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Preface

This volume contains the papers from the 17th National Conference on Man–Machine
Speech Communication (NCMMSC), the largest and most influential event on speech
signal processing in China, whichwas hosted in Hefei, China, December 15–18, 2022 by
the Chinese Information Processing Society of China and China Computer Federation,
jointly co-organized by iFLYTEK Co., Ltd., the University of Science and Technol-
ogy of China and the National Engineering Research Center for Speech and Language
Information Processing.

NCMMSC is also the academic annual meeting of the technical committee of Speech
Dialogue and Auditory Processing of China Computer Federation (CCF TFSDAP). As
an important stage for experts, scholars, and researchers in this field to share their ideas,
research results and experiences, NCMMSC strongly promotes continuous progress in
this field and development work.

Papers published in the Special Issue on “National Conference on Man–Machine
Speech Communication (NCMMSC 2022)” are focused on the topics of speech recog-
nition, synthesis, enhancement and coding, as well as experimental phonetics, speech
prosody analysis, pathological speech analysis, speech analysis, acoustic scene classi-
fication and human–computer dialogue understanding. Each paper was assigned 3 or
more reviewers for peer review. And each reviewer was assigned 6–10 papers. The total
number of submissions was 91, the number of full papers accepted was 21, and the
number of short papers accepted was 7.

The proceedings editors wish to thank the dedicated Scientific Committee members
and all the other reviewers for their contributions. We also thank Springer for their trust
and for publishing the proceedings of NCMMSC 2022.

December 2022 Zhenhua Ling
Jianqing Gao

Kai Yu
Jia Jia
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MCPN: A Multiple Cross-Perception
Network for Real-Time Emotion
Recognition in Conversation

Weifeng Liu1,3 and Xiao Sun2,3(B)

1 AHU-IAI AI Joint Laboratory, Anhui University, Hefei, China
2 Hefei University of Technology, Hefei, China

3 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center,
Hefei, China

sunx@iai.ustc.edu.cn

Abstract. Emotion recognition in conversation (ERC) is crucial for
developing empathetic machines. Most of the recent related works gen-
erally model the speaker interaction and context information as a static
process but ignore the temporal dynamics of the interaction and the
semantics in the dialogue. At the same time, the misclassification of sim-
ilar emotions is also a challenge to be solved. To solve the above prob-
lems, we propose a Multiple Cross-Perception Network, MCPN, for mul-
timodal real-time conversation scenarios. We dynamically select speaker
interaction intervals for each time step, so that the model can effectively
capture the dynamics of interaction. Meanwhile, we introduce the mul-
tiple cross-perception process to perceive the context and speaker state
information captured by the model alternately, so that the model can
capture the semantics and interaction information specific to each time
step more accurately. Furthermore, we propose an emotion triple recog-
nition process to improve the model’s ability to recognize similar emo-
tions. Experiments on multiple datasets demonstrate the effectiveness of
the proposed method.

Keywords: Real-time Emotion Recognition in Conversation ·
Multimodal · Natural Language Processing

1 Introduction

With the development of network technology and social networks, communica-
tion through the Internet has become part of the daily life of people in today’s
society. In the face of this booming social network, the need to develop an
empathic dialogue system is also becoming more and more obvious. And emotion
recognition in conversation (ERC) is an important foundation.

The task of ERC is to recognize the emotion of each utterance in a conversa-
tion [14]. Because the dialogue takes place in real-time, the historical utterances
may have different effects on the target utterances at different moments of dia-
logue [15]. In addition, there is a complex interaction process between the speak-
ers in the dialogue, which increases the difficulty of the ERC task. Furthermore,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
L. Zhenhua et al. (Eds.): NCMMSC 2022, CCIS 1765, pp. 1–15, 2023.
https://doi.org/10.1007/978-981-99-2401-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-2401-1_1&domain=pdf
http://orcid.org/0000-0001-9385-263X
http://orcid.org/0000-0001-9750-7032
https://doi.org/10.1007/978-981-99-2401-1_1
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Fig. 1. An instance of a conversation.

the existing ERC methods still can not effectively solve the problem of misclassi-
fication of similar emotions, such as happiness and excited, anger and frustrated.
Like the examples shown in Fig. 1, the utterance u3 is easily misclassified as an
anger emotion.

Recent related works [3,5,6,9,17,18,20] usually utilize transformers [19] to
encode each utterance in the dialogue from a global perspective or gather infor-
mation from the dialog graph with graph neural networks (GNN). However,
these methods model the interaction between speakers through static methods,
thus ignoring the dynamics of interaction in the conversation. Moreover, these
methods model the context information in the dialogue as a single static seman-
tic flow, while ignoring the fact that context has different understandings at
different times, i.e., the semantic dynamics.

In this paper, we propose a Multiple Cross-Perception Network (MCPN) to
solve the above problems.

Firstly, inspired by the dynamical influence model [13], we select the state
interaction intervals for each time step dynamically, so that the model can model
the various information in the conversation in a dynamic manner.

Secondly, we introduce the multiple cross-perception process to alternately
perceive semantic and interactive information in the dialogue, so that the model
can capture the semantic and interactive information in each time step more
accurately.

Thirdly, to alleviate the problem of misclassification of similar emotions,
we propose an Emotion Triple-Recognition (ETR) process, which introduces
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additional fuzzy classification probability through multiple recognition processes,
thus enhancing the discriminative ability of the classifier for similar emotions.

We experiment our MCPN on three publicly available ERC datasets, and
our model has achieved considerable performance on them. The contributions of
this work are summarized as follows:

– We propose to dynamically select the state interaction interval of each time
step in the dialogue, thus capturing the dynamics of interaction between
speakers from it.

– We utilize the multiple cross-perception process to re-perceive the context
and interaction at each time step of the dialog, thus capturing the semantic
and interactive information specific to each time step more accurately.

– We introduce an Emotion Triple-Recognition process to alleviate the problem
of misclassification of similar emotions by the multi-recognition process.

– Experiments on three datasets demonstrate the effectiveness of our approach.

2 Related Work

2.1 Emotion Recognition in Conversation

A large number of methods have been proposed for ERC. In the following para-
graphs, we present the relevant methods in two categories according to the dif-
ferent input objects of the model.

Sequence-Based Methods. Such methods usually regard dialogue as an utter-
ance sequence and encode each utterance with RNNs or transformers. For exam-
ple, DialogueRNN [11] uses GRUs to capture the interactions in the dialog and
introduces the attention mechanism [19] to summarize the context information,
thus generating the emotional states of each speaker. Based on DialogueRNN,
COSMIC [2] introduces commonsense knowledge into the model. AGHMN [7]
proposes a speaker-free model for real-time ERC through GRUs and an improved
attention mechanism. CESTa [20] utilizes a network containing LSTM [4] and
transformers to model the context and introduces a Conditional Random Field
to learn emotional consistency in dialogs. DialogXL [17] utilizes the improved
Xlnet [21] to model information from the global perspective. Inspired by multi-
task learning, CoG-BART [9] introduces the response generation task as an
auxiliary task to improve the model’s ability to handle context information.

Graph-Based Models. Graph-based methods describe the conversation as a
graph network and treat the task of ERC as a node classification task. For exam-
ple, DialogueGCN [3] constructs a relation graph and gathers node information
within a fixed window through the GNN. RGAT [6] proposes a novel relative
position encoding to enhance the position-sensing ability of graph networks. I-
GCN [12] proposes an incremental graph network to represent the temporal
information in the dialog. DAG-ERC [18] regards the dialogue as a directed



4 W. Liu and X. Sun

Fig. 2. The framework of MCPN, which is a snapshot at time step 7, where up
i is the

i-th utterance in the dialog, and p ∈ {A,B, C} denotes the corresponding speaker. At
each time step, the model will eventually generate a speaker state qpt corresponding to
this time step, which will be stored in the historical state sequence Q.

acyclic graph, which is more appropriate to describe the flow of data in a con-
versation. MM-DFN [5] proposes a graph-based multimodal fusion network to
effectively utilize the multi-modal information of the dialogue.

2.2 Dynamical Influence Model

The dynamical influence model [13] is a promotion of the Hidden Markov model.
It gives an abstract definition of influence: the state of an entity in the system will
be affected by the recent historical state of all entities and changes accordingly.
Suppose there is an entity set E = {e1, ...en} in the system, in which each entity
e is linked to a finite set of possible states S = {1, ..., s}. At each time step t,
each entity is in one of these states, which is denoted as qe

t ∈ S. The influence
between entities is regarded as a conditional dependence of the state of each
entity at the current time step t and the state of all entities at the previous time
step t − 1. This process can be described by the following formula:

P (qe
t |q1t−1, q

2
t−1, ...q

n
t−1) (1)

where qe
t represents the state of an entity e in the system at time step t and

q1t−1, q
2
t−1, ...q

C
t−1 denote the state of all entities e1, ..., en in the system at time

step t − 1.

3 Methodology

Our MCPN consists of four components: Multimodal Utterance Feature Extrac-
tion, Context Pre-Perception (CPP) module, Multiple Cross-Perception (MCP)
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module, and Emotion Triple-Recognition (ETR) process. Figure 2 illustrates the
overall structure.

3.1 Problem Definition

First, we define the ERC task. Given a dialogue D = {u1, u2 . . . , uT } with T
utterances, which is participated by M speakers who come from the speaker set
S = {s1, s2, . . . , sM}. For the target utterance ut of time step t, the correspond-
ing target speaker is sp(ut) who is in a specific state q

p(ut)
t , where p(·) is the

mapping function between each utterance and the corresponding speaker index.
The task is to identify the emotion of each utterance ut in dialog D.

3.2 Multimodal Utterance Feature Extraction

For each sentence in the dialogue, we extract two types of features.
Textual Features: Following [2,18], we utilize a pre-trained language model,

RoBERTa-Large [10], to extract textual feature vT for each utterance.
Acoustic Features: Following [11], we utilize the OpenSmile toolkit with

IS10 configuration [16] to extracte acoustic features va for each utterance.
Finally, the representation of each utterance is obtained by combining two

types of features.
ut = [vT ; va] (2)

3.3 CPP: Context Pre-perception Module

The task of the Context Pre-Perception Module is to obtain the pre-perceived
context for each time step of the dialog, which is regarded as the historical global
semantic information in each time step. For time step t, we use the LSTM cell
to obtain the pre-perceived context representation c′

t as follows:

c′
t = LstmCell(c′

t−1, ut−1) (3)

where c′
t−1 is the pre-perceived context representation of time step t − 1 and it

should be noted that c′
t only contains semantic information of historical utter-

ances.

3.4 MCP: Multiple Cross-Perception Module

The task of the MCP is to accurately capture the semantics and interaction
information specific to each time step through multiple perceptions, and then
obtain the corresponding state representation of the target speaker. It consists
of three processes.
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State Pre-perception Process. This process obtains the preliminary speaker
state q′

t with the pre-perceived context representation c′
t and the interaction

information. To capture the dynamics of interaction between speakers, we modify
the dynamical influence model [13] to apply it to conversation scenarios. Since
our task is to identify the emotion of each utterance in the dialogue, we assume
that only when a speaker speaks, he/she will have the corresponding speaker
state. Under this premise, a more reasonable assumption is: in time step t, the
speakers who interact with the target speaker are the other speakers who spoke
after the last time the target speaker spoke. This process is shown as follows:

P
(
q

p(ut)
t |qp(uh)

h , q
p(uh+1)
h+1 , . . . , q

p(ut−1)
t−1

)
(4)

where p(uh) = p(ut) and �j ∈ (h, t), p(uj) = p(ut), i.e., the state q
p(uh)
h is the lat-

est historical state of the target speaker. The state sequence {q
p(uh)
h , . . . , q

p(ut−1)
t−1 }

is the state interaction interval of utterance ut. We capture this interval through
SIIt = f(t − 1) from the historical state sequence Q, which is shown in the
following procedure:

f(k) =

⎧
⎪⎨
⎪⎩

∅, if t = 1
{qk}, if p(uk) = p(ut)
{qk} ∪ f(k − 1), otherwise

(5)

Then we combine the pre-perceived context information c′
t to capture the

influence of other speakers on the target speaker from the dynamic state inter-
action interval SIIt, and thus obtaining the preliminary state q′

t of the target
speaker. We use the structure of transformer encoder [19] to achieve this purpose,
and the specific process is as follows:

q′
t = LN(MhattSPP (c′

t, SIIt, SIIt) + c′
t) (6)

q′
t = LN(W ′q′

t + b′ + q′
t) (7)

where Mhatt(·, ·, ·) is the Multi-head attention mechanism in the transformer
encoder, and its calculation process is displayed in Eq. (8)–(9). LN(·) denotes
the Layer Normalization, and W ′ and b′ are trainable weight matrix and bias of
feedforward neural network in encoder.

hi=Softmax
(

fq
i (q)f

k
i (k)√

dh

)
fv

i (v) (8)

MHatt(q, k, v) = Concat{h1, h2, . . . hm} (9)

where fϕ
i (ϕ) = Wϕ

i ϕ + bϕ
i , ϕ ∈ {q, k, v} represents the transformation function

of query, key and value in the attention mechanism.

Context Re-perception Process. Due to the complicated interaction
between speakers, each speaker may have a different understanding of historical
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utterances at different times. Therefore, we utilize the Context Re-Perception
Process to re-perceive the historical utterance under the condition of the target
speaker’s preliminary state q′

t, so as to obtain an accurate context representation
ct specific to the current time step.

In practice, We utilize the multi-head attention mechanism to achieve this
goal, and the detailed process is as follows:

ct = MhattCRP (q′
t,H,H) (10)

where q′
t is the preliminary state representation of target speaker and H =

{u1, ..., ut}, which is the global history utterance sequence up to time step t.
It should be noted that in this stage, we also include the target utterance

ut in the global historical utterance sequence H. The purpose is to capture
the context representation specific to the current time step and provide more
information about the target speaker in the current time step for the subsequent
state re-perception process.

State Re-perception Process. The purpose of the state re-perception process
is to refine the pre-perceived state representation q′

t by the re-perceived context
obtained by the second process, so as to obtain a more comprehensive speaker
state representation. We introduce the GRU as the state decoder to refine q′

t

with the context representation ct. The specific process is as follows:

qt = GRU(ct, q
′
t) (11)

where qt is the speaker state representation of the target speaker at time step
t. We will store qt in the historical state sequence Q shared by each time step
for emotional recognition of the target utterance and the use of subsequent time
steps.

3.5 Emotion Triple-Recognition Process

Since the existing methods tend to misclassify similar emotions, to alleviate this
problem, we propose the Emotion Triple-Recognition process. We not only utilize
the speaker state qt for emotion recognition but also introduce the preliminary
speaker state q′

t. As an intermediate vector obtained from the model, q′
t has

a certain probability to point to other emotional categories, especially when
misclassification occurs, it can play the role of bias to balance the classification
probability.

The Triple-Recognition process consists of three steps. The first step, which
we call the emotion pre-recognition step, we use the re-perceived speaker state
representation qt for emotion recognition.

Ppr = Softmax(MLPpr(qt)) (12)

where MLP refers to the multilayer perceptron, Ppr is the probability of all the
emotion labels.
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The second step is called the emotion re-recognition step. In this step, we use
the preliminary speaker state q′

t obtained in the State Pre-Perception Process to
carry out emotion recognition. The specific process is as follows:

Prr = Softmax(MLPrr(q′
t)) (13)

In the last step, the final recognition step, we introduced a gating mechanism
to synthesize the probability distribution obtained in the first two steps to obtain
the final classification probability Pfr.

Pfr = Softmax(z · Ppr + (1 − z) · Prr) (14)

z = σ(Wfr[Ppr;Prr;Ppr − Prr;Ppr � Prr]) (15)

where Wfr is a trainable weight matrix, � denotes the element-wise multiplica-
tion.

3.6 Loss Function

Because our emotion recognition process is divided into three steps, the loss
function we use is needed to be adjusted accordingly. For each recognition step,
we introduce the cross-entropy loss as the objective function:

Lstep = −
N∑

d=1

L(d)∑
t=1

logPd,t
step[yd,t] (16)

where step ∈ {pr, rr, fr} represents different recognition step, N is the number
of conversations, L(d) is the number of utterances in conversation d.

Finally, our loss function is:

L = αLfr + βLpr + (1 − α − β)Lrr (17)

where α and β are hyperparameters that control the weight of each recognition
step.

4 Experimental Settings

4.1 Datasets

We evaluate our model on three ERC datasets, and their statistical information
is shown in Table 1.

IEMOCAP [1]: A multimodal ERC dataset in which each conversation is
attended by two speakers. Each utterance in the dialogue is labeled as one of
6 emotions, namely neutral, happiness, sadness, anger, frustrated, and excited.
Since there is no validation set in it, follow [18], we choose the last 20 dialogues
of the training set for validation.
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Table 1. The overall statistics of three datasets.

Dataset Dialogues Utterances utt/dia classes
Train Val Test Train Val Test

IEMOCAP 100 20 31 4835 975 1623 48.4 6
MELD 1038 114 280 9989 1109 2610 9.6 7
EmoryNLP 713 99 85 9934 1344 1328 14.0 7

MELD [14]: A multimodal ERC dataset collected from the TV show Friends,
in which each conversation consists of two or more speakers participating. It
contains 7 emotion labels including neutral, happiness, surprise, sadness, anger,
disgust, and fear.
EmoryNLP [22]: It is an ERC dataset only contains textual data. The labels
of each utterance in this dataset include neutral, sad, mad, scared, powerful,
peaceful, and joyful.

For the evaluation metrics, we choose the weighted F1 (w-F1) score for each
dataset.

4.2 Implementation Details

we adopt Adam [8] as the optimizer with learning rate of {0.0002, 0.0002, 0.0003}
and L2 weight decay of {0.0003, 0.0003, 0.0001} for IEMOCAP, MELD and
EmoryNLP, respectively. The number of attention heads in each module are
set to 6, and the dropout rates for all datasets are set to 0.25 as default. The
hyperparameters in our loss function are set to α = 0.5, β = 0.3 for all datasets.
The training and testing process are running on a single GTX 1650 GPU. Each
training process contains 60 epochs at most and we report the average score of
10 random runs on test set.

4.3 Baseline Methods

To verify the validity of our model, we compare our approach with the following
baseline approaches:

Sequence-based models: DialogueRNN [11], COSMIC [2], CESTa [20], DialogXL
[17], and CoG-BART [9].

Graph-based methods: DialogueGCN [3], RGAT [6], I-GCN [12], DAG-ERC [18]
and MM-DFN [5].

5 Results and Analysis

5.1 Overall Performance

The overall performance is presented in Table 2 and the results are statistically
significant under the paired t-test (p < 0.05). According to the results in Table 2,
our model has achieved considerable performance on the three datasets.
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Table 2. Overall performance. The symbol * indicates that the model is not for real-
time ERC. The results shown in italics are the results of our re-implementation of the
corresponding model, and the corresponding original results are shown in parentheses.
‘A’, ‘V’ and ‘T’ are used to indicate the modality used by each model, corresponding
to the acoustic, visual, and textual data.

Model Modality IEMOCAP MELD EmoryNLP
Happy Sad Neutral Angry Excited Frustrated w-F1 w-F1 w-F1

DialogueRNN* A+V+T 33.18 78.80 59.21 65.28 71.86 58.91 62.75 57.03 31.70
COSMIC T 46.83 81.40 64.11 60.98 68.88 64.43 65.90 (65.28) 65.21 38.11
CESTa* T 47.70 80.82 64.74 63.41 75.95 62.65 67.10 58.36 –
DialogXL* T 44.06 77.10 64.67 61.59 69.73 66.98 65.88 (65.94) 62.41 34.73
CoG-BART* T – – – – – – 66.18 64.81 39.04
DialogueGCN* T 41.95 80.04 63.18 64.07 62.74 65.63 64.43 (64.18) 58.10 –
RGAT* T 51.62 77.32 65.42 63.01 67.95 61.23 65.22 60.91 34.42
I-GCN T 50.00 83.80 59.30 64.60 74.30 59.00 65.40 60.80 –
DAG-ERC T 46.69 80.12 66.92 68.35 70.53 67.28 68.02 (68.03) 63.65 39.02
MM-DFN* A+V+T 42.22 78.98 66.42 69.77 75.56 66.33 68.18 59.46 –
Ours-A A 35.32 63.47 54.75 55.89 61.34 53.13 55.31 42.88 –
Ours-T T 47.32 78.17 66.25 69.41 75.68 66.74 68.56 65.97 39.95
Ours A+T 49.40 79.06 67.84 70.27 76.54 67.56 69.69 66.52 –

For the IEMOCAP dataset, the weighted-F1 score of our model is 69.69%,
which is 1.51% higher than the best baseline MM-DFN. According to Table 1,
the conversation length of the IEMOCAP dataset is the longest among the three
datasets, with each conversation containing 48.4 utterances on average. There-
fore, for conversations in this dataset, it is important to correctly understand
the context information in the conversation. Thanks to the re-perception of con-
text information, our MCPN can capture the context representation specific to
each time step more accurately, which is the reason why it can achieve bet-
ter performance on IEMOCAP. At the same time, our model outperforms the
baseline model that used bidirectional context information, such as DialogXL
and CoG-BART, while we used only one-way historical context information,
which indicates the efficient utilization ability of our proposed model for context
information. Furthermore, the classification performance of our model on most
emotional categories in the IEMOCAP dataset is better than that of the baseline
model compared, such as Neutral, Angry, Excited, and Frustrated.

For the MELD and EmoryNLP datasets, our model’s weighted-F1 scores are
66.52% and 39.95%, respectively, which achieves 1.31% and 0.91% improvements
to the corresponding optimal baseline models. As the dialogue length of these two
datasets is relatively short, the average number of utterances in each dialogue
is 9.6 and 14, respectively. Furthermore, these two datasets are multi-person
conversation datasets, and the interaction between speakers is more complex
than IEMOCAP. Therefore, the interaction information between speakers in
the conversation is very important for the recognition of utterance emotion.
According to Table 2, The performance of our model on these two datasets is
better than that of other baseline models, which indicates that by capturing the
dynamics of interactions between speakers, our MCPN can model interactions
in conversations more effectively.
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Fig. 3. The performance on IEMOCAP when the model uses our state interaction
interval (Ours) and different sliding windows, W = n denotes different size of windows.

5.2 Variants of Various Modalities

Table 2 also reports the performance of our model when only acoustic or textual
features are used. It can be seen that the performance when using only unimodal
features is worse than that when using two modalities at the same time, which
indicates that the information of multiple modalities can complement each other,
thus further improving the identification ability of the model. Meanwhile, the
performance of textual modality is better than that of acoustic modality, which
indicates that for a dialogue, the semantic content of utterance contains more
emotional information.

5.3 Effectiveness of State Interaction Interval

Since we are inspired by the dynamical influence model [13] to obtain the
dynamic state interaction interval of each time step from the state sequence
Q, we will verify its effectiveness in this section. We report the performance
when using our state interaction interval and when using a fixed-size sliding
window. The specific results are shown in Fig. 3.

According to the results in Fig. 3, the performance of using the dynamic
state interaction interval is better than of using the fixed sliding windows, which
illustrates the effectiveness of our dynamic state interaction interval. By dynam-
ically selecting interaction intervals for each time step, our model can capture
the interaction between speakers more specifically. In addition, we also find that
when sliding windows of different sizes are used, the performance shows a trend
of increasing first and then decreasing. We infer that the state interval can not
provide enough interaction information when the window size is small, so the per-
formance of the model increases with the increase of the window size. However,
when the window size increases to a certain extent, the selected state interval
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Fig. 4. The Confusion matrices of the model on IEMOCAP dataset when using our
Emotion Triple-Recognition process (left one) and only using qt for emotion recognition
(right one). The green squares mark similar emotions that are easily misclassified.
(Color figure online)

contains too many obsolete states of early times, which prevents the model from
capturing the interaction information for a specific time step.

5.4 Performance on Similar Emotion Classification

In this section, we verify the effectiveness of our proposed Emotion Triple-
Recognition process. We make statistics on the classification performance of
the model on the IEMOCAP dataset when the fully Triple-Recognition process
is used. At the same time, we also calculate the classification performance when
only the pre-recognition step is used. The results are shown in Fig. 4.

As can be seen from the two confusion matrices in Fig. 4, when the proposed
Triple-Recognition process is used, the classification performance of emotions
that are easily misclassified, such as happiness and excited, anger and frus-
trated, are better than that when only the pre-recognition step is used. Although
the model is still easy to misclassify similar emotions after using the Triple-
Recognition process proposed by us, compared with the commonly used single
classification method, our method can distinguish similar emotions more effec-
tively.

5.5 Ablation Study

To investigate the role of each component of our model, we performe ablation
experiments on three datasets. Because some components are the precondition
for executing other components, we made corresponding modifications to the
model when removing these key components to ensure that subsequent compo-
nents can work properly. These results are shown in Table 3.
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Table 3. The performance (weighted-F1) of ablation study on three datasets. The
‘SPP’, ‘CRP’ and ‘SRP’ denote the corresponding process in MCP module.

Component IEMOCAP MELD EmoryNLP

Origin 69.69 66.52 39.95
w/o SPP 68.93 (↓0.76) 65.66 (↓0.86) 38.60 (↓1.35)
w/o CRP 68.64 (↓1.05) 66.15 (↓0.37) 39.28 (↓0.67)
w/o SRP 68.71 (↓0.98) 65.87 (↓0.65) 38.82 (↓1.13)
w/o ETR 68.82 (↓0.87) 66.08 (↓0.44) 38.96 (↓0.99)

Table 4. Test accuracy of MCPN on samples with emotional shift and without it.

Dataset Emotional shift w/o Emotional shift
Samples Accuracy Samples Accuracy

IEMOCAP 576 60.41% 1002 75.10%
MELD 1003 62.03% 861 71.35%
EmoryNLP 673 38.74% 361 43.56%

It can be seen from the results in Table 3 that when a certain component
is removed, the performance of the model decreased, which shows that every
component in our model is essential. In particular, when we remove the CPR
process, the performance of the model decreases most on the IEMOCAP dataset,
indicating that context information has a greater impact on the utterance emo-
tion in long conversations. On the contrary, when we remove the SPP or SRP
processes in the MCP module, the model performance decreases the most in the
other two datasets, indicating that the speaker interaction in the dialogue also
cannot be ignored.

5.6 Error Study

In this section, we analyze the problem of emotional shift, which refers to the
sudden change of the emotion of the speaker in the dialogue, that is, two con-
secutive utterances of the same speaker express different emotions [11]. Existing
methods usually do not work well in the emotional shift. As shown in Table 4,
the classification accuracy of our model on samples without emotional shift is
much higher than that on samples with emotional shift, which indicates that our
model also cannot effectively deal with this problem. However, the classification
accuracy of our model on samples with emotional shift is still better than that of
previous models. For example, the accuracy of MCPN in the case of emotional
shift is 60.76% on IEMOCAP, which is higher than 47.5% achieved by Dia-
logueRNN [11] and 57.98% achieved by DAG-ERC [18]. To solve this problem
effectively, further research is needed.
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6 Conclusion

In this paper, we propose a Multiple Cross-Perception Network, MCPN, for real-
time emotion recognition in conversation. We dynamically select state interac-
tion intervals for each time step so that the model can capture the dynamics
of interactions between speakers. On this basis, with the help of multiple cross-
perception processes, our MCPN can capture the semantic and interactive infor-
mation in each time step of the conversation more accurately, so as to obtain
the speaker state representation rich in emotional information. Furthermore, we
propose an Emotion Triple-Recognition process, which effectively alleviates the
misclassification problem of similar emotions in the model by introducing fuzzy
classification probability and multiple recognition processes.
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Abstract. Since babies cannot speak, they can only communicate with
the outside world and express their emotions and needs through cry-
ing. Considering the variety of reasons why babies cry, it is a challeng-
ing task to accurately understand the meaning of baby crying. In this
paper, we propose a baby cry recognition method based on acoustic seg-
ment model (ASM). Firstly, based on Gaussian mixtures models - hidden
Markov models (GMM-HMMs), baby cry recordings are transcribed into
ASM sequences composed of ASM units. In this way, different baby cry
recordings are segmented in more detail, which can better capture the
similarities and differences between acoustic segments. Then, by using
latent semantic analysis (LSA), these ASM sequences are converted into
feature vectors, and the term-document matrix is obtained. Finally, a
simple classifier is adopted to distinguish different types of baby crying.
The effectiveness of the proposed method is evaluated on two infant cry-
ing databases. The ASM-based approach can achieve higher accuracy
compared with the approach based on residual network (ResNet). And
through experiments, we analyze the reasons for the better performance
of the ASM-based method.

Keywords: baby cry recognition · acoustic segment model · latent
semantic analysis · deep neural network

1 Introduction

Baby cry recognition (BCR) is a task to identify the needs contained in a baby’s
cry [1]. Since babies do not yet have the ability to speak, crying has become the
most important way for them to convey their physical and psychological needs
to the outside world [2–7]. However, novice parents usually have little parenting
experience. When babies cry, they are often at a loss. What’s more serious is
that when a baby cries because of pathological pain, if the novice parent cannot
quickly and accurately understand the meaning of the baby’s cry and make a
wrong judgment, it is likely to miss the best time for treatment. Therefore, how
to quickly understand the meaning of a baby’s cry and make timely and accurate
judgments is an urgent problem for every novice parent. It can be seen that the
task of baby cry recognition has important research significance.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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Recently, many technical methods have been applied to the research of BCR,
including traditional classifier methods such as Gaussian Mixture Models - Uni-
versal Background Models (GMM-UBM), i-vectors methods [8,9] and some
methods based on deep learning: feed-forward neural networks (FNN) [2,10],
time-delay neural networks (TDNN) [11], and convolutional neural networks
(CNN) [12,13]. Although these methods mentioned above have achieved certain
results in the recognition of baby crying, there are still some problems worthy
of discussion. On the one hand, traditional methods such as GMM cannot learn
deep non-linear feature transformation. On the other hand, deep learning-based
methods such as CNN require a sufficient amount of data, and the difficulty of
network training will increase as the number of network layers increases. In addi-
tion, it classifies infant crying by learning the feature information corresponding
to the entire audio. As a result, it tends to be disturbed by longer but indistin-
guishable segments of the audio, while ignoring shorter but critical segments, so
it cannot accurately locate the key segments that distinguish different types of
infant crying.

Therefore, this paper proposes an infant cry recognition method based on the
acoustic segment model (ASM), which combines the advantages of traditional
methods and deep learning methods well. It can accurately mine acoustic infor-
mation and segment the entire audio into more detailed segments according to
whether the acoustic features have changed, so as to locate the key segments
that can distinguish different categories of infant crying. ASM has been success-
fully applied to many tasks, such as automatic speech recognition (ASR) [14],
speech emotion recognition [15,16], speaker recognition [17], music genre classifi-
cation [18] and acoustic scene classification (ASC) [19]. Just as the basic building
blocks of language are phonemes and grammars, baby crying signals that con-
tain different needs of babies are also composed of fundamental units, and these
fundamental units are related to each other. The proposed ASM method aims
to find a universal set of acoustic units from baby cries to distinguish different
types of baby cries.

The ASM framework generally consists of two steps, namely initial segmen-
tation and iterative modeling. In the initial segmentation step, there are many
different segmentation methods to obtain the basic acoustic units, such as max-
imum likelihood segmentation [14,20], even segmentation [15], K-means cluster-
ing algorithm [21], etc. The segmentation method used in this paper is GMM-
HMMs, that is, each type of baby crying is modeled by GMM-HMMs [22–24].
Specifically, according to the similarities and differences of acoustic characteris-
tics, the segments with similar acoustic characteristics are grouped together and
marked with the same hidden state. Each hidden state corresponds to an ASM
unit. In this way, through the initial segmentation, each baby cry recording is
divided into variable length segments, so that we get the initial ASM sequences.
Then, for iterative modeling, each ASM unit is modeled by a GMM-HMM and
then baby cries are decoded into a new sequence of ASM units. After transcrib-
ing a baby cry into an ASM sequence, each baby cry is composed of ASM units,
which is similar to a text document composed of terms. Therefore, we can use
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latent semantic analysis (LSA) to generate the term-document matrix. Each col-
umn of the matrix is a feature vector of a baby cry recording, and then these
feature vectors are sent to the backend classifier.

The remainder of the paper is organized as follows. In Sect. 2, we introduce
the proposed model and method used in baby cry recognition. In Sect. 3, exper-
imental results and analysis are presented. Finally, we make the conclusions of
this study and summarize our work in Sect. 4.

2 Method

For BCR, this paper proposes an ASM-based analysis method. The framework
of the method is shown in Fig. 1. For the training data, through the two steps of
initial segmentation and iterative modeling, they are all transcribed into ASM
sequences. At the same time, the acoustic segment model generated in the iter-
ation can be used to transcribe the test data into ASM sequences. In this way,
each acoustic recording is transcribed into a sequence composed of ASM units,
which is similar to a text document composed of terms. Therefore, text classi-
fication methods widely used in the field of information retrieval, such as LSA,
can be used to analyze this problem. Through LSA and singular value decom-
position (SVD) [25], an ASM sequence can be converted into a vector, so that
the ASM sequences transcribed from all training data can be mapped to a term-
document matrix. Each sample in the test set is processed in the same way.
After the above processing, we can get the feature vector corresponding to each
sample in the training and test sets, and then send these vectors to the backend
DNN for classification.

Fig. 1. ASM-based system framework.

2.1 Acoustic Segment Model

The main function of the acoustic segment model is to convert a baby cry record-
ing into a sequence composed of basic acoustic units, just like a sentence is com-
posed of words. The ASM method usually consists of two stages, namely initial
segmentation and model training.
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Initial Segmentation. The initial segmentation affects the result of the ASM
method, so it is a very critical step. Many methods have been proposed to do the
segmentation. Considering that GMM-HMMs achieve outstanding performance
in ASR and can well explore the boundaries of acoustic feature changes, we use
GMM-HMMs to perform initial segmentation.

First of all, each baby cry is modeled by GMM-HMMs, and the HMM is a
left-to-right topology. However, considering that similar baby cries may occur
at different time periods, we add a swivel structure to the topology, so that
similar frames can be represented by the same hidden state. Assuming that
there are B kinds of baby crying in the database, each kind of baby crying is
modeled by a GMM-HMM with M hidden states. And then, through the Baum-
Welch algorithm [26], we can update the parameters of GMM-HMMs. Through
decoding, each baby cry recording is transcribed into a sequence composed of
hidden states, and each hidden state is corresponding to a segment of the baby
cry recording. Thus, the C = B × M hidden states are used as the corpus to
initialize each baby cry recording as an ASM sequence.

Model Training. After completing the initial segmentation, each baby cry
recording is converted into a sequence composed of ASM units. In the model
training step, first, we use the GMM-HMM with a left-to-right HMM topology
to model each ASM unit. Then, the Baum-Welch algorithm is adopted to update
the parameters of the GMM-HMM model. Next, we use the Viterbi decoding
algorithm to transcribe the training set data into new ASM sequences. These
new ASM sequences are used as new labels for the training recordings in the
next iteration of model training. The above process is repeated until the ASM
sequences corresponding to the training data converge stably.

2.2 Latent Semantic Analysis

After the processing of the above steps, each baby cry recording is transcribed
into a sequence composed of ASM units, which is like a text document composed
of terms. Therefore, in view of the outstanding performance of LSA in the field of
text processing, we use LSA for analysis, that is, through the LSA method, the
correspondence between ASM units and baby cry recordings can be described by
a term-text document matrix. Each column of the matrix corresponds to each
baby cry recording that has been transcribed, and each row corresponds to one
ASM unit or two adjacent ASM units in the ASM sequence. Therefore, if there
are C elements in the baby cry corpus, then the dimension of the vector in each
column of the matrix is D = C × (C + 1).

Similar to the processing method in the field of information retrieval, the
value of each element in the matrix is determined by term frequency (TF) and
inverse document frequency (IDF) [27]. TF reflects the frequency of a word in
the current text, and IDF reflects the frequency of the word in all texts. If a
word has a high probability of appearing in all texts, even if it appears many
times in a certain text, its importance to the text is also very low. Therefore,
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only by integrating TF and IDF, can it more accurately reflect the importance
of a word to a text. The formula for calculating the TF of the i-th ASM term in
the j-th baby cry recording is as follows:

TFi,j =
xi,j

∑D
d=1 xd,j

, (1)

where xi,j is the number of times the i-th term appears in the ASM sequence
corresponding to the j-th baby cry recording. The IDF calculation formula is as
follows:

IDFi = log
Q + 1

Q(i) + 1
, (2)

where Q is the number of baby cry recordings in the training set, and Q(i) is the
number of texts in which the i-th term has appeared. In this way, each element
of the matrix W is defined as follows:

wi,j = TFi,j×IDFi. (3)

Due to the use of bigrams with sparsity problems, the term-document matrix
W with dimension D × Q is sparse. We can use the SVD to reduce the dimension
of the matrix W , as follows:

W = UΣV T . (4)

The matrix W is decomposed into the product of three matrices: the left-
singular D × D matrix U , the diagonal D × Q matrix Σ and the right-singular
Q × Q matrix V . Among them, the diagonal elements of matrix Σ are the sin-
gular values of matrix W , and these singular values are arranged from large to
small. We take the first t singular values and the first t rows of the matrix U to
form a mapping space Ut, and then multiply this matrix with the original matrix
W to get a new matrix Wt after dimensionality reduction. And Wt is used as
the training data of the backend classifier. The value of t is determined based
on the percentage of the sum of the squares of the singular values.

For the test data, the processing method is similar to the above steps of the
training data, but what we need to pay attention to is that the test data needs to
use the IDF and matrix Ut obtained in the training phase to obtain the matrix
W test

t .

2.3 DNN Classifier

The classifier used in this paper is DNN, which is used to distinguish different
types of baby crying. Since the feature vectors of baby crying extracted by the
ASM method are easy to distinguish, a simple DNN structure is adopted.
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Table 1. The details of two baby crying databases.

Database A B

Recording Scene Home Hospital

Number of Categories 6 2

Training Set 8.03 h 8.54 h, 2020.02-2020.12

Validation Set 3.44 h, seen babies N/A

Test Set 2.41 h, unseen babies 1.34 h, 2021.01

3 Experiments and Analysis

3.1 Database and Data Preprocessing

There are few high-quality infant crying databases that have been published,
which brings certain challenges to the research of baby cry recognition. In this
study, we adopt two infant crying databases, which were recorded at home and
in the hospital, respectively, to evaluate our method. It is worth mentioning that
the baby crying data recorded at home was annotated by parents based on their
own experience or subsequent processing response, while the data recorded in
the hospital was annotated by hospital pediatric experts. In addition, in the
data set recorded in the hospital, some of the cries were recorded when the baby
was given injections due to illness, so these cries were labeled “pain”. Therefore,
for the crying data recorded in the hospital, we conduct a two-class analysis of
“pain” and “non-pain”. The baby crying data recorded at home has six types of
labels: “hungry”, “sleepy”, “uncomfortable”, “pain”, “hug”, and “diaper”, which
are analyzed in six categories.

Before analyzing these baby crying data, we need to preprocess the data.
First, down-sampling processing is performed to unify the sampling rate of all
baby cry recordings 16000 Hz. Then, we apply voice activity detection (VAD) to
detect the start and end of the silent interval in a baby cry recording according
to the difference between the energy of the silent interval and the non-silent
interval. The VAD method is used to remove silent redundancy and expand the
number of effective samples. Finally, all the non-silent intervals of a baby cry
recording are combined and then divided into 10-second segments.

After the above data preprocessing, the detailed information of the two infant
crying databases is shown in Table 1. For database A, it was recorded at home
and consists of crying recordings of 65 babies aged 0–6 months, and a certain
amount of crying data is collected for each baby. We randomly select the crying
data of 10 babies as the test set, and the rest of the crying data are mixed
together and divided into training set and validation set. Therefore, the babies
in the validation set have been seen in the training set, and the babies in the test
set have not been seen in the training set. For database B, it was recorded in the
hospital. The recording time is from February 2020 to January 2021. We select
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the crying data recorded in January 2021 as the test set, and the rest of the
crying data as the training set. Since there are many babies in the delivery room
of the hospital, and considering the protection of the privacy of the newborn,
this part of the data cannot record the ID of the baby. Therefore, the database
B is not divided according to the baby ID but the recording month, and because
the neonatal hospitalization time is limited and the infants hospitalized in the
ward are highly mobile, only one or two cry data are recorded for each baby, so
it can be considered that the crying in the test set comes from the infants that
have not been seen in the training set.

3.2 Ablation Experiments

Baseline System. Residual network (ResNet) [28] has been successfully used
in the research of infant cry recognition [29], and has performed well on audio
classification tasks in recent years, so ResNet is adopted as the baseline system.

In our previous work, ResNet excelled in the acoustic scene classification
(ASC) task [30]. Considering that these two tasks are similar, we adopt the
ResNet structure used in the ASC task [30], and then the ResNet is trained on
these two baby cry databases. The log-Mel spectrogram is used as the input
to the baseline system. To generate log-Mel spectrogram, a short-time Fourier
transform (STFT) with 2048 FFT points is applied, using a window size of 2048
samples and a frameshift of 1024 samples, and log-Mel deltas and delta-deltas
without padding are also computed.

ASM-DNN Baby Cry Recognition Model. The structure and principle
of the ASM-DNN baby cry recognition model have been introduced in Sect. 2,
which uses MFCC as the input feature. 60-dimensional Mel-frequency cepstral
coefficients (MFCC) features are extracted by using a 40-ms window length with
a 20-ms window shift to train GMM-HMMs. The DNN we used has 3 hidden
layers, each with 512 neurons, and a fixed dropout rate of 0.1. The parameters
of the DNN are learned using the SGD [31] algorithm, and the initial learning
rate is set to 0.1. We perform ablation experiments on database A to explore the
impact of two important parameters in the ASM-DNN model (the number of
ASM units and the percentage of dimensionality reduction after singular value
decomposition (SVD)) on the recognition accuracy.

• Number of ASM units

Obviously, if the number of ASM units is too small, the differences between
different baby cry clips cannot be captured well, but if the number of ASM units
is too large, it may cause overfitting problems, so we need to find a suitable value
through experiments.

The number of ASM units is equal to the total number of hidden states,
that is, assuming that there are B kinds of baby crying in the database, and
each kind of baby crying is modeled by a GMM-HMM with M hidden states,
then the number of ASM units is C = B × M . As mentioned earlier, database
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A contains six types of crying. We adjust the number of ASM units by adjusting
M . Table 2 shows the experimental results with different number of ASM units.
It is worth noting that in these experiments, the first 70% of the singular values
are retained after singular value decomposition. It can be observed from Table 2
that the best result achieved when each kind of baby crying is modeled with 6
hidden states. Meanwhile, an accuracy of 29.99% is achieved on the test set.

Table 2. Performance comparisons with different ASM units.

Hidden States ASM Units The Accuracy of Validation Set

4 24 45.45%

5 30 46.33%

6 36 47.21%

7 42 46.57%

• Dimensionality Reduction in SVD

As mentioned earlier, the term-document matrix obtained by LSA is sparse, so
we can reduce the dimensionality of the matrix by retaining the largest singular
values after SVD. The dimension of the new matrix obtained after dimensional-
ity reduction is determined by the percentage of the sum of squares of singular
values. Keeping 36 ASM units, we adjust the percentage of dimensionality reduc-
tion and the results are presented in Table 3. We can observe from Table 3 that
when the percentage is set to 70%, the model achieves the highest accuracy on
the validation set. At this time, the model’s recognition accuracy of the test set
is 29.99%.

Table 3. Performance comparisons with different reduced dimensions in SVD.

Percentage The Accuracy of Validation Set

60% 47.05%

70% 47.21%

80% 46.81%

In summary, the optimal number of hidden states for modeling each type
of baby crying is 6, so for databases A and B, the optimal number of ASM
units is 36 and 12, respectively. Meanwhile, the best SVD dimension reduction
dimension is 70%.
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3.3 Overall Comparison

Overall Comparison on Baby Crying Database A. The results of these two
approaches on database A are shown in Table 4. By comparing ResNet and ASM-
DNN, we can observe that better results are obtained for ASM-based approach.
Specifically, the recognition accuracy of crying for both seen babies and unseen
babies is improved by adopting the ASM-based approach. In addition, it can
be seen that the recognition accuracy of these two approaches on the test set is
28.49% and 29.99%, respectively, and neither exceeds 30%. Considering that the
individual differences of babies will cause different babies’ crying to be different,
this may cause the model to have lower accuracy when recognizing the crying of
babies that have not been seen in the training set.

Table 4. The accuracy comparisons between ResNet and ASM-DNN on database A.

System Validation Set Test Set

ResNet 39.58% 28.49%

ASM-DNN 47.21% 29.99%

Overall Comparison on Baby Crying Database B. The results of these
two approaches on database B are shown in Table 5. Compared with the ResNet-
based approach, although the proposed ASM-based approach has a slightly lower
recognition accuracy of pain crying, however, for non-pain crying, the perfor-
mance of the ASM-based approach is significantly improved. Specifically, the
recognition accuracy of non-pain crying is improved from 60.73% to 69.09% by
adopting the ASM-based approach, that is, the performance can be improved by
8.36%. Therefore, for the entire test set, compared with ResNet, the ASM-based
approach improves the recognition accuracy from 66.46% to 71.01%, which is
an increase of about 5% points. Obviously, similar to the experimental results
of database A, the ASM-based approach also performs better on database B,
which further demonstrates the effectiveness of the ASM-based approach.

Table 5. The accuracy comparisons between ResNet and ASM-DNN on database B.

System Pain Crying Non-pain Crying Overall Test Set

ResNet 74.04% 60.73% 66.46%

ASM-DNN 73.56% 69.09% 71.01%

3.4 Results Analysis

Spectrogram Analysis. Figures 2 and 3 show two examples of pain crying
and non-pain crying from data set recorded in the hospital. The two recordings
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Fig. 2. The spectrogram and ASM sequence of an example recording of pain baby
crying. This example was misclassified by ResNet as the non-pain baby crying but
correctly classified by our ASM-DNN approach.

Fig. 3. The spectrogram and ASM sequence of an example recording of non-pain baby
crying. This example was misclassified by ResNet as the pain baby crying but correctly
classified by our ASM-DNN approach.

are confused by the ResNet, but the ASM-based model can correctly distinguish
these two kinds of crying. For a more intuitive analysis, we show the results
of transcribing these two cry recordings into ASM sequences through the ASM
method. The ASM units are named from S0 to S11. It can be observed that
similar parts in the spectrograms are represented by the same ASM units, such
as S2. At the same time, the different parts can be captured by the ASM units
such as S3 for pain crying and S0 for non-pain crying. It can be seen that by
using the ASM-based method, we can capture the differences between acoustic
segments in more detail, and then distinguish different types of baby crying more
accurately. Therefore, the result of the ASM-based method is better than that
of the ResNet.
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Comparison of Model Judgment Results and Expert Audiometry
Results. In the database of baby crying recorded by the hospital (that is,
database B), we randomly select 300 pieces of data, and invite three experienced
pediatric experts to conduct audiometry, and each expert conduct audiometry
on 100 cries. The results of the experts’ audiometry can be regarded as the
“ceiling” of the recognition accuracy of the model. The audiometric results are
shown in Table 6. It can be seen from Table 6 that the accuracy rates of the three
experts’ audiometry are 66%, 72%, and 62%, respectively. At the same time, it
can be found from Table 5 that the recognition accuracy of the ASM-DNN model
is 71.01%. Obviously, our model is very close to the best recognition accuracy
among the three pediatric experts, which further proves the effectiveness of the
ASM-DNN method.

Table 6. The results of the experts’ audiometry.

