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Abstract. As the development of deep learning, neural network (NN)
based text-to-speech (TTS) that adopts deep neural networks as the
model backbone for speech synthesis, has now become the mainstream
technology for TTS. Compared to the previous TTS systems based on
concatenative synthesis and statistical parametric synthesis, the NN
based speech synthesis shows conspicuous advantages. It needs less
requirement on human pre-processing and feature development, and
brings high-quality voice in terms of both intelligibility and naturalness.
However, robust NN based speech synthesis model typically requires a
sizable set of high-quality data for training, which is expensive to collect
especially in low-resource scenarios. It is worth investigating how to take
advantage of low-quality material such as automatic speech recognition
(ASR) data which can be easily obtained compared with high-quality
TTS material. In this paper, we propose a pre-training technique frame-
work to improve the performance of low-resource speech synthesis. The
idea is to extend the training material of TTS model by using ASR
based data augmentation method. Specifically, we first build a frame-
wise phoneme classification network on the ASR dataset and extract the
semi-supervised <linguistic features, audio> paired data from large-scale
speech corpora. We then pre-train the NN based TTS acoustic model by
using the semi-supervised <linguistic features, audio> pairs. Finally, we
fine-tune the model with a small amount of available paired data. Experi-
mental results show that our proposed framework enables the TTS model
to generate more intelligible and natural speech with the same amount
of paired training data.

Keywords: Pre-training techniques · neural network · text-to-speech ·
automatic speech recognition

1 Introduction

Recent advances in neural network (NN) based text-to-speech (TTS) have sig-
nificantly improved the naturalness and quality of synthesized speech. We are
now able to generate high-quality human-like speech from given text with less
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requirement on human pre-processing and feature development [1–5]. However,
such models typically require tens of hour transcribed dataset consisting of high-
quality text and audio training pairs, which are expensive and time consuming
to collect. Requiring large amounts of data limits the overall naturalness and
applicability especially in low-resource scenarios.

A series of extended technologies have been developed to improve the data
efficiency for NN based TTS training. Most of these existing methods can be
grouped into three categories: dual transformation, transfer learning and self-
supervised/semi-supervised training. Firstly, dual transformation mainly focuses
on the dual nature of TTS and automatic speech recognition (ASR). TTS
and ASR are two dual tasks and can be leveraged together to improve each
other. Speech chain technique is presented in [6] to construct a sequence-to-
sequence model for both ASR and TTS tasks as well as a loop connection
between these two processes. The authors in [7] develop a TTS and ASR system
named LRSpeech which use the back transformation between TTS and ASR to
iteratively boost the accuracy of each other under the extremely low-resource
setting. In [8], it proposes an almost unsupervised learning method that only
leverages few hundreds of paired data and extra unpaired data for TTS and
ASR by using dual learning. Secondly, although paired text and speech data
are scarce in low-resource scenarios, it is abundant in rich-resource scenarios.
Transfer learning approaches try to implement adaptation methods and retain
the satisfactory intelligibility and naturalness. Several works attempt to help the
mapping between text and speech in low-resource languages with pre-training
the TTS models on rich-resource languages [9–12]. In order to alleviate the dif-
ference of phoneme sets between rich and low-resource languages. The work in
[13] proposes to map the embeddings between the phoneme sets from different
languages. In [14], international phonetic alphabet (IPA) is adopted to sup-
port arbitrary texts in multiple languages. Besides that, voice conversion (VC)
[15,16] is also an effective way to improve the data efficiency in low-resource TTS
training. Recent work in [17] brings significant improvements to naturalness by
combining multi-speaker modelling with data augmentation for the low-resource
speaker. This approach uses a VC model to transform speech from one speaker
to sound like speech from another, while preserving the content and prosody
of the source speaker. Finally, self-supervised/semi-supervised training strate-
gies are leveraged to enhance the language understanding or speech generation
capabilities of TTS model. For example, paper [18] aims to lower TTS systems’
reliance on high quality data by providing them the textual knowledge, which
is extracted from BERT [19] language models during training. They enrich the
textual information through feeding the linguistic features that extracted by
BERT from the same input text to the decoder as well along with the original
encoder representations. In [20], the researchers propose a semi-supervised train-
ing framework to allow Tacotron to utilize textual and acoustic knowledge con-
tained in large, publicly available text and speech corpora. It first embeds each
word in the input text into word vectors and condition the Tacotron encoder on
them. Then an unpaired speech corpus is used to pre-train the Tacotron decoder
in the acoustic domain. Finally, the model is fine-tuned using available paired



164 Y. Liu et al.

data. An unsupervised pre-training mechanism that uses Vector-Quantization
Variational-Autoencoder (VQ-VAE) [21] to extract the unsupervised linguistic
units from the untranscribed speech is investigated in [22]. More recently, an
unsupervised TTS system based on an alignment module that outputs pseudo-
text and another synthesis module that uses pseudo-text for training and real
text for inference, is presented in [23].

