convolutional Neural Network 15

4.5 Ablation Studies

To explore the influence of answer time and attempt count about experimental
results, we conduct ablation studies at the four variants of SATCN,SATCN-
AC,SATCN-AT, SATCN-BA, and their detail settings are shown as bellow. Their
performance is shown in Table 4. For SATCN-AC, we remove attempt count
related to each exercise. For SATCN-AT, we remove answer time related to
each exercise. For SATCN-BA, we remove both attempt count and answer time
related to each exercise.

Table 4. Effect of Ablation Models

Datasets ASSIST2009 ASSIST2012 Junyi Academy

Models mean std mean std mean std
SATCN-BA 0.765 0.0007 0.740 0.0041 0.840 0.0007
SATCN-AC 0.758 0.0017 0.745 0.0014 0.851 0.0005
SATCN-AT 0.839 0.0007 0.797 0.0012 0.853 0.0030
SATCN 0.811 0.0005 0.800 0.0011 0.874 0.0003

From above results, we can see that SATCN-BA shows the most signifi-
cant performance degradation, which remove both attempt count and answer
time. Both attempt count and answer time show a certain positive effect on the
improvement of performance. We can also seen that compared with answer time,
attempt count has greater impact on experimental results. This result proves our
conjecture: answer time can model learner’s proficiency, combined with attempt
count our model can accurately simulate the knowledge state of a learner come
to understand whether they has mastered or not and their proficiency. This level
of proficiency is also can be used to simulate forgetting, thereby improving the
performance of our model.

5 Conclusions and Future Work

In this paper, we propose a new learning framework named SATCN from the
perspective of temporal sequence prediction to deal with KT task. Our model
can be used in actual education scenarios to help tutors and learners to improve
teaching and learning efficiency. SATCN not only outperforms the state-of-the-
art models with the same type, but also solves ubiquitous problem of negative
historical data. In future work, we will make efforts to improve model inter-
pretability and performance by utilizing graph structure and more robust neural
networks.
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