Audio No. The Accuracy of the Experts’ Audiometry

1–100 66%

101–200 72%

201–300 62%

Comparative Analysis of Experimental Results on Two Databases. By
observing the previous experimental results, it can be found that the recognition
accuracy of the crying data recorded in the hospital is higher than that of the
crying data recorded at home. The main reasons are as follows:

First of all, the crying data recorded at home is analyzed in six categories,
while the crying data recorded in the hospital is analyzed in two categories. It
should be noted that the more categories, the greater the uncertainty. Hence the
recognition accuracy of baby crying will be correspondingly improved when only
two classes are needed to be predicted.

Secondly, the category labels of baby crying data collected in the hospital
are marked by experienced pediatric experts. The experts mark the crying based
on their years of experience, combined with the baby’s facial expressions, move-
ments, breathing state, and the intensity of crying. However, the category labels
of baby crying data recorded at home are marked by parents. Pediatric experts
have more experience, so the category labels of the crying data marked by them
are more accurate and reliable, which makes the recognition accuracy for data
collected in the hospital is also higher.

4 Conclusions

In this study, we propose an ASM-based analysis method for baby cry recogni-
tion. We first transcribe all baby cry recordings into ASM sequences composed of
ASM units through the two steps of initial segmentation and iterative modeling,
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so that the similarities and differences between the segments of baby cry record-
ings can be well captured. Then, using LSA and SVD, a dimensionality-reduced
term-document matrix is obtained. Finally, a classifier with a relatively simple
structure can be used in the backend to achieve the purpose of identifying baby
crying. Experiments conducted on two databases show that the ASM combined
with a simple DNN classifier achieves better results than ResNet for baby cry
recognition, which demonstrates the effectiveness of the ASM-based model.
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4. Wasz-Höckert, O., Partanen, T.J., Vuorenkoski, V., Michelsson, K., Valanne, E.:
The identification of some specific meanings in infant vocalization. Experientia
20(3), 154–154 (1964)

5. Orlandi, S., et al.: Study of cry patterns in infants at high risk for autism. In:
Seventh International Workshop on Models and Analysis of Vocal Emissions for
Biomedical Applications (2011)

6. Farsaie Alaie, H., Tadj, C.: Cry-based classification of healthy and sick infants using
adapted boosting mixture learning method for gaussian mixture models. Model.
Simul. Eng. 2012(9), 55 (2012)

7. Chittora, A., Patil, H.A.: Classification of pathological infant cries using mod-
ulation spectrogram features. In: The 9th International Symposium on Chinese
Spoken Language Processing, pp. 541–545 (2014)
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Abstract. Obstructive sleep apnoe (OSA) is a common clinical sleep-
related breathing disorder. Classifying the excitation location of snore
sound can help doctors provide more accurate diagnosis and complete
treatment plans. In this study, we propose a strategy to classify snore
sound leveraging ‘classic’ features sets. At training stage, we eliminate
selected samples to improve discrimination between different classes. As to
unweighted average recall, a field’smajormeasure for imbalanced data, our
method achieves 65.6 %, which significantly (p < 0.05, one-tailed z-test)
outperforms the baseline of the INTERSPEECH 2017 ComParE Snor-
ing Sub-challenge. Moreover, the proposed method can also improve the
performance of other models based on the original classification results.

Keywords: Computer Audition · Feature Fusion · Digital Health ·
Snore Sound Classification · Obstructive Sleep Apnea

1 Introduction

Snoring is a very common condition among both adults and children. Some-
times, it is even regarded as a sign of patients being sleeping well. In the inter-
view population of Chang et al. [1], the prevalence of snoring in individuals
was 51.9 %. Among them, the prevalence rate of males is higher than that of
females, with prevalence rates of 60 % and 50 %, respectively. But in fact, snor-
ing is a disease, which is the sound that occurs during sleep due to the narrowing
of the upper airway causing the uvula (palatine) to vibrate. Snoring, so-called
“high-profile sleep killer”, not only causes poor sleep at night [2] and daytime
sleepiness [3], but also seriously reduces the sleep quality of the bed partner
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Fig. 1. The upper airways anatomy.

[4–6]. More seriously, loud and frequent snorers are thought more likely to have
Obstructive Sleep Apnoea (OSA) [7]. It is reported that snoring intensity cor-
relates with OSA severity [8,9]. OSA is generally manifested as a cessation of
airflow through the mouth and nose for 10 seconds or longer, accompanied with
a decrease in blood oxygen saturation, when the patients have each attack. Dur-
ing an adult’s seven hours sleep each night, the number of seizures is often more
than 30. In other words, the patients experience repeated episodes of respiratory
airflow interruption, involuntary breath-holding and intermittent hypoxia dur-
ing sleep. As a result, a series of hidden risks of diseases such as cardiovascular
system, respiratory system, mental system, endocrine, and sexual dysfunction
may occur [10–14]. In particular, because OSA increases the vascular burden
of patients, they have three times the risk of having hypertension [15]. To this
end, we should pay more attention to this common and neglected phenomenon
of snoring and treat OSA in time.

Snoring originates from vibrations at different locations in the upper airway,
i. e., palatal snoring (V), oropharyngeal snoring (O), tongue base snoring (T),
and epiglottal snoring (E) [16,17] and thus, surgery is accordingly performed
at the different point of relative OSA [18]. Fig 1 shows the anatomy of upper
airways. In order to select the OSA surgical method in a targeted manner, the
doctor first needs an accurate localisation of the snoring [16,19,20]. This is crit-
ical to the success of the surgery. Drug Induced Sleep Endoscopy (DISE) has
been increasingly used to help determine the presence and location of airway
obstruction in patients in recent years, but it has some limitations. On the one
hand, the patients are induced to sleep by the drug during this process, which is
not enough to fully simulate the reality. On the other hand, it is time consum-
ing and costly for patients [21,22]. Therefore, snoring sound, as an inexpensive,
easy-to-collect, universal and non-invasive audio signal, has been widely used in
acoustic analysis to determine the vibration position in the upper airway during
snoring. Thereby, good results have been achieved [23–28].
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The rapidly developing computer audition (CA) [29] technology is becom-
ing a popular topic of digital medicine research in the search for new digital
phenotypes [30]. Several works on snoring location classification based on the
Munich Passau Snoring Corpus (MPSSC) [31], which is also the database used
in this paper, have been published in recent years for snoring as a subclass of
an audio signal. In our past works, Qian et al. [23] extracted wavelet energy fea-
tures and quantised feature vectors using bag-of-audio-words. The unweighted
average recall (UAR) achieved by the method is 69.4 %. In order to balance the
dataset, Zhang et al. [24] proposed a novel data augmentation approach based
on semi-supervised conditional generative adversarial networks (scGANs). Com-
pared with work on the same dataset, the best-achieved results are competitive
with, or even superior to, most of the other state-of-the-art systems. Similarly,
Ding et al. [25] demonstrated that a Convolutional Neural Network (CNN) with
six-layer convolution and complement-cross-entropy loss function could well solve
the problem of imbalance distribution of the dataset to yield the highest UAR
with the value of 78.85 % on the development set and 77.13 % on the test set
under all test conditions. In addition, Sun et al. [28] fused two feature types, the
zero-crossing rate and Mel Frequency Cepstral Coefficients (MFCCs), and used
Principal Component Analysis (PCA) and Support Vector Machines (SVM) for
feature dimension reduction and classification, respectively. Most of the above
works have shown good classification performance. However, they focus more
on the effect and ignore the interpretability of the features, which can build
trust between the model and doctors and patients [32–34]. Furthermore, Zhang
et al. [24] balanced the datasets through data augmentation and Ding et al. [25]
applied a complement-cross-entropy loss function from the model perspective.
In a different direction, we compute the similarity between samples to alleviate
the problem of dataset imbalance.

In this work, we propose a strategy to utilise distinct features to classify the
snore sound excitation location. We extract different features and calculate the
similarity between samples. Then, we eliminate similar samples in the data set
at different feature scales. Finally, a machine learning model is used to classify
the remaining audios.

The remainder of this article is organised as follows: Firstly, we present
the materials and methods of this work in Sect. 2. Then, experimental details
are shown in Sect. 3. Subsequently, Sect. 4 describes the results and discussion.
Finally, a conclusion is made in Sect. 5.

2 Materials and Methods

2.1 MPSSC Database

MPSSC is an audio database dedicated to OSA research. It was released
in the INTERSPEECH 2017 Computational Paralinguistics ChallengE
(ComParE) [35]. The audio recordings from MPSSC were taken from three
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medical centres in Germany, i. e., Klinikum rechts der Isar, Technische Universi-
tat Mu nchen, Munich, Alfried Krupp Hospital, Essen, and University Hospital,
Halle. All of MPSSC were saved as wav files (16 bit, 16 000 Hz).

The snore sounds events were labelled based on VOTE classification. VOTE
classification is a widely used scheme distinguishing four structures that can be
involved in the upper airway: the level of the velum (V), the oropharyngeal area
including the palatine tonsils (O), the tongue base (T), and the epiglottis (E).
The details of the data distribution information can be found in Table 1. From
the table, it can be seen that there is a data imbalance problem in MPSSC.
MPSSC contains 828 snore sound events collected from 219 independent sub-
jects. Moreover, the total time duration and average time duration are 1 250.11 s
and 1.51 s (ranging from 0.73 to 2.75 s). In this study, we utilise all of the snore
sound events in the MPSSC database.

Table 1. Data distribution of MPSSC. Train: train set, Dev: development set, Test:
test set.

Train Dev Test
∑

V 168 161 155 484

O 76 75 65 216

T 8 15 16 39

E 30 32 27 89
∑

282 283 263 828

2.2 Feature Extraction

openSMILE (open Speech and Music Interpretation by Large Space Extraction)
is a highly modular and flexible acoustic feature extraction toolkit which is
widely applied in signal processing and machine learning [36]. Due to its modular
operation mode, users can extract multiple features by various configuration files.
In order to extract feature sets conveniently, the whole feature sets are extracted
by openSMILE.

COMPARE. ComParE was first released in the INTERSPEECH 2013 Com-
ParE [37]. The overall set contains 6 373 features, including energy, spectral,
MFCCs, and voicing related low-level descriptors (LLDs). Moreover, a few LLDs
includes logarithmic harmonic-to-noise ratio (HNR), spectral harmonicity, and
psychoacoustic spectral sharpness. Table 2 shows the LLDs for the ComParE.
Table 3 describes the functionals applied to LLDs in the ComParE feature set.

eGeMAPS. eGeMAPS [38] is an extension parameter set of GeMAPS (Geneva
Minimalistic Standard Parameter Set). GeMAPS contains 18 LLDs, i. e., fre-
quency related parameters, energy/amplitude related parameters, and spectral
(balance) parameters. Combined with GeMAPS, eGeMAPS includes 88 features
totally.
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Table 2. The LLDs for ComParE feature set.

55 Spectral LLDs Group

MFCCs 1–14 Cepstral

Spectral roll-off point 0.25, 0.5, 0.75, 0.9 Spectral

Spectral energy 250–650Hz, 1 k–4 kHz Spectral

Spectral variance, skewness, kurtosis Spectral

Spectral flux, centroid, entropy, slope Spectral

Psychoacoustic sharpness, harmonicity Spectral

RASTA-filtered auditory spectral bands 1–26 (0–8 kHz) Spectral

6 Voicing related LLDs Group

F0 (SHS and Viterbi smoothing) Prosodic

Probability of voicing Voice Quality

log HNR, jitter (local and δ), shimmer (local) Voice Quality

4 Energy related LLDs Group

RMSE, zero-crossing rate Prosodic

Sum of auditory spectrum (loudness) Prosodic

Sum of RASTA-filtered auditory spectrum Prosodic

emo large emo large (the large openSMILE emotion feature set) includes 6 552
features [39], which is larger than the above feature sets. More features poten-
tially support more detailed information about the audios. 39 statistical func-
tionals are applied to the LLDs (e. g., the fundamental frequency (F0), formants
(F1-F3), energy) to obtain the features.

2.3 Classification Model

SVM, as an established, stable, and robust classifier, is applied in many tasks
because of its excellent performance. It is a common method using kernel learning
and can achieve non-linear classification. To render our work reproducible, an
SVM classifier with a linear kernel is leveraged in this work. In our experiments,
we carry out feature normalisation for each feature set before training. Then, the
SVM models are trained with the complexity parameter in the range of 5×10−6,
5×10−5, ..., 5×10−1, 5×100. The optimum complexity is selected based on the
classification result on the development set. Further, we retrain the SVM model
with the optimum complexity on the train and development set to predict on
the test data set. In addition, we change the utilisation sequence of the feature
sets to obtain a better classification result.
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Table 3. Part of the functionals below would be applied to LLDs in the ComParE
feature set.

Functionals

Arithmetic or positive arithmetic mean

Inter-quartile ranges 1–2, 2–3, 1–3,

Linear regression slope, offset

Linear prediction gain and coefficients 1–5

Linear regression quadratic error

Mean and std. dev. of peak to peak distances

Peak and valley range (absolute and relative)

Peak-valley-peak slopes mean and std. dev.

Peak mean value and distance to arithmetic mean

Quadratic regression quadratic error

Quadratic regression coefficients

Root-quadratic mean, flatness

Rise time, left curvature time

Range (difference between max. and min. values)

Relative position of max. and min. value

Standard deviation, skewness, kurtosis, quartiles 1–3

Segment length mean, min., max., std. dev.

Temporal centroid

Up-level time 25 %, 50 %, 75%, 90 %

99-th and 1-st percentile, range of these

3 Experimental Setups

After we extract the three feature sets shown previously, we train SVM models
for each feature set, respectively. From the predictions, we find that, at dis-
tinct feature scales, correctly predicted audios are not similar. In other words,
it is effortless to comprehend that audios from diverse classes may have similar
features. As shown in Fig 2, we get a various data distribution after feature
extraction. Fig 2a shows that a certain kind of class can be different from other
data at a certain feature set scale. Moreover, as indicated in Fig 2b, when the
distribution of data samples is imbalanced, categories classified wrongly with
a small amount of data can have a great impact. Fig 2c demonstrates that
the similar samples between two categories will affect the classification results.
Therefore, we try to eliminate the similar samples and use the remaining samples
to train the model. We hope that the fusion of diverse feature sets could make
an improvement in the whole classification result.
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Fig. 2. Three distinct data distributions.

Firstly, the three acoustic feature sets (i. e., ComParE, eGeMAPS, and
emo large) are extracted by the openSMILE v3.0 toolkit. Then, we train an
SVM model for each feature set and select the optimum complexity as the basic
hyper-parameter, respectively. As mentioned above, similar samples from differ-
ent classes make the model pay more attention to fit the samples, which leads to
the distinguishing of the data becoming harder. Besides, imbalanced data dis-
tribution causes the model to more likely predict the data as belonging to the
more frequent classes. In order to improve the performance of the SVM model,
we eliminate selected mixed samples for each feature set during the training
process. To be specific, we calculate the Euclidean distance between samples in
the train set. Afterwards, a certain number of samples is omitted according to
the similarity result, which may help represent the train(ing) set sample space
more clearly. Moreover, the number of eliminated data for each class is differ-
ent. A mixed set is composed of those eliminated samples. For the development
set, we calculate the Euclidean distance between it and the original train set.
We remove samples from the development set if one of the most similar samples
with a certain number is from the mixed set. The numbers of eliminated samples
for the train and development sets are regarded as optimised parameters. Fur-
thermore, the criteria by which to eliminate samples should be different between
different feature sets. We select the optimum parameter for each feature set that
performed best on the development set, respectively. Due to the imbalance of
the data distribution, UAR is used as evaluation metric.

At the prediction stage, we also calculate the Euclidean distance between the
test set and the train set. For one sample of the test set, it is removed if one
of the most similar samples with a certain number is from the mixed set, which
is calculated from the train set and the development set. The ‘certain number’
for the test set is the same as that for the development set. The specific number
of eliminated data in the test set is the same as that of the development set.
After that, we predict the classes in different orders. The unpredicted audios
would be predicted by the next feature set, and the last feature set would be
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used to predict all of the remaining audios. Fig 3 shows the overall process of
this method.

Fig. 3. The overall flow of this study includes feature extraction and snore sound
classification.

4 Results and Discussion

4.1 Classification Results

In our experiments, we analyse variable combination modes of the three feature
sets. For comparison, Table 4 presents the classification results of each feature set.
In order to show more details of all experiments, Fig 4 shows specific confusion
matrices for the test set with different orders.

Table 4 shows the results without deleting any sample. From Fig. 4, we can
see that the best classification result resembles a UAR of 65.6 %. Compared with
the specific feature set, the combination of different feature sets performs better.
Because of the distinct samples eliminated from each feature set, we conduct
experiments with different orders of feature extraction to explore whether this
method can be used to improve the classification performance. When the first
feature sets are the same, Fig 4 presents that we can obtain similar classification
results for each class. The reason is that the majority of the samples is classified
by the first feature set, which determines the final result. But in spite all of
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Table 4. Specific classification results by unweighted average recall (UAR). (Unit: %).
Num.: number of features, C : complexity.

Num Dev Test C

ComParE 6373 37.5 54.4 5×10−3

eGeMAPSv01a 88 41.3 60.1 5×10−2

emo large 6552 35.6 64.4 5×10−5

this, comparing the results in Fig 4 and Table 4, it can be found that using
the combination of the first feature set and other feature sets is better than
using only the first feature set. Specifically, the three feature sets have different
representation capabilities for a certain class. The recalls of type ‘V’ and type ‘E’
are generally better than those for the other two classes. Considering the first
feature set, ComParE and emo large represent type ‘V’ and type ‘E’ better,
respectively. Moreover, as shown in Table 4e and Table 4f, the recall of the type
‘E’ classified by emo large is up to 85.2 % UAR. It is obvious that type ‘O’ and
type ‘T’ are wrongly distinguished as type ‘V’, which is probably caused by the
data imbalance problem.

4.2 Limitations and Perspectives

In Table 5, the experimental results of different methods in the MPSSC are
listed. Compared with other models, it is regrettable that our method is not
state of the art. Up to now, the best result is up to 77.13 % UAR, which used
a prototypical network to classify the location [25]. Demir et al. [40] considered
local binary patterns and a histogram of oriented gradients extracted from colour
spectrograms, which achieved a UAR of 72.6 %. Qian et al. [23] utilised a bag-of-
audio-words approach and selected a Näıve Bayes model as the classifier, which
reached a UAR of 69.4 %. Schmitt et al. [41] presented the performance of an
end-to-end learning method with a UAR of 67.0 %. Although the result of our
method is not the best, this method also bears noticeable improvements and
could be combined with others for further gain.

Firstly, feature boundaries for similar samples from different classes are estab-
lished by many researchers. Unlike the above methods, we focus on eliminating
the similar samples, which could help distinguish different classes. Moreover,
abundant features provide deep information of audios. Utilising diverse fea-
tures reasonably could construct a complete data space. On the other hand, all
of our experiments are reproducible, which is especially important for snoring
sound analysis or health tasks in more general. Furthermore, we extract low-level
descriptors and corresponding functionals features for each feature subset, which
are explainable.

It is remarkable that we use different feature sets, each of which represents
a distinct representation spaces of audio. In our experiments, we find that some
classes could be easily distinguished by a certain feature. Therefore, if each class
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Fig. 4. Confusion matrices for test set with different orders. co: ComParE, e.g.:
eGeMAPS, em: emo large.
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Table 5. Classification results of other models. CCE: Complement-Cross-Entropy
loss function. LBP: Local Binary Patterns. HOG: Histogram of Oriented Gradients.
BoAWs: Bag-of-Audio-Words. GRU: Gated Recurrent Unit. MLSa: Mean of the Log-
spectrum. ELM: Extreme Learning Machines.

UAR (%) Main Methods

Ding et al. [25] 77.1 CNN (CCE loss function)

Demir et al. [40] 72.6 LBP + HOG features

SVM

Qian et al. [23] 69.4 BoAWs

Näıve Bayes

Schmitt et al. [41] 67.0 CNN

Wang et al. [42] 63.8 CNN+GRU

Official baseline [35] 58.5 ComParE features

SVM (linear kernel)

Zhang et al. [24] 56.7 BoAWs

SVMs

New et al. [43] 52.4 Spectrogram with CNN

SVM

Albornoz et al. [44] 49.4 MLSa

ELM

Our method 65.6 ComParE, eGeMAPS, emo large

SVM

can be characterised by a certain feature, we can easily and quickly diagnose
the location of snoring sound. In other words, we need to find a way to take
advantage of each feature.

5 Conclusion

In this paper, we introduced a novel strategy to classify snore sounds. We cal-
culated the Euclidean distance between train set and development set. Through
removing some samples, we reached the best classification result for each fea-
ture set. Then, we utilised the feature sets to classify the test set in a certain
order. The results show that this method can promote the result of classifi-
cation compared with the baseline. Statistical dimensional reduction methods
such as Principal Component Analysis and Random Forests can reduce redun-
dant features and avoid overfitting. In future work, we will use such statistical
dimensional reduction methods to improve the model performance.
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Abstract. Emotion recognition in multi-party conversations (ERMC)
is becoming increasingly popular as an emerging research topic in natural
language processing. Although previous work exploited inter-dependency
and self-dependency among participants, they paid more attention to the
use of specific-speaker contexts. Specific-speaker context modeling can
well consider the speaker’s self-dependency, but inter-dependency has
not been fully utilized. In this paper, two hypergraphs are designed to
model specific-speaker context and non-specific-speaker context respec-
tively, so as to deal with self-dependency and inter-dependency among
participants. To this end, we design a multi-hypergraph neural network
for ERMC, namely ERMC-MHGNN. In particular, we combine aver-
age aggregation and attention aggregation to generate hyperedge fea-
tures, which can make better use of utterance information. Extensive
experiments are conducted on two ERC benchmarks with state-of-the-
art models employed as baselines for comparison. The empirical results
demonstrate the superiority of this new model and confirm that further
exploiting inter-dependency is of great value for ERMC. In addition, we
also achieved good results on the emotional shift issue.

Keywords: Emotional shift · Emotion recognition in conversations ·
Emotion recognition in multi-party conversations

1 Introduction

Emotion recognition in conversations (ERC) has attracted more and more atten-
tion because of the prevalence of dialogue behaviour in various fields. The pri-
mary purpose of ERC is to recognize the emotion of each utterance in the dia-
logue. The recognized emotion can be used for opinion mining on social media
such as Facebook and Instagram, building conversational assistants, and con-
ducting medical psychoanalysis [1,15,18]. However, ERC, especially emotion
recognition in multi-party conversations (ERMC), often exhibits more difficulties
than traditional text sentiment analysis due to the emotional dynamics of the
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Fig. 1. Conversations as a hypergraph. Circles and triangles represent nodes and hyper-
edges, respectively.

dialogue [18]. There are two kinds of emotional dependencies among the partic-
ipants in a dialogue, inter-dependency and self-dependency among participants.
Self-dependency is the influence of what the speaker says on the current utter-
ance. Inter-dependency is the influence of what others say on what the current
speaker says. Therefore, identifying the emotion of an utterance in a multi-party
dialogue depends not only on the itself and its context, but also on the speaker’s
self-dependence and the inter-dependency [5,21].

Some recent works [4,6,15] based on recurrent neural networks have begun
to focus on conversational context modeling and speaker-specific modeling, and
even some works [11] have carried out multi-task learning for speaker-specific
modeling on this basis. They try to deal with speaker-dependent influences
through speaker-specific modeling and conversational context modeling, but they
cannot well use other speakers’ utterances to influence the current utterance.
While some works [5,8,10,20,21] based on graph neural networks use relational
graph neural networks to distinguish different speaker dependencies, and some
even use conversational discourse structure [21] or commonsense knowledge [10]
to extend relationships between utterances. These models hope to establish more
perfect utterance relations, and then aggregate according to the relations to form
the influence of the surrounding utterances on the current utterance. However,
the performance of such models will be affected by the type and quantity of inter-
utterance relations. Moreover, the emotional change of a speaker may be caused
by the joint influence of multiple utterances of multiple speakers. This influence
may also be caused by the interaction of utterances under different relation-
ships. So inter-dependency is more complex than self-dependency. We believe
that it is necessary to build a graph network alone to model inter-dependency,
especially for multi-dialogue, which can better identify the problem of emotional
shift between consecutive utterances of the same speaker.

According to the hypergraph [3] structure, we know that a hyperedge may
contain multiple utterances, and an utterance may belong to multiple hyper-
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edges. We let each utterance generate a hyperedge. The nodes on the hyperedge
are the corresponding current utterance and the specific context of the current
utterance. Hypergraph neural networks [3] can use the structure of hypergraph
to deal with the influence of multiple utterances from multiple speakers on an
utterance, that is, to use multiple surrounding utterances to produce an influ-
ence on the current utterance. And by performing node-edge-node transforma-
tion, the underlying data relationship can be better represented [3], and more
complex and high-level relationships can be established among nodes [25]. Pre-
vious work has shown that speaker-specific information is very important for
ERMC [15,21]. Therefore, how to use hypergraphs for speaker-specific modeling
of ERMC is a very important issue. Second, the current utterance may be influ-
enced by utterances from different speakers. Therefore, how to use hypergraphs
for non-speaker-specific modeling of ERMC is also a very important issue.

In this paper, we construct two hypergraphs for speaker-specific and non-
speaker-specific modeling, respectively. The hyperedges in the two hypergraphs
are different. A hypergraph for speaker-specific modeling, where the nodes on the
hyperedge are from the speaker of the current utterance, this hypergraph mainly
deals with self-dependency. In a hypergraph for non-speaker-specific modeling,
where nodes on a hyperedge contain the current utterance and utterances from
other speakers, the hypergraph is primarily used to handle inter-dependency.
In Fig. 1, we construct two kinds of hyperedges for the third utterance. The
hyperedge of the green triangle indicates that the node of the hyperedge is from
speaker B of the third utterance. The hyperedge of the blue triangle indicates
that the nodes of the hyperedge are from speakers other than speaker B. Note
that this hyperedge needs to contain the current utterance, so that the nodes
within the hyperedge have an effect on the current utterance. We use the loca-
tion information and node features to aggregate to generate hyperedge features.
Here, we use the location information to obtain the weight of the average aggre-
gation, use the node features to perform the attention aggregation to obtain the
attention weight, and combine the two weights to obtain the hyperedge feature.
Then, the hyperedge features are used to model the conversational context using
a recurrent neural network. Finally, the hyperedge features are used to aggregate
to obtain new node features. The hypergraph convolution of the two hypergraphs
can be used to model specific speakers and non-specific speakers, so as to deal
with inter-dependency and self-dependency among participants.

The main contributions of this work are summarized as follows:

– We construct hypergraphs for two different dependencies among participants
and design a multi-hypergraph neural network for emotion recognition in
multi-party conversations. To the best of our knowledge, this is the first
attempt to build graphs for inter-dependency alone.

– We combine average aggregation and attention aggregation to generate hyper-
edge features, which can better utilize the information of utterances.

– We conduct experiments on two public benchmark datasets. The results con-
sistently demonstrate the effectiveness and superiority of the proposed model.
In addition, we achieved good results on the emotional shift issue.
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2 Related Work

2.1 Emotion Recognition in Conversations

In the following paragraphs, we divide the related works into two categories
according to their methods to model the conversation context. Note that here
we consider some models that utilize Transformer [22] like DialogXL [19] without
actually building a graph network as recurrent neural networks. DialogXL [19],
BERT+MTL [11], and ERMC-DisGCN [21] have done some research on emotion
recognition in multi-party conversations.

Recurrence-Based Models. DialogueRNN [15] uses three GRUs to model the
speaker, the context given by the preceding utterances, and the emotion behind
the preceding utterances, respectively. COSMIC [4] built on DialogueRNN using
commonsense knowledge (CSK) to learn interactions between interlocutors par-
ticipating. EmoCaps [13] introduce the concept of emotion vectors to multi-
modal emotion recognition and propose a new emotion feature extraction struc-
ture Emoformer. BERT+MTL [11] exploit speaker identification as an auxiliary
task to enhance the utterance representation in conversations. DialogueCRN [6]
from a cognitive perspective to understand the conversation context and inte-
grates emotional cues through a multi-turn reasoning module for classification.
VAE-ERC [16] models the context-aware latent utterance role with a latent
variable to overcome the lack of utterance role annotation in ERC datasets.
TODKAT [28] proposes a new model in which the transformer model fuses the
topical and CSK to predict the emotion label. DialogXL [19] improves XLNet [24]
with enhanced memory and dialog-aware self-attention. CoG-BART [12] utilizes
supervised contrastive learning in ERC and incorporates response generation as
an auxiliary task when certain contextual information is involved.

Graph-Based Models. DialogueGCN [5] used a context window to connect
the current utterance with surrounding utterances and treated each dialogue
as a graph. RGAT [8] added positional encodings to DialogGCN. DAG-ERC
[20] designed a directed acyclic graph neural network and provided a method to
model the information flow between remote context and local context. SKAIG
[10] utilizes CSK to enrich edges with knowledge representations and process the
graph structure with a graph transformer. MMGCN [7] proposes a new model
based on a multi-modal fused graph convolutional network. TUCORE-GCN [9]
proposed a context-aware graph convolutional network model by focusing on
how people understand conversations. ERMC-DisGCN [21] designed a relational
convolution to lever the self-speaker dependency of interlocutors to propagate
contextual information, and proposed an utterance-aware graph neural network.

2.2 Hypergraph Neural Network

HGNN [3] propose a hypergraph neural network framework and demonstrate
its ability to model complex high-order data dependencies through hypergraph
structures. HyperGAT [2] used subject words to construct hypergraphs for text
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classification. HGC-RNN [25] adopted a recurrent neural network structure to
learn temporal dependencies from data sequences and performed hypergraph
convolution operations to extract hidden representations of data. SHARE [23]
constructed different hyperedges through sliding windows of different sizes and
extracted user intent through hypergraph attention for session-based recom-
mender systems. MHGNN [27] uses multi-hypergraph neural networks to explore
the latent correlation among multiple physiological signals and the relationship
among different subjects. Inspired by these works, we treat dialogue as a hyper-
graph and solve the ERC task using a hypergraph neural network.

3 Methodology

3.1 Hypergraph Definition

Hypergraph is defined as: HG = (V,E), where V = {v1, v2, . . . , vN} is a node-
set, E = {HE1,HE2, . . . , HEN} is a collection of hyperedges. The node-set
belonging to hyperedge HEn is a subset of V . The structure of a hypergraph
HG can also be represented by an incidence matrix A, with entries defined as:

Aij =

{
0, vi /∈ HEj ,

1, vi ∈ HEj

(1)

We use X = {x1, x2, . . . , xN} to denote the attribute vector of nodes in the
hypergraph. So the hypergraph can also be represented by HG = (A,X). In this
paper, we use matrix M to store the relative position weight of the utterance in
the hypergraph. The structure of matrix M is similar to the incidence matrix A.
Each row in M corresponds to a hyperedge, and the non-zero items in each row
represent the utterance node in this hyperedge. The size of the non-zero items
is related to the position between nodes in the hyperedge. In the following, we
use HG = (M,X) to represent the hypergraph.

Vertices. Each utterance in a conversation is represented as a node vi ∈ V .
Each node vi is initialized with the utterance embeddings hi. We update the
embedding representations of vertices via hypergraph convolution.

Hyperedge. Since each hyperedge is generated based on a specific current utter-
ance, we need to calculate the influence of other utterances on the current utter-
ance, and these influences will be weakened according to the relative position
between the utterances. We set the position weight of the current utterance to
1, and the position weight of the remaining utterances gradually decreases with
the relative distance. See the Algorithm 1 for the specific process of hypergraph
and hyperedge construction. We design two kinds of hypergraphs, one is speaker-
specific hypergraph (SSHG), and the other is non-speaker-specific hypergraph
(NSHG). The hyperedges in SSHG are speaker-specific hyperedges (SSHE). We
select some utterances in the context window to add to SSHE, and the speaker
of these utterances are the same as the speaker of the current utterance. The
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Algorithm 1. Constructing Hypergraph
Input: the dialogue {h1, h2, . . . , hN}, speaker identity p(·), context window w.
Output: SSHG, NSHG.
1: X, MSSHG, MNSHG ← {h1, h2, . . . , hN}, ∅, ∅
2: for all i ∈ [1, N ] do
3: M i

SSHG, M i
NSHG ← {0, 0, . . . , 0}, {0, 0, . . . , 0}// N zero in total

4: wp, wf , count, M i
NSHG[i] ← i − w, i + w, 0, 1 //wp, wf ∈ [1, N ]

5: for j = wp; j <= wf ; j + + do
6: if p(hi) = p(hj) then
7: M i

SSHG[j] ← 1/(1 + abs(i − j))
8: count++
9: else if p(hi)! = p(hj) and count = 0 then

10: M i
NSHG[j] ← 1/(1 + abs(i − j))

11: end if
12: end for
13: end for
14: return SSHG = (MSSHG, X), NSHG = (MNSHG, X)

hyperedges in NSHG are non-speaker-specific hyperedges (NSHE).We take the
past utterance of the speaker of the current utterance as a selective constraint,
and select some utterances in the context window to add to NSHE. The speakers
of these utterance are different from speaker of the current utterance.

3.2 Problem Definition

Given an input sequence containing N utterances {u1, u2, . . . , uN}, which is anno-
tated with a sequence of labels {y1, y2, . . . , yN}. Utterance ui spoken by p(ui). The
task of ERC aims to predict the emotion label yi for each utterance ui.

3.3 Model

An overview of our proposed model is shown in Fig. 2, which consists of the
Feature Extraction module, the Hypergraph Convolution Layer module, and
the Emotion Classification module. Hyperedges are generated according to the
third, fourth and fifth utterances.

UtteranceFeatureExtraction. Following COSMIC [4], we employ RoBERTa-
Large [14] as feature extractor. The pre-trained model is firstly fine-tuned on each
ERC dataset, and its parameters are then frozen while training our model. More
specifically, a special token [CLS] is appended at the beginning of the utterance to
create the input sequence for the model. Then, we use the [CLS]’s pooled embed-
ding at the last layer as the feature representation hi of ui.

Hypergraph Convolution (HGC) Layer. We utilize the two hypergraphs
to perform hypergraph convolutions separately, and then obtain different utter-
ance representations. The process of performing hypergraph convolution for each
graph can be divided into the following three steps.



50 C. Zheng et al.

Fig. 2. Overview of our proposed model. In the Hypergraph Convolutional Layer mod-
ule, the red dotted line represents the information transfer between the hyperedges.
(Color figure online)

Node to Edge Aggregation. The first step is the aggregation from nodes
to hyperedges. Here, we use the position weight mi

j to calculate the weight
αpos
ji of the weighted average aggregation. Since some nodes on a hyperedge

are informative but others may not be, we should pay varying attention to the
information from these nodes while aggregating them together. We utilize the
attention mechanism to model the significance of different nodes. Here, we use
a function S(·, ·) to calculate attention weights αATT

ji . Function S(·, ·) is derived
from the Scaled Dot-Product Attention formula [22]. Then, the obtained weight
αpos
ji , attention weight αATT

ji and node information hl−1
i are aggregated to obtain

hyperedge feature f l
j . The specific formula is as follows:

αpos
ji =

mi
j∑

k|vk∈HEj
mk

j

(2)

αatt
ji =

S(W1h
l−1
i , tl)∑

f |vf∈HEj
S(W1h

l−1
f , tl)

(3)

f l
j = σ(

∑
vi∈HEj

αpos
ji αatt

ji W2h
l−1
i ) (4)

S(a, b) =
S(aT b)√

D
(5)

where HEj is the j-th hyperedge, resulting from the j-th utterance. mi
j is stored

in the association matrix M, which represents the size of the position weight of
the i-th node in the j-th hyperedge. hl−1

i represents the features of the utterance
node. tl represents a trainable node-level context vector for the l-th HGC layer.
W1 and W2 is a trainable parameter matrices. D is the dimension size.
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Edge toEdgeAggregation. The second step is to transfer information between
hyperedges. In order to make the current utterance have better interaction with
the context, we use the hyperedge generated by each utterance to model the con-
versation context. We use BiLSTM to complete the information transfer.

qlj , hiddenj =
←−−−→
LSTM

c
(f l

j , hiddenj−1) (6)

where hiddenj is the j-th hidden state of the LSTM, qlj represents the hyperedge
feature obtained after the information passed by the hyperedge.

Edge to Node Aggregation. To update the feature for a node, we need to
aggregate the information from all its connected hyperedges. We also use S(·, ·)
to calculate the similarity between the node and hyperedge features.

hl
i = σ(

∑
HEj∈Ei

βijW3q
l
j) (7)

βij =
S(W4q

l
j ,W1h

l−1
i )∑

HEp∈Ei
S(W4qlp,W5h

l−1
i )

(8)

where Ei is the set of hyperedges containing the i-th node. W3, W4, and W5

denote trainable parameters, and S(·, ·) is same as Eq. 6.

3.4 Classifier

We concatenate the hidden states of the two hypergraphs in all HGC layers and
pass it through a feedforward neural network to get the predicted emotion:

HHG
i =‖LHG

l=1 (hHG)li (9)

Pi = softmax(Wsmax[h0
i : HSSHG

i : HNSHG
i ] + bsmax) (10)

ŷi = argmaxk(Pi[k]) (11)

where HHG
i represents the result of hypergraph convolution performed on the

hypergraph, HG can be SSHG and NSHG, and LHG is the number of layers for
hypergraph convolution of the corresponding hypergraph.

4 Experimental Setting

4.1 Datasets

We evaluate our model on two ERC datasets. The statistics of them are shown
in Table 1. They are all multimodal datasets, but our task mainly focuses on
textual modality to conduct our experiments.

MELD [17] is derived from the Friends TV series. The utterances are annotated
with one of seven labels, namely neutral, joy, surprise, sadness, anger, disgust,
and fear. The dataset consists of multi-party conversations and involves too
many plot backgrounds. Non-neutral emotions account for 53%.
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Table 1. The statistics of datasets. ‘Avg.’ denotes the average number of utterances.
‘WA-F1’ denotes the Weighted-average F1.

#Dial.(Train/Dev./Test) #Utt.(Train/Dev./Test) Avg. Classes Metrics

MELD 1432(1038/114/280) 13708(9989/1109/2610) 9.57 7 WA-F1

EmoryNLP 897(713/99/85) 12606(9934/1344/1328) 14.05 7 WA-F1

EmoryNLP [26] is also collected from Friends’ TV scripts, but varies from
MELD in the choice of scenes and emotion labels. The emotion labels include
neutral, sad, mad, scared, powerful, peaceful, and joyful.

4.2 Compared Methods

For a comprehensive evaluation of our proposed ERMC-MHGNN, we compare
it with the following baseline methods:

Recurrence-based Models: DialogueRNN [15], COSMIC [4], DialogueCRN
[6], TODKAT [28], DialogXL [19], VAE-ERC [16], DialogueRNN-RoBERTa [4],
CoG-BART [12], and EmpCaps [13].

Graph-based Models: DialogueGCN [5], RGAT [8], RGAT-RoBERTa [20],
DialogueGCN-RoBERTa [20], SKAIG [10], ERMC-DisGCN [21], MMGCN [7],
TUCORE-GCN [9], and DAG-ERC [20].

4.3 Implementation Details

We conducted experiments on a Windows10 using NVIDIA GeForce GTX 1650
GPU with 4 GB of memory. We used PyTorch 1.7.0 and CUDA toolkit 11.0. We
adopt AdamW as the optimizer. Table 2 is hyperparameter settings. For feature
dimension, the utterance feature dimension extracted by RoBERTA extractor is
1024, and after linear layer, the utterance feature dimension becomes 100.

Table 2. Hyperparameter settings.

# Batchsize Dropout Lr Window LayerSSHG LayerNSHG

MELD 32 0.1 0.001 1 1 1

EmoryNLP 16 0.4 0.0009 4 4 6

5 Results and Discussions

5.1 Overall Performance

Table 3 shows the performance of different models on the MELD and EmoryNLP
test sets. We can see that our model outperforms all baselines, which demon-
strates the effectiveness of our proposed model. At the same time, we find that
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Table 3. Overall performance on the two datasets. ‘-’ signifies that no results were
reported for the given dataset. ‘CSK’ stands for model that introduces commonsense
knowledge. ‘*’ represents the results of the model in the text-only modality.

Model CSK MELD EmoryNLP

RoBERTa × 62.88 37.78

DialogueRNN × 57.03 -

+RoBERTa × 63.61 37.44

DialogueCRN × 58.39 -

VAE-ERC × 65.34 -

DialogXL × 62.4 34.73

BERT+MTL × 61.90 35.92

CoG-BART × 64.81 39.04

COSMIC
√

65.21 38.11

TODKAT
√

65.47 38.69

EmoCaps∗ × 63.51 -

DialogueGCN × 58.10 -

+RoBERTa × 63.02 38.10

RGAT × 60.91 34.42

+RoBERTa × 62.80 37.89

TUCORE-GCN × 62.47 36.01

+RoBERTa × 65.36 39.24

DAG-ERC × 63.65 39.02

ERMC-DisGCN × 64.22 36.38

SKAIG
√

65.18 38.88

MMGCN∗ × 57.72 -

ERMC-MHGNN × 66.4 40.1

models using CSK on MELD generally perform better, while our model achieves
good results without relying on external knowledge. In this paper, we focus on
modeling the two kinds of dependencies among speakers by building multiple
hypergraphs, so we do not incorporate external knowledge. On the EmoryNLP
dataset, we found that models using large-scale pre-trained models to extract
features have better results. For example, both DAG-ERC and TUCORE-GCN
use RoBERTa as feature extractors. These models can achieve over 39% on
EmoryNLP. Our model also uses RoBERTa as a feature extractor and achieves
relatively better results by separately modeling the two speaker dependencies.

5.2 Ablation Study

To investigate the impact of various modules in the model, we evaluate our model
by separately removing two weights in the node-to-edge aggregation process in
hypergraph convolution. In addition, we also conduct experiments on hypergraph
convolution with a single hypergraph. The results are shown in Table 4.
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Table 4. Results of ablation study.

Method MELD EmoryNLP

full model 66.4 40.1

w/o αpos 65.61 (↓0.79) 39.15 (↓0.95)

w/o αatt 65.64 (↓0.76) 39.05 (↓1.05)

w/o SSHG 65.3 (↓1.1) 38.93 (↓1.17)

w/o NSHG 65.19 (↓1.21) 38.9 (↓1.2)

As shown in the Table 4, we can see that after removing the weights αatt,
there is a relatively large drop in performance on both datasets. Through the
attention function, the surrounding utterances can be given different weights, so
that the current utterance can better receive information from other utterances.
Therefore, the use of attention weights αatt is beneficial to the aggregation of
node information. When we remove the αpos weights, both datasets also have
relatively large drops. The distance between utterances may affect the interaction
between two utterances. Appropriately reducing the influence of surrounding
utterances according to the relative distance can also make the model better
aggregate node features to a certain extent.

When we use one hypergraph and remove other hypergraphs, we only perform
hypergraph convolution of one hypergraph. From the results in Table 4, we can
see that the performance of the model is degraded no matter which hypergraph
is removed. Among them, the model will also have a relatively large performance
drop after removing the NSHG, which also shows that the method of modeling
for non-specific speakers is feasible. In multi-party dialogues, the influences of
utterances from other speakers should be considered in a targeted manner.

5.3 Effect of Depths of GNN and Window Sizes

We explore the relationship between model performance and the depth of
ERMC-MHGNN on EmoryNLP datasets. From Fig. 3, the best {LSSHG,
LNSHG} is {4, 6} on EmoryNLP datasets, which obtain 40.1% Weighted-average
F1. Note that the convolution on EmoryNLP requires more NSHG layers. This
may be related to the number of labels in the conversation and the length of
the conversation. The proportion of each label in EmoryNLP is more balanced
than MELD, the proportion of emotional shift is relatively larger, and the con-
versation length is also larger. Therefore, EmoryNLP needs more NSHG layers
for convolution to deal with inter-dependency.

We also experimented with both datasets by increasing the window size of the
past and future. The experimental results are shown in Fig. 4. From the figure,
we can see that the window size of the context has a relatively small effect on the
two datasets, but the context window size for obtaining relatively good results
for different datasets is not the same. On MELD, there are a relatively certain
number of conversations with less than three utterances, while on EmoryNLP,
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Fig. 3. Effect of depths of GNN. We report the Weighted-F1 score on the EmoryNLP.
The darker the color, the better the performance.

Fig. 4. Effect of window sizes.

the length of conversations is generally greater than five utterances. Therefore,
MELD gets better results when the window size of the past and future is 1, while
EmoryNLP requires a relatively large context window.

5.4 Error Analysis

We study the emotional shift issue, which means the emotions of two consec-
utive utterances from the same speaker are different. Since DialogXL does not
provide the corresponding emotional shift prediction accuracy on MELD and
EmoryNLP, we reproduce it. The weighted average f1 of DialogXL on MELD
and EmoryNLP is 62.67% and 35.0%, respectively, both higher than the results
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Table 5. Test accuracy of ERMC-MHGNN and partial baseline models on samples
with emotional shift and without it. ‘()’ indicates the number of samples.

# MELD EmoryNLP

shift w/o shift shift w/o shift

(1003) (861) (673) (361)

DialogXL 57.33 71.43 33.88 43.77

DAG-ERC 59.02 69.45 37.29 42.10

ERMC-MHGNN 62.01 72.36 38.93 41.83

in the paper. Among them, the emotional shift prediction accuracy of DialogXL
on MELD and EmoryNLP is listed in Table 5. It can be seen from Table 5 that
compared with the other two models, our model has greatly improved the accu-
racy of identifying emotional shifts in these two multi-party dialogue datasets.
However, improving the accuracy of identifying emotional shifts can easily reduce
the accuracy of identifying without emotional shifts. Compared with other mod-
els, we can improve the accuracy of recognizing emotional shifts while keeping
the accuracy of recognizing without emotional shifts at a high level.

6 Conclusion

This paper constructs two different hypergraphs for the two speaker dependen-
cies, and designs a multi-hypergraph neural network for multi-party conversation
emotion recognition, namely ERMC-MHGNN, to better handle speaker depen-
dencies. The experimental results show that ERMC-MHGNN has good perfor-
mance. Furthermore, through comprehensive evaluation and ablation studies, we
confirm the advantages of ERMC-MHGNN and the impact of its modules on per-
formance. Several conclusions can be drawn from the experimental results. First,
our approach to non-speaker-specific modeling of utterances from other speak-
ers is feasible. Second, combining average aggregation with attention aggregation
can obtain better hyperedge features. Finally, our model has achieved relatively
good results on emotional shift issue.
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Abstract. Text-based depression detection has long been investigated
by exploring useful handcrafted linguistic features and word embeddings.
This paper focuses on utilizing emoji as an emotional modality to detect
whether a subject is depressed or not based on text. In particular, we
propose to extract sentence-level emotional information with model pre-
trained to predict emoji of text on social media and semantic informa-
tion with widely used embedding model. The embeddings are then input
to the classification model to predict one’s mental state. Experiments
are conducted on user-generated posts from three datasets and clinical
conversational data from DAIC-WOZ. Results on social media data indi-
cate emojis’ superior performance in general, with further enhancement
derived from modality fusion. Furthermore, emoji outperforms contex-
tual text embeddings in sparse scenarios like clinical interview dialogues.
We also provide a detailed analysis showing that the emojis extracted
from healthy and depressed subjects are significantly different, suggest-
ing that emoji can be a reliable emotion representation in such implicit
yet complex sentiment analysis settings.

Keywords: Depression detection · Emotion detection · Deep learning

1 Introduction

Depression is an illness that affects, knowingly or unknowingly, millions of people
worldwide. Efficient and effective automatic depression diagnosis can be of sub-
stantial benefit. However, this is an arduous task since a variety of complicated
symptoms are reported while publicly available data is limited. Primarily, two
kinds of datasets are broadly used in text-based depression detection: 1) user-
generated data collected from social media and written texts; 2) dialogue record-
ing transcriptions during clinical interviews with professionally rated labels from
doctors. The second data type is more scarce, but the labels that whether one is
depressed are more accurate, since social media determines one’s mental state on
a self-report basis. Both data sources are imbalanced and contain more healthy
subjects. Accordingly, a major challenge for text-based depression detection is
to extract meaningful features that can be used to distinguish depressed patients
from healthy participants.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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In particular, different text features have been investigated, ranging from
hand-crafted feature types such as n-grams, Bag of Words (BoW), Linguis-
tic Inquiry and Word Count (LIWC) [17] to neural word embeddings like
Word2Vec [13], fastText [3,11], as well as global vectors (GloVe) [14]. In addition,
linguistic metadata including word and grammar use, readability, and keywords
summary has exhibited great performance in depression detection [17].