The motivation of this work is to develop novel techniques to alleviate the
data demand for training NN based TTS. We propose a semi-supervised pre-
training technique framework to improve the performance of speech synthesis
by extending the training material of TTS model with ASR based data augmen-
tation. Specifically, we first build a frame-wise phoneme classification network
on ASR dataset and extract the semi-supervised <linguistic features, audio>
paired data from large-scale speech corpora. Then, we pre-train the NN based
TTS acoustic model by using the semi-supervised <linguistic features, audio>
pairs. Finally, we fine-tune the model with a small amount of available paired
data.

It should be noticed that similar semi-supervised pre-training work has been
related in [20]. However, our work is different in several ways, constituting the
main contributions of our work. Firstly, the semi-supervised <linguistic features,
audio> paired data for pre-training TTS model are extracted from a frame-wise
phoneme classification network, which is built from the beginning based on the
ASR dataset. It makes us possible to pre-train the entire TTS acoustic model,
while the encoder and decoder are separately pre-trained in [20]. Secondly, the
acoustic model of TTS system implemented in our work is different. We choose
to use AdaSpeech [5] which involves the adaptive custom voice technique by
inserting speaker embedding as the conditional information. Finally, we investi-
gate and analyze the effectiveness of building low-resource language TTS systems
with the help of semi-supervised pre-training on the rich-resource language.

The rest of this paper is organized as follows: In Sect. 2, we briefly review the
architecture of TTS model used in this work. In Sect. 3, our proposed novel tech-
niques to improve the performance of low-resource TTS are described. Section 4
shows our experimental setups and detailed results on Mandarin and Chinese
Dialects tasks. Several conclusions are further drawn in Sect. 5.

2 TTS Model

As the development of deep learning, NN based TTS that adopts deep neu-
ral networks as the model backbone for speech synthesis, has now become the
mainstream technology for TTS. Compared to the previous TTS systems based
on concatenative synthesis and statistical parametric synthesis, the NN based
speech synthesis shows conspicuous advantages. It needs less requirement on
human pre-processing and feature development, and brings high-quality voice in
terms of both intelligibility and naturalness. A NN based TTS system often con-
sists of three basic components: a text analysis module, an acoustic model (abbr.
TTS-AM), and a vocoder. The text analysis module converts a text sequence
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into the linguistic features, and then TTS-AM transforms linguistic features to
the acoustic features, finally the vocoder synthesizes the waveform based on the
acoustic features.

2.1 Text Analysis Module

In the TTS system, the text analysis module has an important influence on the
intelligibility and naturalness of synthesized speech. The typical text analysis
module in a Chinese TTS system consists of text normalization (TN), Chinese
word segmentation (CWS), part-of-speech (POS) tagging, grapheme-to-phoneme
(G2P) conversion, and prosody prediction. It extracts various linguistic features
from the raw text, aiming to provide enough information for training the TTS-
AM.

2.2 Acoustic Model

In this work, we choose to use AdaSpeech, which is a non-autoregressive model
based on the transformer architecture. The basic model backbone consists of a
phoneme encoder, a spectrogram decoder, an acoustic condition modeling that
captures the diverse acoustic conditions of speech in speaker level, utterance level
and phoneme level. And a variance adaptor which provides variance information
including duration, pitch and energy into the phoneme hidden sequence. The
decoder generates spectrogram features in parallel from the predicted duration
and other information.

2.3 Vocoder

The vocoder in our work is based on LPCNet [24–26]. It introduces conventional
digital signal processing into neural networks, and uses linear prediction coeffi-
cients to calculate the next waveform point while leveraging a lightweight RNN
to compute the residual. This makes it possible to match the quality of state-
of-the art neural synthesis systems with fewer neurons, significantly reducing
the complexity. The LPCNet is a good compromise between quality and infer-
ence speed for a TTS system. As the LPCNet uses bark-frequency cepstrum as
input, we modify the AdaSpeech to generate bark-frequency cepstrum as output.
No external speaker information, such as speaker embedding, is referred in the
building of LPCNet model.