Psychology studies suggest that depressed mood can directly influence an
individual’s emotional expression and perception [10]. Emotion and sentiment
analysis is hence a useful tool in detecting depression. [2] proposes Bag of Sub-
Emotions (BoSE) and suggests that depression detection benefits from emotional
information. In [4], they use eight basic emotions (anger, fear, happiness, etc.)
as features to identify the risk of depression on Twitter.

Recently a few studies predict emoji representations from text [7,9,19].
Emoji, a rich emotional representation, is thus found effective in multiple
tasks, including sentiment analysis, emotion detection, and sarcasm detec-
tion [7]. Emoji exhibits certain characteristics compared with traditional senti-
ment/emotion analysis where a fixed label (i.e. positive/negative, happy, angry,
etc.): has more categories than the traditional binary or five emotion categories.
In this way, the emotional projection space is more continuous rather than dis-
crete quadrants. Such a mapping mechanism is more natural to human emotion
expressions that we do not always have a clear definition to our emotional state.

Therefore, we propose to use emoji representations as an emotional modality
in depression detection, which can be utilized on its own or in combination with
the existing textual features.

2 Emoji Extraction and Depression Detection

This work proposes to generate emoji from text sequences as an additional emo-
tion modality, which is used to determine whether a subject is depressed or
not. We firstly introduce our method of obtaining Emoji representations from
null-emoji depression data and then present our model for text-based depression
detection.

2.1 Emotion and Semantic Features

Emoji can be seen as a tool for emotion expression, which makes it more suitable
for text classification tasks involving emotions. Therefore, depression detection,
which highly correlates with emotion, can surely benefit from it. By its nature,
training text and emojis is entitled to large publicly available data since emojis
can be regarded as noisy labels for text as they are often used in tandem in
one sentence. Pretrained models like DeepMoji [7] take advantage of 1.6 billion
Tweets that incorporate emojis in each post. As a result, 64 different types of
emojis are embedded as the classification output. By utilizing DeepMoji, we
obtained highly emotion-correlated emoji representations from the text.
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In addition, we also utilize task-agnostic pretraining textual embeddings to
represent semantic features, since the use of pretrained features can be seen as
one possible approach to ameliorate the data scarcity problem. BERT [6] is used
to extract high-level context-sensitive features as a semantic modality.

A fusion of BERT and Emoji of combining the semantic and emotion modal-
ities are also investigated.

2.2 Depression Detection Model

Our approach for depression detection models each subjects’ text as a sequence
of sentences [1], seen in Fig. 1.

Fig. 1. Detection framework. Input feature can be sentence-level text features, emoji
features, or the combination of both.

Modeling sequential data is commonly done using recurrent neural net-
works (RNN). Specifically, we use a bidirectional long short-term memory
(BLSTM) network. The network receives a sequence of vectorized features
Xp = [x(1)

p ,x(2)
p , . . . ,x(I)

p ] obtained from text of patient p with length I. The
sequence Xp is then fed into a BLSTM network, producing Op = BLSTM(Xp) =
[o(1)

p , . . . ,o(I)
p ]. Since depression state labels are only given once for each dialog,

a time pooling layer is required to remove all time variability. Here, attention is
used as the preferred time pooling method. For each time step i, we calculate
weight based on the output o(i)

p of the BLSTM:
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p =

ew
T o(i)

p

∑
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where w is a learnable attention parameter. The attention output ôp =
∑

i α
(i)
p o(i)

p is then fed into a final classification layer which predicts the mental
state.

3 Experiments

Datasets We experiment with two dataset types for text-based depression detec-
tion. One concerns user-generated social media posts (the eRisk [12] and Topic-
restricted [18]), and the other collects clinical conversation transcriptions (the
DAIC-WOZ dataset [5]).

eRisk. The eRisk Challenge 2017 Dataset (eRisk) [12] includes 531,453 posts and
comments (sentences) from 892 subjects (137 Depressed), with 486 subjects (83
depressed) in training set and 406 subjects (54 depressed) in test set, collected
from social media platforms including Twitter, ATL and Reddit. For each sub-
ject, the dataset contains a chronologically ordered sequence of writings, which
is divided into ten chunks, starting from the oldest post to the newest one. The
depression state is evaluated on a binary level, based on the subjects’ website
visiting frequency.

Topic-Restricted. consists of 4,947 depressed users and 7,159 control users [18].
Since the original dataset is not released with the paper, we follow the imple-
mentation of [8] to crawl the dataset ourselves in the same way, which yields a
dataset containing 5,564 depressed users and 7,556 control ones. The depressed
users are those who started a thread in the depression subreddit while the con-
trol users are those who started a thread in AskReddit subreddit. The dataset
is split into the train (80%), validation (10%), and test (10%) set with the label
distribution preserved.

DAIC. The DAIC-WOZ (DAIC) [5] dataset contains multiple modalities includ-
ing visual (face-landmarks), audio (speech) and text (human transcribed) col-
lected from clinical conversations from a total of 142 subjects (42 depressed).
The training set contains 16895 instances from 107 subjects (30 depressed) while
the development set 6674 written sentences from 35 subjects (12 depressed). And
test set is only available for people attended the challenge. Though the DAIC
dataset contains less data than eRisk, its quality of labels, as well as transcrip-
tions, is higher.

Feature Extraction. Two text-based features, pretrained on large datasets, are
investigated in this work. Both features are extracted on the sentence level.
DeepMoji [7], is used as our feature extractor to extract 2304-dimension Emoji
features. Regarding text embeddings, we use the publicly available model (bert-
base-uncased), obtaining a 768-dimension BERT feature [6]. Fusion is done
on the feature level, whereas the previous two embeddings are concatenated,
obtaining a single 3, 072 dimensional feature.
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Experimental Setup. Our proposed approach can be viewed as a sequential mod-
eling approach, which processes each patients’ response in succession. For eRisk
and topic-restricted, contents from both title and text domain of a post are
concatenated. The provided text corpus of eRisk was firstly preprocessed by
removing URLs, tags, punctuation, and digit number and lowercasing all the
words. For DAIC, we only consider each patient’s response.

Training Details. For eRisk dataset, the BLSTM model consists of 3 layers, with
a hidden size of 256 for a single Emoji and BERT feature and 512 for their fusion
ones, and a dropout rate of 0.1. It is trained using cross-entropy as the default
criterion, running with a batch size of 4. The model is optimized using Adam,
with an initial learning rate of 4 × 10−5.

For TopicRestricted dataset, the BLSTM model has 2 layers, with a hidden
size of 256 and a dropout rate of 0.1 for all three kinds of features. It is also
trained using cross-entropy as the default criterion, running with a batch size of
32. The model is optimized using Adam, with an initial learning rate of 1×10−4.

For eRisk dataset, we run the training processes for each feature multiple
times with the same settings except for the seed and pick 5 results with the
highest F1 scores on the test set. Then we report the mean score with a stan-
dard deviation along with the maximum one we have achieved. And for Top-
icRestricted dataset, we run the training processes for 10 times with different
seeds and report the mean score with a standard deviation.

Evaluation Metrics. Automatic depression detection can be assessed via classi-
fication performance using F1 score. If not specified, F1 stands for average over
the positive case (binary).

4 Results

Our results are two-fold: we first compare the results of using emojis and BERT
on two dataset types: social media and dialogue transcription text. For the social
media dataset eRisk, our results are compared with the best systems in the
challenge and the state-of-the-art by far. Regarding the dialogue text DAIC, our
baselines include the work that has individually tested textual modality.

4.1 Depression Detection on Social Media Text

Experiment results on eRisk can be seen in Table 1, with reference to previously
published best results. BERT features perform more robust than Emoji embed-
dings with a smaller std value and a slightly higher mean F1 score, while the
best result of Emoji outperforms BERT. By further fusing semantic and emoji
embeddings, additional performance gains can be observed. We achieve the most
robust results in terms of classification (mean F1 = 0.65, max F1 = 0.66) by
using the Fusion feature. The results illustrate that Emoji model, which is pre-
trained by a simple emoji classification task, can perform similarly with BERT
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Table 1. Comparison of F1 results on eRisk. 1st-3rd Places indicate the results from
eRisk Challenge. Best results highlighted in bold.

Method Feature F1 Max F1

[2] Bag of Sub-Emotions 0.64 –

[17] (1st Place) 5 Feature Combinations 0.64 –

[15] (2nd Place) DepEmbed + DepWords + Metamap 0.51 –

[15] (3rd Place) DepWords + Metamap 0.44 –

Ours Emoji 0.63±0.013 0.65

BERT 0.64±0.003 0.64

Fusion 0.65±0.009 0.66

Table 2. Comparison on F1 scores on Topic Restricted and DAIC dataset

(a) Comparison on F1 score on
Topic-Restricted. Best results
highlighted in bold.

Method Feature F1

Ours

Emoji 0.764 ± 0.009

BERT 0.744 ± 0.009

Fusion 0.781 ± 0.011

(b) Comparison on F1 score on
DAIC. Best results highlighted
in bold.

Method Feature F1 macro

[1] Word2Vec 0.67

[1] Doc2Vec 0.67

Ours

Emoji 0.76

BERT 0.69

Fusion 0.69

on eRisk task, demonstrating that emotional text information is beneficial to
the depression detection task.

The results on the Topic-Restricted dataset in Table 2a show Emoji outper-
forms BERT and Fusion performs the best.

4.2 Depression Detection on Dialogue Text

Table 2b presents our results on the smaller dataset of clinical interviews. It can
be seen that the use of DeepMoji outperforms other text embeddings, including
Word2Vec, and BERT. By contrast, BERT exhibited similar performance to
DeepMoji on eRisk as it is collected from social media platforms while DAIC
is more specifically purposed at mental state assessment, leading to a great
benefit from the use of emotion modality. For the Topic-Restricted dataset, the
depressed users are those who started a thread in the depression subreddit, which
is more topic restricted and not so general like the eRisk dataset, hence Emoji
also outperforms BERT on it.
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Table 3. Top 10 most possible emojis for Healthy and Depressed subjects, predicted
from our approach

5 Analysis

Emoji Representations. We analyzed the emoji representations extracted for
depressed and healthy subjects, shown in Table 3. It can be seen that emojis
representing depressed and healthy subjects varied greatly from each other, with
quite a little overlap across the two groups. For depressed subjects, their emoji
representations extracted via DeepMoji from their textual embeddings are shown
more negative, e.g. heartbroken and crying emojis are more likely to occur. In
contrast, healthy subjects’ emoji representations are more positive-directed, i.e.
music and smiling faces tend to appear.

Quantitative analysis, as shown in Table 4, is calculated via the polarity score
allocated to each emoji, with an integer between −4 (most negative) and 4 (most
positive)1. For the eRisk dataset, the sums of polarity score of the top 20 emojis
for depressed and healthy subjects are −19 and 3; while for the DAIC dataset,
the sums are −2 and 7 respectively.

Table 4. The Sum of 20 Emoji Representations’ Polarity Score for Depressed and
Healthy subjects

Polarity Score eRisk DAIC

Depressed –19 –2

Healthy 3 7

LIWC Analysis. LIWC [17] has also been applied on eRisk for Pearson’s cor-
relation between linguistic use and one’s mental state. Results indicated that
the most positive correlated language use feature is the number of 1st person
singular “I” (ρ = 0.43), personal pronouns (0.42), and Authenticity (0.42) while
the most negative correlated linguistic uses are the analytical thinking (ρ =
−0.45), clout (−0.32) and articles (−0.28). This is in line with previous research
that depressed subjects are more inclined to express personal feelings hence
their language usage concerns more first-person pronouns [16]. Though textual
embeddings can help differentiate depressed and healthy subjects’ expressions,
their most distinguishable characteristics lie in sentiment/emotion divergence.
1 https://github.com/words/emoji-emotion.

https://github.com/words/emoji-emotion
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Therefore, emoji can hence be an additional input to the handcrafted metadata
and further enhance depression detection performance.

To sum up, Emojis exhibit a helpful way in sentiment analysis due to their
extensive categories. When applied to depression detection, it is powerful in
capturing implicit and complex sentiments expressed by depressed subjects. Fur-
ther, it not only enhances detection accuracy but more impressively, can deliver
a practical way to visualize and explain the differences in depressed and healthy
subjects’ semantic variation.

6 Conclusion

This paper proposes to use emoji as an emotional modality in tandem with
semantic information in depression detection. Pretrained features DeepMoji
and BERT are incorporated on three text-based depression detection datasets.
Results indicate that emojis can work as a robust modality on their own in
detecting depression states from the text. In sparse data scenarios such as clini-
cal interviews, emoji features outperform text embeddings by large. Future work
can treat emojis as an individual modality for multi-modal fusion depression
detection i.e., including semantic, emoji, visual and auditory cues.
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Abstract. This paper proposes a source-filter-based generative adver-
sarial neural vocoder named SF-GAN, which achieves high-fidelity wave-
form generation from input acoustic features by introducing F0-based
source excitation signals to a neural filter framework. The SF-GAN
vocoder is composed of a source module and a resolution-wise conditional
filter module and is trained based on generative adversarial strategies.
The source module produces an excitation signal from the F0 informa-
tion, then the resolution-wise convolutional filter module combines the
excitation signal with processed acoustic features at various temporal
resolutions and finally reconstructs the raw waveform. The experimen-
tal results show that our proposed SF-GAN vocoder outperforms the
state-of-the-art HiFi-GAN and Fre-GAN in both analysis-synthesis (AS)
and text-to-speech (TTS) tasks, and the synthesized speech quality of
SF-GAN is comparable to the ground-truth audio.

Keywords: Neural vocoder · Source-filter model · Generative
adversarial networks · Speech synthesis

1 Introduction

Speech synthesis, a technology that converts text information into human-like
speech, has been actively studied by researchers to chase the high naturalness,
intelligibility, and expressiveness of synthesized speech. In recent years, statis-
tical parametric speech synthesis (SPSS) [1] has become the dominant speech
synthesis method due to its small system size, high robustness, and flexibility.
SPSS generally consists of two stages: text to acoustic feature and acoustic feature
to speech, which are implemented by acoustic models and vocoders, respectively.

For years, conventional vocoders such as STRAIGHT [2] and WORLD [3]
have been widely used in the SPSS framework. Because of their source-filter
architecture, these vocoders tend to have good controllability of acoustic com-
ponents. While subject to the signal-processing mechanism, some deficiencies
exist, such as the loss of spectral details and phase information, which lead to
the degradation of speech quality.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
L. Zhenhua et al. (Eds.): NCMMSC 2022, CCIS 1765, pp. 68–80, 2023.
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Thanks to the developments of deep learning and neural networks, neural
vocoders rapidly emerged and made great progress. Initially, autoregressive (AR)
neural waveform generation models symbolized by WaveNet [4], SampleRNN [5],
and WaveRNN [6] were proposed to build neural vocoders and achieved break-
throughs in synthesized speech quality compared to the conventional methods.
However, due to the AR structure, they struggle in inference efficiency when
synthesizing high temporal resolution waveforms. Subsequently, to address this
problem, knowledge-distilling-based models (e.g., Parallel WaveNet [7], and Clar-
iNet [8]), flow-based models (e.g., WaveGlow [9], and WaveFlow [10]) were pro-
posed. Although the inference efficiency has made significant progress, the com-
putational complexity is still considerable, which limits their applications in
resource-constrained scenarios.

Recently, researchers have been prone to pay more attention to waveform
generation models without AR or flow-like structures. The neural source-filter
(NSF) model [11] combines speech production mechanisms with neural net-
works and realizes the prediction of speech waveform from explicit F0 and mel-
spectrogram. Generative adversarial networks (GANs) based models [12–17] ,
simultaneously improved the synthesized speech quality with GANs and infer-
ence efficiency with parallelizable inference process. Among them, HiFi-GAN
has achieved both high-fidelity and efficient speech synthesis. For the genera-
tive process, HiFi-GAN cascades multiple upsampling layers and multi-receptive
field fusion (MRF) modules that consist of parallel residual blocks to gradu-
ally upsample the input mel-spectrogram to the temporal resolution of the final
waveform while performing convolution operations. And for the discriminative
process, HiFi-GAN adopts adversarial training with a multi-period discriminator
(MPD) and a multi-scale discriminator (MSD) to ensure high-fidelity waveform
generation. Based on it, Fre-GAN [18] further improved the speech quality in fre-
quency space by adopting a resolution-connected generator and resolution-wise
discriminators to capture various levels of spectral distributions over multiple
frequency bands. However, due to their entirely data-driven manner, compared
to source-filter-based vocoders, they tend to lack the controllability of speech
components and robustness. Lately, there sprung some generative adversarial
neural vocoders based on the source-filter model, such as quasi-periodic Paral-
lel WaveGAN (QPPWG) [19], unified source-filter GAN (uSFGAN) [20], and
harmonic plus noise uSFGAN (HN-uSFGAN) [21]. Although they successfully
achieved high-controllability speech generation, there still exists a gap in speech
quality between synthesized and ground-truth audios.

To achieve high-fidelity speech synthesis, we propose SF-GAN, which inte-
grates the source excitation into a GAN-based neural waveform model. Firstly,
we design a source module through which the voiced and unvoiced segments of
the excitation signal are generated from the upsampled F0 and gaussian noise
processed by a deep neural network (DNN), respectively. Secondly, we propose
a resolution-wise conditional filter module to reconstruct speech waveform from
the excitation signal and mel-spectrogram. Inspired by the layer-wise upsampling
architecture in HiFi-GAN, we subsample the excitation signal to various resolu-
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Fig. 1. The architecture of SF-GAN. In the source module, the V/UV flag is the
abbreviation of the Voiced/Unvoiced flag. In the resolution-wise convolutional filter
module, SubBlock denotes the subsampling residual block, while UpBlock denotes the
concatenation of a transposed convolution and a parallel convolutional residual block.

tions and subsequently condition them to each upsampling layer of HiFi-GAN.
And then, we redesign the residual blocks in the MRF module by using parallel
convolutions to combine the transformed excitation signals with the hierarchical
intermediate features processed from mel-spectrogram. Additionally, to further
apply our model to a text-to-speech (TTS) system, we design an F0 predictor to
predict F0 from mel-spectrogram generated by an acoustic model. We use both the
predicted F0 and mel-spectrogram as our model inputs. Both objective and sub-
jective evaluations demonstrate that our proposed SF-GAN vocoder outperforms
HiFi-GAN and Fre-GAN in aspect of speech quality.

2 Proposed Method

2.1 Overview

In this paper, we propose the SF-GAN vocoder, which applies a source excita-
tion access method to the HiFi-GAN architecture. As illustrated in Fig. 1, the
proposed SF-GAN vocoder consists of a source module and a filter module, and
it takes frame-level F0 and mel-spectrogram as inputs and outputs a speech
waveform. The source module converts frame-level F0 into point-level excitation
signal, while the filter module reconstructs raw waveform from this excitation
along with the mel-spectrogram. Our proposed model adopts the GAN-based
training strategy, and we use the MSD and MPD in HiFi-GAN to capture con-
secutive and periodic patterns.

2.2 Source Module

Given the frame-level F0 sequence f1:L as input, where L denotes the number
of frames, the source module firstly extracts the voiced/unvoiced (V/UV) flag
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sequence vvv1:L from it. Subsequently, f1:L is interpolated N = T/L times to match
the temporal resolution of the raw waveform, where T denotes the number of
waveform sample points and v1:L is also upsampled N times by repeating V/UV
flag values in each frame. The interpolated F0 sequence f1:T with V/UV flags
sequence v1:T are converted to an excitation signal e1:T , which is a sine-based
signal for voiced segments and a DNN-transformed Gaussian white noise for
unvoiced segments. By assuming the F0 value and V/UV flag value at the t-th
time step are ft and vt, the t-th value of excitation signal et can be defined
mathematically as

et =

⎧
⎪⎨

⎪⎩

α sin
( t∑

k=1

2π fk

Ns
+ φ

)
+ nt, vt = 1

g
(

1
3σ nt

)
, vt = 0

, (1)

where vt = 0 or 1 denotes that et belongs to unvoiced or voiced segment, α
and σ are hyperparameters, g(·) represents a DNN-based transformation, nt ∼
N (0, σ2) is a Gaussian noise, φ ∈ (−π, π] is a random initial phase, and Ns

denotes the waveform sampling rate. In the source module, only the DNN is
trainable.

2.3 Resolution-Wise Conditional Filter Module

Given the mel-spectrogram and excitation signal as inputs, the filter module aims
to reconstruct raw waveform from them. Our filter module is a combination of
excitation subsampling blocks and the HiFi-GAN generator. The HiFi-GAN gen-
erator implements layer-wise upsampling on the frame-level mel-spectrogram to
gradually match the temporal resolution of the speech waveform. In each upsam-
pling layer, a transposed convolution is used for upsampling the intermediate
feature, and an MRF module is used to observe patterns of various lengths in
parallel. To condition the excitation signal to each layer of the HiFi-GAN genera-
tor, we propose the resolution-wise conditional filter (RCF) module. Specifically,
inspired by the residual blocks (ResBlocks) in MRF, as shown in Fig. 2(a), we
design the subsampling blocks (SubBlocks), which apply layer-wise subsampling
operations on the excitation signal to match the resolutions of corresponding
intermediate features. And then, to combine the subsampled excitation signals
with the corresponding intermediate features, we design parallel convolutional
residual blocks (PC-ResBlocks) in the MRF module and conclude the redesigned
MRF module together with the transposed convolution as an UpBlock. As illus-
trated in Fig. 2(b), in each layer of the PC-ResBlock, a transformed excitation
signal ê and an intermediate feature ĉ are converted to the next-level interme-
diate feature ĉ′. To achieve this, we propose a feature to feature mapping

fk,d(x,y) = LReLU(Wk,d ∗ x+Wk,d ∗ y), (2)

where ∗ denotes a convolution operator, + denotes an element-wise addition
operator, LReLU is a leaky rectified linear unit (LReLU) [22] activation function,
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Fig. 2. (a) The SubBlocks subsample the excitation signal |ks| times to match the res-
olution of intermediate features in each UpBlock with max-pooling. The l-th SubBlock
with kernel size ks[l] and dilation rates ds[l] is depicted. (b) The UpBlocks upsam-
ple the mel-spectrogram |ku| times with the transposed convolutions and combine the
upsampled features with the corresponding subsampled excitation signals in the PC-
ResBlocks. The n-th PC-ResBlock with kernel size kr[n] and dilation rates Dr[n] in
the l-th UpBlock is depicted.

and Wk,d is a 1D-convolution with kernel size k and dilation rate d. With this
mapping function, the generative process of ĉ′ can be defined as

ĉ′ = fk,1(ê, fk,d(ê, ĉ)) + ĉ. (3)

Our proposed RCF module has the following advantages: Firstly, by feeding
the excitation signal to a filter module, speech waveforms can be reconstructed
under the direction of explicit fundamental frequencies for better frequency mod-
eling. Secondly, with the resolution-wise condition architecture, which combines
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the input excitation signal and mel-spectrogram at different resolutions, our
model can capture fundamental frequency information and acoustic proper-
ties across multiple frequency bands. Thirdly, through the MRF module with
PC-Resblocks, our model can observe various receptive field patterns of excita-
tion signals and acoustic features in parallel. In a way, the receptive fields are
extended.

3 Experiments

3.1 Experimental Setup

To compare our model with others on seen data, we conducted experiments on
the LJSpeech dataset [23], which consists of 13,100 audio clips of a single English
female speaker and is of about 24 h. The audio sampling rate is 22.05 kHz with a
format of 16-bit PCM. We randomly divided the dataset into training, validation,
and test sets in a ratio of 8:1:1. Our proposed model was compared against the
official implementation of HiFi-GAN1 and an open source implementation of
Fre-GAN2. All the models were trained until 2.5M steps (about 3800 epochs).

To evaluate the generalization ability of our proposed model in a speaker-
unseen scenario, we conducted multi-speaker experiments on the VCTK corpus
[24]. The VCTK dataset consists of 44,257 audio clips from 109 native English
speakers with various accounts, and the total length is about 44 h. The audio
sampling rate is 44 kHz with a format of 16-bit PCM, and we subsampled all
the audio clips to 22.05 kHz. At the training stage, we randomly excluded nine
speakers from the training set. In the rest 100 speakers, we randomly selected
nine audio clips from each speaker for validation and trained the model with all
the rest audio clips. At the generation stage, we randomly selected 100 audio
clips from each unseen speaker to generate samples. We also trained our proposed
SF-GAN together with HiFi-GAN and Fre-GAN until 2.5M steps.

Most of the above experiments were conducted based on two generator varia-
tions (i.e.,V 1 and V 2), while for the Fre-GAN, we just used its V 1 version, which
was adequate to reveal the performance differences between models. In the source
module, we set α = 0.1 and σ = 0.003. As the RCF module shown in Fig. 2, for
V 1, we set hu = 512, ku = [16, 16, 4, 4], kr = [3, 7, 11], and Dr = [[1, 3, 5]× 3] for
the UpBlocks while km = [1, 2, 2, 8], ks = [15, 11, 7, 3], and ds = [7, 5, 3, 1] for the
SubBlocks. The V 2 version reduces the hidden dimensions hu to 128 but with
the same receptive fields as the V 1 version. We used F0 and 80-dimensional mel-
spectrogram as input conditions, and both their hanning window size and hop
size were set to 1024 and 256, respectively. Additionally, for the mel-spectrogram,
the FFT point number was set to 1024. At the training stage, we adopted the
AdamW optimizer [25], and all the hyperparameters were set in accordance with
HiFi-GAN. The synthesized audio samples are available at the demo website3.

1 https://github.com/jik876/hifi-gan.
2 https://github.com/rishikksh20/Fre-GAN-pytorch.
3 https://yxlu-0102.github.io/SF-GAN-Demo.

https://github.com/jik876/hifi-gan
https://github.com/rishikksh20/Fre-GAN-pytorch
https://yxlu-0102.github.io/SF-GAN-Demo
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Table 1. Objective evaluation results for analysis-synthesis experiments.

Dataset Model SNR
(dB)↑

LAS-RMSE
(dB)↓

MCD
(dB)↓

F0-RMSE
(cent)↓

V/UV error
(%)↓

LJSpeech HiFi-GAN V 1 4.3186 6.3555 1.5340 42.3113 5.0804
Fre-GAN V 1 4.4277 6.2462 1.5478 40.3120 4.9076
SF-GAN V 1 4.6161 6.1812 1.4229 33.7797 4.8340
HiFi-GAN V 2 3.6501 6.9994 1.9805 48.3591 5.8613
SF-GAN V 2 3.7774 6.6931 1.7629 44.9624 5.7700

VCTK HiFi-GAN V 1 2.1841 6.8098 2.3486 45.8586 8.3386
Fre-GAN V 1 2.3693 6.5795 2.2559 38.7379 8.0487
SF-GAN V 1 2.5788 6.4566 2.1518 34.8631 7.3406
HiFi-GAN V 2 1.7438 7.3316 2.7787 48.0714 9.2443
SF-GAN V 2 1.9405 7.2284 2.5440 43.5458 8.1595

3.2 Comparison Among Neural Vocoders

Evaluations on Analysis-Synthesis Tasks. We implemented both objective
and subjective evaluations on the LJSpeech and VCTK dataset to evaluate our
proposed SF-GAN vocoder with HiFi-GAN and Fre-GAN in terms of synthe-
sized speech quality. For objective evaluation, we adopted five metrics from our
previous work [26], including signal-to-noise ratio (SNR), root MSE (RMSE) of
log amplitude spectra (LAS-RMSE), mel-cepstrum distortion (MCD), MSE of
F0 (F0-RMSE), and V/UV error. For subjective evaluation, we conducted the
ABX preference tests on the Amazon Mechanical Turk platform4 to compare
the differences between two comparative systems. In each ABX test, 20 utter-
ances synthesized by two comparative systems were randomly selected from the
test set and evaluated by at least 30 native English listeners. The listeners were
asked to judge which utterance in each pair had better speech quality or whether
there was no preference. In order to calculate the average preference scores, the
p-value of a t-test was used to measure the significance of the difference between
two systems.

For experiments on the LJSpeech dataset, the objective results are presented
in the top half of Table 1. Obviously, our proposed SF-GAN vocoder outper-
formed HiFi-GAN and Fre-GAN among all the objective metrics, demonstrating
the distinct advantages of the proposed model in synthesized speech quality. The
subjective ABX test results are illustrated in the top part of Fig. 3, which shows
that the performance of our proposed SF-GAN V 1 was comparable with the
ground-truth natural speech (p = 0.25), and significantly better than HiFi-GAN
V 1 (p < 0.01) and Fre-GAN V 1 (p < 0.05). In addition, the performance of
SF-GAN V 2 was slightly better than HiFi-GAN V 2 (p is slightly higher than
0.05). These above experimental results verified the advantage of our model in
improving synthesized speech quality.

4 https://www.mturk.com.

https://www.mturk.com
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Fig. 3. Average preference scores (%) of ABX tests on speech quality between SF-GAN
and other three systems (i.e., Ground Truth, HiFi-GAN, and Fre-GAN), where N/P
stands for “no preference” and p denotes the p-value of a t-test between two systems.

For experiments on the VCTK datasets, we used utterances of nine unseen
speakers excluded from the training set for the objective evaluation, and ran-
domly selected 20 utterances from them for the ABX test as above. The objective
results are presented in the bottom half of Table 1, and among all the metrics,
our proposed SF-GAN surpassed HiFi-GAN and Fre-GAN. The subjective ABX
test results are illustrated in the middle part of Fig. 3, which also shows that the
performance of our proposed SF-GAN was better than that of HiFi-GAN in both
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Fig. 4. The architecture of the F0 predictor. We use predicted F0 and synthesized
mel-spectrogram as the inputs of the F0 predictor in the TTS task.

Fig. 5. An example of comparison between a predicted F0 and a real F0. The red
curve denotes the predicted F0 and the purple curve denotes the real F0. (Color figure
online)

V 1 and V 2 (p < 0.05) and Fre-GAN in V 1 (p < 0.05). Moreover, it is noteworthy
that even with unseen speakers, the performance of SF-GAN was still compara-
ble with ground-truth audios (p = 0.28), which verified the generalization ability
of our proposed model in the speaker-unseen scenario.

Evaluations on TTS Tasks. Since our proposed SF-GAN needs an additional
F0 input, which is distinct from other mel-spectrogram vocoders. To apply our
proposed model to the TTS task, we proposed an F0 predictor to predict F0
from the first ten dimensions of the mel-spectrogram, which contains sufficient
F0 information. The architecture of the F0 predictor is illustrated in Fig. 4.
We first input the first 10-dimensional mel-spectrogram into three convolutional
neural networks (CNNs) with different kernel sizes and get three 10-dimensional
intermediate features. We then input the concatenated 30-dimensional feature to
two linear layers with different activation functions (i.e., ReLU and Sigmoid) to
get the F0 contour and V/UV flag, respectively. We used the LJSpeech dataset
to train and test the F0 predictor with the same data division as in the analysis-
synthesis experiment, and we evaluated the synthesized F0 contours and V/UV
flags from real mel-spectrograms with two objective metrics, including F0-RMSE
and V/UV error. The F0-RMSE and V/UV errors on the test set are 115.7072
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Fig. 6. Pixel-wise difference between a mel-spectrogram from Tacotron2 and mel-
spectrograms from waveforms generated by SF-GAN, Fre-GAN, and HiFi-GAN.

cents and 4.3901%, respectively. A close examination found that most of the
errors came from the inaccuracy of F0 extraction. An example is shown in Fig. 5,
where we can see the F0 extraction errors occurred between the 560-th frame
and the 700-th frame.

We herein predicted the mel-spectrograms from texts by adopting the most
popular implementation of Tacotron25 [27] with the provided pre-trained weights
on the LJSpeech dataset. We fed the mel-spectrogram predicted by Tacotron2
as the input condition to HiFi-GAN and Fre-GAN. Then we predicted the F0
contour and V/UV flag from the predicted mel-spectrogram and fed all of them
as input conditions to our proposed SF-GAN. We also conducted ABX prefer-
ence tests between them and the results are illustrated in the bottom part of
Fig. 3, which demonstrates our proposed SF-GAN V 1 significantly outperformed
HiFi-GAN V 1 (p < 0.01) and Fre-GAN V 1 (p < 0.05), while SF-GAN V 2 was
slightly better than HiFi-GAN V 2 (p is slightly higher than 0.05). In addi-
tion, when we investigated the pixel-wise mel-spectrogram difference between

5 https://github.com/NVIDIA/tacotron2.

https://github.com/NVIDIA/tacotron2
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Table 2. Objective evaluation results for ablation studies.

Model SNR
(dB)↑

LAS-RMSE
(dB)↓

MCD
(dB)↓

F0-RMSE
(cent)↓

V/UV error
(%)↓

SF-GAN V 2 3.7774 6.6931 1.7629 44.9624 5.6931
w/o DNN 3.8773 6.7600 1.8197 42.7686 5.7700
w/o SubBlock 3.7111 6.9126 1.9078 47.1645 6.0300
w/o PC-ResBlock 3.8921 6.8701 1.8472 44.7955 5.7856
HiFi-GAN V 2 3.6501 6.9994 1.9805 48.3591 5.8613

Fig. 7. The average preference scores (%) of ABX tests between SF-GAN V 2 and its
ablation models in speech quality, where N/P stands for “no preference” and p denotes
the p-value of a t-test between two systems.

a generated mel-spectrogram from Tacotron2 and extracted mel-spectrograms
from waveforms generated by SF-GAN, HiFiGAN, and Fre-GAN, as presented
in Fig. 6, it’s apparently that the pixel-wise difference of our model is less than
those of HiFi-GAN and Fre-GAN. To sum up, we conclude that our SF-GAN
can be well applied to the TTS task.

3.3 Ablation Studies

We implemented ablation studies on the DNN, SubBlock, and PC-ResBlock
used in the SF-GAN vocoder to verify the effectiveness of each component in
terms of synthesized speech quality in the analysis-synthesis task, where ablat-
ing DNN denotes removing the DNN in the source module, ablating SubBlock
denotes directly subsampling the excitation signal to four resolutions instead of
using SubBlocks, and ablating PC-ResBlock denotes simply adding the subsam-
pled excitation signals with the upsampled intermediate features followed by the
ResBlocks instead of combining them in the PC-ResBlocks. The V 2 version with
fewer hidden dimensions was used as the generator for the ablation studies, and
all the ablation models were trained until 2.5M steps.

As objective results presented in Table 2, ablating SubBlock demonstrates
distinct degradation among all the metrics while ablating DNN and PC-ResBlock
show slight degradation in partial metrics. To further verify the effect of these
components subjectively, we also conducted ABX tests. The subjective results
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are illustrated in Fig. 7, which demonstrates that all the three components con-
tribute to the improvement. In accordance with the objective results, SubBlock
remarkably contributes to the synthesized speech quality (p < 0.05), while ablat-
ing DNN (p = 0.13) or PC-ResBlock (p = 0.10) cause slight but insignificant
quality degradations.

4 Conclusion

In this work, we proposed the SF-GAN vocoder, which can synthesize high-
quality speech from input F0 and mel-spectrogram. We took the inspiration
from the layer-wise upsampling architecture of HiFi-GAN, applied a resolution-
wise source-filter access method to the HiFi-GAN framework where excitation
signal generated by a source module and mel-spectrogram are combined at var-
ious resolutions, which significantly contributes to the quality of synthesized
speech audios according to the ablation studies. Above all, the proposed SF-
GAN vocoder outperforms the state-of-the-art HiFi-GAN and Fre-GAN in both
analysis-synthesis and TTS tasks of speech synthesis, and the speech quality of
synthesized audios by SF-GAN is even comparable with that of natural ones. It
is noteworthy that the SF-GAN vocoder shows strong generalization ability in
the speaker-unseen scenario and the ability to be applied to the TTS task. In our
future work, we will apply our proposed method to other GAN-based vocoders.
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Abstract. Auto speech recognition (ASR) has been widely used in dia-
logue systems of various domains, performing as a crucial part of tech-
nology. Since the output of the ASR system will provide input to the
subsequent system, the semantic intelligibility problem of the recogni-
tion results draws wide attention, yet remains unsolved. We propose a
semantic enhancement framework to extract global semantic information
from the audio to guide the recognition results. We evaluate our method
on the Wall Street Journal (WSJ) dataset. The proposed framework gain
relative 5.9% and 9.1% improvement of the WER on dev93 set and eval92
set compared to the baseline model.

Keywords: Semantic enhancement · Speech recognition

1 Introduction

The ASR aims to transfer the continuous audio input to human readable text
output. It is an essential technology for many artificial intelligence application.
A typical ASR system consists of many modules including acoustic, lexicon, lan-
guage models (LM) that apply fusion during decoding. Over the past decades,
with the rapid development of neural network, the performance of large vocabu-
lary continuous speech recognition has attained impressive advancement. How-
ever, there still remains many problems for researchers to eliminate.

– Domain problem: The output of ASR system mainly focus on the acoustic
feature. The system significantly degenerate when facing low-quality audio
input or another domain audio input.

– Semantic intelligibility problem: Due to the fineness of the modeling
symbols such as char, phoneme, byte pair encoding which are designed using
linguistic knowledge, the ASR system are subject to semantic intelligibility
problem. A complicated post-processing process which use the semantic infor-
mation is required between the output of the model and the final decoded
output to fix the semantic intelligibility problem.
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– Incoherence in optimization: ASR system normally need a language
model during inference stage to reduce the word error rate. However the
language model and acoustic model need to be trained separately with differ-
ent objectives that need to be balanced and may cause mismatches between
modules during application.

Consequently, it is quite important to couple the semantic information into ASR
system training to address the above issues. In this paper, we propose a semantic
enhancement framework to utilize the semantic information to enhance the ASR
system. We characterize the main contribution of our method as follows:

– We introduce a semantic enhancement framework which extract the seman-
tic information to provide the global semantic information to other parts of
system to reduce the semantic intelligibility problem.

– We utilize the pre-train language model which is trained on a large text
dataset to develop our semantic information extractor, which established a
connection between pre-train language models and speech recognition sys-
tems.

2 Related Work

In this part, we concisely overview about recent effort relevant to our proposed
work.

2.1 Contextual Method

Contextual methods aim to bias the results towards tokens, generally proper
nouns or rare words or jargon, which are thought likely to be produced given
the context of an audio signal. Correct transcription of these tokens might have
an outsized impact on the value of the output, and incorrect transcription might
otherwise be likely. These models normally accepts additional input about con-
textual information. These works can be categorized into deep contextualiza-
tion [1,2,8,11] and external contextualization [6,9,10,17]. Deep contextualiza-
tion integrate the contextual module into the end-to-end (E2E) deep neural
module. External contextualization apply external modules such as language
models, error correction models, and weighted finite-state transducers to the
output hypotheses of ASR systems.

2.2 Adaptive Method

Adaptive methods usually utilize information or knowledge from other task mod-
els with ASR systems to make the models adaptive in multiple domains. The
basic hypothesis of these methods is that the acoustic environment remains the
same while deviations exist in the textual domains. Models for other tasks are
trained using domain-specific data, or have been learned for specific knowledge
which will help ASR systems to be more robust. The general methods is LM
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fusion or learn from external LM into the ASR systems. LM fusion use an exter-
nal LM in decoding. Depending on the specific method, it can be further divided
into shallow fusion [5,7] , deep fusion (DF) [5,14] and cold fusion (CF) [13,14].
Shallow fusion is also called joint-score decoding. DF and CF both concate-
nate hidden states from LM and ASR while CF train the ASR system under the
guidance of LM. Learn from external LM methods [3,12] tuning part of the ASR
systems under the external LM to adapt to different domain transformations.

3 Method

In this section we describe the proposed semantic enhancement framework in
detail. The general framework is shown in Fig. 1, which consists of 2 major com-
ponents: 1) The semantic module for predicting semantic information from the
acoustic feature, the pre-train language model is used during training, 2) A hybrid
connectionist temporal classification (CTC) module and attention-based decoder
to eliminate irregular alignments between acoustic features and recognition sym-
bols. It is important to note that they both use the shared Encoder which is respon-
sible for processing acoustic features. First we explain the hybrid CTC/attention
architecture in Sect. 3.1, and introduce the pre-trained language model in Sect.
3.2. In Sect. 3.3, we describe our semantic enhancement framework.

Fig. 1. The overall architecture of the semantic enhancement framework

3.1 Hybrid CTC/Attention Architecture

With the respect to the input waveform X, the audio speech recognition aims
to produce the corresponding token sequence C. The hybrid CTC/attention
architecture utilizes both benefits of CTC and attention during the training
and decoding steps in ASR. The The CTC module and attention module share
the same encoder which is trained by multi-objective learning(MOL). The CTC
objective function serve as an auxiliary task to train the encoder. So the overall
objective to be maxmized is a linear combination of the CTC and attention:

LMOL = λ log pctc(C|X) + (1 − λ) log patt(C|X). (1)
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where the λ, satisfies 0 ≤ λ ≤ 1, serve as a hyper-parameter in this framework.

3.2 Pre-train Language Model

Language model pre-training has been proven to be effective for learning general
language representations. BERT, along with its variants has reached state-of-the-
art results in most downstream natural language understanding (NLU) tasks.
Pre-train LM can be trained on the large unlabeled dataset and then fine-tuned
on the limited labeled dataset. Contrastive learning is a self-supervised learning
method used to learn general presentation em by letting the model learn the
similarity and differences between data from the unlabeled dataset. The process
of contrastive learning can be decomposed into three steps: data augmentation,
encoding, and computing loss. Through contrastive learning, the model can learn
more efficient high-dimensional representations of the data.

3.3 Semantic Enhancement Framework

The hybrid CTC/attention architecture works well in many speech recognition
scenarios except for some semantic intelligibility problem. Due to the lack of
global semantic information, the model may be less effective facing low-quality
audio. Semantic enhancement framework utilize the global semantic informa-
tion to address these problems. The proposed semantic module predicts extra
semantic information S from the audio. Moreover, the sentence embedding from
the pre-trained LM as the ground truth of the semantic information to improve
the performance. After that, the semantic information is used to enhance the
acoustic features. In this way, our framework is robust to low-quality audio and
can provide reasonable recognition results.

The semantic task serves as an auxiliary task to raw hybrid CTC/attention
architecture. The overall loss function is as follows:

L = LMOL + βLsem. (2)

where LMOL is the loss function of hybrid CTC/attetion architecture defined in
Eq. (1), and Lsem is to measure the similarity of the predicted semantic infor-
mation respect to the sentence embedding of the transcription label from the
pre-train LM. We try the Mean-Squared-Error (MSE) loss and cosine embed-
ding loss in our experiment. β is an important hyper-parameter to control the
importance of the semantic embedding loss and will be evaluated in our experi-
ment. That is to say, the loss function of the Lsem is as follows.

Lsem = MSE(S, em).
Lsem = 1 − cos(S, em).

(3)

At training time, the ratio of use sentence embedding from pre-train LM or
directly use predicted semantic information for semantic enhancement is a non-
negligible problem. Balancing the ratio of the two in the training phase can effec-
tively help the model learn better semantic information and utilize the semantic
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information better. We evaluate the different ratios and choose 0.8 as the final
ratio in our experiment. That is to say, the model will use the sentence embed-
ding during the training phase with probability 0.8.

3.4 Evaluation Metrics

In addition to the most commonly used word error rate (WER) metrics. We
introduce the keyword error rate (KeywordER) metrics which indicate the key-
words difference between recognize text and ground truth text. The keyword
is extracted by the keybert [4] tool which select keywords according to the
cosine similarity between words embedding and sentence embedding. The key-
word sequence is distilled from the original sentence containing the significant
semantic information.

For example, the keyword sequence of the sentence “Mary, it is rainy outside,
remember to take your umbrella.” will be “Mary, rainy, umbrella”. We arrange
the keywords in the order of the original sequence, and calculate the KeywordER
on the sequence to evaluate the difference in semantic information between the
two sentences. Thus, KeywordER can be considered as a metric of semantic
intelligibility.

4 Experiment

4.1 Dataset

The WSJ dataset is used to evaluate the effectiveness of the proposed framework.
We use 40-dimension fbank features with 25ms window and 10ms stride. The
recognition modeling units for our experiment are characters. There are total 71
modeling units including characters, non-language symbols and special symbols.

4.2 Configuration

We use ESPNet[16] toolkit to build both the vanilla hybrid CTC/attention based
E2E ASR baselines and our proposed semantic enhancement ASR models. More-
over, we use an external LM for shallow fusion in our decoding part.

1) CTC/attention Baseline: The encoder consists of 12 transformer [15] blocks.
We use 2048 hidden units in transformer feed forward layers, and 256 hidden
units in the multi-head self-attention layers with 4 heads. The decoder is
composed of a stack of 6 Transformer layers with 2048 hidden units in the
multi-head self-attention layers. The CTC branch contains an additional fully
connected layer to predict labels.

2) Semantic enhancement module: We use a fully connected layer to make
encoder and pre-train LM the same output size. Then, a mean pooling and
l2 normalization is performed to get the semantic embedding. As for the
enhancement module, we tried three enhancements methods including just
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learning to extract semantic information without using it, directly concate-
nate the semantic embedding with the encoder output and use the seman-
tic embedding as the initial state of the recurrent neural network. The last
enhancement method achieved the best results and will be further analyzed
by us in the following sections.

3) The two pre-train LM we used including BERT-base which is a 12 layers
transformer with 768 hidden units. And SimCSE which is trained by con-
trastive loss with the same architecture of BERT.

4.3 Impact of Losses

In this part, we evaluate the impact of different loss measure methods and differ-
ent hyper parameters in our proposed framework. From the Table 1, we can see
that although cosine embedding loss perform poorly in the WER, it is relatively
better in KeywordER, meaning that cosine embedding loss is more efficient for
improving the comprehensibility of recognition results.

Table 1. Different losses results

Loss weight WER (%) KeywordER (%)
– – dev93 eval92 dev93 eval92

Baseline – 6.8 4.8 15.7 12.3
MSE 1e2 7.1 4.9 16.3 12.0

1e1 6.4 4.4 15.6 11.6
1e0 6.9 4.6 16.4 12.2

COS 1e0 7.1 4.8 15.8 12.0
1e-1 6.8 4.6 15.5 11.4
1e-2 7.0 4.6 15.3 11.5

4.4 Results

From the Table 2, our proposed framework gains relative 5.9% and 9.1% improve-
ment of the WER on dev93 set and eval92 set compared to the baseline model.
Furthermore, our proposed framework also achieve a decrease in the keywords
error rate meaning that the recognition results is much more understandable.

Table 2. Main Result of the method

Method WER (%) KeywordER (%)
– dev93 eval92 dev93 eval92

Baseline 6.8 4.8 15.7 12.3
Sem-enh 6.4 4.4 15.6 11.6
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For a case in eval92 set, baseline model recognize an audio to “driven that
system to its observed extreme” while our method correctly recognized it to
“driven that system to its abused extreme”. Apparently our method incorporates
semantic information into the recognition result and corrects the error.