3 The Proposed Approach

In this section, the proposed semi-supervised pre-training framework on TTS
modeling is detailed. The Illustration of our general framework is shown in
Fig. 1. We first describe the structure of frame-wise phoneme classification model
and the alignment module that greedily proposes a pairing relationship between
speech utterances and phoneme transcripts. After that, the pre-training and
fine-tuning procedures of our method are presented.
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Fig. 1. Illustration of the proposed semi-supervised pre-training framework on TTS
modeling.

3.1 Frame-Wise Phoneme Classification

DFSMN Model. DFSMN is an improved FSMN architecture by introduc-
ing the skip connections and the memory strides [27]. The DFSMN component
consists of four parts: a ReLU layer, a linear projection layer, a memory block
and a skip connection from the bottom memory block, except for the first one
that without the skip connection from the bottom layer. By adding the skip
connections between the memory blocks of DFSMN components, the output of
the bottom layer memory block can directly flow to the upper layer. During
back-propagation, the gradients of higher layer can also be assigned directly to
lower layer that help to overcome the gradient vanishing problem. Since the
information of adjacent frames in speech signals always have strong redundancy
due to the overlap. The strides for look-back and look-ahead are used to help
the DFSMN layer remove the redundancy in adjacent acoustic frames. DFSMN
is able to model the long-term dependency in sequential signals while without
using recurrent feedback. In practice, DFSMN models usually contain DFSMN
layers around ten to twenty. We follow the model topology in [28] and implement
a DFSMN with ten DFSMN layers followed by two fully-connected ReLU layers,
a linear layer and a softmax output layer. To avoid the mismatch in G2P conver-
sion, we share the same phoneme set between phoneme classification and TTS
tasks. We adopt IPA as described in [14] to support arbitrary texts in Mandarin
and multiple Chinese Dialects evaluations in our work.

Alignment Module. After training DFSMN based phoneme classification
model, the semi-supervised paired data for pre-training TTS model has to be
prepared. Pseudo phoneme transcript of the training set is first generated by
greedy decoding over the output of DFSMN. Instead of extracting the phoneme
duration with soft attention mechanism as described in [20,22], the alignment
between pseudo phoneme transcript and speech sequence is derived from a forced
alignment procedure computed by Kaldi [29] with a phonetic decision tree. This
improves the alignment accuracy and reduces the information gap between the
model input and output.
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3.2 Semi-supervised Pre-training

In the baseline AdaSpeech, the model should simultaneously learn the textual
representations, acoustic representations, and the alignment between them. The
encoder takes a source phoneme text as input and produces sequential represen-
tations of it. The decoder is then conditioned on the phoneme representations
to generate corresponding acoustic representations, which are then converted to
waveforms. [20] proposes two types of pre-training methods to utilize the exter-
nal textual and the acoustic information. For textual representations, they pre-
train encoder by the external word-vectors. For acoustic representations, they
pre-train the decoder by untranscribed speech. Although [20] shows that the pro-
posed semi-supervised pre-training helps the model synthesizes more intelligible
speech, it finds that pre-training the encoder and decoder separately at the same
time does not bring further improvement than only pre-training the decoder.
However, there is a mismatch between pre-training only the decoder and fine-
tuning the whole model. To avoid potential error introduced by this mismatch
and further improve the data efficiency by using only speech, we instead use the
semi-supervised paired data generated by the frame-wise phoneme classification
model as described in Sect. 3.1. It helps to alleviate the mismatch problem and
makes pre-training the entire model possible.

3.3 AdaSpeech Fine-Tuning

The AdaSpeech in pre-trained model is applied as a multi-speaker TTS-AM,
which means we do not use the adaptive custom voice technique as described
in [5]. After that, the AdaSpeech is fine-tuned with some high-quality paired
speech data from the target speaker. In this procedure, the inputs of the model
are phoneme sequences derived from the normalized text.

4 Experiments

In this section, we evaluate the performance of the proposed approach on two
type of TTS tasks including single-speaker Mandarin dataset and multi-speaker
Chinese Dialects dataset. For both two experiments, we use a 3000-hour Man-
darin dataset which consists of 1000-hour low-quality transcribed ASR data
(1000 h-TD) and 2000-hour low-quality untranscribed data (2000 h-UTD) for
pre-training. The data are collected from many domains, such as voice search,
conversation, video and the sample rate of the data is 16 kHz.