5 Conclusions

In this paper, we propose a semantic enhancement framework to reduce the
semantic intelligibility problem. We evaluate our framework on the WSJ dataset
and gain some improvements. However, the modules of our proposed framework
still need further refinement and modification to achieve greater improvement.
In future work, we will explore more implementation to achieve more robust
speech recognition.
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Abstract. Conventional ASR systems use frame-level phoneme poste-
rior to conduct force-alignment (FA) and provide timestamps, while end-
to-end ASR systems especially AED based ones are short of such ability.
This paper proposes to perform timestamp prediction (TP) while recog-
nizing by utilizing continuous integrate-and-fire (CIF) mechanism in non-
autoregressive ASR model - Paraformer. Foucing on the fire place bias
issue of CIF, we conduct post-processing strategies including fire-delay
and silence insertion. Besides, we propose to use scaled-CIF to smooth
the weights of CIF output, which is proved beneficial for both ASR
and TP task. Accumulated averaging shift (AAS) and diarization error
rate (DER) are adopted to measure the quality of timestamps and we
compare these metrics of proposed system and conventional hybrid force-
alignment system. The experiment results over manually-marked times-
tamps testset show that the proposed optimization methods significantly
improve the accuracy of CIF timestamps, reducing 66.7% and 82.1% of
AAS and DER respectively. Comparing to Kaldi force-alignment trained
with the same data, optimized CIF timestamps achieved 12.3% relative
AAS reduction.

Keywords: end-to-end ASR · non-autoregressive ASR · timestamp ·
force alignment

1 Introduction

Timestamp prediction is one of the most important and widely used subtasks
of automatic speech recognition (ASR). Kinds of speech related tasks (text-to-
speech, key-word spotting) [1,2], speech/language analysis [3–5] and ASR train-
ing strategies [6] can be conducted with a reliable timestamp predicting system.
At present, conventional hybrid HMM-GMM or HMM-DNN systems are mostly
used to conduct force-alignment (FA) - the given transcriptions are expanded to
phoneme sequences for processing Viterbi decoding in WFST (weighted finite
state transducers) composed by acoustic model, lexicon and language model.
Recent years have seen the rapid growth of end-to-end (E2E) ASR models
[7–10], which skip the complex training process and preparation of language
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
L. Zhenhua et al. (Eds.): NCMMSC 2022, CCIS 1765, pp. 89–100, 2023.
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related expert knowledge and convert speech to text with a single neural network.
Generally, E2E ASR models are classified into two categorise: Time-synchronous
models including CTC and RNN-Transducer, token-synchronous models includ-
ing listen-attend-and-spell (LAS) and Transformer based AED models. The for-
mer utilize CTC-like criterion over frame-level encoder output and predict pos-
terior probabilities of tokens together with blank while the later conduct cross-
attention between acoustic information and character information to achieve soft
alignment. These models have shown strong competitiveness and have replaced
conventional ASR model in many scenarios. At the same time, however, due to
the inherent deficiency of timestamp prediction ability of these models, some
ASR systems have to use an additional conventional ASR model to predict the
timestamp of recognition results, which introduce computation overhead and
training difficulty.

In this paper, we propose to achieve timestamp prediction while recognizing
with non-autoregressive E2E ASR model Paraformer [11]. Continuous integrate-
and-fire (CIF) [12] is a soft and monotonic alignment mechanism proposed for
E2E ASR which is adopted by Paraformer as predictor, it predicts the num-
ber of output tokens by integrating frame-level weights, once the accumulated
weights exceed the fire threshold, the encoder output of these frames will be
summed up to one step of acoustic embedding. One of the core ideas of achiev-
ing non-autoregressive decoding in Paraformer is to generate character embed-
ding which has the same length as output sequence. The modeling characteristic
of Parafirner CIF delights us to conduct timestamp prediction basing on CIF
output. Focusing on the distribution of original CIF inside Paraformer, we pro-
pose scaled-CIF training strategies and three post-processing methods to achieve
timestamp prediction of high quality and also explore to measure the timestamp
prediction systems with AAS and DER metrics. The following part of this paper
is organized as below. Timestamp prediction and FA related works are intro-
duced in Sect. 2. We briefly introduce CIF and Paraformer and look into orig-
inal CIF distribution in Sect. 3. Section 4 comes about the proposed methods
including scaled-CIF and post-processing strategies while Sect. 5 describe out
experiments and results in detail. Section 6 ends the paper with our conclusion.

Our Contributions Are:

– From the aspects of timestamp quality, the proposed scaled-CIF and post-
processing strategies improve the accuracy of timestamp and outperforms the
conventional hybrid model trained with the same data.

– This paper propose to predict timestamps naturally while recognizing with
Paraformer, such system can predict accurate timestamp of recognition
results and reduce computation overhead which is of value in commercial
usage.

2 Related Works

In this section we briefly introduce the mechanism of sequence-to-sequence mod-
eling and discuss about the recent works related to timestamp predicton and
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force-alignment. Time-synchronous models and token-synchronous solve unequal
length sequence prediction in different ways. Transducer [8] performs forward
and backward algorithm as shown in 1 (a), it is allowed to move in time axis
or label axis to establish connection between token sequence and time sequence
of unequal length. However, it turns out that a well trained CTC [7] or Trans-
ducer model tends to predict posterior probabilities with sharp peaks (single
frame with extremely high probability for a token except blank) [13], and the
position of the peak can not reflect the real time of the token, especially when
the modeling units have long duration. AED based E2E models like Transformer
conduct cross-attention between encoder and decoder, the score matrix inside
cross-attention can be regarded as alignment but it is soft and nonmonotonic,
so it’s hard to conduct timestamp prediction in origin AED-based models like
Transformer. CIF is a time-synchronous method which is also adopted by AED
based models [11,21]. It generates monotonic alignment by predicting integrate
weights in frame level which can be naturally treated as timestamps.

Fig. 1. Illustration of alignment of transducer, attention and CIF.

Recently, neural network based timestamp prediction and force-alignment
strategies without conventional hybrid systems are explored. Kürzinger et al. [14]
proposed CTC-segmentation for German speech recognition, which determines
the alignment through forward and backward probabilities of CTC model. The
proposed alignment system beats the conventional ones including HTK [17] and
Kaldi [18] in German task. Li et al. [15] proposed NEUFA to conduct force-
alignment, which deploys bidirectional attention mechanism to achieve bidirec-
tional relation learning for parallel text and speech data. The proposed bound-
ary detector takes the attention weights from both ASR and TTS directions as
inputs to predict the left and right boundary signals for each phoneme. Their
system achieves better accuracies at different tolerances comparing to MFA [19].
Besides, systems like ITSE [16] also achieves an accurate, lightweight text-to-
speech alignment module implemented without expertise such as pronunciation
lexica.

These works, however, conduct force-alignment outside of ASR models to get
timestamps. For an ASR model which is required to obtain timestamp prediction
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ability, such models introduce additional computation overhead, which might be
unacceptable for ASR systems in commercial usage. The excepted timestamp
prediction models inside ASR system is supposed to introduce less computation
overhead and predict accuracy timestamps naturally.

3 Preliminaries

3.1 Continuous Integrate-and-Fire

Continuous integrate-and-fire (CIF) is a soft and monotonic alignment mech-
anism for E2E ASR different from time-synchronized models and label-
synchronized models. CIF performs integrate process over the output of encoder
e1:T and predicts frame-level weights α1:T , once the accumulated weights exceed
the fire threshold, these frames will sum up to acoustic embedding E1:L′ which
is synchronized with output tokens. Such process is illustrated in Fig. 2. In ASR
models, the modeling character of CIF is of great value. The frame-level weights
actually conduct alignment between acoustic representation and output tokens,
and the fire location indicates the token boundary. Such capacity delights us to
explore the feasibility of using CIF to predict accurate timestamps of decoded
tokens naturally in the process of recognition.

Fig. 2. Illustration of integrate-and-fire on encoder output e1:T with predicted weights
α = (0.3, 0.9, 0.4, 0.4, 0.3). The integrated acoustic embedding E1 = 0.3×e1 +0.7×e2,

E2 = 0.2×e2 +0.4×e3 +0.4×e4. The sum of weights α is L
′
- the length of prediction

sequence.

3.2 Paraformer

We adopt Paraformer - a novel NAR ASR model which achieves non-
autoregressive decoding capacity by utilizing CIF and two-pass training strategy
inside an AED backbone. Avoiding the massive computation overhead intro-
duced by autoregressive decoding and beam-search, Paraformer gains more than
10x speedup with even lower error rate comparing to Conformer baseline. The
overall framework of Paraformer is illustrated in Fig. 3.
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Fig. 3. Illustration of Paraformer structure.

Paraformer contains three modules, namely encoder, predictor and paral-
lel decoder (sampler interpolates acoustic embeding and char embedding with-
out parameters). Encoder is same as AR encoders of Conformer which contains
self-attention, convolution and feed-forward networks (FFN) layers to generate
acoustic representation e1:T from down-sampled Fbank features. Predictor uses
CIF to predict the number of output tokens L

′
and generate acoustic embedding

E1:L′ . Parallel decoder and sampler conduct two-pass training with the vectors
above: E1:L′ is directly sent to decoder to calculate cross-attention with e1:T ,
and decode all tokens y

′

1:L′ in NAR form at once. Then sampler interpolates
E1:L′ and char embedding c1:L according to the edit distance between hypothe-
sis y

′

1:L′ and y1:L. The interpolated vector (named semantic embedding, noted by
S1:L′ ) is sent to parallel decoder again to conduct the same calculation, which
makes up the second pass. Note that the forward process of the first pass is
gradient-free, cross-entropy (CE) loss is calculated between output of the sec-
ond pass and ground truth. In the training process, as the accuracy of first pass
decoding raises, E1:L′ makes up increasing proportion of S1:L′ . In the inference
stage, Paraformer use the first pass to decode.

CIF is of vital importance in Paraformer as it predicts the number of output
tokens and generates monotonic token boundaries implicitly. Figure 4 shows the
origin fire place comparing to the timestamp generated by kaldi force-alignment
system. Weights α shows that the pattern of CIF is regard less of the real length
of tokens, for an ASR model with 4-times down-sampling layer (60 ms each time
step), the integrate process for each token finishes in around 4 frames, which
leads to a large offset for end point timestamp of character with long duration.
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Fig. 4. CIF fire places and weights α of demo utterance from Aishell-1. Axis of α is
in the right. The subfigure above shows the timestamps of origin CIF comparing to
FA system, the CIF fire place roughly indicate the corresponding token place but it
is always inaccurate, especially the end of integrate is usually later. The subfigure at
bottom shows the effect of weights post-processing strategies introduced in Sect. 4.2.

4 Methods

Considering of the pattern of CIF weights and the characteristic of Paraformer,
we optimize the timestamp prediction strategy from two aspects. In the training
process, we propose to scale the CIF weights after sigmoid function in order to
alleviate the sharpness of weights and also cut off the gradient towards encoder of
irrelevant position. Then we adopt several post-processing strategies for weights
to achieve more precise timestamp prediction.

4.1 Scaled-CIF Training

Original CIF calculates α with sigmoid activation function after feed-forward
network, sharp spikes and glitches can be observed from the curve in Fig. 4. We
propose to scale and smooth the CIF weights with the operation below:

α
′
= γ · ReLU

(
(sigmoid(x) − β

)
(1)

First, ReLU function and β smooth the glitches of α, cutting off the gradient
towards encoder of irrelevant position, which is supposed to be beneficial for
ASR task. Besides, scaling the output of ReLU with γ relieves the spikes of the
curve, trying to achieve level and smooth weights.

4.2 Weights Post-processing

Another optimization comes about from the aspect of post-processing. According
to the distribution of alphas observed in Fig. 4, most of the weights begins to
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accumulate from the exact frame but the accumulation ends in fixed steps (4
frames in the figure), which delights us to conduct the following 4 processing
strategies:

Begin/end Silence. As the begging place of CIF is always precise, the begin-
ning frames with weights under a threshold θs is considered as silence. So as to
the frames at the end but we set an interval of 3 frames.

Fire Delay. Original CIF timestamps are always unreliable for the end point
prediction for long-lasting tokens. We propose to conduct fire delay operation
when frames with low weights are observed, such frames with be grouped to the
previous token except the last frame.

Silence Insertion. When the low-weight frames last longer than Ls, we insert
a silence token in between.

Weight Averaging.1 For ASR models with higher down-sampling rate, the
process of integrate finishes even faster. When using 6-times low frame rate
features, the CIF tends to output weights around 1.0 or 0.0, which makes CIF
weights no longer stand for the accumulation procedure. Then we proposed to
weaken the weight spikes.

θs and Ls are model related hyper-parameters, for Paraformer model with
original CIF predictor and 4-times down-sampling encoder embedder, we set
θs = 0.05 and Ls = 3, the timestamp thus generated of the demo utterance
above is shown in Fig. 4. Subjectively, the proposed post-processing strategies
optimize the quality of CIF timestamps in a simple but efficient way.

4.3 Evaluation Metrics

In addition to the visual analysis of timestamps, we propose to use accumulated
averaging shift (AAS) and diarization error rate (DER) as the evaluation metrics
of timestamp accuracy.

AAS. The first metrics measures the averaging time shift of each token. The
time shift of begging timestamp and end timestamp are summed up and averaged
over the entire testset. Formally, we calculate the metrics between timestamp i
and timestamp j as

AAS =
∑K

k=1 |startk,i − startk,j | + |endk,i − endk,j |
2K

, (2)

where K is for the number of aligned token pairs2.

DER. Speaker diarization systems are evaluated by DER, which calculates the
proportion of frames which are classified correctly. DER is the sum of three

1 In this paper, we conduct experiments with 4-times down-sampling encoder, this
methods is thus not validated.

2 Considering the transcriptions of two timestamps might differ, only paired tokens
according to edit distance are included in the calculation.
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different error types: False alarm of speech, missed detection of speech and con-
fusion between speaker labels. Treating tokens as speakers, we introduce this
metrics to measure the quality of timestamp.

DER =
False Alarm + Missed + Speaker Confusion

Total Duration of T ime
. (3)

5 Experiments and Results

5.1 Datasets

Two datasets are used in our experiments. First, Aishell-1 is used for training the
Paraformer model and visualizing timestamps. Aishell-1 contains 178 h speech
data with transcription, which is a widely used open-source Mandarin ASR cor-
pus. Besides, we use a TTS dataset called M7 for evaluation, which contains 5550
Mandarin utterances. Except transcriptions, M7 also contains manually marked
timestamps in token level, which is regarded as reference in the calculation of
AAS and DER.

5.2 Experiment Setup

The Paraformer model is trained from scratch using ESPnet toolkit with the fol-
lowing setups. The model contains 12-layer Conformer encoder (implemented as
with kernel size 15) and 6-layer Transformer decoder with attention dimension
dattn = 256 and feed-forward network dimension dlinear = 2048. The input layer
of encoder conducts 4-times down-sampling for Fbank features, one step of encoder
output thus stands for 40ms. The model is jointly trained with CTC loss (α = 0.3)
and we set dropout rate rdropout = 0.1 for entire model. 3-times speed perturba-
tion is adopted for Aishell-1 data and we apply spec-augment with 2 frequence
masks range in [0, 30] and 2 time masks range in [0, 40] for each utterance. We use
dynamic batch size (numel = 2000k) and nepoch = 50. No language model is used
in the inference stage. For scaled-CIF, we use γ = 0.8 and β = 0.053.

We prepare the force-alignment system with Kaldi toolkit as baseline times-
tamp, the training setup and model configuration is exactly same as open-
source recipe Aishell-1, from flat-start to HMM-GMM. Timestamps of phonemes
are extracted from lattice using model tri5a, and then converted to characters
timestamps.

5.3 Quality of Timestamp

In this section we evaluate the quality of the timestamps and analyse the effect
of the proposed methods. Table 1 shows the AAS and DER metircs of the times-
tamps from different models over testset M7. First we test the force-alignment
3 For ASR models of different frame rate and encoder down-sampling rate, we fine it bet-

ter to adjust scaling coefficients γ and β, so as to the post-processing hyper-parameters
θs and Ls to achieve better performance.
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system with ground truth transcription and Paraformer recognition results. It
turns out that using these two kinds of transcription lead to slight difference
of DER and almost the same AAS, which is because the majority error of
Paraformer’s recognition results is substitution error, reference and hypothe-
sis have nearly the same expanded phoneme sequences, thus AAS of FA-GT and
FA-HYP differs little.

Table 1. Accuracy of timestamp from force-alignment system and Paraformer CIF.

Exp Sys AAS (sec) DER (%)

force-alignment systems FA-GT FA with groundtruth 0.080 6.34

FA-HYP FA with decoded trans 0.081 7.50

CIF timestamps CIF-0 origin CIF timestamp 0.213 45.39

CIF-1 +begin/end silence 0.161 –

CIF-2 +fire-delay 0.124 –

CIF-3 +silence insertion 0.112 17.09

scaled-CIF timestamps SCIF-0 scaled-CIF timestamp 0.143 29.75

SCIF-1 +begin/end silence 0.098 –

SCIF-2 +fire-delay 0.080 –

SCIF-3 +silence insertion 0.071 8.11

Comparing CIF-0 and FA-HYP, it is obvious that original CIF weights as
timestamps is of unacceptable quality. With the addition of post-processing
strategies, the accuracy of CIF timestamps has been improved step by step,
CIF-3 achieves 47.4% AAS reduction. Among the three post-processing meth-
ods, fire delay is the most effective and also the most tricky one. Scaled-CIF
brings further help to timestamps prediction, 32.9% AAS reduction and 34.5%
DER reduction are observed without any post-processing strategies. In SCIF-3,
CIF timestamps outperforms force-alignment systems in AAS (11.3% relatively),
but DER is still higher.

Figure 5 shows comparison of manually marked timestamps, original CIF
timestamps and optimized timestamps. Comparing the blue curve and the pur-
ple curve, it can be observed that the peak of the curve is weakened to some
extent, and the glitches in the curve disappear (not obvious in the figure). Con-
sidering the start and ending time of each token, the effect of fire delay is obvious,
especially when the token is followed by low weight frames (like character ’家’
in the demo).

5.4 ASR Results

Results in Sect. 5.3 shows that scale-CIF significantly improves timestamp pre-
diction accuracy, and we find it is also benificial for ASR. Comparing to vanilla
Conformer AR model, Paraformer achieves better recognition accuracy and even
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Fig. 5. Demo for utterance 001001 in M7. It can be observed that the peak in the α is
weakened and the optimized timestamps are more accurate.

lower real time factor (RTF) [11]. On Aishell-1 task, Paraformer gets 4.6%, 5.2%
CER over dev and test set and the RTF is 0.0065 (RTF of Conformer is 0.1800
under the same test environment). In our experiments, Paraformer with scaled-
CIF outperforms the baseline, CER on Aishell-1 dev and test set are 4.5% and
5.2% respectively. On testset M7, Paraformer gets 11.70% CER with origin CIF
and 11.26% with scaled CIF (3.76% relative CER reduction). Such results prove
that smoothing the weights of CIF and cutting off the gradient towards encoder
of irrelevant frames are beneficial for recognition task of Paraformer.

6 Conclusion

As the inherent deficiency of predicting timestamps with AED based models, we
propose to predict timestamps according to CIF weights while recognition with
Paraformer. In this paper, we first explore the characteristic of CIF in Paraformer
for Mandarin. It turns out that the integrate of CIF weights tends to start from
the right place but the process ends in fixed number of steps, regardless of tokens’
real length. Besides, sharp peaks and glitches are observed in CIF weights. Such
behavior delights us to improve the accuracy of CIF timestamp with scaled-
CIF and post-processing strategies. We compare the CIF timestamp with force-
alignment results of conventional HMM-GMM systems, and evaluate the quality
of timestamps with AAS and DER metrics. The results in Table 1 show that
with the help of the proposed methods, CIF timestamps achieve comparable
performance as the FA baseline, 12.3% relative AAS reduction is observed while
DER is a little worse. Comparing CIF timestamps before and after optimization,
66.7% AAS reduction and 82.1% DER reduction is achieved. In summarize,
the proposed scaled-CIF and post-processing strategies improve the accuracy of
timestamp and out system outperforms the conventional hybrid model trained
with the same data, and such system reduces computation overhead which might
be of value in commercial usage.
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In the future, we will explore the CIF timestamps of different languages
and different frame-rate, and modify the silence insertion strategy with dynamic
silence length threshold according to the phoneme.
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Abstract. In this paper, we propose a Predictive AutoEncoder (PAE)
capable of exploiting context information for unsupervised anomalous
sound detection (ASD). The conventional unsupervised ASD approaches
mainly employ the straightforward deep neural network (DNN) to detect
abnormal sounds. However, this model fails to consider the utilization of
the relationship between frames, resulting in limited performance and
constrained input length. Recently, context information has been proven
to be valid for sequence data processing. In our method, the PAE con-
sisting of transformer blocks is proposed to predict unseen frames by
remaining available inputs. Based on the self-attention mechanism, our
model captures not only content information within the frame but also
context information between frames to improve ASD performance. More-
over, our method extends the input length of AE-based models due to its
outstanding capability of long-range sequence modeling. The extensive
experiments conducted on the DCASE2020 Task2 development dataset
demonstrate that our method outperforms the state-of-the-art AE-based
methods and verify the effectiveness and stability of our proposed method
for long-range temporal inputs.

Keywords: Self-Attention · Context Information · Unsupervised
Learning · Anomalous Sound Detection

1 Introduction

Anomalous sound detection (ASD) is an acoustic task to detect whether a clip
of sound emitted from a given machine is abnormal or not. Recently, ASD has
gained more and more attention since this technology can be widely applied to
the automatic monitoring of industrial machines. However, anomalous events are
diverse but rare, resulting in high costs for collecting enough anomalous sound
data. Generally, only normal data is provided to develop an ASD system, which
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is one of the reasons why ASD is exceptionally challenging. Since 2020, DCASE1

challenge has arranged an unsupervised ASD task to attract further research.
The ASD systems are trained to model the distribution of normal data by

unsupervised learning. The probability that a sound belongs to this distribu-
tion is regarded as a distinguishable criterion that can detect anomalies from
plenty of normal data. Various ASD methods have been proposed, which can be
categorized into discriminative [3,9,14,15,24] and generative approaches [7,9–
11,20,29,31,32]. The discriminative methods convert the binary classification
task of anomaly detection into a machine-IDs identification problem. Benefiting
from the representation learning capability of neural networks, these methods
achieve superior performance. The generative approaches mainly calculate the
errors between the generated output and the input features to detect anoma-
lies, including GAN [10,22,33] and Flow [7,17]. AutoEncoder [20] is also one of
the unsupervised generative approaches. Based on its framework, Interpolation
Deep Neural Network (IDNN) [29], Conditional AutoEncoder (CAE) [11,18], and
Attentive Neural Processes (ANP) [31] are proposed. These AE-based methods
pay more attention to local details and mainly depend on content information
within the frame.

However, the discriminative methods [3,9,14,24] are only suitable for some
anomaly detection tasks as the presence of data without machine-ID labels.
Although AE-based generative approaches [11,18,20,29,31] are universal for
unsupervised ASD, they break the relationship between frames due to the limi-
tations of deep neural networks (DNN). Furthermore, these methods restrict the
length of the input, enabling insufficient ability to model long-range temporal
inputs. The temporal association has been demonstrated to be effective for var-
ious acoustic tasks [2,4,6,16,26,28]. Therefore, the relationship between frames
should be reasonably utilized in ASD.

In this paper, we concentrate on the universal AE-based methods. Go beyond
previous methods, we introduce Transformer [30] into unsupervised anomalous
sound detection and propose Predictive AutoEncoder (PAE) as a context-aware
detector. Applying Transformer to ASD, we find that the temporal association
of each frame can be obtained from the self-attention mechanism [30], which
presents as a distribution of its association weights to all frames. The distribu-
tion can provide a more informative description of the context, so it is named
context information in acoustic applications. Based on the transformer blocks,
our method exploits context and content information to detect abnormal sounds.
Furthermore, due to the transformer’s ability to process sequence data, our PAE
extends the input length.

We experimentally evaluate our method on the DCASE2020 Challenge Task2
development dataset. Compared with the previous AE-based methods, our PAE
achieves significant improvement in ASD performance. Meanwhile, we conduct
ablation experiments to verify the effectiveness of our methods for long-range
temporal inputs.

1 DCASE: Detection and Classification of Acoustic Scenes and Events, https://dcase.
community.

https://dcase.community
https://dcase.community
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Fig. 1. The AE-based methods. (a) The overview of AutoEncoder (AE) [20]. (b) The
framework of IDNN [29].

2 Related Work

2.1 Unsupervised Anomalous Sound Detection

As practical application requirements, unsupervised anomalous sound detection
has been widely explored. Categorizing by training manner, the paradigms of
ASD roughly include discriminative and generative methods.

The discriminative approaches address the machine-ID identification prob-
lems as new ways to accomplish anomalous detection tasks according to the idea
of outlier exposure [14]. These methods are based on CNN models to distin-
guish the machine-ID labels, like ResNet [3,13,15], MobileNetV2 [9,27], Mobile-
FaceNet [5,24]. Moreover, CRNN [23] is utilized to model short-range depen-
dencies between frames to identify machine-ID labels. The classification-based
approaches train descriptive decision boundaries by squeezing between different
machine-IDs. These methods require careful and delicate design on labels so
that they may be unavailable for some unsupervised anomalous sound detection
tasks.

The key idea of the generative approach is to reconstruct the information of
normal samples better than anomalies. The dominant frameworks of these meth-
ods include GAN [10], Flow [7], and AutoEncoder [20]. These methods train the
model according to the principle of minimizing errors between the input and
output, forcing the model to pay attention to details on the frames. Following
the framework of AutoEncoder, IDNN [29] is proposed to predict unseen frames
by available information, and CAE [11] integrates category labels into AE-based
methods. However, the structure of conventional AE-based methods is a simple
DNN, which requires the input features to be reshaped into a one-dimensional
vector, as illustrated in Fig. 1(a)(b). This operation explicitly breaks the rela-
tionship between frames and causes most context information to be discarded.
ANP [31] proposes to predict unseen frames and frequency bands using the
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attentive association between coordinate positions and magnitudes. Neverthe-
less, this method views the acoustic spectrum as an image, so it also does not
take advantage of the time-frequency relationship of the audio. Due to the lack
of association between frames, the performance of AE-based methods is limited.
To address the above issues, PAE is proposed to capture the inter-frame rela-
tionships and make full use of context and content information to detect sound
anomalies.

2.2 Transformer

Recently, the powerful ability of Transformer [30] has been shown in sequential
data processing, such as natural language processing [6,26], audio processing [2,
4,16,28] and computer vision [8,12]. With the benefit of the Transformer’s self-
attention mechanism, long-range temporal relationships are available for audio
detection tasks. Inspired by it, we enable the well-designed detector to exploit
the association along the time dimension to detect anomalous sounds. Unlike
Masked AutoEncoder in computer vision [12], our model focuses on exploiting
the relationship between frames and the representations within the frame to
predict unseen frames, which is more matching for acoustic anomalous detection
applications.

3 Proposed Method

Fig. 2. The transformer block.

This section introduces the self-
attention mechanism applied to anoma-
lous sound detection in the begin-
ning. Then, the architecture of our pro-
posed Predictive AutoEncoder (PAE)
will be elaborated. Lastly, we describe
the training objective in brief.

3.1 Self-attention Mechanism

The conventional methods are based
on the DNN that consists of several
superficial fully-connect layers. This
simple structure restricts the relation-
ship between frames to be utilized for
sound applications. Given the limita-
tion of the DNN module for anomaly
sound detection, we renovate this mod-
ule to the Transformer. The trans-
former block is shown in Fig. 2.

The transformer blocks are char-
acterized by stacking the Multi-
Head Attention (MHA) and Feed-
Forward Network (FFN) alternately.
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This stacking structure is favorable for learning the informative association of
frames from deep multi-level features. Suppose the model contains L transformer
blocks with length-T input sequence x. The overall equations of the l-th layer
are formalized as:

zl = MHA
(
LN

(
xl−1

))
+ xl−1

xl = FFN
(
LN

(
zl

))
+ zl

(1)

where xl denotes the output of the l-th transformer layer, zl is the l-th layer’s
hidden representation. LN represents the Layer-Norm module [1].

The Multi-Head Attention (MHA) mechanism adaptively finds the most
effective relationship from raw frames. It obtains the query Q, key K, and value V
of the input sequence by a linear transformation and calculates the attention
weights A between frames of the input sequence with the query Q and key K.
The Multi-Head Attention in the l-th is:

Q, K, V = xl−1
LN W l

Q, xl−1
LN W l

K, xl−1
LN W l

V

A = Softmax
(QK�

√
dm

)

ẑl = AV

(2)

where xl−1
LN = LN

(
xl−1

)
and ẑl is the output of Multi-Head Attention module.

W l
Q, W l

K, W l
V∈ R

dm×dm represent the parameter matrices for Q, K, V in the
l-th layer respectively, and dm is the dimension of the l-th transformer block.
The relationship of frames is calculated by adaptive learning since W l

Q, W l
K,

W l
V are learnable parameters of the model. In the multi-head version that we

use, the dimension of Qm, Km, Vm is dm

M . The block concatenates the out-

put
{

ẑm
l
}

1≤m≤M
from the multiple heads and gets the final result ẑl. Based on

the Multi-Head Attention mechanism, the context information between frames
can be captured entirely and applied to reconstruct or predict the output frames.

The role of the Feed Forward Network (FFN) is to fulfill non-linear trans-
formation, similar to the conventional DNN. This module will obtain content
information within the frame through several fully-connect layers.

We introduce the transformer blocks into AE-based anomaly sound detection
methods and encourage the model equipped with the self-attention mechanism
to capture the relationship between frames. On the basis of the previous intra-
frame content information being utilized, our model also takes full advantage
of inter-frame context information to assist in reconstructing or predicting the
outputs. Furthermore, our model extends the frame length of the input features
since the self-attention mechanism has a solid capability to measure long-range
association.

3.2 The Architecture of Predictive AutoEncoder

Predictive AutoEncoder (PAE) is an unsupervised generative model based on
the self-attention mechanism, and the overview architecture of PAE is shown in
Fig. 3.
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Fig. 3. The architecture of our Predictive AutoEncoder (PAE). The input acoustic
features will be reshaped into a one-dimensional vector in Fig. 1(a)(b). Instead, PAE
maintains the original time-frequency structure.

Let x ∈ R
F×T be the input original acoustic features, where F denotes the

dimension of the spectrum and T represents the number of frames. The random
subset of the input features will be replaced by mask embedding, which is one
of the parameters of the PAE model. We define the masked input as xm. The
PAE model embeds xm by a linear projection with added positional embedding,
that is:

xE-in = FC (xm) + PE (3)

where xE-in ∈ R
dm×T represents the input of encoder, FC is the linear projection

layer, and PE is the positional embedding which is a learnable parameter matrix
in our model.

After input projecting, xE-in is fed into the encoder Eθ that consists of mul-
tiple transformer blocks. The encoder learns latent representations of the input
sequence. Moreover, we set up a decoder Dφ with another series of transformer
blocks to perform reconstruction from latent representations.

In the conventional AE-based methods, the input features are compressed to
a low-dimensional vector, which is like a filter to select helpful information related
to normal data since only normal data is used to train the model. Therefore, an
additional bottleneck layer Lw composed of MLPs is designed for dimensional
transformation and feature compression, that is:

Lw (·) = FC (ReLu (FC (·))) (4)

The bottleneck layer Lw is placed between the encoder Eθ and decoder Dφ. In
total, the processing of the encoder and decoder is expressed as follows:

xD-out = Dφ (Lw (Eθ (xE-in))) (5)
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where xD-out ∈ R
dm×T is the output of decoder. Due to the self-attention mech-

anism and FFN, both context and content information are extracted to model
the distribution of normal data.

Finally, a non-linear transformation output projector is applied to reconstruct
the original acoustic feature, that is:

x̃ = FC (ReLu (FC (xD-out))) (6)

where x̃ ∈ R
F×T is the output of the entire model, used to calculate the training

loss and anomaly score.

3.3 Training Strategy

Similar to IDNN [29] and ANP [31], our method also employs the idea of mask-
ing and prediction strategy to train the PAE model for anomaly detection. We
randomly select partial frames to be substituted by mask embedding and treat
these selected frames as the target outputs. Compared to IDNN [29], our method
allows random frames to be selected as unseen frames, enabling the PAE model
to accept more diverse inputs and be more manageable.

Following the previous AE-based approaches, we adopt the mean squared
error (MSE) as the loss function. We train the whole PAE model end-to-end
with minimizing training objective, that is:

min ||M � x − M � x̃||22 (7)

where M is a binary mask matrix representing the position of random mask
frames, and � is an element-wise multiplication. The test utterance’s anomaly
scores are obtained by calculating the MSE between the output frames and target
frames.

4 Experiments and Results

4.1 Experimental Setup

Dataset. We evaluate Predictive AutoEncoder (PAE) on the DCASE2020 chal-
lenge task2 development dataset. This dataset comprises part of ToyADMOS
dataset [21] and MIMII dataset [25] and contains six machine types, including
ToyCar, ToyConveyor, Fan, Pump, Slider, and Valve. Each machine type has
either three or four different machines, respectively, and these different machines
are marked with machine-IDs. In our experiments, the training set with only
normal sounds is used to train the model, and the test set, which contains both
normal and abnormal sounds, is employed for evaluation.
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Table 1. Average AUC (%) and pAUC (%) of each machine type in different AE-based
methods. Average means the average AUC (%) and pAUC (%) of all machine types.

methods AE [20] IDNN [29] ANP [31] PAE

ToyCar AUC 80.90 80.19 72.50 75.35
pAUC 69.90 71.87 67.30 69.70

ToyConveyor AUC 73.40 75.74 67.00 77.58
pAUC 61.10 61.26 54.50 61.37

Fan AUC 66.20 69.15 69.20 72.94
pAUC 53.20 53.53 54.40 54.37

Pump AUC 72.90 74.06 72.80 74.27
pAUC 60.30 61.26 61.80 62.01

Slider AUC 85.50 88.32 90.70 91.92
pAUC 67.80 69.07 74.20 74.39

Valve AUC 66.30 88.31 86.90 95.41
pAUC 51.20 65.67 70.70 81.24

Average AUC 74.20 79.30 76.52 81.25
pAUC 60.58 63.78 63.82 67.18

Implementation. We apply STFT on sound recording with a Hanning window
size of 1024 and hop length of 512. We extract the log-Mel spectrogram with
Mel filter banks of 128 as the input features of our system. In this case, the
dimension of input F is equal to 128.

We train the PAE models for each machine type, i.e. six individual models
are trained using the training data for the corresponding machine type. We
crop T frames as the input, and the stride of cropping is set to 1. Specifically,
assuming a sound clip is converted to a log-Mel spectrogram with N frames,
we will crop it to N − T + 1 input segments. As the number of cropped frames
increases, the input length of model will be expanded, but the actual number
of segments available for training will decrease. During the input phase, c%
frames are replaced by the mask embedding, and these frames are considered as
targets for computing the MSE loss. Unless otherwise stated, both encoder Eθ

and decoder Dφ consist of two transformer blocks, and the dm of them are 512
and 256, and the number of multi-head are 8 and 4, respectively. Besides, the
dimension of bottleneck layer Lw is 64 by default. PAE is optimized using Adam
optimizer [19] with β = {0.9, 0.999}. The batchsize is set to 512 for 60 epochs
with the initial learning rate of 1e-3, and the learning rate will decline to 5e-4
and 1e-4 at the 30th and 50th epochs, respectively.

Evaluation Metrics. The performance is evaluated by using the area under
the receiver operating characteristic curve (AUC) and the partial-AUC (pAUC),
which is calculated as the AUC over a low false-positive-rate (FPR) range [0, p],
and p = 0.1. We calculate the AUC and pAUC for each machine-ID data and
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Fig. 4. The average AUC (%) for various input length in PAE and IDNN [29].

average these results to get the performance metrics of each machine type. Even-
tually, we calculate the average AUC and pAUC across all machine types to
obtain total AUC and pAUC results.

4.2 Results

We compare the Predictive AutoEncoder (PAE) with the previous AE-based
generative models and present the performance metrics of each machine type
in Table 1. Note that since all the previous methods input five frames into the
model, we also set the length of input T to 5 in our method. The mask ratio c%
is set to 20% in PAE, as both IDNN and ANP have 20% of input data unseen
when training the model.

The performance of PAE is superior to other AE-based methods for most
machine types, especially valve. We believe the primary reason is that our model
is an enhancement of IDNN [29] that is extremely favorable for detecting anoma-
lies in non-stationary sounds. With the collaborative improvement of context
and content information, our PAE shows the highest average AUC and pAUC,
which is persuasive for the advantage of context information in anomalous sound
detection. It suggests that our model is more likely to be valuable in real-world
applications.

Due to the application of the self-attention mechanism, unseen frames can be
predicted by longer temporal relationships. We conduct ablation experiments on
the length of input frames T and present the AUC results in Fig. 4. Moreover, to
prove the improvement of PAE in extending the input length, we also compare
the AUC results of IDNN [29] when the input data is longer. It is not hard to
observe that no matter how long the input length is, the performance of PAE is
superior to IDNN. Meanwhile, IDNN shows worse sensitivity to the length of input
frames T , as the simple DNN constrains the utilization of context information.
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Table 2. Average AUC (%) and pAUC (%) of ablation experiments with different
numbers of transformer blocks in encoder Eθ and decoder Dφ

Eθ Dφ AUC pAUC

1 1 79.56 66.04
2 1 80.15 66.88
2 2 81.25 67.18
4 2 80.60 67.32
4 4 80.91 67.35
6 2 80.85 68.42
6 4 81.12 67.58
8 2 80.47 67.69
8 4 80.47 66.64
8 6 80.67 66.21

We also notice a slight decrease in PAE performance as the input length T
increases. That is because longer inputs lead to a broader global attention range,
causing the model to pay less attention to local details. In addition, extending the
input length reduces the number of segments for training, which is also a potential
reason for performance decrease.

In Table 2, we study the influences of the number of transformer blocks of
encoder Eθ and decoder Dφ on performance. It is surprising that encoder Eθ

and decoder Dφ with only one layer of transformer blocks can get acceptable
performance. This result suggests the significant advantages of the relationship
between frames for anomalous sound detection. As the number of parameters in
the model increases, the model reaches performance saturation due to the limited
amount of training data and shows slight variations in AUC and pAUC because
of the randomness in the training process. Considering the balance between
runtime and performance, we design encoder Eθ and decoder Dφ with two layers
of transformer blocks in other ablation experiments.

Furthermore, we conduct masking-prediction experiments with various mask
ratios. In this experiment, a lower mask ratio means that more local information
is available. To avoid the effects of limited input, we adjust the length T to 25

Table 3. Average AUC (%) and pAUC (%) for different mask ratios c%

mask ratio AUC pAUC

20% 80.73 67.90
40% 80.57 67.37
60% 80.01 67.08
80% 79.01 65.86
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frames in this experiment. Table 3 shows the results on different mask ratios c%.
It can be found that the more frames that are masked, the worse performance.
On the contrary, increasing the number of available input frames is conducive to
the improvement of ASD performance. The results shown in Fig. 4 and Table 3
further indicate that the AE-based generative approaches concentrate on the
local details of frames. Nevertheless, this does not affect the improvement of
context information for anomalous sound detection since the context information
contributes to reconstructing or predicting the local details of frames. Therefore,
the global attention from the transformer blocks and the local characterization
need to be traded off in the practical application.

5 Conclusion

This paper studies the unsupervised anomalous sound detection problem. Unlike
the previous AE-based methods, our proposed Predictive AutoEncoder (PAE)
effectively learns the more promising context information through the self-
attention mechanism. With the combination of content and context informa-
tion, our PAE significantly outperforms other AE-based models. Furthermore,
our model overcomes the limitation of the input length and still maintains com-
petitive performance for the long-range temporal input. On the basis of our
research, the AE-based generative methods can be more appropriately applied
to utterance-level representation learning tasks in future works.
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Abstract. Far-field, noise, reverberation, and overlapping speech make
the cocktail party problem one of the greatest challenges in speech recog-
nition. In this paper, we focus on solving the problem of overlapping
speech and present a pipelined architecture with serialized output train-
ing(SOT). The baseline and the proposed methods are evaluated on the
artificially mixed speech datasets generated from the AliMeeting corpus.
Experimental results demonstrate that our proposed model outperforms
the baseline even with high overlap ratio, which leads to 10.8% and 4.9%
relative performance gains in terms of CER for 0.5 overlap ratio and
average case, respectively.

Keywords: Serialized output training · Multi-talker speech
recognition · Overlapping speech · Cocktail party

1 Introduction

At a noisy cocktail party, people can ignore the distractions of other people’s
voices and background noise while communicating with their peers. Humans can
do this easily because the brain has special mechanisms for perceiving and paying
attention to sound [1], which is still very challenging for computers. Although
the best current speech recognition models [2,3] already outperform professional
human transcriptionists on ideal single-speaker datasets in terms of accuracy,
they hardly work in complex scenarios. Complex scenarios are often composed of
multiple factors, including far-field, noise, reverberation, overlapping speech, and
so on. The speech overlap problem can be described as the simple superposition
of several simultaneously active speech signals.

For overlapping speech recognition, a great deal of work [4–7] followed the
approach of “separation before recognition”. However, these efforts ignored the
inconsistencies in the evaluation metrics of the separation and recognition mod-
ules, which cause speech distortion and thus degrade the performance of ASR [8].
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In order to optimize model in the intended direction of ASR, joint optimization
was proposed [9,10]. To further alleviate speech distortion, [11,12] adopted dif-
ferent fusion mechanisms to make the most of the information from the original
speech signal. Following that, [13] introduced perceptual losses to complement
the detailed information of the reconstructed signal. In addition, label ambi-
guity problem due to models with multiple output layers should also be taken
into account, [14,15] proposed a strategy called permutation invariance training
(PIT) which calculates the minimum assignment loss for predicted output and
label from the frame level and utterance level, respectively.

Based on deep neural networks, an increasing number of studies [16–20] were
devoted to the end-to-end model. In contrast to the pipelined models, the end-to-
end methods take the form of implicit separation. [16] designed a set of speaker
encoders to separate different streams of multiple speakers in feature space and
performed speech recognition on these separated features. [20] found that the
speaker encoders were not well trained due to the wide variation in characteristics
of speakers and energy and therefore proposed to use independent attention
modules in the decoder to reduce the burden for the encoder. [17] introduced
knowledge distillation to end-to-end model, in which pre-trained single-speaker
ASR model plays a role in providing supplementary information.

Although the pipelined and end-to-end models above performed well on some
datasets, the common problem is that the models have a fixed number of output
layers. In other words, these methods can only work with a fixed number of
speakers, the scenario with an unknown number of speakers remains a challenge.
To this end, [10] proposed One and Rest PIT (OR-PIT), the idea of which is
iterative training, that is, extracting one speaker’s utterance from the mixture
at a time. [21] proposed a concise but effective method, namely serialized output
training (SOT), which introduced a special marker to serially combine the tags of
different speakers, allowing the model to learn the dependencies between speakers
while learning the speech information. [22] further extended SOT using token-
level timestamps to make streaming multi-speaker ASR a reality.

In this paper, we explore the effect of the overlap rate on SOT, and observe
that the performance of the baseline significantly decreased at overlap ratio
higher than 0.4. The main reason is that the high overlap rate exceeds the upper
limit of the ASR model’s learning ability. Therefore, we propose to combine the
pipelined model with SOT, the separated features contain a priori information
about the speaker’s identity, which can reduce the burden of the ASR module, in
addition, we introduce a fusion module to solve the problem of label ambiguity.

The rest of the paper is organized as follows: In Sect. 2, the adopted methods
and the proposed methods are described. In Sect. 3, we show the dataset and
the experimental setting. In Sect. 4, we evaluate the proposed approach on the
artificially mixed speech datasets generated from the AliMeeting [23] corpus,
and the experiments and analysis are given. Finally, the paper is concluded in
Sect. 5.
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Fig. 1. The overall block diagram of pipelined model.

2 Overview and the Proposed Methods

2.1 Pipelined Model

To simplify the model, the single-channel observed mixture O ∈ RC is given by:

O =
N∑

i=1

Si (1)

where the N denotes the number of speakers, Si ∈ RC denotes the speaker’s
source signal, and the C is the the count of sampling points of the observed mix-
ture. The pipelined architecture aims at separating and recognizing the source
signal Si, i = 1, ..., N from the mixture O.

Taking two speakers as an example, the mixture goes through the separa-
tion module to get two utterances, then the separated utterances are fed to the
recognition module. During the training phase, PIT [15] acts on the separation
module to provide the minimum error assignment. The overall block diagram of
the model is shown in Fig. 1.

In our expriments, we adopted Conv-TasNet [4] as the separation module.
Conv-TasNet is a time-domain speech separation model consisting of an encoder,
a separation network, and a decoder.

The encoder and decoder are 1D convolution and 1D transposed convolution,
replacing the traditional STFT and iSTFT, respectively, allowing the network
to extract features directly in the time domain for mixed speech. 1D convolution
maps the observed mixture O to 2D features Ô ∈ RT×F , where T represents the
number of feature frames, whose size mainly depends on the step size of convo-
lution, and F represents the size of feature dimensions, which is corresponding
to the number of frequency groups in STFT.
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Compared with STFT, data-driven feature extraction can solve the problem
of phase mismatch. In most studies on frequency domain models, it is difficult to
estimation the phase of each speaker’s source signal, and the predicted “clean”
signal is reconstructed by synthesizing the masked amplitude spectrum and the
original phase of the mixed speech. However, this biased phase estimate deter-
mines the upper bound of the model performance. Data-driven feature extrac-
tion avoids decoupling the amplitude and phase, maximizing the retention of the
consistency of this information.

Then, the feature Ô is fed into the separation network to estimate N mask
weight matrices, and the masks are multiplied by Ô to obtain the masked rep-
resentation of the source signal for each speaker:

Ri = maski ◦ Ô, i = 1, ..., N. (2)

where ◦ denotes the Hadamard product, Ri and maski ∈ RT×F represents the
masked representation and the mask weight matrix corresponding to the source
signal, respectively.

The separation part adopts the temporal convolutional network (TCN) [24],
which is a convolutional network for sequence modeling. Unlike RNN, TCN
can process sequences in parallel, and thus it’s much faster than RNN [25] in
terms of computing speed. In addition, the convolutional kernels of each layer of
TCN share parameters, which can reduce a large amount of memory occupation.
A TCN block consists of multiple convolutional blocks, each of which is a 1D
depthwise separable convolution [26] with different dilation rates. This design
can greatly reduce the number of parameters, and residual connections are added
between the convolutional blocks to alleviate the vanishing gradient problem.

2.2 Serialized Output Training

SOT is a training strategy for overlapping speech recognition. It only serializes
labels without changing the model structure, and its essence is to distinguish
speakers by making use of temporal information.

Let the transcriptions corresponding to the source signal Si, i = 1, ...N are
Us1e1 , Us2e2 , ..., UsNeN , where the si denotes the start time of source signal in the
mixed speech, and ei indicates the end time to check whether overlap occurs.
Following the first-in-first-out rule, these tags are rearranged according to the
start time, and a special marker <sc> is added between different tags to indicate
speaker switching, the reference tags are merged as:

Umerged = Us1e1 < sc > Us2e2 < sc > ... < sc > UsNeN (3)

Note that the method is used on the premise that the start time of the source
signal is different, if not, then the order of the tags is randomly determined.
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Fig. 2. The overall block diagram of proposed model.

In previous work, the number of output layers of models corresponds to the
number of speakers, and they are independent of each other, which not only
limits the performance of the model in the case of unknown speakers but also
causes possible output duplication due to this natural independence [16].

SOT is applied to the single-speaker end-to-end ASR model, so there is only
one output layer, and the independence is broken by modeling the dependency
relationship between the speakers through special markers. It solves the two
difficulties mentioned above at the same time.

However, SOT forces the ASR model to learn the dependencies between
speakers through a switch marker while ignoring the limited learning capacity
of the model. The more complex the mixed speech, e.g., high overlap rate, low
signal-to-noise ratio, etc., the higher the learning pressure on the model. In our
experiments of baseline, it is observed that at a high overlap rate, the perfor-
mance of the model deteriorates substantially, details will be reported in Sect. 4.

2.3 Proposed Method

To alleviate the pressure on the ASR model to distinguish speakers, we propose to
add a speech separation model before the module. Considering that the features
obtained by the separation model are explicitly related to speakers which can
further bring some prior information to ASR model.

The proposed model is shown in Fig. 2. The N masked representations from
the separator are fed to a fusion module. Since the ASR model only receives the
single-channel input, we designed the feature fusion module. Here, we tried three
different fusion methods in this module. The first one is to directly add the N
features together, and the second one is to concatenate the original features after
adding the N features together, as shown in the dashed line. The third method
uses cross attention to fuse masked representations with original features:

Q = ÔWQ ∈ RT×dk (4)

Ki = RiWKi ∈ RT×dk (5)

Vi = RiWV i ∈ RT×dk (6)

Finter =
N∑

i=1

softmax(
QKi

�
√
dk

)V i (7)

where WQ ∈ RF×dk , WKi ∈ RF×dk and WV i ∈ RF×dk , i = 1, .., N are weight
matrices, Finter indicates the intermediate feature, in this work, we set N equal
to 2.
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3 Experimental Settings

3.1 DataSet

We manually generated single-channel mixed speech of two speakers based on
AliMeeting corpus [23]. This corpus contains 120 h of Chinese conference record-
ings, including far-field data collected by an 8-channel microphone array and
near-field data collected by the headphone microphone of each participant.

For each sample, it is generated by mixing the utterances of any two speak-
ers in the AliMeeting dataset, where the overlap rate is obtained by random
sampling from the uniform distribution on the interval [0.3, 0.8], and the signal
noise ratio (SNR) of one speaker relative to another speaker is obtained on the
interval [−5 dB, 5 dB] in the same way.

Following this approach, we generated a 240-hour training set and a 6-hour
validation set using near-field data. To facilitate the evaluation of our model, we
generated speech with an overlap rate from 0.3 to 0.8 with increments of 0.1 as
the test set, the speech with each overlap rate was about 2 h, forming a total of
12 h.

3.2 Training and Evaluation Metric

Our models are trained according to SISNR and CER, where SISNR is a signal-
to-noise ratio independent of signal variation and is used to guide the training
of the front-end separation module, and CER is the Chinese character error rate
for the training of back-end speech recognition module. Note that we use PIT
to solve the label ambiguity problem when pre-training the separation module.
In the testing phase, we only evaluate the performance based on CER.

3.3 Model Settings

We adopt the ESPNet-based multi-speaker ASR system (https://github.com/
yufan-aslp/AliMeeting/tree/main/asr) from the M2Met challenge as the base-
line system. The system uses Conformer [27] as the encoder, which combines
the advantages of Transformer and convolution to extract the local and global
features of the sequence at the same time.

The separation module adopts Conv-TasNet [4], where the number of chan-
nels of encoder and decoder is 256, kernel size is 20, and step size is 10, cor-
responding to the number of frequency groups, window length, and hop size in
STFT, respectively. The separation network has 4 TCN blocks, where each TCN
block contains 8 convolution blocks with the bottleneck layer of 256 dimensions
and the hidden layer of 512 dimensions. The speech recognition module follows
the configuration of the baseline, where the encoder has 12 Conformer blocks
with 4 attention heads. The number of units of position-wise feed-forward is
2048, and the decoder has 6 Transformer blocks. The acoustic features are 80-
dimensional FBank with frame length of 25 ms and frame shift of 10 ms. For
feature augmentation, we employ SpecAugment proposed in [28].

https://github.com/yufan-aslp/AliMeeting/tree/main/asr
https://github.com/yufan-aslp/AliMeeting/tree/main/asr
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In addition, some tricks such as curriculum learning [29] and warmup [30]
are also added to train the model.

4 Result Analysis

4.1 Baseline Results

First, we evaluated the performance of the baseline model on simulated 2-speaker
test mixtures. Results are presented in Table. 1, “average” represents the result
over the entire test set. We observe that the performance of the model decreases
as the overlap rate gradually increases, and there is a significant drop above 0.4
overlap ratio.

Table 1. CER(%) of the baseline model at different overlap ratio.

Model overlap ratio average
0.3 0.4 0.5 0.6 0.7 0.8

baseline 28.5 30.2 33.1 33.3 35.2 35.3 32.7

4.2 Results of Proposed Method

Then, we trained the proposed model. The initial training was guided entirely by
the loss of the ASR module. Surprisingly, the model did not converge, as shown
in the results of Model1 in Table 2.

We analyzed the reason and concluded that driving the whole model by
the ASR task alone would not allow the front-end separation module to learn
effectively as well. To solve this problem, we pre-trained the separation module
using clean speech and migrated the trained encoder and separator, freezing the
parameters of this part and further training the model.

We implemented three different fusion modules and the results are shown in
the rest of Table 2. Model2 represents the direct summation of masked repre-
sentations, Model3 represents the concatenation of the original features on the
basis of Model2, and Model4 represents the fusion of masked representations and
original features using cross attention. We observed that Model3 performs the
best among all models, with a 10.8% and 4.9% relative improvement compared
with the baseline at 0.5 overlap ratio and average case respectively.
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Table 2. CER(%) of the proposed model at different overlap ratio.

Model overlap ratio average
0.3 0.4 0.5 0.6 0.7 0.8

Model1 98.7 - - - - - -
Model2 27.1 28.3 29.7 30.9 32.7 33.6 31.3
Model3 26.9 28.0 29.5 30.5 32.4 33.4 31.1
Model4 30.5 32.3 33.6 34.1 35.4 36.8 34.2

5 Conclusion

In this paper, we explored the limitations of the SOT strategy and proposed a
fusion method to combine the pipelined model with the SOT. We tried several
different feature fusion methods and found that simple addition and concatena-
tion were most effective, which leaded to a relative improvement of 10.8% over
the baseline at high overlap rate. In future work, we will explore more complex
fusion methods and joint optimization methods. In addition, only single-channel
signals are used in this work, and we also consider extending the model to multi-
channel cases to utilize spatial information.
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Abstract. In this paper, we propose adversarial training based on meta-
learning (AML) for automatic speaker verification (ASV). Existing ASV
systems usually suffer from poor performance when apply to unseen data
with domain shift caused by the difference between training data and
testing data such as scene noise and speaking style. To solve the above
issues, the model we proposed includes a backbone and an extra domain
attention module, which are optimized via meta-learning to improve the
generalization of speaker embedding space. We adopt domain-level adver-
sarial training to make the generated embedding reduce the domain dif-
ferentiation. Furthermore, we also propose an improved episode-level bal-
anced sampling to simulate the domain shift in the real-world, which is
an essential factor for our model to get the improvement. In terms of
the domain attention module, we use the multi-layer convolution with
bi-linear attention. We experimentally evaluate the proposed method on
CNCeleb and VoxCeleb, and the results show that the combination of
adversarial training and meta-learning effectively improves the perfor-
mance in unseen domains.

Keywords: Speaker verification · Meta-learning · Adversarial
training · Domain invariant attention module

1 Introduction

Verifying whether a test utterance belongs to the enroll identity is the main tar-
get of automatic speaker verification (ASV). Compare to the traditional i-vector
systems [1,2], the most recent proposed methods [3,4] rely on the profusion of
deep neural network(DNN).

The success of deep learning still cannot easily solve the domain shift issues
caused by complex recording devices and speaking styles in real-world applica-
tions. To better solve domain shift issues, many researchers have shifted their
focus to domain adaptation and domain generalization. Aligning the distribution
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
L. Zhenhua et al. (Eds.): NCMMSC 2022, CCIS 1765, pp. 124–131, 2023.
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of source and target domain by discrepancy-based methods [5,6] and adversarial
learning [7,8] are main purposes of domain adaptation. In domain generalization
[9], the target domain is unseen, and the model also needs to learn embedding
which is robust to the target domain.

In ASV, domain shift issues can be seen as the speaker embedding space
learned from the source domain cannot be well fitted into the target domain. For
getting the domain invariant embedding, adversarial training [10] is considered
for the model optimization. Most recently, a new strategy of meta-learning [11–
13] has been used in domain generalization. Zhang et al. [11] use the meta
generalized transformation with meta-learning to get better embedding space.

However, these above methods also have some limitations. Firstly, traditional
methods only pursue accuracy in the known domain and ignore the generalization
ability of the model. Secondly, in the task construction of meta-learning, [11]
does not fully utilize the information of domains.

In this paper, in order to enhance the generalization ability of traditional
methods, we try to combine adversarial training with meta-learning. In adver-
sarial training, we add an gradient reverse layer (GRL) [14] before the domain
classification. Specifically, we propose an improved episode-level balanced sam-
pling which makes meta-train and meta-test tasks come from different domains,
and the sampling probability of each domain is based on the actual data volume.
By doing so, our task sampling strategy is closer to the real-world applications
and can motivate the generalization of meta-learning. With the coordination of
adversarial training and meta-learning, our domain invariant attention model
can learn more about domain generalization knowledge.

2 Overview of the Proposed Network

Fig. 1. The architecture of adversarial training based on meta-learning. Different colors
represent different domains in this figure. The same symbol represents the utterance
of the same speaker.

Meta-learning is an important method in machine learning [15,16]. The origi-
nal intention of this method is to solve the problem of lacking valid data in down-
stream tasks, which can get enough knowledge from many prior tasks and reuse
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this knowledge in the target task. In this paper, we adopt the gradient update
strategy of meta-learning to realize the generalization ability of the model to the
unknown domains.

As shown in Fig. 1, we employ an improved episode-level sampling strategy to
build our meta-train and meta-test tasks. Then, the embedding will be generated
by the backbone Eθt and the domain invariant attention module Dαt. There are
two parallel FC layers after embedding extractor Dαt. The upper branch road
is to classify the speaker, and we add an gradient reverse layer (GRL) before the
bottom branch road, which is used to classify the domains. Finally, we use two
processes meta-train and meta-test to optimize our network parameters.

3 Method

3.1 Adversarial Training with Multi-task Learning

Previous methods are mainly based on the training strategies of meta-learning
to improve the model’s robustness. In this paper, we use cross-entropy loss to
complete speaker classification tasks. Besides, we also use the domain label infor-
mation to reconstruct the embedding space. In order to achieve the above objec-
tives, there are two parallel FC layers after embedding extractor Dαt. FC1 is to
classify the speaker, and we add an gradient reverse layer (GRL) before the FC2,
which is used to classify the domains. The total loss for the model optimization
is composed of speaker loss Lc1 domain loss Lc2 as:

Ltotal = Lc1 + Lc2 (1)

Lc1 and Lc2 denote the classification losses of speaker labels and domain labels
respectively. Cross entropy will be used on the above two losses.

Lc1 = −
N∑

i=1

log
ef1(x

ys
i )

S∑
j=1

ef1(x
j
i )

Lc2 = −
N∑

i=1

log
ef2(x

yd
i )

D∑
j=1

ef2(x
j
i )

(2)

where xys

i and xyd

i donate the i-th utterance in a batch with a speaker label
ys and domain label yd. N is the batchsize, S and D donate the number of the
speaker classes and domain classes separately. f1(·) and f2(·) donate the outputs
after FC1 and FC2 separately.

With the effect of GRL, the FC2 and embedding extractor are in a state
of confrontation when distinguishing domains. By doing so, the embedding
extractor can make the generated embedding reduce the domain differentia-
tion. In coordination with the label clustering loss introduced earlier, we make
all the parameters optimized simultaneously using both multi-task learning and
adversarial training. Finally, our network can effectively learn domain invariant
embedding based on the correct use of label information.
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3.2 Improved Episode-Level Balanced Sampling

As we all know, in our real-world scenarios, the process between training and
testing has a big difference. In order to simulate this difference, we can use
episode-level sampling to build our training tasks. To put it simply, the episode-
level sampling needs to select randomly S identities from the seen training set.
Then, we need randomly select P utterances and Q utterances for every identity
selected before, which are named the support set and the query set separately.
Now, a task is successfully created which contains a support set and a query set.

To get the domain invariant embedding, we should take full account of
domain information in task construction. So we can make some improvements
in episode-level sampling. In seen source domain, there will be multiple sub-
domains. We should select S speakers in each subdomain to build tasks, not
in the whole source domain. Besides, in an update iteration, we need to
ensure that two tasks selected for meta-train and meta-test come from different
domains to simulate the domain shift in the real world. For source domain data
D = {D1,D2...DB |B > 1}, which contains B seen subdomains we can select
proposed utterances to build our tasks set from each subdomain. The task set
T = {T1, T2, ..TB |B > 1}, which has B sub-task sets, and each subdomain has its
own sub-task set. By doing so, we can further improve the domain generalization
ability of the model. Considering the difference in data volume in different sub-
domains, tasks from different subdomains need to be consistent with the amount
of source data. In this way, the source domain data can be trained more com-
fortably, and balanced sampling without destroying the distribution of original
data can be realized.

3.3 Domain-Invariant Attention Module

In this paper, we proposed the domain invariant attention module via meta-
learning to learn a domain invariant embedding. The network consists of two
parts, which are named backbone and domain invariant attention module. By
doing so, we can reduce the training difficulty of the backbone, and deliver the
ability to get domain invariant embedding to the additional attention module.

We first apply the improved episode-level balanced sampling to build our
meta-learning tasks. Every task consists of a support set and a query set, we
can use them to build the pair-level batches. Then, we use the backbone Eαt

to get the frame-level feature of the meta-train task which is selected from the
task set. The frame-level features will be sent to the domain invariant attention
module, and finally output to segment-level embedding. In the meta-test, we
select a task that comes from a different sub-task set compared to the task used
in the meta-train.

In a meta-update, we calculate the meta-train loss Lmtr and meta-test loss
Lmte by the meta-train task and meta-test task respectively. We consider global
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classification to calculate two losses. After optimizing by the meta-train loss, we
obtain the updated parameters θ′

t of backbone,α′
t of domain invariant attention

module.

Lmtr = Lc1 (Xmtr; θt, αt) + Lc2 (Xmtr; θt, αt) (3)
θ′

t = θt − η∇θtLmtr (4)
α′

t = αt − η∇αtLmtr (5)

where Xmtr donate the utterances of meta-train tasks, η is the learning rate in
meta-train.

Then we use the temporary update parameters to calculate the meta-test loss
Lmte. After the gradient backward, we update the α′

t of the domain invariant
attention module.

Lmte = Lc1 (Xmte; θ′
t, α

′
t) + Lc2 (Xmte; θ′

t, α
′
t) (6)

θt+1 = θ′
t (7)

αt+1 = αt − μ (∇αt′Lmte) (8)

where Xmte donate the utterances of meta-test tasks, μ is the learning rate in
meta-test.

Finally, we obtain the optimized parameter θt+1 of the backbone, and the
optimized parameter αt+1 of the domain invariant attention module.

4 Experiments and Analysis

4.1 Experimental Settings

Datasets. Our purposed method is experimentally evaluated on and CNCeleb
[17]. CNCeleb is a large-scale free speaker recognition dataset that contains 2993
speakers in 11 different genres. The entire dataset is split into train data and test
data. The train data contains 8 domains including entertainment, play, vlog, live
broadcast, speech, advertisement, and recitation, interview from 2793 speakers,
and the remaining 200 speakers containing singing, movie, drama are used for
evaluation in unseen domains to achieve cross-genre evaluation. Additionally, in
the Cross-Genre trial, the test samples of all pairs containing a certain genre are
selected as the trial of this genre.

Input Features. Kaldi toolkit [18] is used to accomplish the feature extraction
process. In our experiments, 41-dimensional filter bank (FBank) acoustic features
are transformed from 25ms windows with a 10ms shift between frames. Energy-
based voice activity detection (VAD) is used to remove silent segments. The
training features are randomly truncated into short slices ranging in length from
2 to 4 s.
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Baseline Configuration. The backbone of our model is the ResNet-18 with the
frame-level output, and the baseline uses the domain invariant attention module
to get the speaker embedding. The scaling factor after the L2-norm is set to
30, and batchsize is 256, with each batch consisting of 128 speakers from one
domain. The networks are optimized using stochastic gradient descent (SGD),
with momentum of 0.9 and weight decay of 5e-4. Additionally, the backbone of
all experiments in this paper is pretrained on VoxCeleb [19,20].

4.2 Comparative Experiments

Table 1. EERs (%) of AML and ablation experiments on the Cross-Genre. AML(w/o
GRL) is AML without GRL, AML(w/o ML) is AML without meta-learning.

Method Cross-Genre
Singing Movie Drama

r-vector 25.55 17.12 10.58
baseline 25.4 16.97 10.3
AML(w/o GRL) 23.91 17.22 10.46
AML(w/o ML) 23.66 16.25 10.00
AML 23.02 15.75 9.34

The results are shown in Table 1. To verify the generalization of the pro-
posed method, our experiment is conducted on ResNet-18. Firstly, we can find
that the proposed AML with ResNet-18 obtains 9.37%, 7.18%, and 9.6% rel-
ative reduction in terms of EER on singing, movie, and drama compared to
the baseline with domain invariant attention module, respectively. This bene-
fits from the adversarial training and meta-learning with a domain invariant
attention module. Secondly, in the ablation results, we conduct experiments in
which only one strategy of adversarial training and meta-learning with a domain
invariant attention module is involved. We can find that EER on singing, movie,
and drama improves 6.85%, and 4.24% on AML(w/o ML), respectively. It indi-
cates that GRL can further motivate the robustness of the domain invariant
attention module. When conducting experiments only using meta-learning with
the domain invariant attention module, the performance is also better than the
baseline. Inferring that meta-learning can make the domain invariant attention
module learn a coincident and better embedding space for each domain. As we
expected, the performance of AML gets further improvement, owing to achiev-
ing a better domain-invariant embedding.

Table 2 shows the comparative results on cross-genre. For cross-genre, we only
use the training data of 800 speakers from 7 domains to train the entire model
for fairness. By doing so, we can have the same condition with robust-MAML
for the performance comparison. As the improved meta-learning method, robust-
MAML can be seen that the EER is higher than that of AML. AML achieves an



130 J.-T. Zhang et al.

Table 2. EERs (%) of AML and state-of-the-art methods on the Cross-Genre trials.

Method Metric Cross-Genre
Singing Movie Interview

MCT [12] cosine 28.4 24.21 16.92
Robust-MAML [12] cosine 27.08 24.21 16.87
MGT [11] cosine 24.85 20.55 10.59
baseline cosine 25.7 17.95 9.81
AML cosine 23.96 15.68 9.38

EER reduction of 23.69% and 11.42% on movie and interview compared to the
MGT, respectively. We believe the primary reason is that MAL uses adversarial
training based on meta-learning to motivate domain invariant attention modules
to get more robust features.

5 Conclusion

This paper proposes adversarial training based on meta-learning to improve the
generalizability of speaker embedding. We present an improved episode-level
balanced sampling, which can better motivate the potentiality of meta-learning.
Experimental results on the CNCeleb dataset demonstrated that adversarial
training based on meta-learning is more domain-invariant than the baseline
and the meta-generalized transformation. In the future, we will try to train
the LDA/PLDA scoring models on CNCeleb.Train. We believe that our pur-
posed method can get better performance with the trained well back-end model.
Besides, we will continue to study the training mechanism of meta-learning and
tap the potential of meta-learning.
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Abstract. Disentanglement of a speaker’s timbre and style is very
important for style transfer in multi-speaker multi-style text-to-speech
(TTS) scenarios. With the disentanglement of timbres and styles, TTS
systems could synthesize expressive speech for a given speaker with any
style which has been seen in the training corpus. However, there are still
some shortcomings with the current research on timbre and style dis-
entanglement. The current method either requires single-speaker multi-
style recordings, which are difficult and expensive to collect, or uses a
complex network and complicated training method, which is difficult to
reproduce and control the style transfer behavior. To improve the disen-
tanglement effectiveness of timbres and styles, and to remove the reliance
on single-speaker multi-style corpus, a simple but effective timbre and
style disentanglement method is proposed in this paper. The FastSpeech2
network is employed as the backbone network, with explicit duration,
pitch, and energy trajectory to represent the style. Each speaker’s data
is considered as a separate and isolated style, then a speaker embedding
and a style embedding are added to the FastSpeech2 network to learn
disentangled representations. Utterance level pitch and energy normal-
ization are utilized to improve the decoupling effect. Experimental results
demonstrate that the proposed model could synthesize speech with any
style seen during training with high style similarity while maintaining
very high speaker similarity.

Keywords: Speech Synthesis · Style Transfer · Disentanglement

1 Introduction

With the development of deep learning technology in the last decade, speech
synthesis technology has evolved from traditional statistics-based speech syn-
thesis [1] to end-to-end based [2–6] and made great advancements. The current
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speech synthesis technology has been able to synthesize speech with high natu-
ralness and high fidelity, and even some research [7] has been able to synthesize
speech that human beings cannot distinguish between true recordings.

Although the great achievement in speech synthesis, there still exists a large
improvement room for expressive speech synthesis, especially for multi-speaker
multi-style Text to Speech (TTS) with cross-speaker style transfer [8–10]. Syn-
thesizing speech with a target speaker’s timbre and other speaker’s style could
further increase the application scenarios and expressiveness of the TTS system.

In order to synthesize more expressive speech, some researches [8,10,11] do
style decoupling by using a single-speaker multi-style recording data to learn
the style representation. However, it is difficult and expensive to collect these
kinds of data in lots of scenarios. Some other works [9,12] try to remove this
data restriction by learning a decoupled style representation, but most of them
use complex network structure or rely on complicated training method, which
makes it difficult to re-produce the experimental results or infeasible to control
the network performance during inference.

A jointly trained reference encoder is used to learn implicit style representa-
tion in [12,13]. After the model is trained, audio with a different style or even
from a different speaker could be taken as the reference audio to synthesize
speech with the desired style while keeping the timbre unchanged. However, the
reference-based method is unstable which usually generates unexpected style,
and it’s non-trivial to choose the reference audio.

Pan et al. [8] use prosody bottle-neck feature to learn a compact style repre-
sentation, and paper [10] uses a separate style encoder and speaker encoder to
disentangle the speaker’s timbre and style, and cycle consistent loss is used to
improve the disentanglement effect, a complex neural network and complicated
training objectives are required to achieve good performance. Both [10] and [8]
require single-speaker multi-style corpus to learning the disentanglement, which
restricts the flexibility of their proposed models.

In this paper, we propose a simple but effective expressive speech synthesis
network that disentangles speakers’ timbres and styles, which makes it avail-
able to do multi-speaker multi-style speech synthesis. The proposed system does
not require a multi-speaker multi-style corpus, each speaker’s data is considered
as an isolated style. The proposed network is similar to work [9], but we use
FastSpeech2 [4] as the network backbone, which removes the skip/repeat pro-
nunciation issue caused by the attention mechanism. Prosody features (duration,
pitch, and energy) are used directly to improve the disentanglement effectiveness
of timbre and style, furthermore, utterance level pitch and energy normalization
(UttNorm) are used to prevent identity leakage from prosody features.

2 The Proposed Model

The proposed network utilizes FastSpeech2 [4] as the network backbone and
applies utterance level pitch and energy normalization to achieve a better decou-
pling effect. MelGAN [14] is used as the neural vocoder to convert acoustic fea-
tures to speech.
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2.1 The Network Structure of Proposed Network

FastSpeech2 [4] network architecture is used as the network backbone for the
proposed model, which consists of a phoneme encoder to learn syntactic and
semantic features, a mel-spectrogram [3] decoder to generate frame-level acoustic
features, and a variance adaptor to learn style-related features. The network
structure is shown in Fig. 1 (a).

A style embedding is introduced to the network to learn a style-dependent
variance adaptor, the network structure of variance adapter is illustrated in Fig. 1
(b) and Fig. 1 (c). To decouple timbre and style, the speaker embedding is moved
to the input of the decoder to make the decoder timbre dependent.

One important purpose of the proposed model is to remove the dependency
of the single-speaker multi-style corpus, so each speaker’s corpus is considered
as a unique style and we could learn style representation from other speakers’
corpus. Actually, during the training procedure, the speaker id and style id is
identical, then it is very important to prevent style embedding from leaking into
the backbone network, which means style embedding should only be used for
style feature prediction and never be exposed to the backbone network. So in
this proposed network, style embedding is only used in the variance adaptor to
ensure that the whole network learns the speaker’s timbre by speaker embedding
instead of style embedding, and style is only affected by style embedding.

Fig. 1. An illustration of the proposed network architecture. (a) Network structure
of the acoustic model. (b) The variance adaptor structure with style embedding as
conditional input. (c) The structure of variance predictor.

2.2 Utterance Level Feature Normalization

The speaking style is represented in many aspects, such as the duration of each
syllable, the fundamental frequency (F0), and the trajectory of pitch and energy.
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However, these scalars could still contain speaker identity and impact the decou-
pling effect. For example, female speakers usually have higher F0 [15] than male
speakers, and excited speakers express higher energy value, so the pitch and
energy features contain speaker timbre information to some extent, then it’s
essential to normalize the style features to disentangle a speaker’s timbre and
style.

In this paper, instead of speaker level normalization (SpkNorm), utterance
level pitch and energy normalization (UttNorm) are used to remove speaker
identity from the style features for better timbre and style disentanglement.
The style difference in each utterance will lead to a statistics difference between
speaker level and utterance level statistics, this difference could cause identity
leakage and affect the decoupling effect, especially for the unprofessional, noisy
recordings. UttNorm could eliminate this statistic difference and improve the
timbre and style disentanglement effectiveness.

3 Experimental Setup

Three open-sourced Chinese mandarin corpora and three internal Chinese man-
darin corpora with distinctive styles are used to train the proposed model. The
open-sourced corpus includes CSMSC1, which is recorded by a female speaker,
and the MST-Originbeat2 [16], which consists of recordings from a female speaker
and a male speaker. Details of the training data are listed in Table 1.

Table 1. The description of the dataset used in the experiment. There are three open-
sourced corpus (with a * in the speaker name) and three internal corpora.

Speaker #Utterance Style Gender

CSMSC* 10000 normal female

Originbeat-S1* 5000 normal female

Originbeat-S2* 5000 normal male

C1 10000 children story female

F1 450 news-broadcasting female

M1 35000 story-telling male

The training data waves are converted to 16 kHz, 16bit depth, and then
scaled to 6dB in our experiments. The extracted phoneme labels and processed
speech waves are aligned by the MFA [17] tool to detect the phoneme boundary.
The 80-band mel-scale spectrogram is extracted as the training target with a 12
ms hop size and 48 ms window size. Pitch is extracted by using the PyWORLD3

1 https://www.data-baker.com/open source.html.
2 http://challenge.ai.iqiyi.com/detail?raceId=5fb2688224954e0b48431fe0.
3 https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder.

https://www.data-baker.com/open_source.html
http://challenge.ai.iqiyi.com/detail?raceId=5fb2688224954e0b48431fe0
https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
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toolkit. Both pitch and energy trajectories are normalized in utterance level to
remove speaker identity.

The proposed model is trained by Adam [18] optimizer with a batch size of
32 and noam [19] learning rate schedule. The learning rate is warmed up to a
maximum value of 1e-3 in the first 4000 steps and then exponentially decayed.
The model is trained by 400,000 steps and the network is regularized by weight
decay with a weight of 1e-6.

4 Experimental Results

This chapter shows the experimental results of the proposed timbre and style
disentanglement network. We encourage the readers to listen to the synthesized
speeches on our demo page4.

4.1 Subjective Evaluation

To evaluate the proposed method, Mean Opinion Score (MOS) evaluation is con-
ducted to evaluate the speaker similarity and style similarity for the synthesized
speech of different speakers and different styles. The target speakers are from the
3 open-sourced corpora, and our internal news-broadcasting (F1), children story
(C1), and story-telling (M1) styles are used as the target style. Twenty utter-
ances are synthesized for each speaker and style combination, listened to by 15
testers. During each MOS evaluation, the speaker similarity or style similarity
is the only point that testers need to focus on.

Table 2. The 5 points MOS results with a confidence interval of 95%. 5 means the
style or the timbre is exactly the same as the reference, and 1 means totally different.

Speaker Speaker Similarity Style Similarity

C1 F1 M1 C1 F1 M1

CSMSC 4.50± 0.05 4.47± 0.06 4.49± 0.04 4.31± 0.03 4.62± 0.03 4.11± 0.06

Originbeat-S1 4.36± 0.08 4.66± 0.02 4.29± 0.06 4.13± 0.03 4.18± 0.05 4.08± 0.08

Originbeat-S2 4.36± 0.07 4.59± 0.04 4.23± 0.07 4.23± 0.04 4.30± 0.03 4.10± 0.08

MOS results of speaker similarity and style similarity are shown in Table 2,
we could see that for a given target speaker, the speaker similarity of speeches in
different style are very high and consistent, and the style similarity is also very
high with the target style, which indicates that the proposed model achieves
excellent disentanglement effect for speaker’s timbre and style.

4 https://weixsong.github.io/demos/MultiSpeakerMultiStyle/.

https://weixsong.github.io/demos/MultiSpeakerMultiStyle/
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4.2 Ablation Study of Utterance Level Feature Normalization

To verify the effectiveness of UttNorm, another female corpus(112 sentences)
crawled from a podcast, even with some background noise is chosen to demon-
strate the impact.

In our experiments, due to the large variety of this noisy corpus from the
oral podcast, a speaker similarity MOS evaluation and a preference evaluation
are conducted to evaluate the performance of different normalization methods.
We use speaker F1 as the target speaker and the style from this noisy corpus as
the target style, then 20 sentences in the podcast domain are synthesized and
listened to by 15 testers.

According to the MOS results for speaker similarity, when UttNorm
is used, the speaker similarity increases from 3.82± 0.05(SpkNorm) to
3.91± 0.06(UttNorm), which showed that UttNorm could facilitate the decou-
pling effect of timbre and style for data with high variance, especially found
data, noisy data or podcast data.

From the AB preference evaluation results, the proportions of preference
are 0.17(SpkNorm), 0.35(No Preference), 0.48(UttNorm), and the p-value is less
than 0.001. It could be found that the listeners strongly prefer the results from
UttNorm, which proves the effectiveness of utterance normalization.

4.3 Demonstration of the Proposed Model

Synthesized speeches with a given speaker and different styles are shown in Fig. 2
(a), and speeches for a given style and different speakers are shown in Fig. 2 (b).
The fundamental frequency is consistent for the three different styles in Fig. 2
(a), and all the speakers’ pitch trajectories follow basically the same curve but
with different fundamental frequency in Fig. 2 (b), this explains the decoupling
effectiveness to some extent.

Fig. 2. A mel-spectrogram illustration of the proposed multi-speaker multi-style TTS
model. (a) Speaker F1 is selected as the target speaker, the target style is the orig-
inal news-broadcasting style, children story style, and story-telling style. (b) News-
broadcasting style is selected as target style, the speakers are CSMSC, Originbeat-S1,
and Originbeat-S2 respectively, from top to bottom.



138 W. Song et al.

4.4 Style Transition Illustration

As both a speaker ID and a style ID should be sent to the network to synthesize
the target speaker’s speech with a given style, we could also use the speaker ID to
generate a style embedding that represents the source style, and the embedding
from the style ID represents the target style. By combining the style embeddings
from source and target with different weights, we could generate speech with
different target style intensities.

To demonstrate the continuity of the learned style embedding representation,
a style transition example is given in Fig. 3. From the pitch trajectory in each
synthesized speech we could find that the fundamental frequency is identical for
different target style weight, indicating that the proposed model keep the timbre
unchanged when synthesizing different style speech and achieves outstanding
timbre and style disentanglement effect.

Fig. 3. A style transition illustration. Speaker F1 is selected as the target speaker and
style M1 is selected as the target style, this figure shows the gradual style transition
from style F1 to style M1 from top to bottom, with different target style weights.
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5 Conclusions

A simple but effective speaker’s timbre and style disentanglement network is pro-
posed in this paper, which eliminates the reliance on a single-speaker multi-style
corpus. The proposed network learns a style-dependent variance adaptor and
a speaker-dependent mel-spectrogram prediction decoder. The style-related fea-
tures are predicted by the variance adaptor with the guidance of style embedding,
while the timbre is learned by the mel-spectrogram decoder with the control of
speaker embedding. Utterance level feature normalization is proposed to prevent
speaker information leakage from the style feature. Experimental results showed
that the proposed model achieves good timbre and style disentanglement effect,
for a given speaker the proposed model could synthesize speech with any style
seen during training, even when the target style corpus only contains a few hun-
dred training utterances. Furthermore, the proposed model learns a continuous
style representation, which could generate speech that gradually transits from
source style to target style.
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Abstract. Joint training of speech enhancement model (SE) and speech
recognition model (ASR) is a common solution for robust ASR in noisy
environments. SE focuses on improving the auditory quality of speech,
but the enhanced feature distribution is changed, which is uncertain
and detrimental to the ASR. To tackle this challenge, an approach with
multiple confidence gates for jointly training of SE and ASR is proposed.
A speech confidence gates prediction module is designed to replace the
former SE module in joint training. The noisy speech is filtered by gates
to obtain features that are easier to be fitting by the ASR network.
The experimental results show that the proposed method has better
performance than the traditional robust speech recognition system on
test sets of clean speech, synthesized noisy speech, and real noisy speech.

Keywords: Robust ASR · Joint Training · Deep learning

1 Introduction

The performance of ASR in a noisy environment will greatly deteriorate, and it
has been a persistent and challenging task to improve the adaptability of ASR
in a noisy environment [1].

From the perspective of features, some researchers have proposed feature
construction strategies that are more robust to noise, in order to reduce the
difference in features caused by noise and thereby improve the robustness of
ASR [2–4]. But these methods are difficult to work with a low signal-to-noise
ratio (SNR). From the perspective of model design, a direct approach is to set
a SE in front of the ASR [5]. Although the enhanced speech is greatly improved
currently in human hearing [6–9], the enhanced feature distribution is changed
also, which may be helpful for the hearing but not always necessarily beneficial
for ASR. In order to make the ASR adaptable to the enhanced feature, the ASR
can be retrained with the data processed by the enhanced model [10]. However,
the performance of this method is severely affected by the SE effect. Especially
in the case of low SNR, the SE may corrupt the speech structure and bring
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
L. Zhenhua et al. (Eds.): NCMMSC 2022, CCIS 1765, pp. 141–148, 2023.
https://doi.org/10.1007/978-981-99-2401-1_13
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somehow additional noise. In order to reduce the influence of SE and achieve
better recognition accuracy, researchers proposed the joint training strategy [11].
Let ASR constrain SE and train the model with the recognition accuracy of
ASR as the main goal. However, the models are difficult to converge during joint
training, and the final recognition performance improvement is limited due to
the incompatibility between two goals, for SE it’s speech quality, while for ASR
it’s recognition accuracy.

During joint training, the ASR network needs to continuously fit the feature
distribution, but the feature distribution keeps changing under the action of
SE, which makes it difficult for the ASR to converge. We believe that the ASR
network has strong fitting and noise-carrying capabilities. We need neither to
do too much processing on the feature distribution nor to predict the value of
clean speech. We only need to filter out the feature points that don’t contain
speech. This method can avoid the problem that ASR cannot converge during
joint training, and also give full play to the noise-carrying ability of ASR itself.
So, the multiple confidence gates for joint training of SE and ASR is proposed.
A speech confidence gates prediction module is designed to replace the speech
enhancement module in joint training. Each gate is a confidence spectrum with
the same size as the feature spectrum (the probability that each feature point
contains speech). The noisy speech is filtered by each confidence gate respectively.
Then the gated results are combined to obtain the input feature for ASR. The
experimental results show that the proposed method can effectively improve the
recognition accuracy of the joint training model.

2 Our Method

The overall diagram of the proposed system is shown in Fig. 1. It is mainly com-
prised of two parts, namely the multiple confidence gates enhancement module
(MCG) and ASR. Firstly, We convert the waveform to logarithmic Fbank (log-
Fbank) X ∈ R

T×Q as the input to the model by the short-time fast Fourier
transform (STFT) and auditory spectrum mapping [12], where T and Q denote
the number of frames and the dimension of the Bark spectrum respectively.
Secondly, The MCG predicts multiple confidence gates based on the noisy log-
Fbank, and the noisy features are filtered by each gate respectively. Then the
filtered results are combined into inputs of ASR by a convolution block (CB).
Different confidence gates correspond to the selections of speech feature points
with different energy thresholds, and each process will be described later.

2.1 Multiple Confidence Gates Enhancement Module

The multiple confidence gates enhancement module is used to predict the confi-
dence gates to filter the noisy spectrum. The main body of MCG is the convo-
lutional recurrent network (CRN) [7], it is an encoder-decoder architecture for
speech enhancement. Both the encoder and decoder are comprised of convolu-
tion blocks (CB). And each CB is comprised of 2D convolution, batch normaliza-
tion (BN) [13], and parametric rectified linear unit (PReLU) [14]. Between the
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Fig. 1. Architecture of the our method. (Color Figure Online)

encoder and decoder, long short-term memory (LSTM) layer [15] is inserted to
model the temporal dependencies. Additionally, skip connections are utilized to
concatenate the output of each encoder layer to the input of the corresponding
decoder layer (blue line in Fig. 1).

Since we want to determine the confidence that each feature point contains
speech, we change the output channel number of the last decoder to (C1 +
C2 + · · · + Cn), where C1,C2, · · · ,Cn are the number of channels of the input
features for corresponding fully connected layers (FC1,FC2, · · · ,FCn). Each FC
can output a confidence gate G ∈ R

T×Q for every feature point,

Gn = sigmoid(X̃n · Wn + bn) (1)

where X̃n ∈ R
T×Q×Cn represents the Cn channels of the decoder output. Wn ∈

R
Cn×1 and bn are the parameters of FCn. sigmoid [16] is used to convert the

result into confidence (the probability that a feature point contains speech).
The label of confidence gate G is designed based on energy spectra. Different

thresholds are used to control different filtering degrees. The greater the energy
threshold, the fewer the number of speech points in the label, and the greater the
speech energy of the corresponding spetra, as shown in Fig. 2. We first compute
the mean μ ∈ R

Q×1 of the log-Fbank of the clean speech set X = [Ẋ1, · · · , Ẋd] ∈
R

D×T×Q and standard deviation σ ∈ R
Q×1 of log-Fbank means,

μ =
D∑

i=1

[(
T∑

t=1

Xi,t

)
/T

]
/D (2)

σ =

√√√√
D∑

i=1

[(
T∑

t=1

Xi,t

)
/T − μ

]2

/D (3)
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where Ẋ represents log-Fbank of the clean speech. D represents the clip number
of audio in clean speech set X. Then the thresholds κ = (μ + ε · σ) ∈ R

Q×1 for
bins are controlled according to different offset values ε, and the confidence gate
label Ġ is 1 if the feature point value is larger than κ, 0 otherwise, as shown in
Fig. 2.

Ġt,q =
{

1 , Ẋt,q ≥ κ

0 , Ẋt,q < κ
(4)

Fig. 2. Ġ obtained by different ε. The greater ε, the greater the speech energy of the
corresponding choosed points.

After (1), we can get n confidence gates [G1, · · · ,Gn] corresponding to dif-
ferent ε. Then noisy log-Fbank are filtered by the confidence gates, resulting in
different filtered results [R1, · · · ,Rn],

Rn = Gn ⊗ X (5)

where ⊗ is the element-wise multiplication. And these filtered results are then
concatenated in channel dimension and input to a CB to obtain the input Xin
of ASR.

2.2 Automatic Speech Recognition

Since we focuses more on the exploration for acoustic information processing,
the Conformer acoustic encoder [17] with CTC is employed as ASR module.
Conformer first processes the enhanced input Xin ∈ R

T×Q with a convolution
subsampling layer. Then the downsampled feature is processed by several con-
former blocks. Each block is comprised of four modules stacked together, i.e.,
a half-step residual feed-forward module, a self-attention module, a convolution
module, and a second FFN is followed by a layer norm [18]. Finally, a fully
connected layer maps the features to the word probabilities with 4233-class and
then computes the CTC loss.
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2.3 Loss Function

The loss function of our framework is comprised of four components.

L = LG + LR + LO + LCTC (6)

In the MCG module, we measured the predicted confidence gate as,

LG =
n∑

i=1

||Gn − Ġn||1 (7)

where || · ||1 represents the 1 norm. In addition, to strengthen the filtering ability
of the module on noise, we also compute filtered results from the clean speech
through the same processing, which are denoted as

[
Ṙ1, · · · , Ṙn

]
, and calculate

the difference between them and the filtered results of noisy speech as,

LR =
n∑

i=1

||Rn − Ṙn||1 (8)

After the ASR, In order to reduce the noise-related changes brought by SE
to ASR, we also measured the difference between the Ȯ computed from clean
speech and that from noisy speech as,

LO = ||O − Ȯ||1 (9)

Note that the gradients of the processing of all clean speech are discarded.
And LCTC is the connectionist temporal classification [19] for ASR.

3 Experiments

3.1 Dataset

We use AISHELL1 [20] as the clean speech dataset, which includes a total of
178 h of speech from 400 speakers, and it is divided into training, development,
and testing sets. The noise data used in training, development, and test set are
from DNS challenge (INTERSPEECH 2020) [21], ESC50 [22], and Musan [23],
respectively. During the mixing process, a random noise cut is extracted and
then mixed with the clean speech under an SNR selected from −5 dB to 20 dB.
For the training and development sets, half of the data in AISHELL are noised.
For the test set, the test set of AISHELL is copied into two copies, one with noise
and one without noise. In addition, we randomly selected 2600 speech clips from
the noisy speech recorded in real scenarios as an additional test set, and call it
APY1.

1 https://www.datatang.com/dataset/info/speech/191.

https://www.datatang.com/dataset/info/speech/191
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3.2 Training Setup and Baseline

We trained all models on our dataset with the same strategy. The initial learning
rate is set to 0.0002, which will decay 0.5 when the validation loss plateaued for
5 epochs. The training is stopped if the validation loss plateaued for 20 epochs.
And the optimizer is Adam [24]. We set a Conformer, a traditional joint training
systems, and a separately training (ST) system as the baselines.

Conformer: The dimension of log-Fbank is 80. The number of conformer blocks
is 12. Linear units is 2048. The convolution kernel is 15. Attention heads is 4.
Output size is 256. And we replaced the CMVN with BN to help Conformer
integrate with the SE module.

DCRN+Conformer: DCRN is an encoder-decoder model for speech enhance-
ment in the complex domain [7]. The 32ms Hanning window with 25% overlap
and 512-point STFT are used. The channel number of encoder and decoder is
{32, 64, 128, 256, 256, 256}. Kernel size and stride are (5,2) and (2,1). One 128-
units LSTM is adopted. And a 1024-units FC layer is after the LSTM.

DCRN+Conformer(ST): Separately training is to train a DCRN first, then
the conformer is trained based on the processed data by the DCRN. The param-
eter configuration is the same as that of the joint training.

MCG+Conformer: The channel numbers of MCG are {32, 48, 64, 80, 96}. Ker-
nel size is (3,3), strides are {(1, 1), (1, 1), (2, 1), (2, 1), (1, 1), (1, 1)}. One 128-units
LSTM is adopted. And a 1920-units FC layer is after the LSTM. The channel
number of the last decoder is 10n and C1 = · · · = Cn = 10. The best results are
obtained when n = 3 and ε = [−1, 1, 2].

3.3 Experimental Results and Discussion

We trained the models as described in Sect. 3.2, and counted the substitution
error (S), deletion error (D), insertion error (I), and character error rate (CER)
of different systems on the clean, noisy, and APY test set, shown as Table 1.

Table 1. Recognition results of the models on test set

Model Clean Noisy APY
S D I CER S D I CER S D I CER

Conformer 1.58 0.05 0.04 11.58 2.81 0.15 0.08 20.98 2.73 0.21 0.18 44.97
+DCRN 1.43 0.05 0.03 10.33 2.75 0.20 0.07 20.49 2.98 0.17 0.22 48.82
+DCRN(ST) 1.44 0.05 0.03 10.45 2.74 0.23 0.06 20.84 3.15 0.21 0.18 50.53
+MCG 1.27 0.04 0.03 9.34 2.25 0.14 0.05 16.88 2.39 0.17 0.12 39.22
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It can be seen from the results, our method achieved the lowest CER on all
test sets, moreover, the insertion and substitution errors of our model are mini-
mal on the noisy test set, which demonstrates that the multiple confidence gates
scheme can filter out the non-speech parts without destroying the speech struc-
ture, thereby greatly improving the recognition performance. The performance
improvement on APY also indicates that the change of feature by the proposed
front-end module is less affected by noise and more friendly to ASR.

Table 2. Recognition results models trained by different confidence gates on test set

n ε Clean CER Noisy CER APY CER

1 [0] 9.457 17.134 39.361
2 [−1, 1] 9.669 17.626 41.211
3 [−1, 1, 2] 9.343 16.882 39.223
4 [−2,−1, 1, 2] 9.498 17.440 40.513

In addition, we have done some experiments on the design of the confidence
gates. We set different thresholds to control the filtering ability of the gates.
It can be seen that the best performance of the model is achieved with n = 3
and ε = [−1, 1, 2]. As can be seen from Fig. 2, as ε increases, the higher the
energy of selected feature points, the stronger the filtering ability of the gate. So
designing multiple gates with different filtering abilities can improve the fitting
and generalization ability of model to achieve better results.

4 Conclusions

In this paper, we propose the multiple confidence gates enhancement for joint
training of SE and ASR. A speech confidence gates prediction module is designed
to replace the former speech enhancement model. And the noisy speech is filtered
by each confidence gate respectively. Then the gated results are combined to
obtain the input for ASR. With the help of the proposed method, the incompat-
ibility between SE and ASR during joint training is mitigated. And the exper-
imental results show that the proposed method can filter out the non-speech
parts without destroying the speech structure, and it’s more friendly to ASR
during joint training.
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Abstract. Textual escalation detection has been widely applied to e-
commerce companies’ customer service systems to pre-alert and prevent
potential conflicts. Similarly, acoustic-based escalation detection systems
are also helpful in enhancing passengers’ safety and maintaining public
order in public areas such as airports and train stations, where many
impersonal conversations frequently occur. To this end, we introduce a
multimodal system based on acoustic-linguistic features to detect esca-
lation levels from human speech. Voice Activity Detection (VAD) and
Label Smoothing are adopted to enhance the performance of this task
further. Given the difficulty and high cost of data collection in open sce-
narios, the datasets we used in this task are subject to severe low resource
constraints. To address this problem, we introduce transfer learning using
a multi-corpus framework involving emotion detection datasets such as
RAVDESS and CREMA-D to integrate emotion features into escalation
signals representation learning. On the development set, our proposed
system achieves 81.5% unweighted average recall (UAR), which signifi-
cantly outperforms the baseline of 72.2%.

Keywords: escalation detection · transfer learning · emotion
recognition · multimodal conflict detection

1 Introduction

Escalation level detection system has been applied in a wide range of appli-
cations, including human-computer interaction and computer-based human-to-
human conversation [36]. For instance, there are e-commerce companies [23]
that have been equipped with textual conversational escalation detectors. Once
an increasing escalation level of the customers is detected, the special agents
will take over and settle their dissatisfaction, effectively preventing the conflict
from worsening and protecting the employees’ feelings. In public areas like trans-
portation centers, and information desks, where many impersonal interactions
occur, it is also essential to detect the potential risk of escalations from conver-
sation to guarantee public security. Therefore, audio escalation level analysis is
instrumental and crucial.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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We adopted two escalation datasets, Aggression in Trains (TR) [22] and
Stress at Service Desks (SD) [21] from a previous escalation challenge [36]. These
two datasets provide conversation audio recorded on the train and at the informa-
tion desk respectively. About four hundred training audios from the SD dataset,
with an average length of 5 s, are used for training. Five hundred audios from
the TR dataset are used for testing. Given datasets with limited scales, learning
effective escalation signals from scratch would be challenging. Thus, supervised
domain adaptation [2] became a better option, for we can adapt a more general
feature distribution backed by sufficient data to adapt to the escalation signal
domain using limited resources. Since emotion is an obvious indicator in poten-
tial conversational conflicts, we have good reasons to assume that the encoding
ability of emotion features would be a good starting point to support the model-
ing of escalation signals from conversations. Through pretraining on large-scale
emotion recognition datasets, our model will be more capable of capturing emo-
tion features and knowledge to support fine-tuning using the escalation datasets.
Recent research [30] on small sample set classification tasks also showed promis-
ing results on pattern recognition via transfer learning.