In the ASR setup, waveform signal is analyzed using a 25-ms Hamming win-
dow with a 10-ms fixed frame rate. 40-dimensional filterbank features are used for
training DFSMN phoneme classification models. The features are pre-processed
with the global mean and variance normalization (MVN) algorithm. We use
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11 frames (5-1-5) of filter-banks as the input features of neural networks. The
DFSMNs model stacked with 1 Relu Layer (2048 hidden nodes), 10 DFSMN lay-
ers (2048 memory block size, 512 projection size, 10*[2048-512]), 4 ReLU layers
(2*2048-1024-512) and 1 Softmax output layer.

In the TTS setup, 20-dimensional features, which consist of 18 Bark-scale
cepstral coefficients and 2 pitch parameters (period, correlation), are extracted
from 16k audio using a 25-ms Hamming window with a 10-ms fixed frame rate.
The TTS-AM of AdaSpeech consists of 6 feed-forward Transformer blocks for the
phoneme encoder and the decoder. The hidden dimension of phoneme embed-
ding, speaker embedding and self-attention are all set to 384. The number of
attention heads is 4 in the phoneme encoder and the decoder. The pre-train and
fine-tune models are separately trained in a distributed manner using stochastic
gradient descent (SGD) optimization on 16 GPUs and 4 GPUs.

4.1 Single-Speaker Mandarin Task

Experimental Setup. In the single-speaker Mandarin task, we evaluate our
method with the Chinese Standard Mandarin Speech Corpus (CSMSC). CSMSC
has 10,000 recorded sentences read by a female speaker, totaling 12 h of natural
speech with phoneme-level text grid annotations and text transcriptions. The
corpus is randomly partitioned into non-overlapping training, development and
test sets with 9000, 800 and 200 sentences respectively. We conduct several exper-
imental setups to investigate the influence of semi-supervised pre-training. All
parameters of the TTS-AM are directly updated during the fine-tuning stage.
For better comparing the efficiency of pre-training on TTS-AM, we use the same
LPCNet which is trained on full 12 h CSMSC. The performance of the overall
quality samples is evaluated using the mean opinion score (MOS). Listeners are
asked to rate the overall naturalness and prosodic appropriateness of samples on
a scale from 1 and 5. Then these synthesized samples are mixed with real speech
samples and presented to listeners independently in random order. 15 raters who
are native Mandarin speakers are included in the subjective test.

Performance of Phoneme Classification Models The phoneme error rate
(PER) performance of using different amounts of low-quality transcribed data to
build phoneme classification models is shown in Table 1. We evaluate with three
test sets, including the CSMSC development set (Test-c), a 5 h dataset that
randomly sampled from the 1000 h-TD (Test-i) and exists in each training data,
a 4 h dataset that randomly sampled from the 2000 h-UTD which never exists
in the training sets (Test-o). It can be observed that increasing the amount
of training data yields a large improvement on the PER. To better evaluate
the relationship between PER and pre-training efficiency, we use the recognized
phoneme transcripts of all training sets for alignment to generate the semi-
supervised paired data.
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Table 1. PER% performance of phoneme classification models on three evaluation
tasks.

Training Data Size Test-c Test-i Test-o

100 h 9.3 18.8 26.9
1000 h 6.6 12.2 15.4

Results on Different Phoneme Classification Models In this section, the
results of implementing different phoneme classification models to generate semi-
supervised data for TTS-AM pre-training are presented. The mean MOS scores
on CSMSC test set using two different DFSMN models are gradually explored.
DFSMN-1000 h indicates that we use the 1000 h-TD to train the DFSMN model.
DFSMN-100 h means the DFSMN model is built with 100 h subset of the 1000 h-
TD. When generating the semi-supervised data for pre-training TTS-AM, we
choose to use the same 100 h subset data. The results shown in Table 2 con-
firm that our proposed semi-supervised pre-training method brings conspicuous
improvement on the MOS especially when we utilize only 15min paired data.
Besides that, the MOS on DFSMN-1000 h pre-trained model is slightly better
then the DFSMN-100 h pre-trained model. It indicates that achieving higher
accuracy semi-supervised paired data is also a feasible way for improving the
intelligibility and naturalness of synthesized speech. In the next experiment, we
choose DFSMN-1000 h model to generate all semi-supervised data.