2 Related Works

2.1 Conflict Escalation Detection

Several conflict escalation research has been done in recent years, focusing on the
count of overlaps and interruptions in speeches. In [13], the number of overlaps is
recorded in the hand-labeled dataset and used in conflict prediction. And [8,16]
uses a support vector machine (SVM) to detect overlap based on acoustic and
prosodic features. Kim et al. in [17] analyzed the level of conversation escalation
based on a corpus of French TV debates. They proposed an automatic overlap
detection approach to extract features and obtained 62.3% unweighted accuracy
on the corpus. Effective as they seem, these methods are considered impractical
in this Escalation Sub-task. First, the length of audio files in [8] ranges from
3 to 30min, and the length of conversation audio in [17] is 30 s. While in our
escalation detection task, the average length of the corpus is 5 s. Most of the
time, an audio piece only contains a single person’s voice. Thus, focusing on
overlap detection seems to be ineffective. Besides, we did not spot a significant
difference in overlap frequency among different escalation classes based on con-
versation script analysis. Second, with a total training corpus duration of fewer
than 30min, the model built on overlap counts will easily suffer from a high bias
and low variance [4,28].

2.2 Transfer Learning

In [12], Gideon et al. demonstrate that emotion recognition tasks can benefit
from advanced representations learned from paralinguistic tasks. This suggests
that emotion representation and paralinguistic representation are correlated in
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nature. Also, in [39], supervised transfer learning has brought improvements
to music classification tasks as a pre-training step. Thus it occurs to us that
utilizing transfer learning to gain emotion feature encodability from large-scale
emotion recognition datasets might as well benefit the escalation detection task.
Research [5] on discrete class emotion recognition mainly focuses on emotions,
including happiness, anger, sadness, frustration and neutral.

2.3 Textual Embeddings

Emotions are expressive in multiple modalities. As shown in [6,33], multimodal
determination has become increasingly important in emotion recognition. In the
TR [22] and SD [21] datasets, manual transcriptions for the conversations are also
provided besides the audio signals. Given various lengths of transcriptions, we
look for textual embeddings that agree in size with each other. In [34,35], Reimers
et al. proposed Sentence-BERT (SBERT) to extract sentimentally meaningful
textual embeddings in sentence level. Using conversation transcriptions as input,
we encoded them into length-invariant textual embeddings, utilizing the pre-
trained multilingual model.

3 Datasets and Methods

An overview of our solution pipeline is shown in Fig. 1. We apply librosa
toolkit [27] to extract Mel Frequency Cepstral Coefficient (MFCC), which is
then fed to the residual network backbone [14] to pretrain the emotion encoder.
The embedding extractor is pre-trained on an aggregated dataset of four emotion
recognition datasets, learning emotion representations from a broader source.

3.1 Datasets

Escalation Datasets. For this escalation level detection task, we employed two
datasets: Dataset of Aggression in Trains (TR) [22] and Stress at Service Desk
Dataset (SD) [21]. The TR dataset monitors the misbehaviors in trains and train
stations, and the SD dataset consists of problematic conversations that emerged
at the service desk [36]. The escalation level has been classified into three stages:
low, mid, and high. The higher escalation level suggests that the conflict will
likely grow more severe. Moreover, the Dutch datasets have an average of 5 s for
each conversation clip. The SD dataset is used for training, and the TR dataset
is used for testing. More details regarding these datasets can be found in the
overview of the previous challenge [36].

Emotion Recognition Datasets. Previous work [12] has highlighted the cor-
relation between Emotion Recognition Tasks and Paralinguistics tasks. Hence
we assume that the escalation level detection and emotion recognition tasks
share certain distributions in their feature space. Thus, we aggregated four well-
known audio emotion datasets for joint sentimental analysis: RAVDESS [26] is
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Fig. 1. Pipeline of the Escalation Detection System

a gender-balanced multimodal dataset. Over 7000 pieces of audio are carefully
and repetitively labeled, containing emotions like calm, happy, sad, angry, fear-
ful, surprise, and disgust. CREMA-D [7] is a high quality visual-vocal dataset,
containing 7442 clips from 91 actors. SAVEE [11] is a male-only audio dataset
with same emotion categories with RAVDESS Dataset. TESS [9] is a female-
only audio dataset collected from two actresses whose mother languages are
both English. TESS contains 2800 audios covering the same emotion categories
mentioned above.

With four audio emotion recognition datasets incorporated together, we have
2167 samples for each of Angry, Happy and Sad emotions, 1795 samples for
Neutral, 2047 samples for Fearful, 1863 samples for Disgusted and 593 samples
for Surprised emotions.

3.2 Methods

Voice Activity Detection. Voice activity detection is a process of identifying
the presence of human speech in an audio clip [19]. The SD dataset [21] is
collected at a service desk and therefore contains background noises. In case the
background noise undermines the paralinguistic representations, we implement
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the WebRTC-VAD [1] tool to label non-speech segments from the audio before
feeding the whole pieces for feature extraction.

Transfer Learning. Transfer learning has proved effective in boosting perfor-
mance on low-resource classification tasks [42]. Under our previous assumption,
emotion features are essential indicators in escalation-level detection; hence we
expect our model to include the capability to involve emotion patterns in the
representation learning process. The emotion datasets mentioned in 3.1 are com-
bined to train the ResNet-18 backbone as the emotion recognition model. Note
that the emotion classifier and escalation level classifier share the same config-
uration for a reason. Although linear probing is much cheaper computationally,
fine-tuning all parameters of the source model achieves state-of-the-art perfor-
mance more often [10]. Therefore, we adopt full fine-tuning where all layers of
the pre-trained model are updated during the fine-tuning stage on the escalation
datasets.

Features. Automatic emotion and escalation detection has been a challenging
task for the fact that emotion can be expressed in multiple modalities [38]. In
multimodal emotion recognition, visual, audio and textual features are the most
commonly studied channels. In our task, raw Dutch audio and manually tran-
scribed texts are provided. Thus acoustic and linguistic features can be fused
to determine the escalation predictions jointly. Although more recent clustering-
based feature extraction approaches have proven instrumental in human speech
emotion recognition, e.g., adaptive normalization [15] and pitch-conditioned
text-independent feature construction [40], they may further bias our training
process due to the extremely low resource limitation. Since MFCC has been
widely used in speech emotion recognition tasks [18,20,24], we adopt MFCC as
our acoustic feature in this task.

To label the silent intervals, we first apply the WebRTC-VAD [1] to filter out
the low-energy segments. Next, MFCCs are calculated from the filtered audio
fragments. After that, the MFCCs are applied to fine-tune the emotion classifier,
which was previously pre-trained on the aggregated large-scale emotion datasets.
On top of the ResNet backbone, we also adopted the Global Average Pooling
(GAP) layer structure [25], granting us the compatibility to process the input of
variant length during the evaluation phase. According to Tang et al. [37], sim-
ply replacing fully connected layers with linear SVMs can improve classification
performance on multiple image classification tasks. Therefore, our work does not
construct an end-to-end detection system. Instead, we employ Support Vector
Machine (SVM) [25] to conduct the backend classification task.

For the textual embeddings extraction, we adopt the pre-trained multi-
lingual model distiluse-base-multilingual-cased-v1 from Universal Sen-
tence Encoder (USE) [41] from Sentence-BERT(SBERT) [34,35] to extract the
sentence-level embeddings. We also compared the Unweighted Average Recall
(UAR) metric by extracting Dutch embeddings directly and by extracting
embeddings from Dutch-to-English translation. The experiment result shows
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that the sentence embeddings from the English translation outperformed the
original Dutch transcriptions; thus, we adopted the former for textual embed-
ding extraction.

4 Experimental Results

For the Escalation Sub-challenge, we aim to build a multimodal model to deter-
mine whether the escalation level in a given conversation is low, medium or high.
UAR has been a reliable metric in evaluating emotion recognition tasks under
data imbalance constraints. So we followed the metric choice of UAR by previ-
ous work on similar settings [31,32]. This section will introduce our experiment
setup, results and several implementation details.

4.1 Feature Configuration

In the audio preprocessing stage, we first applied the open-source tool WebRTC-
VAD [1] to filter out the silent segments in the audio from the temporal domain.
The noise reduction mode of WebRTC-VAD is set to 2. Next, we extract MFCCs
from the filtered audio segments. The window length of each frame is set to
0.025 s, the window step is initialized to 0.01 s, and the window function is
hamming function. The number of mel filters is set to 256. Also, the frequency
range is 50Hz to 8,000Hz. The pre-emphasize parameter is set to 0.97. The
representation dimension is set to 512.

4.2 Model Setup

As for the emotion classification task, both the architecture and the configuration
of the representation extractor are the same with the escalation model, except
that the former is followed by a fully connected layer that maps a 128 dimension
representation to a seven dimension softmax probability vector and the latter
is followed by a linear SVM classifier of three levels. Weighted Cross-Entropy
Loss is known as capable of offsetting the negative impact of imbalanced data
distribution [3] and is set as the loss function for that reason. The optimizer is
Stochastic Gradient Descent (SGD), with the learning rate set to 0.001, weight
decay set to 1e-4, and momentum set to 0.8. The maximum training epochs
is 50, with an early stop of 5 non-improving epochs. In the fine-tuning stage,
the system configurations remain unchanged, except that the training epochs
are extended to 300, and no momentum is applied to the optimizer to reduce
overfitting.

The dimension of textual embeddings extracted from the multilingual pre-
trained model distiluse-base-multilingual-cased-v1 is 768-d [35]. In the
fusion stage of our experiment, textual embeddings will be concatenated with
the 512-d acoustic representations, forming 1280-d embeddings at the utterance
level.
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4.3 Results

Prior to fine-tuning the emotion recognition model on the escalation datasets, we
first train the ResNet-18 architecture on emotion recognition datasets to learn
emotion representations from audio. The highest UAR achieved by our emotion
recognition model is 65.01%. The model is selected as the pre-trained model to
be fine-tuned on the Escalation dataset.

To learn better escalation signals in the fine-tuning process, we introduced
three factors that may impact model performance positively. Besides fine-tuning
the pretrained emotion recognition model, VAD and acoustic-linguistic informa-
tion fusion are also tested to boost the escalation level detection ability further.
We start by analyzing whether voice activity detection will leverage the per-
formance of the development set. Then, we fine-tune the emotion recognition
model pre-trained on the four audio emotion datasets to analyze any notable
improvement. Finally, we examine whether the fusion between textual embed-
dings extracted from SBERT [34,35] and acoustic embeddings can improve the
performance.

To evaluate the effect of VAD on the prediction result, we did several con-
trolled experiments on the development set. Table 1 demonstrates the effect of
VAD on various metrics. First, we calculated features from unprocessed audio
and fed them into the embedding extractor. With acoustic embeddings alone, we
scored 0.675 on the UAR metric using the Support Vector Machines (SVM) as
the backend classifier. With all conditions and procedures remaining the same,
we added VAD to the audio pre-processing stage, filtering out non-speech voice
segments. The result on the UAR metric has increased from 0.675 to 0.710. This
shows that VAD is critical to the escalation representation learning process.

We believe that the escalation detection tasks, to some degree, share certain
advanced representations with emotion recognition tasks. [12] Thus, we also
experimented with fine-tuning parameters on the escalation dataset with the
model pre-trained on the emotion datasets. Table 2 shows the experiment results
after implementing transfer learning to our system. We have witnessed a positive
impact of VAD on our experiment results on the development set. Thus the
base experiment has been implemented with VAD applied. We can see that,
after applying the pre-trained model to the MFCC+VAD system, with acoustic
embeddings alone, the score reached 0.810 on the metric UAR, which turns out to
be a significant improvement. This also proves that emotion features can benefit
paralinguistic tasks by transfer learning. Additionally, the MFCC+VAD+PR
system may have already been stable enough that the textual embedding fusion
brings no noticeable improvement.

Besides the experiments recorded above, we also implemented various trials
involving different features, networks, and techniques. As listed in Table 3, we
recorded other meaningful experiments with convincing performance on the devel
set that could be applied to final model fusion. Other standard acoustic features
like the Log filterbank are also under experiment. Label Smoothing technique
[29] is applied on the MFCC+VAD+PR model but brings a slightly negative
impact. According to the experiment results, Voice Activity Detection has again
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Table 1. Effects of Voice Activity Detection (VAD) TE: Textual Embeddings fused.

Model Name Precision UAR F1-Score

MFCC 0.640 0.675 0.647
MFCC+VAD 0.675 0.710 0.688
MFCC+TE 0.652 0.690 0.664
MFCC+VAD+TE 0.676 0.721 0.691
Baseline Fusion [36] – 0.722 –

Table 2. Effects of fine-tuning PR: Pre-trained Emotion Recognition Model applied.

Model Name Precision UAR F1-Score

MFCC+VAD 0.675 0.710 0.688
MFCC+VAD+PR 0.807 0.810 0.788
MFCC+VAD+PR+TE 0.807 0.810 0.788
Baseline Fusion [36] – 0.722 –

Table 3. Extra Experiments. LS: Label Smoothing.

Model Name Precision UAR F1-Score

Logfbank 0.670 0.743 0.684
Logfbank+VAD 0.711 0.778 0.733
MFCC+VAD+PR+LS 0.781 0.781 0.761
MFCC+VAD+ResNet-9 0.727 0.749 0.725
Baseline Fusion [36] – 0.722 –

been proven effective in enhancing model performance on the development set.
ResNet-9 without being pre-trained is also implemented, whose classification
result is 74.9% UAR on the devel set.

To further improve our model performance, we proposed model fusion on
three models of the best performance on the development set. The fusion is
conducted in two ways, early fusion and late fusion. We also proposed two
approaches to deal with the embeddings in the early fusion stage. The first
approach is concatenating the embeddings, and the second is simply taking the
mean value of the embeddings. Both scenarios employ SVM as the classifier. As
for the late fusion, we proposed a voting mechanism among the three models’
decisions. The fusion result is shown in Table 4. By implementing late fusion, we
got the best system performed on the devel set with a UAR score of 81.5%.
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Table 4. Model Fusion. Selected models: MFCC+VAD+PR, MFCC+VAD+PR+LS,
Logfbank+VAD

Fusion Approach Precision UAR F1-Score

Concatenate 0.783 0.800 0.779
Mean 0.789 0.805 0.789
Voting 0.810 0.815 0.803

5 Discussion

Our proposed best fusion model exceeded the devel set baseline by 12.8%. It is
worth mentioning that the WebRTC-VAD system is not able to tease out every
non-speech segment. Instead, its value cast more light on removing the blank
or noisy segments at the beginning and end of an audio clip. This is reasonable
since the unsounded segments in a conversation are also meaningful information
to determine the escalation level and emotion. Dialogues would be more likely
labeled as high escalation level if the speaker is rushing through the conversation
and vice versa. Thus we agreed that a more complicated Neural-Network-based
voice activity detector may be unnecessary in this task.

The significant improvement of our system on the devel set has again
proved that emotion recognition features and paralinguistic features share cer-
tain advanced representations. Just as we mentioned in the related work part,
they benefit from each other in the transfer learning tasks. However, due to the
small scale of the training set, the overfitting problem is highly concerned. Thus
we chose ResNet-18 to train the model on a combined emotion dataset, contain-
ing 12,000+ labeled emotion clips. This architecture has also been proved to be
effective in the Escalation detection task.

For this task, we adopted Sentence-BERT [34] as the textual embeddings
extractor. We utilized the pre-trained multilingual BERT model which is capable
of handling Dutch, German, English, etc. We chose to translate the raw Dutch
text to English text before feeding them into the embedding extractor, for we did
a comparative experiment, which showed that the English textual embeddings
alone significantly outperformed the Dutch textual embeddings. The UAR on the
devel set achieved by English Embeddings alone is around 45%, whose detection
ability is very likely to be limited by the dataset scale and occasional errors in
translation. Had we have richer textual data, the linguistic embeddings should
be of more help.

An unsuccessful attempt is adding denoising into the preprocessing attempt.
Denoising should be part of the preprocessing stage since most of the collected
audios contain background noise from public areas. According to [23], they first
denoise the police body-worn audio before feature extraction, which turns out
rewarding for them in detecting conflicts from the audios. However, our attempt
does not improve the performance. Our denoised audio is agreed to be clearer in
human perception and contains weaker background noises. However, the perfor-
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mance on the devel set is significantly degraded. Our assumption is that, unlike
the police body-warn audio, which mostly contains criminality-related scenarios,
the conversation audios in TR and SD datasets happen with richer contextual
environments. The speech enhancement system might also affect the signal of
speech which might be the reason for the performance degradation.

6 Conclusions

In this paper, we proposed a multimodal solution to tackle the task of escala-
tion level detection under extremely low resource contraints. We applied Voice
Activity Detection to pre-process the escalation datasets. We also pre-trained an
emotion recognition model with ResNet backbone and fine-tune the parameters
with the escalation dataset. We also validated that the learning process of esca-
lation signals can benefit from emotion representations learning. By integrating
linguistic information in the classification process, the model can become more
stable and robust. The single best model can achieve 81.0% UAR, compared to
72.2% UAR basline. By doing the late fusion the models after fusion are able
to achieve the 81.5% UAR. Future efforts will be focusing on addressing the
over-fitting problem.
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Abstract. As the development of deep learning, neural network (NN)
based text-to-speech (TTS) that adopts deep neural networks as the
model backbone for speech synthesis, has now become the mainstream
technology for TTS. Compared to the previous TTS systems based on
concatenative synthesis and statistical parametric synthesis, the NN
based speech synthesis shows conspicuous advantages. It needs less
requirement on human pre-processing and feature development, and
brings high-quality voice in terms of both intelligibility and naturalness.
However, robust NN based speech synthesis model typically requires a
sizable set of high-quality data for training, which is expensive to collect
especially in low-resource scenarios. It is worth investigating how to take
advantage of low-quality material such as automatic speech recognition
(ASR) data which can be easily obtained compared with high-quality
TTS material. In this paper, we propose a pre-training technique frame-
work to improve the performance of low-resource speech synthesis. The
idea is to extend the training material of TTS model by using ASR
based data augmentation method. Specifically, we first build a frame-
wise phoneme classification network on the ASR dataset and extract the
semi-supervised <linguistic features, audio> paired data from large-scale
speech corpora. We then pre-train the NN based TTS acoustic model by
using the semi-supervised <linguistic features, audio> pairs. Finally, we
fine-tune the model with a small amount of available paired data. Experi-
mental results show that our proposed framework enables the TTS model
to generate more intelligible and natural speech with the same amount
of paired training data.

Keywords: Pre-training techniques · neural network · text-to-speech ·
automatic speech recognition

1 Introduction

Recent advances in neural network (NN) based text-to-speech (TTS) have sig-
nificantly improved the naturalness and quality of synthesized speech. We are
now able to generate high-quality human-like speech from given text with less
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requirement on human pre-processing and feature development [1–5]. However,
such models typically require tens of hour transcribed dataset consisting of high-
quality text and audio training pairs, which are expensive and time consuming
to collect. Requiring large amounts of data limits the overall naturalness and
applicability especially in low-resource scenarios.

A series of extended technologies have been developed to improve the data
efficiency for NN based TTS training. Most of these existing methods can be
grouped into three categories: dual transformation, transfer learning and self-
supervised/semi-supervised training. Firstly, dual transformation mainly focuses
on the dual nature of TTS and automatic speech recognition (ASR). TTS
and ASR are two dual tasks and can be leveraged together to improve each
other. Speech chain technique is presented in [6] to construct a sequence-to-
sequence model for both ASR and TTS tasks as well as a loop connection
between these two processes. The authors in [7] develop a TTS and ASR system
named LRSpeech which use the back transformation between TTS and ASR to
iteratively boost the accuracy of each other under the extremely low-resource
setting. In [8], it proposes an almost unsupervised learning method that only
leverages few hundreds of paired data and extra unpaired data for TTS and
ASR by using dual learning. Secondly, although paired text and speech data
are scarce in low-resource scenarios, it is abundant in rich-resource scenarios.
Transfer learning approaches try to implement adaptation methods and retain
the satisfactory intelligibility and naturalness. Several works attempt to help the
mapping between text and speech in low-resource languages with pre-training
the TTS models on rich-resource languages [9–12]. In order to alleviate the dif-
ference of phoneme sets between rich and low-resource languages. The work in
[13] proposes to map the embeddings between the phoneme sets from different
languages. In [14], international phonetic alphabet (IPA) is adopted to sup-
port arbitrary texts in multiple languages. Besides that, voice conversion (VC)
[15,16] is also an effective way to improve the data efficiency in low-resource TTS
training. Recent work in [17] brings significant improvements to naturalness by
combining multi-speaker modelling with data augmentation for the low-resource
speaker. This approach uses a VC model to transform speech from one speaker
to sound like speech from another, while preserving the content and prosody
of the source speaker. Finally, self-supervised/semi-supervised training strate-
gies are leveraged to enhance the language understanding or speech generation
capabilities of TTS model. For example, paper [18] aims to lower TTS systems’
reliance on high quality data by providing them the textual knowledge, which
is extracted from BERT [19] language models during training. They enrich the
textual information through feeding the linguistic features that extracted by
BERT from the same input text to the decoder as well along with the original
encoder representations. In [20], the researchers propose a semi-supervised train-
ing framework to allow Tacotron to utilize textual and acoustic knowledge con-
tained in large, publicly available text and speech corpora. It first embeds each
word in the input text into word vectors and condition the Tacotron encoder on
them. Then an unpaired speech corpus is used to pre-train the Tacotron decoder
in the acoustic domain. Finally, the model is fine-tuned using available paired
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data. An unsupervised pre-training mechanism that uses Vector-Quantization
Variational-Autoencoder (VQ-VAE) [21] to extract the unsupervised linguistic
units from the untranscribed speech is investigated in [22]. More recently, an
unsupervised TTS system based on an alignment module that outputs pseudo-
text and another synthesis module that uses pseudo-text for training and real
text for inference, is presented in [23].

The motivation of this work is to develop novel techniques to alleviate the
data demand for training NN based TTS. We propose a semi-supervised pre-
training technique framework to improve the performance of speech synthesis
by extending the training material of TTS model with ASR based data augmen-
tation. Specifically, we first build a frame-wise phoneme classification network
on ASR dataset and extract the semi-supervised <linguistic features, audio>
paired data from large-scale speech corpora. Then, we pre-train the NN based
TTS acoustic model by using the semi-supervised <linguistic features, audio>
pairs. Finally, we fine-tune the model with a small amount of available paired
data.

It should be noticed that similar semi-supervised pre-training work has been
related in [20]. However, our work is different in several ways, constituting the
main contributions of our work. Firstly, the semi-supervised <linguistic features,
audio> paired data for pre-training TTS model are extracted from a frame-wise
phoneme classification network, which is built from the beginning based on the
ASR dataset. It makes us possible to pre-train the entire TTS acoustic model,
while the encoder and decoder are separately pre-trained in [20]. Secondly, the
acoustic model of TTS system implemented in our work is different. We choose
to use AdaSpeech [5] which involves the adaptive custom voice technique by
inserting speaker embedding as the conditional information. Finally, we investi-
gate and analyze the effectiveness of building low-resource language TTS systems
with the help of semi-supervised pre-training on the rich-resource language.

The rest of this paper is organized as follows: In Sect. 2, we briefly review the
architecture of TTS model used in this work. In Sect. 3, our proposed novel tech-
niques to improve the performance of low-resource TTS are described. Section 4
shows our experimental setups and detailed results on Mandarin and Chinese
Dialects tasks. Several conclusions are further drawn in Sect. 5.

2 TTS Model

As the development of deep learning, NN based TTS that adopts deep neu-
ral networks as the model backbone for speech synthesis, has now become the
mainstream technology for TTS. Compared to the previous TTS systems based
on concatenative synthesis and statistical parametric synthesis, the NN based
speech synthesis shows conspicuous advantages. It needs less requirement on
human pre-processing and feature development, and brings high-quality voice in
terms of both intelligibility and naturalness. A NN based TTS system often con-
sists of three basic components: a text analysis module, an acoustic model (abbr.
TTS-AM), and a vocoder. The text analysis module converts a text sequence
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into the linguistic features, and then TTS-AM transforms linguistic features to
the acoustic features, finally the vocoder synthesizes the waveform based on the
acoustic features.

2.1 Text Analysis Module

In the TTS system, the text analysis module has an important influence on the
intelligibility and naturalness of synthesized speech. The typical text analysis
module in a Chinese TTS system consists of text normalization (TN), Chinese
word segmentation (CWS), part-of-speech (POS) tagging, grapheme-to-phoneme
(G2P) conversion, and prosody prediction. It extracts various linguistic features
from the raw text, aiming to provide enough information for training the TTS-
AM.

2.2 Acoustic Model

In this work, we choose to use AdaSpeech, which is a non-autoregressive model
based on the transformer architecture. The basic model backbone consists of a
phoneme encoder, a spectrogram decoder, an acoustic condition modeling that
captures the diverse acoustic conditions of speech in speaker level, utterance level
and phoneme level. And a variance adaptor which provides variance information
including duration, pitch and energy into the phoneme hidden sequence. The
decoder generates spectrogram features in parallel from the predicted duration
and other information.

2.3 Vocoder

The vocoder in our work is based on LPCNet [24–26]. It introduces conventional
digital signal processing into neural networks, and uses linear prediction coeffi-
cients to calculate the next waveform point while leveraging a lightweight RNN
to compute the residual. This makes it possible to match the quality of state-
of-the art neural synthesis systems with fewer neurons, significantly reducing
the complexity. The LPCNet is a good compromise between quality and infer-
ence speed for a TTS system. As the LPCNet uses bark-frequency cepstrum as
input, we modify the AdaSpeech to generate bark-frequency cepstrum as output.
No external speaker information, such as speaker embedding, is referred in the
building of LPCNet model.

3 The Proposed Approach

In this section, the proposed semi-supervised pre-training framework on TTS
modeling is detailed. The Illustration of our general framework is shown in
Fig. 1. We first describe the structure of frame-wise phoneme classification model
and the alignment module that greedily proposes a pairing relationship between
speech utterances and phoneme transcripts. After that, the pre-training and
fine-tuning procedures of our method are presented.
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Fig. 1. Illustration of the proposed semi-supervised pre-training framework on TTS
modeling.

3.1 Frame-Wise Phoneme Classification

DFSMN Model. DFSMN is an improved FSMN architecture by introduc-
ing the skip connections and the memory strides [27]. The DFSMN component
consists of four parts: a ReLU layer, a linear projection layer, a memory block
and a skip connection from the bottom memory block, except for the first one
that without the skip connection from the bottom layer. By adding the skip
connections between the memory blocks of DFSMN components, the output of
the bottom layer memory block can directly flow to the upper layer. During
back-propagation, the gradients of higher layer can also be assigned directly to
lower layer that help to overcome the gradient vanishing problem. Since the
information of adjacent frames in speech signals always have strong redundancy
due to the overlap. The strides for look-back and look-ahead are used to help
the DFSMN layer remove the redundancy in adjacent acoustic frames. DFSMN
is able to model the long-term dependency in sequential signals while without
using recurrent feedback. In practice, DFSMN models usually contain DFSMN
layers around ten to twenty. We follow the model topology in [28] and implement
a DFSMN with ten DFSMN layers followed by two fully-connected ReLU layers,
a linear layer and a softmax output layer. To avoid the mismatch in G2P conver-
sion, we share the same phoneme set between phoneme classification and TTS
tasks. We adopt IPA as described in [14] to support arbitrary texts in Mandarin
and multiple Chinese Dialects evaluations in our work.

Alignment Module. After training DFSMN based phoneme classification
model, the semi-supervised paired data for pre-training TTS model has to be
prepared. Pseudo phoneme transcript of the training set is first generated by
greedy decoding over the output of DFSMN. Instead of extracting the phoneme
duration with soft attention mechanism as described in [20,22], the alignment
between pseudo phoneme transcript and speech sequence is derived from a forced
alignment procedure computed by Kaldi [29] with a phonetic decision tree. This
improves the alignment accuracy and reduces the information gap between the
model input and output.
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3.2 Semi-supervised Pre-training

In the baseline AdaSpeech, the model should simultaneously learn the textual
representations, acoustic representations, and the alignment between them. The
encoder takes a source phoneme text as input and produces sequential represen-
tations of it. The decoder is then conditioned on the phoneme representations
to generate corresponding acoustic representations, which are then converted to
waveforms. [20] proposes two types of pre-training methods to utilize the exter-
nal textual and the acoustic information. For textual representations, they pre-
train encoder by the external word-vectors. For acoustic representations, they
pre-train the decoder by untranscribed speech. Although [20] shows that the pro-
posed semi-supervised pre-training helps the model synthesizes more intelligible
speech, it finds that pre-training the encoder and decoder separately at the same
time does not bring further improvement than only pre-training the decoder.
However, there is a mismatch between pre-training only the decoder and fine-
tuning the whole model. To avoid potential error introduced by this mismatch
and further improve the data efficiency by using only speech, we instead use the
semi-supervised paired data generated by the frame-wise phoneme classification
model as described in Sect. 3.1. It helps to alleviate the mismatch problem and
makes pre-training the entire model possible.

3.3 AdaSpeech Fine-Tuning

The AdaSpeech in pre-trained model is applied as a multi-speaker TTS-AM,
which means we do not use the adaptive custom voice technique as described
in [5]. After that, the AdaSpeech is fine-tuned with some high-quality paired
speech data from the target speaker. In this procedure, the inputs of the model
are phoneme sequences derived from the normalized text.

4 Experiments

In this section, we evaluate the performance of the proposed approach on two
type of TTS tasks including single-speaker Mandarin dataset and multi-speaker
Chinese Dialects dataset. For both two experiments, we use a 3000-hour Man-
darin dataset which consists of 1000-hour low-quality transcribed ASR data
(1000 h-TD) and 2000-hour low-quality untranscribed data (2000 h-UTD) for
pre-training. The data are collected from many domains, such as voice search,
conversation, video and the sample rate of the data is 16 kHz.

In the ASR setup, waveform signal is analyzed using a 25-ms Hamming win-
dow with a 10-ms fixed frame rate. 40-dimensional filterbank features are used for
training DFSMN phoneme classification models. The features are pre-processed
with the global mean and variance normalization (MVN) algorithm. We use
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11 frames (5-1-5) of filter-banks as the input features of neural networks. The
DFSMNs model stacked with 1 Relu Layer (2048 hidden nodes), 10 DFSMN lay-
ers (2048 memory block size, 512 projection size, 10*[2048-512]), 4 ReLU layers
(2*2048-1024-512) and 1 Softmax output layer.

In the TTS setup, 20-dimensional features, which consist of 18 Bark-scale
cepstral coefficients and 2 pitch parameters (period, correlation), are extracted
from 16k audio using a 25-ms Hamming window with a 10-ms fixed frame rate.
The TTS-AM of AdaSpeech consists of 6 feed-forward Transformer blocks for the
phoneme encoder and the decoder. The hidden dimension of phoneme embed-
ding, speaker embedding and self-attention are all set to 384. The number of
attention heads is 4 in the phoneme encoder and the decoder. The pre-train and
fine-tune models are separately trained in a distributed manner using stochastic
gradient descent (SGD) optimization on 16 GPUs and 4 GPUs.

4.1 Single-Speaker Mandarin Task

Experimental Setup. In the single-speaker Mandarin task, we evaluate our
method with the Chinese Standard Mandarin Speech Corpus (CSMSC). CSMSC
has 10,000 recorded sentences read by a female speaker, totaling 12 h of natural
speech with phoneme-level text grid annotations and text transcriptions. The
corpus is randomly partitioned into non-overlapping training, development and
test sets with 9000, 800 and 200 sentences respectively. We conduct several exper-
imental setups to investigate the influence of semi-supervised pre-training. All
parameters of the TTS-AM are directly updated during the fine-tuning stage.
For better comparing the efficiency of pre-training on TTS-AM, we use the same
LPCNet which is trained on full 12 h CSMSC. The performance of the overall
quality samples is evaluated using the mean opinion score (MOS). Listeners are
asked to rate the overall naturalness and prosodic appropriateness of samples on
a scale from 1 and 5. Then these synthesized samples are mixed with real speech
samples and presented to listeners independently in random order. 15 raters who
are native Mandarin speakers are included in the subjective test.

Performance of Phoneme Classification Models The phoneme error rate
(PER) performance of using different amounts of low-quality transcribed data to
build phoneme classification models is shown in Table 1. We evaluate with three
test sets, including the CSMSC development set (Test-c), a 5 h dataset that
randomly sampled from the 1000 h-TD (Test-i) and exists in each training data,
a 4 h dataset that randomly sampled from the 2000 h-UTD which never exists
in the training sets (Test-o). It can be observed that increasing the amount
of training data yields a large improvement on the PER. To better evaluate
the relationship between PER and pre-training efficiency, we use the recognized
phoneme transcripts of all training sets for alignment to generate the semi-
supervised paired data.
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Table 1. PER% performance of phoneme classification models on three evaluation
tasks.

Training Data Size Test-c Test-i Test-o

100 h 9.3 18.8 26.9
1000 h 6.6 12.2 15.4

Results on Different Phoneme Classification Models In this section, the
results of implementing different phoneme classification models to generate semi-
supervised data for TTS-AM pre-training are presented. The mean MOS scores
on CSMSC test set using two different DFSMN models are gradually explored.
DFSMN-1000 h indicates that we use the 1000 h-TD to train the DFSMN model.
DFSMN-100 h means the DFSMN model is built with 100 h subset of the 1000 h-
TD. When generating the semi-supervised data for pre-training TTS-AM, we
choose to use the same 100 h subset data. The results shown in Table 2 con-
firm that our proposed semi-supervised pre-training method brings conspicuous
improvement on the MOS especially when we utilize only 15min paired data.
Besides that, the MOS on DFSMN-1000 h pre-trained model is slightly better
then the DFSMN-100 h pre-trained model. It indicates that achieving higher
accuracy semi-supervised paired data is also a feasible way for improving the
intelligibility and naturalness of synthesized speech. In the next experiment, we
choose DFSMN-1000 h model to generate all semi-supervised data.

Table 2. The mean MOS on CSMSC of using different phoneme classification models
to generate TTS-AM pre-training data.

Fine-tuning Data Size Without Pre-training Pre-trained Model Ground Truth
DFSMN-100 h DFSMN-1000 h

15 min 2.80 3.55 3.70 4.71
2 h 3.99 4.09 4.03
10 h 4.11 4.05 4.16

Results on Different Amounts of Pre-training Data. In this experiment,
we compare the results of using different amounts of data for pre-training. We uti-
lize Size-N for labelling the data size used in TTS-AM pre-training. Thus, Size-
100 h indicates that we use the same 100 h subset data as in above experiment.
Size-1000 h stands that we use the whole 1000 h-TD for TTS-AM pre-training.
Size-3000 h means we expand the dataset for pre-training TTS-AM by including
the 2000 h-UTD. As shown in Table 3, several conclusions can be drawn from
the results. Firstly, the results suggest that expanding the pre-training data size
directly helps the speech synthesis performance. The MOS of fine-tuning Size-
3000 h TTS-AM with 15min paired data is similar with directly training on 2 h
paired data. Secondly, it seems that the difference between using pre-training
model and without pre-trained model is small when enough paired TTS data
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Table 3. The mean MOS on CSMSC of using different amounts of pre-training data.

Fine-tuning
Data Size

Without
Pre-training

Pre-train Data Size Ground Truth

Size-100 h Size-1000 h Size-3000 h

15min 2.80 3.70 3.83 3.93 4.71
2 h 3.99 4.03 4.09 4.01
10 h 4.11 4.16 4.10 4.08

has been involved in the building process. For example, when fine-tuning on 10 h
TTS data, we observe no conspicuous improvement on the MOS evaluation.

4.2 Multi-speaker Chinese Dialects Task

Experimental Setup. In the multi-speaker Chinese Dialects task, we evaluate
our method with the two Chinese Dialect speech corpuses including Shanghainese
and Cantonese. The Shanghainese corpus consists of 3 female speakers, each has
1 h recorded speech. The Cantonese corpus has 2 female speakers, each also
has 1 h recorded speech. The pre-trained TTS-AM model used in this task is
trained with 3000 h Mandarin dataset. For better comparison, the fine-tuning
procedure is separately utilized for each speaker. And we build the speaker-
dependent LPCNet to convert acoustic features into wave. We also use the MOS
score to evaluate the performance of overall quality samples and share the same
rating rules as in above experiments. We find 15 native Shanghainese speakers
and 15 native Cantonese speakers to implement the subjective test.

Results on Low-Resource Languages Table 4 and Table 5 show the TTS
performance of our proposed method on low-resource Shanghainese and Can-
tonese Corpuses. We investigate the MOS on fine-tuning with 15min and 1 h
datasets. It is obvious that the pre-training on rich-resource Mandarin bene-
fits the building of low-resource Chinese Dialects TTS-AMs. For example, when
conducting experiment on 15min dataset, the mean MOS score of Shanghainese
increases from 2.97 to 3.30 and the mean MOS score of Cantonese increases

Table 4. The mean MOS on Shanghainese.

Fine-tuning Data Size Without Pre-training Pre-trained Model Ground Truth

15min 2.97 3.30 4.30
1 h 3.39 3.51

Table 5. The mean MOS on Cantonese.

Fine-tuning Data Size Without Pre-training Pre-trained Model Ground Truth

15min 2.66 3.09 4.53
1 h 3.54 3.99



Pre-training Techniques for Improving Text-to-Speech Synthesis 171

from 2.66 to 3.09. With the help of proposed technique, we can generate more
intelligible and natural speech with the same amount of low-resource data.

5 Conclusions

In this paper, a novel semi-supervised pre-training technique framework that
extends the training material of TTS model by using ASR based data aug-
mentation method is proposed to improve the performance of speech synthesis.
We first build a frame-wise phoneme classification network on the ASR dataset
and extract the semi-supervised <linguistic features, audio> paired data from
large-scale speech corpora. After that, the semi-supervised <linguistic features,
audio> pairs is used to pre-train the NN based TTS acoustic model. Finally,
we fine-tune the model with a small amount of available paired data. Exper-
imental results show that our proposed framework can benefits the building
of low-resource TTS system by implementing semi-supervised pre-training tech-
nique. It enables the TTS model to generate more intelligible and natural speech
with the same amount of paired training data.
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Abstract. Speech emotion recognition (SER) is the task of automat-
ically identifying human emotions from the analysis of utterances. In
practical applications, the task is often affected by subsidiary informa-
tion, such as speaker or phoneme information. Traditional domain adap-
tation approaches are often applied to remove unwanted domain-specific
knowledge, but often unavoidably contribute to the loss of useful cate-
gorical information. In this paper, we proposed a time-frequency atten-
tion mechanism based on multi-task learning (MTL). This uses its own
content information to obtain self attention in time and channel dimen-
sions, and obtain weight knowledge in the frequency dimension through
domain information extracted from MTL. We conduct extensive evalua-
tions on the IEMOCAP benchmark to assess the effectiveness of the pro-
posed representation. Results demonstrate a recognition performance of
73.24% weighted accuracy (WA) and 73.18% unweighted accuracy (UA)
over four emotions, outperforming the baseline by about 4%.

Keywords: speech emotion recognition · convolutional neural
network · multi-task learning · attention mechanism

1 Introduction

Speech emotion recognition (SER) involves the automatic identification of
human emotions from the analysis of spoken utterances. The field has drawn
increasing research interest in recent years, largely due to the rapid growth of
speech-based human-computer interaction applications, such as intelligent ser-
vice robotics, automated call centres, remote education and so on.

Traditional SER techniques typically follow a conventional pattern recogni-
tion pipeline. This mainly focuses on robust and discriminative feature extrac-
tion, an effective classifier, and often a combination of both. More recently, SER
methods based on deep neural networks (DNN), convolutional neural networks
(CNN) [12,20], and recurrent neural networks (RNN) [11] have been widely pro-
posed and evaluated.
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Despite good progress, several issues remain with current SER research.
Speech emotion is generally psychological in nature, and as such may be affected
by the factors like speaker characteristics, utterance content, and language vari-
ations. Many researchers use text data in conjunction with speech data infor-
mation – and it is known that incorporating text information greatly improves
SER accuracy [6,18,19]. Therefore, several domain-adaptation and multi-task
learning (MTL) methods have been proposed to utilize emotion information
from multiple corpora, and to address data scarcity issues [1–4,17,24]. In [7],
Gao et al. try to propose a domain adversarial training method to cope with
the non-affective information during feature extraction. Gat et al. [8] propose a
gradient-based adversary learning framework which normalize speaker charac-
teristics from the feature representation. However, in the elimination of domain
specific information, part of the wanted emotional information is inevitably also
lost.

In order to make use of subsidiary information, while retaining emotional
information as much as possible, we considered the use of an attention module.
Squeeze-and-Excitation Networks [10] design an attention module in the channel
dimension. Similar methods can also be applied to other dimensions [15,22,25].
In [27], Zou et al. propose SER system using multi-level acoustic information
with a co-attention module. Meanwhile we were inspired from the image pro-
cessing domain by work from Hou et al. [9] who extended the SE module to
H and W dimensions to better exploit longer or wider parts of an image. In
addition we note that Fan et al. [5] proposed a frequency attention module for
SER. Furthermore, they used gender information to calculate attention weights,
although only apply this at the end of the feature extractor.

In this paper, we design two attention modules to exploit different informa-
tion in the dimensions of frequency and time, effectively extending [5] into more
dimensions. In addition, we make use of gender information within the network.

We then evaluate the effectiveness of the proposed framework through exten-
sive experiments on IEMOCAP. The results demonstrate recognition perfor-
mance of 73.24% weighted accuracy (WA) and 73.18% unweighted accuracy
(UA) over four emotions, outperforming the state-of-the-art method by about
5%.

The rest of paper is organized as follows. We describe the architecture of
the proposed framework in Sect. 2 and expound the methods used in Sect. 3. A
detailed discussion of our experiments and performance evaluation is reported
in Sect. 4 before we conclude our work in Sect. 5.

2 Overview of the Speech Emotion Recognition
Architecture

Modern CNN/DNN based SER methods typically input the spectrum of the
speech signal, but we note that this differs in a fundamental way from a tra-
ditional image recognition task in which the two dimensions of an image are
often functionally equivalent. By contrast, the semantic information encoded in
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Fig. 1. The above part is gender classification network, and the below part is emotion
recognition network. The two parts are connected by attention module. In training,
the loss functions of gender and emotion are calculated respectively, and then train the
whole network together.

the two spectrogram dimensions are highly dissimilar. SER incorporates a lot
of subsidiary information (or noise), and this has different effects on the time
and frequency axes of the spectrogram. For example, in the time dimension,
individual speakers might have different ways or speeds of speaking as emotion
changes, but it is difficult for us to find rules to exploit this because their speech
content also changes, and this has a great impact on our task. Therefore, in the
time dimension, it makes sense to pay more attention to the phonetic content,
that is, the phone information.

In the frequency dimension, by contrast, individual speakers will have utter-
ances characterised by dissimilar frequency distributions, with the gender of
the speaker often being an important factor. For example, the predominant fre-
quency band occupied by male voices tends to be lower than that of female
voices [14]. When we operate on the frequency dimension, it makes more sense
to take account of the gender identity of the speaker.

In order to use this kind of information in the frequency domain, we designed
a network structure similar to multi-task learning. Two branches in the network
are used to extract gender information, and emotion information respectively.

Given input utterance data, we load this into two parallel networks, one of
which is used as an emotion feature extractor, and uses emotion label training,
the other is used as gender feature extractor and uses gender label training. In
the former network, we designed two different attention modules, one uses its
own features in time and channel dimension, and the other uses a gender feature
in frequency dimension contributed by the first network. Based on the previous
analysis, we have adopted different methods to calculate the attention weight
of these two attention modules. In terms of time and channel dimensions, our
focus on the current feature is basically related to the content of that location.
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Therefore, we use the feature itself to calculate the attention weight and get the
self-attention module. In the frequency dimension, which frequencies are con-
cerned about the current features has a lot to do with the speaker information
of the speech. Therefore, we use the corresponding gender information to calcu-
late the attention weight and get the joint-attention module. The structure of
the whole model is shown in Fig. 1.

We employ a VGG5 model for our network backbone. The gender feature
extractor contains five convolutional layers followed by global average pooling
(GAP) to downsample the feature size to 1 × 1. FC and Softmax layers are then
utilized to predict the final gender label, and a cross-entropy loss function is
used. The structure of the emotion feature extractor and classifier are basically
the same as in the gender part, except that two kinds of attention layers are
added between batch-norm and ReLU. The detailed parameters are described in
Sect. 4.2.

3 Methods

3.1 TC Self-attention Module

Strip pooling [9] is an improvement of the generic SE module. It is intended to
identify the uneven length and width of image regions. For the SER task, we
can use a similar structure. For the feature map x ∈ R

C×T×F , we know that
the content of speech information will change in the T dimension. For different
phonemes, we want to have different channel attention weights for this part. We
thus first apply an average pooling in the F dimension, and then use a 1 × 1
convolution layer to reduce the feature to D dimensions.

Fig. 2. Structure of TC self-Attention module

xFP
i,j =

1
F

∑

0<k≤F

xi,j,k

xD = Conv1×1
C→D(xFP )

(1)
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This amounts to classifying the feature data at each time point, so that each
time point can derive a D-dimensional feature vector. The feature vector changes
with time and aims to encapsulate the phoneme information at that time point.
Then we use a 1×1 convolution layer to change it back to the C dimension,
and use a sigmoid to map the value between 0 and 1. Hence we derive a channel
dimension attention weight at each time point according to the current phoneme
information.

xatt = Sigmoid(Conv1×1
D→C(x

D))

xout = x × Expand(xatt)
(2)

The structure of the whole TC self-attention pooling is shown in Fig. 2

3.2 F Domain-Attention Module

In the frequency dimension, the performance of different gender speakers is very
different. Therefore, we hope to use the speaker’s gender information to add
attention system to the frequency dimension.

In order to obtain gender information, we add a frequency feature extractor
and a classifier, and the parameter setting of the feature extractor’s convolution
layer is completely consistent with that of the emotional feature extractor, so
that the emotional features and gender features on the same layer can correspond
in the frequency dimension.

Fig. 3. Structure of the F domain-Attention module.

During experimental evaluation, we find that the accuracy of the gender
classification exceeds 95%, so we are confident that its features carry useful
gender information.

The influence of gender on frequency dimension is very different from that of
the phoneme on the time dimension, so the attention layer structure we designed



178 Y.-X. Xi et al.

is also different. The degree of attention paid to any frequency location should
be determined by the gender information of the whole sentence, so we should use
gender information across the whole (single speaker) utterance length to obtain
the attention weight for the frequency dimension.

For gender feature xgen ∈ R
C×T×F , we first perform average pooling in the

C and T dimensions, then two fully connected layers are used to reduce it to D
dimensions and restore it back to the F dimension. Again we use a sigmoid to
map the value between 0 and 1. In this way, the attention weight in F dimensions
is obtained through gender information.

xTCP
k =

1
C × T

∑

0<i≤C
0<j≤T

xgen
i,j,k

xF = FC2(ReLU(FC1(xTCP )))

xatt = Sigmoid(xF )

(3)

By multiplying the weight and emotional features, we can focus on different
frequency bands for different gender speech segments as follows:

xout = xemo × Expand(xatt) (4)

The structure of the whole F domain-attention pooling framework is illustrated
in Fig. 3.

4 Experiments

4.1 Dataset and Acoustic Features

We use the Interactive Emotional Dyadic Motion Capture database (IEMOCAP)
for all experiments. IEMOCAP contains approximately 12 h of audiovisual data
recorded by 10 skilled actors. The entire database is divided into 5 sections,
each containing one male and one female actor. According to the recording sce-
narios, it can be further subdivided into an improvised speech section, and a
scripted speech section. Each utterance in the dataset is annotated by multiple
annotators into 8 emotion labels. Following previous works, we choose 4 emo-
tion types for our experiments (namely neutral, happy, angry and sad) from the
improvised speech for study – since scripted data may contain undesired contex-
tual information. Adopting the methodology of previous works, we performed a
5-fold cross-validation using a leave-one-out strategy. In each training process,
8 speakers are used as training data, one of the remaining speakers is used as
verification data and the final speaker as the test data.

Magnitude spectrograms are utilized as input features, extracted over 40ms
Hamming windows with a 10ms shift between windows and an FFT size of 1600
points. Then 0–4 kHz spectrograms are utilized since human vocal expression is
thought to be mainly located in this frequency range [14]. The speech utterances
are cut into 2 s portions with 1 s overlap, and zero-padding applied for utterances



A T-F Attention Mechanism for SER 179

Table 1. Detailed network parameters

Gender network Emotion network

Conv(16@3*3)+BN Conv(16@3*3)+BN

– TC-A(16,2) + F-A(400, 40)

ReLU+Maxpool(2,2) ReLU+Maxpool(2,2)

Conv(32@3*3)+BN Conv(32@3*3)+BN

– TC-A(32,4) + F-A(200,20)

ReLU+Maxpool(2,2) ReLU+Maxpool(2,2)

Conv(48@3*3)+BN Conv(48@3*3)+BN

– TC-A(48,8) + F-A(100,20)

ReLU+Maxpool(2,2) ReLU+Maxpool(2,2)

Conv(64@3*3)+BN Conv(64@3*3)+BN

– TC-A(64,16) + F-A(50,16)

ReLU ReLU

Conv(80@3*3)+BN Conv(80@3*3)+BN

– TC-A(80,16) + F-A(50,16)

ReLU+Maxpool(2,2) ReLU+Maxpool(2,2)

Global Avgpooling Global Avgpooling

FC(80,2) FC(80,4)

shorter than 2 s. Thus the input spectrograms have a size of 400 × 200. For each
spectrogram, we then apply mu-law expansion.

The SER performance is evaluated using the standard metrics: Weighted
Accuracy (WA), which is the classification accuracy of all utterances, Unweighted
Accuracy (UA), which averages the accuracy of each individual emotion class,
and F1-score.

4.2 System Description

As noted, we adopt a VGG5 model for our experiments, with detailed param-
eters of the network listed in Table 1. Conv(C@K) represents the convolution
layer with output channel C and kernel size K. TC-A(C, D) means our TC self-
attention module where C is the input channel, D is the middle layer channel.
F-A(F, D) means our F domain-attention module where F is input frequency,
D is middle layer frequency. Maxpool(2,2) expresses maxpooling, and we use
kernel size K and stride S. FC(Cin,Cout) denotes a fully connected layer with
input channel Cin and output channel Cout.

Baseline. There is no attention module in the baseline network, so it does not
need to use gender knowledge, and only use emotion labels to train the emotion
network.

The CNN training makes use of the PyTorch deep learning framework. The
optimization method is standard Stochastic Gradient Descent (SGD) with a
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mini-batch size of 128. We use a Nesterov momentum of 0.9 and a weight decay
of 0.0001. The CNNs are trained over 40 epochs with initial learning rate of 0.05,
reducing by a factor of 10 at the 21, 31 and 41 epochs.

TC Self-attention Module. In this variant, only the TC self-attention module
is added to the network, and thus gender information is not needed. We add the
TC self attention module after layer five. In fact, we did many experiments to
study in which layers it is best for the module to be located. Some of those
results are listed in Table 2.

Table 2. Accuracy achieved with the TC self-attention module inserted after different
layers (as numbered).

Methods WA UA F1-score

Baseline 68.53% 62.09% 59.03%

TC-A module12 69.42% 65.13% 61.22%

TC-A module45 69.43% 66.24% 62.10%
TC-A module234 70.01% 65.37% 61.58%

TC-A module12345 69.64% 64.07% 61.17%

SE module234 69.43% 62.38% 60.87%

It can be seen from the table that the TC-A module is generally beneficial
for SER. After much experimentation, we conclude that adding two or three
TC-A modules to the network has a better effect, which may be due to the
consequence of the improved matching of network parameters and task data. We
also experimented with the traditional SE module, and found that the proposed
TC-A module performs better.

F Domain-Attention Module. In the F-A module, we need to incorporate
gender information when training the network. We thus combine gender and
emotional losses:

Loss = Lossemo + λLossgen (5)

In the experiment, the value of λ is set to 1. As in Sect. 4.2, we conducted many
experiments to explore the usage location of F-A modules. Some of those results
are listed in Table 3. From this we can see that inserting the F-A module after
the final two convolution layers achieves the best performance.

Table 3. Accuracy of F domain-attention module inserted after different convolutional
layers (as numbered).

Methods WA UA F1-score

F-A module12 69.42% 65.13% 62.32%

F-A module45 71.04% 67.87% 63.20%
F-A module5 70.46% 66.41% 63.09%
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Time-Frequency Attention Mechanism. We next integrated the two kinds
of attention modules and repeated our experimental evaluation. The results,
summarised in Table 4, indicate that combining both TC-A and F-A (at the 4th
and 5th layers respectively) achieves the best performance.

Table 4. The best results achieved by using two attention modules separately and
together.

Methods WA UA F1-score

TC-A module 70.01% 66.24% 62.10%
F-A module 71.04% 67.87% 63.20%
TF-A module 73.24% 73.18% 65.39%

Fig. 4. Confusion matrices for the baseline method (left) and our TF-A module (right).

We also present confusion matrices for the baseline and combined TF-A mod-
ule in Fig. 4. This shows that the proposed method can improve the accuracy of
all kinds of emotion categories, especially happy and angry, which are charac-
terised by less data – thus the improvement in UA is greater than in WA. The
two emotional expressions of happy and angry are relatively intense, which may
explain why the proposed attention mechanism is able to perform so well.

Comparison to State-of-the-Art Systems We compare the proposed TF-A
model to the state-of-the-art published results in Table 5. Due to the existence
of many test methods which use IEMOCAP in different ways, we only listed
results which adopted a similar evaluation methodology as in our tests. Some
experiments were evaluated using WA and UA, namely LSTM-ELM [20], CNN-
Att [12], DED [26], NAS [23], co-att [27]. Among these models, the proposed
time-frequency attention mechanism outperforms other, more complex, systems.
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In addition, we also found some experimental results using f1 score for com-
parison with our results shown in Table 6.

Table 5. Accuracy comparison with existing models.

Model WA UA

LSTM-ELM [20] 62.85% 63.89%
CNN-Att [12] 70.18% 66.38 %
DED [26] 69.0% 70.1%
NAS [23] 70.54% 56.94%
co-att [27] 69.80% 71.05%
Proposed TF-A 73.24% 73.18%

Table 6. Accuracy comparison with existing models.

Model F1-score

ICON [21] 63.0%
MCED [13] 60.1%
COPYPASTE [16] 63.78
Proposed TF-A 65.39%

5 Conclusion

In this paper, we proposed a time-frequency attention mechanism for the SER
task. In order to better utilize both phone information and gender information
in speech, we designed two different attention modules for time and frequency.
We also used a structure similar to multi task learning, and built an additional
network branch to obtain the domain information – which comprises only a sim-
ple gender indication. In experiments using the IEMOCAP dataset, we demon-
strate good performance. In our future research, we aim to design more complex
systems, which can use speaker and other domain information, or in turn use
emotional information to help speaker classification.
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Abstract. The investigation of Mandarin prosody has been focusing on the
suprasegmental characteristics of lexical tones in previous studies, the understand-
ing of Mandarin sentence prosody, on the other hand, is still limited. To bridge
this gap, this study probed the prosodic features of Mandarin tag questions in
comparison with those from the declarative counterparts. The aim was to verify
the hypothesis that the statement parts in the tag questions would be prosodi-
cally comparable with the declarative counterparts, whereas the tag “dui bu dui?”
(analogous to English question tags e.g. “is it, doesn’t it?”), being an interrogative
marker, would show focal characteristics. 20 adult Mandarin speakers recorded
12 Mandarin sentences (6 tag questions + 6 declarative counterparts); the pitch
fluctuation scale, duration ratio, and intensity ratio of which were extracted using
Mini Speech Lab (Zhu & Shi, 2020) to compare the focal differences between
the two types of Mandarin sentences. The statement parts in the tag questions
exhibited focal characteristics similar to Mandarin general questions, while the
tag “dui bu dui?” showed the characteristics of post-focal compression. These
findings were at odds with our hypothesis. Results of the current study suggested
that the focal positions ofMandarin questions might not be consistently associated
with the interrogative markers as previous study would suggest, but are contingent
upon the syntax-semantics of the corresponding utterances.

Keywords: Acoustics of prosody ·Mandarin tag questions ·Mandarin
declarative sentences · Syntax-semantics

1 Introduction

Prosody is concerned with suprasegmental properties such as tone, intonation, rhythm,
and stress, which are used to express different pragmatic, linguistic, emotional, and
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idiosyncratic functions (Cutler & Isard 1980). Mandarin is a tonal language, and the
acoustic features of its four lexical tones had drawn much attention from the standpoints
of either L1 or L2 acquisition. Nonetheless, prosody at sentence level also plays a critical
role in Mandarin as it serves as a landmark differentiating various utterance functions,
e.g. interrogative, exclamatory and declarative etc. The overlap between lexical tone
and sentence prosody contributes to the complexity of Mandarin suprasegmental char-
acteristics, yet it is crucial to pay special attention to sentence prosody in relation to its
syntactic-semantic function (Hsu & Xu 2020; Lin 2020; Shen 1989; Wang et al., 2018).
To date, research focusing on Mandarin sentence prosody is still limited compared to
that on tones, and extant literature is primarily concerned with the prosody of declara-
tive statements or general/wh- questions (Liu et al. 2006; Hsu & Xu 2020; Shen 1989).
The empirical investigation of other types of Mandarin sentences is by far scarce and
needs to be carried out to enrich the holistic understanding of Mandarin prosody and its
interaction with syntax-semantics.

To bridge this gap, the current study probes the prosodic features of a rarely dis-
cussed type of Mandarin tag questions (henceforth TQs) consisting of a statement and
an interrogative phrase dui bu dui? (yes or no?), which bear some syntactic resemblance
with English tag questions, e.g., “It is going to stop (statement), isn’t it (interrogation)?”.
Shao (1996: p. 123) delineated three basic characteristics of dui bu duiMandarin TQs: 1)
the tag dui bu dui? cannot be used without the preceding statement; 2) the interrogative
mood is constituted solely by the tag dui bu dui?; 3) the answers to TQs have to be
either yes or no. As such, the source of information stems from the statement, and the
interrogative mood is expressed via the tag “dui bu dui?”. It had been argued that the
interrogative mood of Mandarin TQs could be reduced inasmuch as questioners might
already have an anticipatory positive answer for the content being inquired (Yan 2017:
p. 77), yet this argument was primarily drawn from impressionistic speculations, and
empirical evidence needs to be replenished to verify if the deduction holds true.

It had been well documented that Mandarin prosody is closely related to sentence
foci (Chen 2006; Cooper et al., 1985; Liu&Xu2005;Hsu&Xu2020;Xu 1999). Foci are
the contents that speakers intend to make prominent throughout the utterance, which can
be realized via syntactic structure or prosody etc. A consensus had been reached that the
pitch height on the focal point of a sentence could rise, causing an expansion of the pitch
range on the corresponding syllable, and a sharp decrease of pitch could be observed
on the following syllable, rendering a compression of pitch range. In the meantime, the
duration of the focal syllable could be lengthened compared to other syllables (Chen &
Gussenhoven 2008; Chen et al. 2014; Xu et al. 2012). Yet less is known regarding the
intensity representation of sentence foci. Notably, the findings mentioned herein were
primarily concluded from the natural/logical foci in declarative sentences (henceforth
DS), but much needs to be explored in light of questions.

Mandarin questions could be generally divided into two types: 1) general questions
without interrogative markers (syntactically unmarked yes/no questions); 2) questions
with interrogative markers (wh-words, Verb-not-Verb, particle ma, A or B, yes or no
tag). The first type of Mandarin questions are syntactically identical with DSs, and their
interrogative mood is expressed mainly through the change of prosody, that is to say,
when no logical focus is involved, the entire question is believed to be focalized, resulting
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in an overall higher pitch and a wider pitch range in comparison with the syntactically
identical DS; in duration, word-final syllables are longer in yes/no questions, and the
longest duration occurs at the sentence-final syllable; for intensity, both yes/no questions
and DSs display an overall descending of energy, yet a stark surge of intensity could
be observed at the final syllable of the yes/no questions (Kochanski & Shih 2003; Shen
1989). Regarding the second type ofMandarin questions, extant studies on wh-questions
and “Verb-not-Verb” questions suggested that the interrogative markers in these ques-
tions could be focalized, such that the pitch, duration, and intensity of the wh-words
and “Verb-not-Verb” phrases could be amplified (Hsu & Xu 2020, Shen 1989; Yan et al.
2014). Most recently, Hsu & Xu (2020) found that the sentence-final particle ma, being
the interrogative marker of yes/no questions inMandarin, could also exhibit some acous-
tic prominence, even in post-focal positions. The authors ascribed this phenomenon as
being triggered by the syntactic-semantic function of sentence-final particles in Man-
darin,which could override the effect of post-focal compression.Meanwhile, researchers
found that the prosody of pre-focal parts in questions could parallel with that in DSs
(Yan et al. 2016). That being said, little is known regarding the Mandarin TQs, and the
prosodic features of the two components of TQs need to be empirically investigated.

To this end, the current study seeks to unveil the prosodic characteristics ofMandarin
TQs via a production experiment. The acoustic analysis will be administered following
Shi & Wang (2014) via three acoustic parameters including fluctuation scale (pitch),
duration ratio, and intensity ratio, which had been verified effective and widely adopted
in the analysis of Mandarin prosody. Drawing upon previous findings on Mandarin
interrogative questions, it was assumed that the tag “dui bu dui?”, being an interrogative
marker signaling sentence type, would be focalized (more prominent in the three param-
eters), while the statement part of TQs would prosodically parallel with DSs, being the
information source in the pre-focal position.

2 Method

2.1 Participants

Twenty native Mandarin speakers were recruited in the experiment, including 8 males
and 12 females (age range: 19–30 years). The participants were teachers and students
specializing in broadcasting from Cangzhou Normal University, Hebei province. All
participants thereby communicate in standardMandarin in daily life, and their Mandarin
proficiency was above “advanced level in the secondary class (over 87 out of 100)”. The
participants were all confirmed as having no speaking or hearing disorders and were
rewarded monetarily for their participation.

2.2 Stimuli

The testing materials are illustrated in Table 1, which encompassed two types of sen-
tences, Mandarin TQ and DS. TQs consisted of six statements adapted from Shen (1985)
and the tag “dui bu dui?”; DSs contained only the statements. As shown in Table 1, each
statement comprised three prosodic words constituted by 10 syllables (W1: S1–S3; W2:
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S4–S6; W3: S7–S10). The six statements were designed to eliminate possible bias from
lexical tones: statement 1 contained only level tone “¯”, statement 2—rising tone “´”,
statement 3—dipping tone “ˇ” and statement 4—falling tone “`”. Statements 5 and 6
were incorporated to cope with tone sandhi in Mandarin (a dipping tone altering to a
rising tone when preceding another dipping tone). Statement 5 and 6 are in complement
to each other to assure that a dipping tone in its citation form appears at each syllabic
position. The statements were constant across TQs and DSs and will be compared to
unveil possible prosodic differences.

Table 1. Testing materials transcribed in Pinyin with English translations. TQs = statements +
tag; DSs = statements; W = prosodic word; S = syllable.

Components of TQs and DSs

statements tag

W1 W2 W3 W4

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

1.
Zhāng Zhōng bīng xīng qī tiān xiū shōu yīn jī , duì bu duì ?

Zhang Zhongbing is going to repair the ratio on Sunday , isn’t he ?

2.
Wú Guó huá Chóng Yáng jié huí Yáng chéng hú , duì bu duì ?

Wu Guohua goes back to Yangcheng Lake on Double Ninth Festival , doesn’t he ?

3.
Lǐ Xiǎo bǎo wǔ diǎn zhěng xiě yǎn jiǎng gǎo , duì bu duì ?

Li Xiaobao will write the speech at five o’ clock sharp , won’t he ?

4.
Zhào Shù qìng bì yè hòu dào jiào yù bù , duì bu duì ?

Zhao shuqing went to the Ministry of Education after graduation , didn’t he ?

5.
Lǐ Jīn bǎo wǔ shí zhěng jiāo jiǎng huà gǎo , duì bu duì ?

Li Jinbao will hand in the speech at five o’ clock sharp , won’ he ?

6.
Lǐ Xiǎo Gāng wǔ diǎn bàn xiě bān jiǎng cí , duì bu duì ?

Li Xiao Gang will write the award speech at half past five , won’t he ?

2.3 Procedure

The recordings of the testing materials were administered in a phonetic laboratory in
Cangzhou Normal University using a cardioid condenser microphone (Takstar PCM-
5520,Huizhou) placed 15 cmaway from the participants.Adesktop computer (Microsoft
Surface Pro 7) was connected to the microphone to monitor the ongoing recording
progress. Praat (Boersma & Weenink, 2019) was used to collect mono-sound track at
a sampling rate of 11, 025 Hz with 16-bit digitization. Prior to the formal recording
process, all participants were given 10 min to get familiarized with the test materials;
they were asked to read the testing sentences twice at a natural pace, yielding in total
240 sentences (20 speakers × 6 sentences × 2 times) for the data analysis.
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2.4 Acoustic Analysis

Tominimize the effect of individual variabilities and bias from various testing materials,
the acoustic properties in this studywere examined through three normalized parameters:
1) fluctuation scale, 2) duration ratio and 3) intensity ratio over the two types of testing
sentences. Fluctuation scale refers to the pitch variation across syllables calculated as
normalized percentages relative to the speaker’s total utterances; the upper limit is 100%
and the lower limit is 0%. The normalization was proceeded via the equation Qx= (Kx –
Kmin) / (Kmax – Kmin). Qx is the fluctuation of the target syllable; Kx refers to the
highest/lowest pitch values of the target syllable transferred in semitones; Kmin is the
lowest pitch value (semitone) of the speaker’s total utterances, and Kmax is the highest.
Pitch values were measured and transferred using Mini Speech Lab (Zhu & Shi, 2020)
as depicted in the left panel in Fig. 1.

Fig. 1. Measurement of pitch (left panel) and aggregated amplitude (right panel) panel usingMini
Speech Lab.

Duration ratio was calculated to quantify the temporal variation across syllables
relative to the speaker’s utterances. It was calculated via the equation Dx = (Sx + Gx)
/S#, in which Dx is the duration ratio of the target syllable; Sx represents the duration
of the target syllable; Gx is the pause following the target syllable; S# refers to the
average syllabic duration (including pauses) from the speaker’s utterance. A syllable is
considered to be lengthened when its duration ratio exceeds 1.

Regarding intensity ratio, the calculation of which is in line with that of duration: the
aggregated amplitude of the target syllable divided by the mean aggregated amplitude
of syllables from the speaker’s utterance. Aggregated amplitude is an intensity mea-
surement automatically calculated via Mini Speech Lab (see the right panel in Fig. 1),
meaning the product of the average sample amplitude and the selected duration (in sec-
onds), which is believed to be more fine-grained and informative than raw intensity in
dB (Liang & Shi 2008). Likewise, a syllable is considered enhanced when its intensity
ratio exceeds 1.
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3 Results

3.1 Fluctuation Scale

For the pitch comparison between the two types of testing sentences, Fig. 2 illustrates
the average fluctuation scales of TQs and the DSs. The percentages marked on the top
and the bottom of prosodic words represent their highest and lowest fluctuation values.
The gap between the highest and the lowest fluctuation values is the pitch range of the
corresponding prosodic words.

Fig. 2. Comparison of fluctuation scales between TQs and DSs. The thin columns indicate the
fluctuation of single syllables; thicker columns indicate that of prosodicwords; the thickest column
frames the statement part from TQs.

As depicted inFig. 2, the statements fromTQs andDSs exhibit observable differences
in fluctuation scale, in that the upper level was 7% higher in TQs than DSs (97% vs.
90% on S2), and the lower level was 2% higher in TQs than DSs (11% vs. 9% on S9).
The overall pitch of the TQs statements was higher than DSs as early as in the beginning
of the whole sentence, and the disparity became the largest at the end of the statements.
Moreover, the pitch range of the three prosodic words in TQs statements was, to varying
degrees, expanded, which was 6% larger than DSs in W1 (71% vs. 65%), 4% larger in
W2 (63% vs. 59%) and 13% larger inW3 (83% vs. 70%). As such, the largest difference
was observed with W3 between TQs statements and DSs. Concerning the tag “dui bu
dui?”, its overall pitch was relatively low compared with the statements in TQs and
exhibited a descending trajectory with an upper level at 80% in the first syllable, and the
lower level at 9% in the last syllable. The pitch range of each syllable in the tag (S11:
44%, S12: 32%, and S13: 39%) was also smaller relative to the statements.

For statistical analysis, independent-samples T-tests were conducted to compare the
fluctuation scales of the three prosodic words between TQs statements and DSs. Results
showed that TQs statements were significantly higher than DSs across all three prosodic
words in terms of the upper level of fluctuation scale [W1: t (29)= 3.51, p< 0.01; W2:
t (38)= 2.88, p< 0.01; W3: t (29)= 5.25, p< 0.001]. Regarding the pitch range of the
three prosodic words, T-tests yielded no significant difference between TQs statements
and DSs in either W1 [t (38) = 1.89, p = 0.07] or W2 [t (38) = 0.91, p = 0.37], yet the
pitch range of W3 was significantly larger in TQs statements than DSs [t (38)= 3.53, p
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< 0.01]. For the comparison between tag and statements within TQs, results of T-tests
demonstrated that the upper level of the fluctuation scale at the first syllable in the tag
was significantly lower than the last syllable in the statements [t (30)= 4.07, p< 0.001],
so was the pitch range [t (38)= 10.15, p= < 0.001], indicating that the tag might have
been compressed, highlighting the preceding statements.

3.2 Duration Ratio

As regards duration, Fig. 3 demonstrates the comparison between TQs and DSs in
duration ratios. In contrastwithDSs,more syllables in the statements inTQs are observed
with lengthening: S2 (1.01), S3 (1.39), S6 (1.25), S7 (1.21), S8 (1.06), and S10 (1.31),
all of which had duration ratios exceeding 1. In the meantime, only four syllables in
the DSs were lengthened [S3 (1.24); S6 (1.19); S7 (1.09); S10 (1.12)]. Additionally,
all syllables in TQs statements were larger in duration ratio in comparison with DSs.
Furthermore, the duration ratio of the last syllable in TQs statements (S10: 1.31) was
0.34 higher than its preceding syllable (S9: 0.97) and 0.06 higher than the last syllable
of W2 (S6: 1.25), and the incremental degree between the last two syllables in TQs
statements was markedly higher than that in DS (0.34 vs. 0.22). As for the tag, the
duration ratios of its three syllables were 0.72, 0.43, and 0.91 respectively, showing no
signs of lengthening; the mid-syllable bu was particularly short in duration followed by
a relatively long syllable at the end of the sentence.

Fig. 3. Comparison of duration ratio between TQs and DSs.

For statistical analysis, the duration ratios of the word-final syllables were computed
in independent samples T-tests to compare the differences between the TQs statements
and DSs. Results revealed that the duration ratios of the final syllables in W1 and W3
from TQs were significantly higher than those from DSs [W1: t (36) = 3.8, p < 0.01;
W2: t (36) = 4.26, p < 0.001]; no significant difference was found in the final syllable
in W2 [t (36) = 1.54, p = 0.13]. As such, the overall temporal characteristics of TQs
share some commonalities with general questions in Mandarin in that the word-final
syllables are prolonged to a degree greater than that in DSs. Regarding the tag, results
from T-tests revealed that its first syllable was significantly shorter than the last syllable
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in statements [t (27) = 14.61, p < 0.001], aligning with the compression pattern from
fluctuation scales.

3.3 Intensity Ratio

Concerning intensity, Fig. 4 displays the intensity ratios of syllables and prosodic words
from TQs and DSs. As depicted, more syllables were observed with over 1 intensity
ratios in TQs statements [S1 (1.31), S2 (1.15), S3 (1.59), S5 (1.01), S6 (1.18), S7 (1.14),
S8 (1.01)] than DSs [S1 (1.11), S2 (1.13), S3 (1.45), S6 (1.10), S7 (1.03)], and each
syllable in TQs statements was higher than DSs in this parameter. Notably, even though
the overall intensity of both types of sentences exhibited a declining trajectory, the
sentence-final syllable (S10) in TQs exhibited a conspicuous rise relative to S9 (0.95 vs.
0.84), yet the same pattern was not observed in DSs (0.79 vs. 0.78). The intensity ratios
of the three syllables in the tag, on the other hand, were relatively low compared to the
preceding statements; the intensity of the mid-syllable bu constituted the lowest point
throughout the whole sentence, in keeping with the duration patterns observed earlier.

Fig. 4. Comparison of intensity ratio between TQs and DSs.

For statistical analysis, the intensity ratios of word-final syllables were compared
between TQs statements andDSs via independent samples T-tests. Results demonstrated
that the intensity ratios in TQs statements were unanimously higher than DSs across all
three words [W1: t (37) = 2.13, p < 0.05; W2: t (28) = 2.32, p < 0.05; W3: t (34) =
3.92, p< 0.001]. As for the comparison between the tag and the statements within TQs,
the results of T-tests showed that the first syllable in the tag was significantly lower than
the last syllable in statements [t (38) = 2.76, p < 0.01], reinforcing the speculation that
the tag was prosodically compressed.

4 Discussion

This study attempts to explore the interplay between prosody and syntax-semantics
via the acoustic investigation of the under-studied Mandarin TQs in comparison with
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DSs. On the basis of previous literature, it was assumed that the statement part of TQs,
being the source of information, would prosodically parallel with DSs; the tag “dui bu
dui?”, on the other hand, could display some acoustic prominence, being focalized as
an interrogative marker. The results of the production test, however, run counter to our
expectation in that TQs statements manifested remarkable differences from DSs; the
pitch height and range along with the duration and intensity of the word-final syllables
were significantly higher in TQs statements than DSs, and the disparities reached the
greatest at the sentence-final syllables.

The statement part of Mandarin TQs is generally considered as of declarative func-
tion, and the interrogative mood is expressed solely through the tag “dui bu dui?” (Shao,
1996: p. 123). The empirical findings from this study, however, suggested that the state-
ment part in TQs could largely diverge from DSs and in effect pattern closer to the
syntactically unmarked yes/no questions in Mandarin given their similar patterns of
overall prosodic rise especially at sentence-final syllables. This implies that the state-
ment partmight be focalized in TQs. Nevertheless, it is worth noticing that themagnitude
of the acoustic rise in TQs statements observed in the current study could be smaller
than what had been found with syntactically unmarked yes/no questions from previous
studies (Kochanski & Shih (2003) and Shen (1989). This might be due to the fact that
the tag “dui bu dui?” in TQs helps fulfill the interrogative purpose which could only be
delivered via prosodic means in syntactically unmarked yes/no questions. An alternative
account is that the degree of interrogation in TQs is milder relative to yes/no questions,
since TQs are asked with a bias of positive answers as introduced earlier, while yes/no
questions do not involve such inclination, imposing stronger interrogation.

As regards the interrogative marker “dui bu dui?”, its prosodic feature revealed in
the current study was largely at odds with what can be expected from a sentence focus.
On the contrary, the first syllable of the tag dui was significantly lower than the last
syllables in the statements of TQs in all three acoustic parameters, constituting a post-
focal compression. That is to say, the tag “dui bu dui?” in Mandarin TQs could serve as
an interrogative marker without focus, which is somewhat surprising provided the vast
amount of previous evidence on the focal features of interrogative phrases in Mandarin
questions. In themeantime, the three syllables in the tag descended dramatically in pitch,
analogous to a declarative phrase. The mid-syllable bu was produced exceptionally short
and low in intensity, followed by a longer syllable dui at the end, serving as a plausible
turn-taking strategy of seeking for rapid confirmation from the interlocutor.

As such, the present study unveiled some intriguing phenomena that the statement
part of Mandarin TQs could exhibit the prosodic features of syntactically unmarked
yes/no questions (focalized), in contrast with the syntactically identical DSs; the tag
“dui bu dui?”, on the other hand, was compressed in pitch, duration, and intensity. These
findings ran counter to our expectation that the statement part of TQs could parallel with
DSs in prosody considering their similar function, while the tag would be focalized as
an interrogative marker. These observations might be accounted for by the interaction
between prosody and syntax-semantics. The prominent prosodic features of interroga-
tive markers revealed by previous studies were primarily concerned with wh-phrases,
Verb-not-Verb and sentence-final particles, among which wh-phrases serve not only as
the interrogative marker (syntax), but also contain much semantic information e.g. shen
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me—what, na li—where, shui—who etc.; the Verb-not-Verb phrases are also seman-
tically rich as verbs are generally considered as highly informative across utterances.
Yet, the tag “dui bu dui?” in Mandarin TQs are semantically impoverished, which only
fulfills the syntactic function of signaling interrogative mood, thus shall not be focal-
ized, but serve as a focus marker highlighting the preceding statement for the complete
conveyance of utterance meaning. It also could be why the tag was produced rapidly
with low pitch and intensity, since a mere syntactic function might not require three
well-articulated syllables. Therefore, it could be deduced that only when an interrog-
ative marker performs both syntactic and semantic functions, can it receive sentence
focus, and thus become prosodically prominent in terms of the relevant acoustic prop-
erties. However, one may argue that the sentence-final particles “ma” and “ne”, being
interrogative markers without semantic functions, were observed with some acoustic
prominence (at least not compressed if not focalized) as reported by Hsu & Xu (2020).
This might be due to the fact that one group of participants in this study were Taiwan
Mandarin speakers who have a propensity of stressing sentence-final particles (Kuang &
Kuo 2011). Another more plausible account is that the sentence-final particles in Hsu &
Xu (2020), namely, ma, ne, and ba, not only decided the syntactic type of the sentences,
but also dictated the semantic information of the preceding wh-indeterminates, i.e. shen
me, na li and shui function as “what, where and who” when preceding ma, “something,
somewhere and someone” when preceding ne and ba. Hence, the particles ma and ne in
Hsu and Xu (2020), at some level, could be regarded as interrogative markers carrying
both syntactic and semantic functions, resulting in relative acoustic prominence.

To this point, the syntax-semantics accounts of prosody in Mandarin TQs accom-
modate much observation from the current and previous studies. The viewpoint that not
all interrogative markers in Mandarin could receive sentence foci needs to be attached
with great importance, since they could be prosodically compressed, and serve only as
focus markers highlighting other parts of the utterances when performing only syntactic
functions. This argument needs to be further corroborated. Future studies need to be
carried out probing the prosodic features of statement (unambiguous) + ma questions
in Mandarin; if the proposal posited in the current study holds true, then it could be
expected that the sentence-final ma, performing only syntactic function in this context,
would be in keeping with dui bu dui in light of non-prominence in prosody. Besides,
Mandarin TQs using other types of tags other than dui bu dui are also worth investigating
to enrich our understanding of the interaction between prosody and syntax-semantics.
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Abstract. Fine-grained emotion strength control and prediction is
recently studied in text-to-speech to adjust local emotion intensity in
an utterance. Due to the lack of fine-grained emotion strength labelling
data, emotion or style strength extractor is usually learned at the whole
utterance scale through a ranking function. However, such utterance-
based extractor is then used to provide fine-grained emotion strength
labels, conditioning on which a fine-grained emotional speech synthesis
model is separately trained. To bridge the granularity gap between emo-
tion strength extraction and emotional synthesis speech generation, a
simple yet effective component called Emotion Gate is designed to learn
fine-grained emotion strengths in an end-to-end way, which are then used
to create scaled emotion representations that serve as a condition of emo-
tional speech synthesis. Furthermore, beside predicting from a jointly
trained emotion strength predictor, our proposed method also allows to
manually assign and control the fine-grained emotion strengths during
inference. In experiment part, the proposed method is evaluated in both
non-transferred emotional speech synthesis and cross-speaker transferred
scenarios. Both objective and subjective evaluations show the effective-
ness and superiority of the proposed method over the state-of-the-art
baseline systems. The audio samples in our experiments can found in
the demo page: https://kingstorm.github.io/emotiongate/.

Keywords: text-to-speech · emotion strength · end-to-end · style
transfer · emotional speech synthesis

1 Introduction

Recent years have witnessed a growing trend of using text-to-speech (TTS) sys-
tems to produce audiobooks, in which the synthesized speech needs to be more
expressive and emotional compared to regular synthesized speech [1,2]. The emo-
tional utterances can either be synthesized by end-to-end TTS models [3–6]
trained with an emotional database or models with cross-speaker emotion trans-
fer [2,7,8] for speakers whose databases do not contain emotional data. Beside
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emotional speech synthesis, the capability of controlling emotion expressiveness
in the synthesized speech is another important aspect of TTS audiobooks cre-
ation. Nevertheless, most of the above methods do not provide a direct way
to control emotion expressiveness at a fine-grained level. Although the speech
synthesis with reference-based methods [2,7] can be guided with given reference
audios, it is usually hard to select a suitable reference for expected emotion
expressiveness.

One of the attempts to address the emotion controlling issue mentioned above
is introducing emotion strength as an attribute to control emotion expressiveness.
To model emotion strengths, [9] proposes to use relative attributes [10] and train
a ranking function to label the emotion strength of each utterance. Then the
emotion strengths are used as conditions in the TTS model training and can
be controlled during inference. More recently, models with fine-grained emotion
strengths control are built in [11,12] using a similar method by directly employing
a ranking function trained at utterance level to predict fine-grained emotion
strengths. The experimental results in [11] show the model built with phoneme-
level emotion strengths has stronger ability of emotion expressiveness control
compared to Global Style Tokens (GST) [2]. Moreover, [12] employs the same
methods and find modelling at syllable-level is advantageous to that at phoneme-
level for Mandarin speech synthesis.

Although models built with ranking-function-based emotion strengths pro-
vide a fine-grained control of emotion expressiveness, there are still some remain-
ing issues to be addressed. First, The ranking function is trained on utterance
level, yet the input features at inference phase for emotion strengths extrac-
tion are at fine-grained level. Second, the ranking function for emotion strength
extraction and the TTS model for emotional speech reconstruction are indepen-
dently learned, which makes the whole system not end-to-end optimized. Last
but not least, previous methods based on the ranking function have rarely been
evaluated in cross-speaker emotion transfer scenarios.

In this paper, inspired by [3,13] that achieves style control by scaling up
and down the style embedding, a simple yet effective component called Emotion
Gate (EG) is proposed to address the above issues by constructing gated emo-
tion representations. The proposed EG consists of an emotion strength extractor
which extracts fine-grained emotion strengths from speech segments and a gating
mechanism which change the Norm of emotion embedding by scaling them using
the extracted emotion strengths. The two parts work together to produce gated
emotion representations which condition a TTS model to train and generate emo-
tional speech. Since the resulting gated emotion representations directly connect
the EG with the TTS model, the EG can be jointly trained with the whole
model in an end-to-end paradigm. Therefore, without two-stage processing, the
proposed method naturally bridges the gap between utterance-level training and
fine-grained inference as in ranking function based method.

Similar to [11], the EG also allows the fine-grained emotion strengths to be
manually assigned or predicted by a jointly trained emotion strength predictor
during inference. We conduct experiments by building Mandarin TTS emotional
models with syllable-level emotion strength control as in [12] to evaluate the
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proposed method. Both the objective and subjective experiments show the pro-
posed method is more effective than the ranking-function-based methods [11,12].
We also find introducing the proposed method into cross-speaker emotion trans-
fer scenarios enhances emotion intensity in synthesized speech. Moreover, by
assigning manual emotion strength values to synthesize speech, we find the pro-
posed method has stronger ability of emotion strength control over both non-
transferred emotional TTS and cross-speaker transferred ones. Overall, the main
contributions of this work are summarized below:

– The proposed EG constructs gated emotion representations to bridge the
gap in the ranking-function-based method [11,12] between utterance-level
training and fine-grained inference, achieving better performance of emotion
expressiveness.

– To our best knowledge, this is the first work to model fine-grained emotion
strengths in speech synthesis in an end-to-end paradigm.

– The emotion strength control of the proposed method is verified to work for
both non-transferred emotional TTS and cross-speaker emotion transferred
TTS.

2 Methodology

2.1 Fine-Grained Emotion Strengths from Ranking Function

Most of recent works [11,12] employ the relative attributes method [9,10] to
train an utterance-level ranking function frank defined in Eq. 1 to annotate fine-
grained emotion strengths for speech segments. By treating emotion strength
as an attribute of speech, the ranking function frank aims to learn the relative
difference of emotion strengths between a category of emotional speech (such as
joy) and neutral speech. In details, assuming the training set for learning the
ranking function is T represented in Rn by utterance-level emotional features
{xu} where u is the index of utterances and T = N ∪ E, where N and E are
the neutral and joy emotion set respectively. The goal of relative attributes is to
learn the ranking function Eq. 1:

frank(xu ) = wxu (1)

which satisfies the maximum number of the following constraints:

∀(i, j) ∈ O : frank(xi) > frank(xj )
∀(i, j) ∈ S : frank(xi) = frank(xj )

(2)

O is the ordered set that is composed of sample pairs (i, j) with different cat-
egories, e.g., i ∈ E and j ∈ N . S is the similar set which contains sample
pairs from the same category. Any sample pair from O has different emotion
strengths and any sample pair from S has the similar emotion strengths. This
setup is based on the presumption that the emotion strengths of joy are greater
than neutral ones. w in frank is learned through Newton’s method [10,11].
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As described in [12], the frank is first trained at utterance level and gets fine-
grained emotional features to output ranking values by equation: st = frank(xt).
Then those ranking values are normalized into [0, 1] for each emotion category
and regard as fine-grained emotion strengths.

Once the utterance-level ranking function is trained, fine-grained emotion
strengths can be obtained by feeding fine-grained speech segments, e.g., speech
segments of phonemes or syllables, into the ranking function and all the rank-
ing results are normalized into [0, 1] for each emotion category. The extracted
emotion strengths are linearly projected and added into text encoder outputs in
[11,12] to guide the emotion strengths in the synthesized speech.

2.2 The Proposed Method

Fig. 1. The overall architecture of emotional TTS system and its variants to evaluate
the proposed method
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Unlike the above two-stage processing which firstly train a ranking function
and secondly use extracted emotion strengths to condition a TTS model, the
proposed EG, demonstrated in Fig. 1 (b), merges the two stages into an unified
component. The EG consists of an emotion strength extractor feg described in
Eq. 3 and a gating mechanism as shown in Fig. 1 (b). Those two parts work
together to construct gated emotion representations which condition the TTS
model to train and synthesize emotional speech.

The emotion strength extractor feg takes the same emotional features xt of
fine-grained speech segments as inputs similar to [11]. Within the extractor, a
conditional layer normalization (CLN) [14,15] conditioned by emotion embed-
ding is located between Conv1D and Linear layer, since we presume different
emotion category has different scale and bias for hidden features to predict emo-
tion strengths. Finally, a Sigmoid function is employed to construct a gating
mechanism and output a gating value or emotion strength seg,t for each seg-
ment.

The gating mechanism, illustrated in Eq. 5, scales the emotion embedding et
using the extracted emotion strengths seg,t from Eq. 4 to output gated emotion
representations. The similar gating mechanism to control emotion strength can
also be found in [3,13] by scaling the utterance-level emotion embedding, while
we apply it at fine-grained level and the emotion strengths are learned in an
end-to-end paradigm. It’s worth mentioning that if the emotion strengths are at
syllable level where each syllable corresponds to several phonemes, the phonemes
belonging to the same syllable share the same emotion strength.

feg(xt) = Sigmoid(Linear(CLN(Conv1D(xt)))) (3)

seg,t = feg(xt) (4)

Et = seg,tet (5)

Apart from the gating mechanism and the emotion strength extractor, there
is another design in the proposed method based on the presumption that any
emotional utterance has stronger strength than the neutral ones. By setting the
neutral emotion embedding to a 0 vector which is fixed during training, the
norm of neutral emotion representation is kept as 0 whose norm is smaller than
any other emotion representations.

As for the training, since EG is connected to the whole TTS model by the
constructed gated emotion representations, it can be jointly optimized with all
losses of the TTS model including mel-spectrogram L1 reconstruction loss £mel,
f0 loss £f0, energy loss £energy, duration loss £dur and speaker adversarial loss
£adv [16] used in cross-speaker emotion transfer training. The £f0, £energy and
£dur are bottleneck features mean-squared-error (MSE) loss in [8]. As shown
in Fig. 1 (a), the fine-grained emotion strengths during inference can be manu-
ally assigned with a sequence of values within [0, 1] or predicted by an emotion
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strength predictor that shares the same structure as that of the variance predic-
tor in [6] and is trained together with the whole TTS model to fit the extracted
emotion strengths seg,t by MSE loss £s. To sum up, the overall loss of the TTS
model with the proposed EG is illustrated in Eq. 6 where α, β, γ are tunable
weights for prosody bottleneck features loss, emotion strength predictor loss and
speaker adversarial loss respectively.

£ = £mel + α(£f0 +&£energy +£dur) + β£adv + γ£s (6)

3 Experiments

3.1 The Model Architecture of Baseline Emotional TTS

To evaluate the effectiveness of the proposed method in both intra-speaker and
cross-speaker scenarios. A baseline cross-speaker emotional text-to-speech sys-
tem is built according to [8]. Compared with the other SOTA emotional text-to-
speech systems, [8] is capable of transferring emotion expression across speakers
and achieves better performance than the other strong benchmarks [7]. Here,
some of the components of the original model [8] are replaced by ones from other
works as shown in Fig. 1 (a). First, the text encoder in DurIAN [3] is utilized to
efficiently encode text information. Second, the non-autoregressive Transformer
decoder in Fastspeech [4] is used to convert encoder outputs into 80-dim mel-
spectrogram. For bottleneck features [8]: jointly trained variance predictors in
[6] are adopted to predict duration, f0 and energy. In addition to the bottleneck
design in [8], a speaker adversarial training task [16] is applied onto emotion
representation to further disentangle the emotion and speaker attributes. To
summarize, the whole model predicts mel-spectrogram by getting input from
text information in phoneme sequence, speaker embedding and emotion repre-
sentation conditioned by emotion strengths.

3.2 Tasks for Experiments and Models Setup

Two experimental tasks are conducted to evaluate the proposed method. Task-I :
Building emotional TTS models based on an emotional database of single speaker
A. The goal of Task-I is to compare the emotion expressiveness and emotion
controllability of the proposed method with ranking function based methods
and the baseline model. Task-II : Building multi-speaker emotional TTS models
capable of transferring emotion from speaker A to speaker B. The goal of Task-
II is to evaluate the performance of cross-speaker emotion transfer of models
built with and without the proposed method as well as the emotion strength
controlling effectiveness. The models built for the experiments are described as
below:

– Base: Replace EG component in Fig. 1 (a) with directly adding the emotion
embedding onto the encoder outputs as in Fig. 1 (c)(1) without any emotion
strength conditions.



202 J. Ye et al.

– FRA-Scale: Replace EG component in Fig. 1 (a) with ranking-function-
based emotion strengths to scale emotion embedding as in Fig. 1 (c)(2), where
FRA denotes fine-grained ranking-function-based emotion strengths.

– FRA-Transform: Replace EG component in Fig. 1 (a) with the represen-
tation in Fig. 1 (c)(3) which linearly transforms the ranking-function-based
emotion strengths and adds them onto encoder outputs exactly as in [11,12].

– FEG-Scale: As demonstrated in Fig. 1 (a), TTS model with the proposed
EG as shown in Fig. 1 (b).

3.3 Basic Setups

For both tasks, an internal female emotional database of speaker A is used. There
are 3200 neutral utterances in the database and each of the rest 4 emotions (vigi-
lance, disgust, joy, sad) has 600 utterances. Speaker B in Task-II is from another
internal female neutral database which contains 6000 neutral utterances. All
audios in the databases, with the length of each utterance ranging from 2 to
10 s, are in Mandarin and recorded in 44.1 kHZ while downsampled to 24 kHZ.
For features pre-processing, 80-dimensional mel-spectrograms are used as acous-
tic features which are extracted using Hanning window with frame shift of 10 ms
and frame length of 42.7 ms. Then, Kaldi toolkit [17] performs forced-alignment
and retrieves duration of each phoneme. The extraction of f0 and energy follows
the same setup in [6]. The emotion strength in our experiments is at syllable-
level which is proved to be more effective for controlling emotion in Mandarin
TTS [12]. As in [11,12], the emotional features are extracted using openSMILE
tool [18] from syllable-level speech segments where the duration of each syllable
is obtained by aggregating all the phoneme durations of the syllable. During the
training, batch size is set to 24 and Adam Optimizer is used with learning rate
equal to 0.0001. After cross-validations, both the α and β in £ are set to 0.05
and the adversarial weight γ is set to 0.025. Finally, a multi-speaker HiFi-GAN
[19] is trained to synthesize audio samples.

3.4 Task-I: Evaluating the Proposed Method for Non-transferred
Emotional Speech Synthesis

Emotion Strengths Extracted from Reference Speech. In this part, sim-
ilar to [11], we evaluate the synthesized speech with parallel transfer where emo-
tion strengths are extracted from reference audio with the same text as the target
one. The intuition behind it is that stronger emotion strength condition leads
to better imitation of reference audios [11]. In this task, Mel-cepstral distortion
(MCD) and A/B tests are used to evaluate the synthesized speech objectively
and subjectively.

First, 30 test sentences for each emotion category in the database of speaker
A are held out and synthesized with parallel transfer to compute MCD values.
The synthesized speech is aligned with reference audio by dynamic time warping
(DTW). The results in Table 1 show that all the models with syllable-level emo-
tion strength modelling achieve lower MCD values compared to Base in which
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the emotion is represented only by global emotion embedding, with the proposed
FEG-Scale achieving the best result. Also, it can be observed that the MCD val-
ues of FRA-Scale are higher than those of FRA-Transform, which indicates it is
not the scaling but the end-to-end way to learn emotion strengths together with
gated emotion representations that bring gains to performance.

Table 1. Results of MCD test (the lower the better)

Parallel transfer Predicted emotion strengths

Base 5.292 5.292
FRA-Scale 5.217 5.228
FRA-Transform 5.121 5.165
FEG-Scale 5.031 5.084

Table 2. Results of preferences in A/B tests for parallel transfer

Left (%) Same (%) Right (%)

FEG-Scale vs. FRA-Transform 53 23 24
FEG-Scale vs. Base 53.3 20 26.7

Second, we conduct A/B tests in which participants are required to choose
the audio that they believe is more similar to the reference audio in emotion
expressiveness. 15 native Mandarin speakers participated in preference selections
and 10 test sentences for each emotion category are randomly selected from the
held out sentences to synthesize. FRA-Scale is dropped out since it does not
perform better than the implementation in [11] which is FRA-Transform. The
subjective evaluation results in Table 2 are consistent with the ones in objective
MCD tests in Table 1, which show the superiority of the proposed method (FEG-
Scale) over both Base and FRA-Transform for parallel transfer.