Table 2. The mean MOS on CSMSC of using different phoneme classification models
to generate TTS-AM pre-training data.

Fine-tuning Data Size Without Pre-training Pre-trained Model Ground Truth
DFSMN-100 h DFSMN-1000 h

15 min 2.80 3.55 3.70 4.71
2 h 3.99 4.09 4.03
10 h 4.11 4.05 4.16

Results on Different Amounts of Pre-training Data. In this experiment,
we compare the results of using different amounts of data for pre-training. We uti-
lize Size-N for labelling the data size used in TTS-AM pre-training. Thus, Size-
100 h indicates that we use the same 100 h subset data as in above experiment.
Size-1000 h stands that we use the whole 1000 h-TD for TTS-AM pre-training.
Size-3000 h means we expand the dataset for pre-training TTS-AM by including
the 2000 h-UTD. As shown in Table 3, several conclusions can be drawn from
the results. Firstly, the results suggest that expanding the pre-training data size
directly helps the speech synthesis performance. The MOS of fine-tuning Size-
3000 h TTS-AM with 15min paired data is similar with directly training on 2 h
paired data. Secondly, it seems that the difference between using pre-training
model and without pre-trained model is small when enough paired TTS data
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Table 3. The mean MOS on CSMSC of using different amounts of pre-training data.

Fine-tuning
Data Size

Without
Pre-training

Pre-train Data Size Ground Truth

Size-100 h Size-1000 h Size-3000 h

15min 2.80 3.70 3.83 3.93 4.71
2 h 3.99 4.03 4.09 4.01
10 h 4.11 4.16 4.10 4.08

has been involved in the building process. For example, when fine-tuning on 10 h
TTS data, we observe no conspicuous improvement on the MOS evaluation.

4.2 Multi-speaker Chinese Dialects Task

Experimental Setup. In the multi-speaker Chinese Dialects task, we evaluate
our method with the two Chinese Dialect speech corpuses including Shanghainese
and Cantonese. The Shanghainese corpus consists of 3 female speakers, each has
1 h recorded speech. The Cantonese corpus has 2 female speakers, each also
has 1 h recorded speech. The pre-trained TTS-AM model used in this task is
trained with 3000 h Mandarin dataset. For better comparison, the fine-tuning
procedure is separately utilized for each speaker. And we build the speaker-
dependent LPCNet to convert acoustic features into wave. We also use the MOS
score to evaluate the performance of overall quality samples and share the same
rating rules as in above experiments. We find 15 native Shanghainese speakers
and 15 native Cantonese speakers to implement the subjective test.

Results on Low-Resource Languages Table 4 and Table 5 show the TTS
performance of our proposed method on low-resource Shanghainese and Can-
tonese Corpuses. We investigate the MOS on fine-tuning with 15min and 1 h
datasets. It is obvious that the pre-training on rich-resource Mandarin bene-
fits the building of low-resource Chinese Dialects TTS-AMs. For example, when
conducting experiment on 15min dataset, the mean MOS score of Shanghainese
increases from 2.97 to 3.30 and the mean MOS score of Cantonese increases

Table 4. The mean MOS on Shanghainese.

Fine-tuning Data Size Without Pre-training Pre-trained Model Ground Truth

15min 2.97 3.30 4.30
1 h 3.39 3.51

Table 5. The mean MOS on Cantonese.

Fine-tuning Data Size Without Pre-training Pre-trained Model Ground Truth

15min 2.66 3.09 4.53
1 h 3.54 3.99
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from 2.66 to 3.09. With the help of proposed technique, we can generate more
intelligible and natural speech with the same amount of low-resource data.

5 Conclusions

In this paper, a novel semi-supervised pre-training technique framework that
extends the training material of TTS model by using ASR based data aug-
mentation method is proposed to improve the performance of speech synthesis.
We first build a frame-wise phoneme classification network on the ASR dataset
and extract the semi-supervised <linguistic features, audio> paired data from
large-scale speech corpora. After that, the semi-supervised <linguistic features,
audio> pairs is used to pre-train the NN based TTS acoustic model. Finally,
we fine-tune the model with a small amount of available paired data. Exper-
imental results show that our proposed framework can benefits the building
of low-resource TTS system by implementing semi-supervised pre-training tech-
nique. It enables the TTS model to generate more intelligible and natural speech
with the same amount of paired training data.
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