Emotion Strengths from Emotion Strength Predictor. In real applica-
tions, we also care about the performance of the proposed method when the
emotion strengths are predicted. Therefore, the MCD and A/B tests of the
same setup are conducted to evaluate generated speech with predicted emotion
strengths as well. As shown in Table 1, for all models except Base without emo-
tion strength modelling, the MCD values of generated speech with predicted
emotion strengths only witness minor degradation compared to the ones with
parallel transfer. Furthermore, even with predicted emotion strengths, all models
built with emotion strength get lower MCD values than Base, with FEG-Scale
still achieving the best result. Subjectively, an A/B test of the same setup is also
conducted to compare the model with the proposed EG (FEG-Scale) and the
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model without it (Base). From the results in Table 3, FEG-Scale is more pre-
ferred than Base though the gap is small, which is reasonable since even minor
precision loss in the predicted emotion strengths can lead to audible changes in
emotion expressiveness for pair tests.

Table 3. Results of A/B test with predicted emotion strengths

Left (%) Same (%) Right (%)

FEG-Scale (pred) vs. Base 31.25 40 28.75

To sum up, Both objective and subjective results show the superiority of
FEG-Scale which performs the best with parallel transfer and retains its advan-
tage over other models with predicted emotion strengths.

3.5 Task-II: Evaluating the Proposed Method for Cross-Speaker
Emotion Transfer

The experimental results in Task-I show the effectiveness of the proposed
method in single-speaker emotional TTS. However, most of the speakers are
non-emotional in databases and need cross-speaker emotion transfer to synthe-
size emotional speech. To do experiments with the proposed EG in such cases, in
this task, models are built with and without EG to synthesize speech of speaker
B whose emotion is transferred from speaker A.

To evaluate the effects of introducing EG into cross-speaker emotion transfer,
we synthesize 10 held-out utterances for each emotion category with predicted
emotion strengths and conduct two subjective tests with the same 15 partic-
ipants: an A/B test over emotion intensity of generated speech and a mean
opinion score (MOS) test to evaluate the overall naturalness. Next, to evaluate
the effects of the proposed method over timbre similarity of generated speech to
the target speaker, similar to [15], a speaker verification model [20] is trained
with 12000-speaker data to extract 256-dim speaker embedding from synthe-
sized speech and the actual recordings of the speaker B. 30 held-out utterances
for each emotion category are generated to extract speaker embedding and com-
pute cosine similarity with ones extracted from 10 recordings respectively. The
cosine similarities for each emotion category are averaged and larger cosine sim-
ilarity indicates more similar timbre to the target speaker B [15].

By looking at the results in Table 4, compared to Base, FEG-Scale has dom-
inantly stronger emotion intensity for cross-speaker emotion transferred speech
beside the sad ones. Although the sad speech from Base is advantageous to FEG-
Scale in emotion intensity, it has the most dissimilar timbre as a cost according
to the results of timbre similarity test in Table 5. Furthermore, for the rest of
emotion apart from sad emotion, FEG-Scale and Base share the same level of
timbre similarity to the target speaker. For naturalness evaluation, the differ-
ences of MOS scores between FEG-Scale and Base in Table 5 are all less than 0.1
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Table 4. Results of A/B tests of emotion intensity on speaker B with emotion transfer

Emotion (FEG-Scale) Left (%) Same (%) (Base) Right (%)

vigilance 73.33 13.33 13.33
disgust 50 36.67 13.33
joy 50 30 20
sad 13.33 33.33 53.33

Table 5. MOS of naturalness with 95% confidence interval and cosine similarity (timbre
similarity)

MOS Scores Timbre Similarity

Base FEG-Scale Base FEG-Scale
vigilance 3.98 ± 0.1 4.02 ± 0.1 0.7817 0.7806
disgust 4.06 ± 0.09 4.06 ± 0.08 0.7908 0.8044
joy 3.9 ± 0.1 3.89 ± 0.09 0.8022 0.8095
sad 3.53 ± 0.16 3.47 ± 0.16 0.7289 0.7474
neutral 3.94 ± 0.09 3.99 ± 0.09 0.8450 0.8426
AVG 3.88 3.89 0.7897 0.7969

and the averaged scores for both models are very close. To summarize, we can
conclude that introducing the proposed EG into cross-speaker emotion transfer
does not bring degradation to naturalness or timbre of generated speech while
enhancing the emotion intensity of generated speech and providing a strong
emotion strength controllability which will be discussed in the following part.

3.6 Analysis of Manually Assigning Emotion Strengths for Both
Task-I and Task-II

To evaluate the emotion strength controllability of the proposed method, we cre-
ate manual emotion strength labels and expect the synthesized speech to follow
the designed emotion expressiveness. Joy utterances with the same texts are syn-
thesized using models in Task-I given syllable-level emotion strengths increasing
from 0 to 1 and decreasing from 1 to 0, as shown in Fig. 2 (a) and (b). For syn-
thesized speech from FEG-Scale in (a), both the F0 trend and pattern changes
of mel-spectrogram clearly reflect the assigned emotion strengths, whereas the
samples from FRA-Transform in (b) are relatively flat, which indicates superior
emotion controllability of the proposed method. The analysis is also conducted
in cross-speaker emotion transfer scenario. By comparing Fig. 2 (a) and (c), we
find the proposed method owns the same level of emotion controllability in both
non-transferred speech and speech with cross-speaker emotion transfer. We rec-
ommend to listen to samples of emotion control for all emotion categories in our
demo page.
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Fig. 2. Plots of speech with manually assigned emotion strengths increasing from 0 to
1 and decreasing from 1 to 0.

4 Conclusions

The proposed EG provides an end-to-end way to model fine-grained emotion
strengths and construct gated emotion representations to guide emotional speech
synthesis. During inference, the emotion strengths can be either predicted by an
emotion strength predictor or manually assigned. First, the end-to-end paradigm
facilitates modelling the controllable emotion in speech synthesis, which does not
need training a separate emotion strength annotator. Second, according to our
experimental results, the proposed method is superior to the ranking-function-
based method in terms of emotion expressiveness. Third, beside the stronger
emotion intensity the proposed method brings to generated speech with cross-
speaker emotion transfer, it shares the same level of fine-grained emotion con-
trollability for both non-transferred and emotion transferred cases.
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Abstract. In the field of audio and video detection, violence detection
is a crucial task with significant theoretical and practical implications. In
order to solve the present issue of the lack of violent audio datasets, we
first created our own audio violent dataset named VioAudio. Then, we
proposed a CNN-ConvLSTM network model for audio violence detection,
which obtained an accuracy of 91.5% on VioAudio and a MAP value of
16.47% on the MediaEval 2015 dataset. Meanwhile, this paper integrated
self-attention mechanisms and visual information into CNN-ConvLSTM
network in order to address the issue of modality singularity in vio-
lence detection, and then confirmed them on MediaEval2015 dataset. The
experimental results demonstrate that after fusing visual and auditory
information, the CNN-LSTM network model greatly enhanced recogni-
tion accuracy, attaining a 31.25% MAP value, which is 1.94% higher
than the best result. The method proposed in this paper considerably
increased the accuracy of violence detection and offered fresh perspec-
tives on how to integrate multimodal information to identify violence.

Keywords: Violence Detection · Auditory and Visual Information
Fusion · Convolution Neural Network · Long-Short Term Memory
Network

1 Introduction

The variety of audio and video available on the Internet is growing as a result of
the growth of multimedia information technology. However, some videos or audio
might have violent senses, which are unsuitable for widespread distribution. The
exploding amount of multimedia cannot be reviewed by the traditional man-
ual method [1]. Therefore, it becomes more crucial to automatically recognize
violent senses. The use of multimedia-oriented violence detection with artificial
intelligence has a wide range of potential applications [2].

Currently, most researchers use visual or auditory mode alone to detect vio-
lence. In the detection of auditory violence, Cheng et al. used Hidden Markov
Model (HMM) and Gaussian Mixture Model (GMM) to model all kinds of sound
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separately, so as to effectively detect abnormal events such as explosion, gunshot,
scream [3]. Gil-Pita et al. compared the effects of different audio features on the
task of violence detection, and demonstrated that Mel Frequency Cepstral Coeffi-
cient (MFCC) was the most useful feature for the task, while the energy and pitch
also performed well [4]. Penet et al. used factor analysis to model the variability
of audio events in movies. The system built by Penet et al. has better general-
ization ability for the detection of violent audio such as screaming [5]. Sarman et
al. extracted the acoustic features such as MFCC and zero-crossing rate from the
audio and classified the violent senses by random forest method [6].

In the detection of video violence, Moreira [7] et al. proposed a TRoF feature
descriptor to represent the local action features in the video, coded it with Fisher
Vector, and sent the features to the Support Vector Machine (SVM) classifier
to effectively detect dynamic violence in the video. Xu [8] et al. used MoSIFT
algorithm to extract low dimensional features of video, and used kernel density
estimation method to select features. In order to obtain distinguishing features,
the author also uses sparse coding to further process features, achieving 94.3%
accuracy on Hockey dataset. In recent years, the rise of deep learning repre-
sented by Convolution neural network has accelerated the research of visual
violence detection. Serrano et al. proposed a two-dimensional CNN model using
Hough forest features, and achieved very good results on the hockey and movies
datasets, with accuracy rates of 94.6% and 99% respectively. Sudhakaran [9]
et al. used Convolution neural networks (CNN) to extract features at the frame
level from videos and integrate them through different Long Short Term Memory
(LSTM) units to capture violent acts such as fighting in video.

From the existing research, we can see that the current research on violence
detection has achieved very good results. But there are also some problems that
cannot be ignored. First of all, video violence detection has many public datasets,
but audio violence detection has no public datasets, which limits the further devel-
opment of violence audio detection. Secondly, most of the researches focus on the
single mode of audio or video, lacking the research on multimodal violence detec-
tion. The existing research shows that it is an effective method to combine multiple
features of multiple modes in the field of multimedia event detection. Some schol-
ars began to attempt detect multimodal violence. Jian et al. proposed a method
of combining audio violence classifier and video classifier based on weak super-
vised learning. The accuracy of violence detection is higher than that of single
mode [10]. Demarty et al. extracted linear prediction coefficients, line spectrum
pair parameters, 196-dimensional acoustic features such as MFCC, 11-dimensional
color histogram, and 81-dimensional gradient-oriented histogram, and fused them
into a neural network for violent classification [11]. Zajdel et al. proposed a CAS-
SANDRA system that captured complementary information in video and audio
as detection features and used dynamic Bayesian networks to detect aggressive
behavior in public [12]. The current method of multimodal fusion is relatively sim-
ple, mostly through simple union of different modal features or voting by multiple
classifiers, lacking a deeper level of fusion [13].
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In order to solve the present issue of the lack of violent audio datasets,
this paper first created audio violent dataset named VioAudio. Then, a CNN-
ConvLSTM network model was proposed for audio violence detection. Audio
signal was converted into spectrogram through short-time Fourier transform, as
well as the spectrogram was used to train the network and detect audio violence.
Meanwhile, this paper integrated self-attention mechanisms and visual informa-
tion into CNN-ConvLSTM network in order to address the issue of modality
singularity in violence detection. The deep extraction and fusion of visual and
auditory information is accomplished in this way.

The structure of this paper is as follows: Sect. 2 mainly introduces the meth-
ods used in this paper, including the construction of network models and training
methods. The Sect. 3 verifies the proposed method through experiments. The
experimental results validate that network model is effective, and the module
combination boosts the performance compared to those of existing methods.
Finally, in Sect. 4, the conclusion and future research directions are given.

2 Methods

2.1 CNN-ConvLSTM Model

For auditory violence detection, traditional framing feature extraction method
can result in too large feature dimension, which will cause feature redundancy.
Feature redundancy reduces model accuracy and increases detection time. In
recent years, with the development of deep learning and hardware acceleration
devices, deep neural network has made unprecedented progress in image recogni-
tion, video behavior recognition, speech recognition and many other fields [14].
Convolution neural network (CNN) has achieved considerable success in the
fields of image classification and speech recognition because of its ability to
extract features adaptively. The Convolution layer is used for local connectivity
and parameter sharing and can be viewed as the process of observing local fea-
tures by kernels and extracting the useful information. Long short-term memory
(LSTM) effectively processes sequential signals and retains most information of
the signal. In this paper, the CNN model was used to extract features from audio
signals and the LSTM was used to model the extracted features in time series
for violence detection.

Audio signal is a kind of one-dimensional signal, which is difficult to extract
features directly through CNN. Therefore, the audio signal was converted to
two-dimensional spectrogram as the input of the network by short-time Fourier
transform. Using spectrograms as network input has tremendous advantages. In
general, the spectrogram contains most information of the audio signal. Tradi-
tional audio features use a variety of artificially designed filter banks to extract
features after Fourier transform, which results in loss of information in frequency
domain, especially in high frequency area. In order to account for computation,
traditional audio features must use a very large frame shift, which undoubtedly
results in loss of information in time domain. These problems can be effectively
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avoided by directly using spectrograms as network input. Then, using spectro-
grams as network input is more in line with the processing mode of human
brain for audio information. External sound waves are converted into frequency
vibrations in the cochlea, which are then transmitted to the auditory nerve. At
last, the time granularity of the spectrogram is larger than that of the tradi-
tional frame feature granularity, which can better preserve the long-term audio
correlation.

In this study, the original audio signal was segmented, and then converted
into spectrogram, which was sent to CNN network for audio feature extraction.
Then, the extracted audio features were sent into the ConvLSTM network to
model the timing signal. The diagram of violence audio detection system based
on spectrogram is shown in Fig. 1.

Fig. 1. CNN-ConvLSTM Network Model.

The CNN part of the network contains five convolution layers, three pooling
layers, and the specific network parameters are shown in Table 1.
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Table 1. CNN Network Parameters.

Data dimension Convolution kernel

227 × 227 × 3 Conv1 : (96, 11 × 11 × 3, 4)

55 × 55 × 96 Pool1 : (3 × 3, 2)

27 × 27 × 96 Conv2 : (256, 5 × 5 × 96, 2)

27 × 27 × 256 Pool2 : (3 × 3, 2)

13 × 13 × 256 Conv3 : (384, 3 × 3 × 256, 1)

13 × 13 × 384 Conv4 : (384, 3 × 3 × 384, 1)

13 × 13 × 384 Conv5 : (256, 3 × 3 × 384, 1)

13 × 13 × 256 Pool3 :: (3 × 3, 2)

Fig. 2. The basic structure of LSTM.

The ConvLSTM was used to model features extracted from CNN. ConvL-
STM is a deformation of LSTM. Its advantages are: 1) The occurrence of violence
is a continuous process, and LSTM network has the ability to naturally remem-
ber information at multiple times; 2) Second, it can avoid the problem that the
time length of each sample is not equal. The basic structure of LSTM is shown
in Fig. 2.
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LSTM combines the the current memory C̃T and long-term memory Ct−1

and forms a new unit state Ct. The forget gate can save the information long
ago, while the input gate can prevent the current unimportant information from
entering the memory. The output gate controls the effect of long-term memory
on current output.

The learning of weight and threshold parameters were realized by traditional
error back-propagation (EPB) algorithm. Cross entropy was applied as the loss
function. oji denotes the predicted value of the networked and yj

i denotes the
actual value, where i represents the i − th output neuron, and j represents the
j − th training sample. The batch size is N and the number of output neurons
is M . Then the loss function can be expressed as eq1.

Loss = − 1
N

M∑

i=1

M∑

j=1

yj
i × log(oji ) (1)

2.2 Attention Module

The basic idea of the attention mechanism is to allow the model to ignore irrel-
evant information and pay more attention to the key information we want it to
focus on. The combination of deep learning and attention mechanism has focused
on the mask to form the attention mechanism [15]. The principle of masking is
to identify the key features in the data through another new layer of weights.
By training, the deep neural network learns the areas of interest in the data and
forms attention. The essence is to learn a set of weight distributions that can be
applied to the original data.

In order to make ConvLSTM pay more attention on meaningful features
and improve the accuracy of the model, this study introduces the attention
mechanism into ConvLSTM. Then the corresponding input gate it, output gate
ot, forget gate ft and memory unit ct is calculated as follows.

it = σ(AttConv(Xt) + Whi × Ht−1 + bi) (2)

ot = σ(AttConv(Xt) + Who × Ht−1 + bo) (3)

ft = σ(AttConv(Xt) + Whf × Ht−1 + bf ) (4)

Ht = ot ◦ tanh(Ct) (5)

Ct = ft ◦ Ct−1 + it ◦ tanh(AttConv(Xt) + Whc × Ht−1 + bc) (6)

Among them, Whi, Whf , Who denote as Weight Matrix, σ(∗) denotes as sigmoid
function, ◦ denotes as Hadamard product, AttConv(∗) denotes as Convolution
attention function.
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2.3 Audio-Visual Information Fusion

In the previous paper, we constructed a CNN-ConvLSTM model on the audi-
tory channel. The spectrum of audio signals was used as the input of the CNN
network, and the extracted features were sent to the ConvLSTM network for
recognition. Research has shown that combining multiple modal features in the
field of multimedia event detection is an effective method. Therefore, the CNN-
ConvLSTM network is further improved in this study: two deep convolution
networks are used to extract video and audio features, and then two channel
features are fed into the ConvLSTM network. The diagram of multimodal vio-
lence detection system based on deep learning and multimodal feature fusion is
shown in Fig. 3.

Fig. 3. Audio Video Fusion Model Based on CNN-ConvLSTM.
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In the visual channel, the difference map of adjacent video frames is input
into the visual CNN as network input. This is because visual violence is mostly
continuous action, and the difference between adjacent frames can better rep-
resent the violence scene, which can shield the unchanged background. At the
same time, the audio signal corresponding to the video frame is converted into a
spectrogram and fed into the auditory CNN to extract the features of the audio
signal. Finally, the two types of features at same time are fused and fed into Con-
vLSTM network to model the time series information to determine whether there
are violent senses in the segment. The network still uses error back-propagation
algorithm to learn parameters and cross-entropy as the loss function.

3 Experiments and Results

3.1 Datasets

Violence Audio Dataset. At present, there is no publicly trusted dataset
available for the field of audio violence detection, so we build Violence Audio
Dataset (VioAudio). The audio data sources in this dataset can be divided into
two parts: one part is the audio from some video clips in the MediaEval 2015
Violence Detection Database. MediaEval is a competition dedicated to multi-
media access and information retrieval algorithms, including speech recognition,
multimedia content analysis, emotional recognition, violence detection and other
multimedia tasks. In this paper, based on the labels of the original database, we
have manually filtered and clipped 300 violent audio samples and 500 non-violent
audio samples. Another part of VioAudio comes from 36 domestic movies. A total
of 200 violent audio clips were selected through manual score screening.

Ultimately, VioAudio included 1,000 violent audio samples, each lasting 4–
6 s. It contains 500 non-violent audio samples, including voices of conversation,
music, laughter, singing and applause; 500 violent audio samples, including gun-
shots, explosions and screams.

MediaEval 2015 Dataset. In the Violence Detection experiment, we used a
movie dataset from MediaEval 2015. The dataset includes 10,900 video samples,
each 8–12 s long, from 199 real Hollywood movies. There were 502 violent and
10398 non-violent samples.

Violent videos are officially defined as videos that an eight-year-old can-
not watch because of physical conflicts in the images. In the officially available
datasets, the types of violence involved are explosions, screams, fights, gunshots,
knife-holding assaults, and so on.

3.2 Audio Violence Detection

This section used CNN-ConvLSTM networks embedded in self-attention mech-
anisms for violent audio detection. The validity of the proposed network model
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Table 2. The hyper-parameter settings of the network model.

Hyper-parameter Audio Audio and Video

Learning Rate 10−5 10−5

LR decay rate 0.5 0.5

Batch 16 16

Hidden Size 100 128

Loss Function Cross Entropy Cross Entropy

Activation Function ReLU ReLU

Optimized Acceleration Adam Adam

is verified first. The hyper-parameter settings of the network model are shown
in Table 2.

During the training of the network, the maximum number of iterations is set
to 100. The network’s Loss and Accuracy changes with the number of iterations
on the VioAudio dataset as shown in Fig. 4. From the change of Loss value on
training set and test set, with the increase of iteration number, Loss value shows
a downward trend as a whole, indicating that the network converges gradually.

Fig. 4. Curve of Loss and Accuracy Changing with Iteration Times.

To verify the validity of the proposed method, this paper compares the recog-
nition results of the CNN-ConvLSTM network with other methods, as shown in
Table 3.

The results show that the detection method based on traditional acoustic fea-
tures and machine learning method was still very effective, with 89.3% accuracy
on the VioAudio audio dataset. Single CNN and single ConvLSTM networks were
less effective than the detection algorithms based on traditional acoustic features.
It is not enough to extract the acoustic features by CNN alone. The combination
of CNN and ConvLSTM can better achieve the detection of violent audio. The
attention mechanism further improves the detection accuracy of the network.
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Table 3. Results of different algorithms in VioAudio dataset.

Method Accuracy

Acoustic features + SVM 89.3%

Spectrogram +CNN 86.7%

Spectrogram + ConvLSTM 88.5%

Spectrogram + CNN + ConvLSTM 91.5%

Spectrogram + Attention + CNN + ConvLSTM 92.8%

3.3 Audio-Visual Violence Detection

In the previous section, we built a CNN-ConvLSTM network on the auditory
channel, taking the spectrogram of audio signal as the input of the network, and
achieved good experimental results. On this basis, this section used two CNN
networks to extract video and audio features respectively, and then fuses the
features of the two channels into the ConvLSTM network to achieve violence
event detection based on visual and auditory information fusion. The hyper-
parameter settings of the network are shown in Table 1. Except for the initial
network structure and the number of hidden nodes, the network is basically
unchanged. This section uses MediaEval 2015 Dataset to verify the network
results. The experimental results are shown in Table 4.

Table 4. The results in the MediaEval 2015 Dataset.

Precision Recall F1

Audio 0.46 0.73 0.56

Audio-Video 0.51 0.84 0.63

The results show that the method of audio-video fusion is better than P single
channel. The increase of recall rate indicates that when the information of both
video and audio channels is considered in the detection of violence, more samples
with violence can be detected and the miss rate is reduced. The improvement of
Precision indicates that the audio-video feature fusion analysis can reduce the
rate of misjudgment.

Then, we compared the MAP value with other open methods. MAP is the
official evaluation index used in the MediaEval 2015 competition. The formula
for calculating this index is as follows.

MAP =
1
N

N∑

c=1

APc (7)

APc =
1
R

M∑

i=1

(Ii × Ri

i
) (8)
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where R is the number of all positive samples in the test set, M is the total
number of samples in the test set. If the i − th sample is positive, Ii = 1. Ri is
the number of positive samples in the top i samples, and N is the number of
queries. The comparison results are shown in Table 5.

Table 5. The results in the MediaEval 2015 Dataset.

methods MAP

Audio ICL-TUM-PASSAU [16] 14.9%

TCS-ILAB [17] 6.38%

CNN-ConvLSTM* 16.47%

Audio-Video RUCMM [18] 21.6%

NII-UIT [19] 26.8%

CNN-ConvLSTM* 31.54%

The results show that the CNN-ConvLSTM model could extract the depth
features of audio and model the time series on auditory channel. The results of
our method were what better than those of other teams. In the aspect of audio-
video fusion, CNN was used to extract the features from video difference map
and audio spectrogram, ConvLSTM was used to model and fuse the features.
The experimental results were significantly better than the current best results.

4 Conclusion

Violence detection is an important research direction in the field of multimedia
information processing, with a very wide range of application scenarios. In this
paper, an audio violence dataset named VioAudio was constructed to solve the
problem of the scarcity of dataset. Then, a CNN-ConvLSTM network model
was built to detect audio violence. This paper explored the fusion methods that
combine visual and audio features in the violence detection task. We combined
the feature of the inter-frame difference map with the feature of the audio spec-
trogram, and used ConvLSTM network to model the time series information,
which effectively improves the accuracy of violent event detection.

However, there are still many improvements. In the audio-video feature
fusion, there may be asynchronization between audio and video information.
To solve this problem, we will study the alignment method of audio and video
features, and then model the aligned features to build a violence detection sys-
tem. Secondly, the existing datasets are mainly for movie clips. We will build a
dataset of violence detection based on monitoring data to enhance the practical
significance of violence detection.
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Abstract. Mongolian Text-to-Speech (TTS) Challenge under Low-
Resource Scenario is a special session for National Conference on
Man-Machine Speech Communication 2022 (NCMMSC2022), termed as
NCMMSC2022-MTTSC. A Mongolian TTS dataset was provided to par-
ticipants this year, and a low-resource Mongolian TTS task was designed.
Specifically, the task is to synthesize high-quality Mongolian speech with
given Mongolian scripts. Thirteen teams submitted their results for final
evaluation. Mean opinion score (MOS) listening tests were conducted
online to measure the naturalness, intelligibility of the synthetic speech.
In addition, the word error rate (WER) of automatic speech recognition
was further treated as the objective metric for intelligibility evaluation.
The evaluation results show that the top system achieved comparable
naturalness and intelligibility with the ground truth speech.

Keywords: Mongolian · Text-to-Speech (TTS) · Low-Resource ·
NCMMSC2022

1 Introduction

Text-to-Speech (TTS), that is a standard technology in human-computer inter-
action, aims to convert the input text to human-like speech [1]. Mongolian TTS
Challenge under Low-Resource Scenario is a special session for National Con-
ference on Man-Machine Speech Communication 2022 (NCMMSC2022), termed
as NCMMSC2022-MTTSC. The NCMMSC2022-MTTSC was organized by the
Inner Mongolia University, the University of Science and Technology of China
(USTC) and the other members of the committee1. The majority of previous
TTS challenges have used speech datasets for mainstream languages, such as
Mandarin Chinese and English. For example, Blizzard Challenges2 2008–2010
and 2019–2020 adopt Mandarin Chinese data and Blizzard Challenges 2005–2013
and 2016–2018 use English data. Note that the TTS research for the minority
1 http://mglip.com/challenge/NCMMSC2022-MTTSC/index.html.
2 http://festvox.org/blizzard/index.html.
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language gradually attracted wide attention. To this end, Blizzard Challenges
2013–2015 use several India languages and 2021 adopt European Spanish data as
the official training corpus. Despite the progress, there are also some languages
that have not attracted enough attention, such as Mongolian language [2].

Mongolian is the most famous and widely spoken language of the Mongolian
language family. In addition, Mongolian is the main national language in the
Inner Mongolia Autonomous Region of China and is mainly used in Mongolian-
inhabited areas of China, Mongolia, and the Siberian Federal District of the
Russian Federation. Recently, the researchers began a series study of Mongolian
TTS [3]. Specifically, deep learning techniques were first introduced to Mongo-
lian TTS [4], and DNN-based acoustic models trained on 5-hours training data
were used instead of HMM acoustic models to achieve high-quality synthesized
speech. Li et al. [5] further implemented a Tacotron-based Mongolian TTS sys-
tem. To accelerate the inference speed and improve the speech fidelity, Liu et
al. [6] proposed a pure non-autoregressive neural Mongolian TTS model, called
MonTTS, which consists of the FastSpeech2-based acoustic model and the HiFi-
GAN vocoder. The above mentioned works provide a solid foundation for the
research of Mongolian TTS technology. However, there is still a lack of in-depth
research on Mongolian TTS, especially in a low-resource scenario that aims to
synthesize high-quality Mongolian speech with limited training data.

The NCMMSC2022-MTTSC is the first time that a minority language, i.e.,
Mongolian, has been used for TTS challenge in China. This challenge also pro-
motes the development of intelligent information processing in minority lan-
guages within China. This paper will present the details of the speech dataset,
tasks, participating systems, evaluations and results of challenge.

2 Voices to Build

2.1 Speech Dataset

A Mongolian speech dataset kindly provided by Inner Mongolia University was
released for voice building. The dataset contains recorded speech from a profes-
sional female native Mongolian speaker together with text transcriptions. The
texts were from various domains, including daily life, sport, education, travel-
ling, etc. The speech was recorded in a studio of school of computer science with
quiet environment. The total duration of the waveform files, which were sampled
at 22.05 kHz with a sampling accuracy of 16 bit, amounts to around 2 h.

2.2 Task

We design a Mongolian TTS task under a low-resource scenario using the released
dataset. Each participating team should build a voice from the provided 2-h
Mongolian data to synthesize the given Mongolian text, following the challenge
rules (See Foonote 1). The submitted synthetic speech should be 16 bit depth,
and at any standard sampling rate (e.g., 16 kHz, 22.05 kHz, 44.10 kHz, or 48 kHz).
For evaluation, teams were required to synthesize 200 test sentences (disjoint
from the training data) that contained only Mongolian text.
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Regarding the use of external data, the NCMMSC2022-MTTSC allowed that
each participant can use any data of any language, whether freely-available or
not, to conduct the pre-training etc. Participants were asked to report their data
usage instruction when submitting synthetic speech and in their paper.

3 Participants

There are 13 teams submitted their results. Note that there is no benchmark
system for NCMMSC2022-MTTSC. Following Blizzard challenges, all systems
are identified using letters in these published results. Specifically, letter A denotes
natural or ground truth speech. Letters B to T were assigned to the systems
submitted by participants. Each participating team is free to choose whether to
reveal their system identifier in their workshop paper.

We summarized the detailed structure of all systems in Table 1. We see that
all systems adopted a neural approach, and the great majority employed VITS,

Table 1. The participating teams and their institutions. The system identifier of nat-
ural speech (the first row) is letter A. The method descriptions are summarised based
on the questionnaires and the workshop papers from participants.

Team Name Institution Input Type Acoustic Model Vocoder Transfer
Learning

Natural Speech N/A N/A N/A N/A N/A
all u need University of Science and

Technology of China, Hefei
Latin FullConv Griffin-Lim No

Mnemosyne Microsoft Azure Speech, Beijing Latin Conformer based
FastSpeech2

HiFinet2 Yes

sigma VXI Global Solutions, Shanghai Latin VITS N/A Yes
TJUCCA_TTS Tianjin University, Tianjin (no

paper submission)
Phoneme Tacotron2 HiFi-GAN Yes

RoyalFlush Zhejiang Hithink RoyalFlush AI
Research Institute, HangZhou

Latin Tacotron2 HiFi-GAN Yes

火之源 Inner Mongolia University,
Hohhot

Latin FastSpeech2 HiFi-GAN Yes

IOA-THINKIT Institute of Acoustics, and
University of Chinese Academy
of Sciences, Beijing (no paper
submission)

Latin VITS N/A Yes

DBLAB OPPO Latin VITS N/A Yes
在线_AI特工队 China Mobile Online Services

Co., Ltd., Luoyang
Latin VITS N/A No

qdreamer Suzhou Qimeng People Network
Technology Company, Suzhou

Latin VITS N/A Yes

FlySpeech Audio, Speech and Langauge
Processing Group,
Northwestern Polytechnical
University, XiAn

Phoneme Delightful TTS HiFi-GAN Yes

Cyber Chengdu Rongwei Software
Service Co., Ltd. Chengdu (no
paper submission)

Phoneme Flow-based
model

HiFi-GAN Yes

Y Mobvoi (no paper
submission)

Phoneme VITS N/A No
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which is a state-of-the-art fully end-to-end model. The classic Tacotron2 and
FastSpeech2 models were also favored by many teams. Just one team build the
acoustic model with convolutional neural network (CNN). Neural vocoder was
also adopted by many teams, of which the majority (6 out of 13) was HiFi-GAN.

4 Evaluations and Results

4.1 Evaluation Materials

We released 200 sentences as the testing data for the listening test. All partici-
pants used their own system to synthesize 200 sentences for the final subjective
and objective rating.

4.2 Evaluation Metrics

The evaluation results for NCMMSC2022-MTTSC consisted of three metrics in
terms of naturalness and intelligibility, respectively, as follows:

– Naturalness mean opinion score (N-MOS) was used to test the speech
quality for all teams in terms of naturalness subjectively.

– Intelligibility mean opinion score (I-MOS) was used to test the speech
quality for all teams in terms of intelligibility subjectively.

– Word error rate (WER) was used to test the speech quality for all teams
in terms of intelligibility objectively.

For N-MOS and I-MOS, the organizers recruited 20 listeners that were all
native speakers of Mongolian and all instructions and other text on the listening
test webpages were includes Chinese and Mongolian. For WER, the organizers
calculated the WER by leveraging a Mongolian speech recognition interface3
from Inner Mongolia University.

4.3 Results

We report the evaluation results for all metrics in Fig. 1. In all subfigures of
Fig. 1, a consistent system ordering is adopted, which is the descending order of
mean values for the corresponding metric. The mean values are calculated from
the listeners’ scores for each metric. Please note that this ordering only aims to
make the plots more readable by using the same system ordering across all plots
for each task and can not be interpreted as a ranking, because the ordering does
not indicate which systems are significantly better than others.

As shown in Fig. 1(a), system C achieved significantly better naturalness
than all other submitted systems. The N-MOS ratings of natural speech (system
A) and system C were 4.886 and 4.468 respectively, and the difference between
them is minimal compared to other systems. All other systems scored below 4.3.
3 http://asr.mglip.com/.

http://asr.mglip.com/
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Fig. 1. N-MOS, I-MOS and WER results for NCMMSC2022-MTTSC. A is natural
speech, the remaining letters denote the systems submitted by participants.
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As shown in Fig. 1(b), system C still beat other systems and achieve highest
I-MOS score. The I-MOS scores of system A and system C were 4.945 and
4.496 respectively. Regarding objective intelligibility metric, Fig. 1(c) reports
the WER. We found that the system G achieved the lowest value with 31.02,
which is closer to the system A with 31.01 than other systems.

In a nutshell, the participants using transfer learning generally achieve good
results, which proves that transfer learning plays a positive role in improving
the speech synthesis effect in low-resource scenarios. More important, from the
submitted papers4, we can see that system C has conducted an in-depth study
on the pronunciation phenomenon of Mongolian and designed special processing
rules. Therefore, for agglutinative language, the addition of language-related
knowledge is helpful to improve TTS model performance. It is hoped that the
above findings will contribute to the future study of Mongolian TTS.
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Abstract. In this paper, we focus on improving the performance of
the text-dependent speaker verification system in the scenario of limited
training data. The deep learning based text-dependent speaker verifica-
tion system generally needs a large-scale text-dependent training data set
which could be both labor and cost expensive, especially for customized
new wake-up words. In recent studies, voice conversion systems that
can generate high quality synthesized speech of seen and unseen speak-
ers have been proposed. Inspired by those works, we adopt two different
voice conversion methods as well as the very simple re-sampling approach
to generate new text-dependent speech samples for data augmentation
purposes. Experimental results show that the proposed method signifi-
cantly improves the Equal Error Rate performance from 6.51% to 4.48%
in the scenario of limited training data. In addition, we also explore the
out-of-set and unseen speaker voice conversion based data augmentation.

Keywords: speaker verification · voices conversion · text-dependent ·
data augmentation

1 Introduction

Speaker verification technology aims to determine whether the test utterance is
indeed spoken by the enrollment speaker. In recent years, x-vectors [23] demon-
strate state-of-the-art results in the speaker verification field. Multiple different
backbone architectures, e.g. TDNN [23], ResNet [2], and their variants [18], etc.
are proposed for the front-end feature extraction.

Futhermore, the research works of deep learning based speaker verification
also enjoy those publicly open and free speech databases, e.g., AISHELL2 [7],
Librispeech [17], Voxceleb1&2 [4,16] in the text-independent field, and RSR2015
[15], HIMIA [19], MobvoiHotwords in the text-dependent field, etc. Methods in
[10,24] achieve a good performance in the text-dependent speaker verification
task if a large amount of text-dependent training data are available. However,
it is both labor expensive and time consuming to collect the database. With the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
L. Zhenhua et al. (Eds.): NCMMSC 2022, CCIS 1765, pp. 227–237, 2023.
https://doi.org/10.1007/978-981-99-2401-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-2401-1_21&domain=pdf
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rise of smart home and Internet of Things applications, there are great demands
for text-dependent speaker verification, with customized wake-up words. It is
almost impossible to collect the corresponding text-dependent speech data for
each customized wake-up word.

In recent studies, the speech signals generated by the multi-speaker Text-to-
Speech (TTS) and one-to-many or many-to-many voice conversion (VC) systems
are getting harder to be distinguished between real-person voice and synthesized
voice [5,27,29]. So, it is natural to adopt TTS or VC as a data augmentation
strategy for speaker verification under the limited training data scenario [12].
The multi-speaker TTS system could create a large amount of speech data from
multiple target speakers with different lexical contents. However, in the context
of text-dependent cases, since the input text is the same, the synthesized speech
data are very similar even for different target speakers. Moreover, different from
multi-speaker TTS, the VC system can generate data with various kinds of
styles all with the same text-dependent content. Therefore, the VC approaches
are more appropriate than TTS as the data augmentation method for text-
dependent speaker verification.

This paper aims to improve the text-dependent speaker verification system’s
performance with a limited number of speakers and training data.

– Limited training data for each speaker. The number of text-dependent utter-
ances of each speaker is less than 10.

– Limited speakers for training. The number of speakers is less than 500.

Targeting the aforementioned scenarios, we propose to train a voice con-
version model with limited existing text-dependent data to generate more new
text-dependent data. We use two different voice conversion methods as our data
augmentation systems. The first one is a Mel-to-Mel voice conversion system [26]
using the conditional Seq-to-Seq neural network framework with dual speaker
embeddings as the inputs while the other one is a PPP-to-Mel system that con-
verts the phoneme posterior probability(PPP) features [11] with target speaker
embedding into Mel-spectrograms [28]. Furthermore, in the limited speaker num-
ber case, we adopt the pitch shift(speed perturbation with re-sampling) strategy
to augment more speakers. Besides, we also attempt to use the out-of-set unseen
speakers’ embeddings to generate the text-dependent data from out-of-set speak-
ers. In order to compare TTS and VC based data augmentation methods in the
text-dependent speaker verification task, we also train a popular one-hot multi-
speaker TTS framework. The ResNet34-GSP [2] model is adopted as the speaker
verification system to evaluate different systems.

The paper is organized as follows. Section 2 describes the related works about
voice conversion and speaker verification we adopted in this paper. The proposed
methods and strategies are described in Sect. 3. Section 4 shows the experimental
results. Finally, the conclusion is provided in Sect. 5.
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Fig. 1. The architectures of two voice conversion systems used in this work

2 Related Works

2.1 Speaker Verification System

In this paper, we adopt the same structure as [2]. The network structure contains
three main components: a front-end pattern extractor, an encoder layer, and a
back-end classifier. The ResNet34 [9] structure is employed as the front-end pat-
tern extractor, which learns a frame-level representation from the input acoustic
feature. The global statistic pooling (GSP) layer, which computes the mean and
standard deviation of the output feature maps, can project the variable length
input to the fixed-length vector. The output of a fully connected layer following
after the pooling layer is adopted as the speaker embedding layer. The ArcFace
[6] (s = 32, m = 0.2) which could increase intra-speaker distances while ensuring
inter-speaker compactness is used as a classifier. The detailed configuration of
the neural network is the same with [21]. The cosine similarity serves as the
back-end scoring method.

2.2 Voice Conversion System

Mel-to-Mel VC System. Firstly, we introduce a many-to-many voice con-
version model using the conditional sequence-to-sequence neural network frame-
work with dual speaker embedding [26]. The model is trained on many different
source-target speaker pairs, which requires the speaker embeddings from both
the source speaker and the target speaker as the auxiliary inputs. To improve
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speaker similarity between reference speech and converted speech, we use a feed-
back constraint mechanism [3], which adds an auxiliary speaker identity loss
in the network. This model is named as the Mel-to-Mel VC system because
the model directly maps the source speaker Mel-spectrogram to target speaker
Mel-spectrogram.

Fig. 2. The pipeline of Data Augmentation based on Voice Conversion in Text-
Dependent Speaker Verification.

PPP-to-Mel VC System. Besides, we also introduced another VC system.
The model is proposed in [28]. First, we use a DNN based auto-speech recognition
(ASR) acoustic model, trained on the AISHELL-2 database, to obtain the target
speaker phoneme posterior probabilities(PPP) features as the voice conversion

Table 1. The dataset usage of training VC and TTS systems.

Model Dataset Training Spk/Utt Num

ASV HIMIA 340/3060

VC (PPP-to-Mel) HIMIA 340/3060

VC (Mel-to-Mel) HIMIA 340/3060

TTS DIDI-speech 500/53425
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model’s input. The model’s output is the target Mel-spectrogram feature. In
the testing, the source PPP will be assumed to be exactly the same as the
target PPP to generate the results. This system is named as the PPP-to-Mel
VC system in this paper. The PPP-to-Mel VC system architecture is similar to
the Mel-to-Mel VC system expect that there is no feedback constraint. Besides,
since the system’s input is the target speaker feature rather than the source
speaker feature, the input PPP feature is selected randomly from the limited
training data.

Figure 1 shows the architectures of two voice conversion systems. The speaker
encoder component is the same as the aforementioned ResNet34-GSP model. The
vocoder MelGAN [14] is used to reconstruct the time-domain waveform from the
predicted Mel-spectrogram.

3 Methods

In this section, the VC data augmentation strategies and the speed perturbation
method are introduced in detail. The pipeline of our proposed data augmentation
strategy is shown in Fig. 2. Those methods are all focused on the limited text-
dependent data scenario. In this experiment, we adopt the HIMIA database
with 340 speakers [19]. 9 utterances of each speaker in the HIMIA database are
randomly chosen as the limited text-dependent data to train the baseline system.
Therefore, only 3060 utterances (total have 340 * 9 = 3060 utterances) are used
to train the VC conversion and fine-tune speaker verification models. The close-
talk text-dependent data of the FFSVC20 challenge [21] are chosen as the test
data. The trial file can be download from trial file1. Since 3060 sentences with
only ’ni hao,mi ya’ text are not enough to train a TTS system, we use DiDi-
speech [8] with 500 speaker to train a multi-speaker TTS system. The dataset
usage of training VC and TTS system show in the Table 1.

3.1 Pre-training and Fine-tuning

According to our previous works [19,20], fine-tuning is an effective transfer learn-
ing approach to improve the speaker verification system performance in the lim-
ited training data scenario. In this work, we pre-trained the deep speaker verifica-
tion network with a large-scale text-independent mix-dataset. There are in total
3742 speakers in the pre-training dataset, including AISHELL-2 [7], SLR682 and
SLR623 from openslr.org. These three databases are also considered as out-of-set
unseen speaker data for the VC augmentation system. The model was trained
for 200 epochs in the pre-training stage, with an initial learning rate of 0.1.
The network was optimized by stochastic gradient descent (SGD). All weights
in the network remain trainable with an initial learning rate of 0.01 during the
fine-tuning stage.
1 https://github.com/qinxiaoyi/VCaug ASV.
2 https://openslr.org/68/.
3 https://openslr.org/62/.

https://github.com/qinxiaoyi/VCaug_ASV
https://openslr.org/68/
https://openslr.org/62/
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Fig. 3. Speaker embedding visualization by t-SNE for the in-set data. The voice con-
version data is generate by PPP-to-Mel VC system. The ∗ stands for the original data
and the • stands for voice conversion data

3.2 Data Augmentation Based on the VC System

The training data of both VC systems is only 3060 utterances with ‘ni hao, mi
ya’ text (Fig. 3).

Data Augmentation Using the Mel-to-Mel VC System. For training the
Mel-to-Mel VC system, the loss function of the many-to-many voice conversion
model is

Ltotal = Lmel before + Lmel after + Lstop token loss

+ 5 ∗ Lembedding loss + Lregular loss

(1)

The loss function is also described in detail in [3]. To make the speaker embedding
of the voice generated by the voice conversion model close to the target speaker
embedding, we increased the weight of embedding loss and set it to 5.

After that, we generated 200 utterances for each target speaker based on
a trained Mel-to-Mel VC system. For every target speaker, the source speech
of VC’s input was random chosen from the other 339 speaker utterances. The
embeddings generated by the VC system were computed the cosine similarity
with target speaker embedding to handle the outlier. The data with similarity
greater than 0.6 are retained.

The limited text-dependent training data (3060 utts) are adopted as source
speech for the out-of-set unseen speaker augmentation. Each out-of-set unseen
speaker has 20 VC generated text-dependent utterances. After that, the gener-
ated data with cosine similarity less than 0.3 are filtered out. Since the out-of-set
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Table 2. The performance of the text dependent speaker verification systems under
different data augmentation methods. The 9utt denotes the limited training data sce-
nario, each speaker only has 9 utterances; the VC AUGin and the VC AUGout denotes
the voice conversion data from in-set and out-of-set speakers respectively; the Pitch
shift AUG denotes the SoX speed function based pitch shift augmentation method.

Model Training data Spk/Utt Num. EER[%] mDCF0.1

Pre-train model AISHELL2 +SLR62 +SLR68 3472/518864 6.51 0.265

Fine-tune model 9 Utts per spk (baseline system) 340/3060 7.63 0.331

+ Pitch shift AUG 1020/9180 5.76 0.248

+ VC AUGin (Mel-to-Mel) 340/26160 6.36 0.304

+ VC AUGin (PPP-to-Mel) 340/29089 5.16 0.249

+ VC AUGout (Mel-to-Mel) 3210/48890 6.08 0.295

+ VC AUGin (Mel-to-Mel) + Pitch shift AUG 1020/76978 5.19 0.241

+ VC AUGin(PPP-to-Mel) + Pitch shift AUG 1020/87267 4.48 0.212

+ TTS (DiDi) 792/7323 6.01 0.292

voice conversion is a challenging task, the threshold is not very strict (the most
out of set embedding similarity is less than 0.5).

Fig. 4. Histogram of cosine similarity score on the in-set experiment.

Data Augmentation Using the PPP-to-Mel VC System. The procedure
the PPP-to-Mel VC augmentation method is the same as the Mel-to-Mel VC
system, and the loss function is the same as [22].

For the in-set speaker augmentation scenario, the word error rate (WER)
and Cosine similarity are adopted as objective metrics to measure the VC and
TTS systems. Figure 4 and Table 3 shows the quality of synthesized speech from
different VC systems on in-set speakers’ data. Each VC system generates 68000
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Table 3. The WER[%] and cosine similarity for different system on the in-set experi-
ment.

Model Cosine/Utt Num (average/all) Utt Num (>0.6) WER [%]

PPP-to-Mel(9utt) 0.555/68000 26029 9.11

Mel-to-Mel(9utt) 0.510/68000 23100 10.28

TTS (DiDi) 0.475/10000 4263(>0.5) –

text-dependent utterances (340 * 200 = 68000, each speaker generate 200 utter-
ances). Comparing with the Mel-to-Mel system, the PPP-to-Mel system’s aver-
age speaker similarity is higher. Moreover, as shown in Table 3, the WER of
the PPP-to-Mel VC system is less than Mel-to-Mel in retained utterances data.
Therefore, the speech quality of the PPP-to-Mel system is higher in terms of
these objective metrics.

3.3 Data Augmentation Based on the TTS System

We also train a one-hot multi-speaker TTS system to generate the augmented
data. The system is based on Tacotron-2 [22] with GMMv2 [1] attention. For
the multi-speaker modeling, a naive embedding-table based strategy is employed,
where 128 dimensional embeddings learned through model optimization are con-
catenated to the encoder’s output sequence, guiding the attention mechanism
and the decoder with target speaker’s information.

The model is trained from the DiDi-speech [8] database with 500 speakers.
For each pair of target speaker and desired keyword, we synthesize 20 speech
samples with identical voice and lexical content.

3.4 Speaker Augmentation Based on Speed Perturbation

We use speed perturbation based on the SoX speed function that modifies the
pitch and tempo of speech by resampling. This strategy has been successfully
used in the speech and speaker recognition tasks [13,25]. The limited text-
dependent dataset is expanded by creating data created two versions of the
original signal with speed factors of 0.9 and 1.1. The new classifier labels are
generated at the same time since speech samples after pitch shift are considered
to be from new speakers.

4 Experimental Results

Table 2 shows the results of different data augmentation strategies. The evalua-
tion metrics are Equal Error Rate (EER) and minimum Detection Cost Function
(mDCF) with Ptarget = 0.1. The baseline system employs the original limited
text-dependent dataset (9 utts per speaker) to fine tune the pre-trained model.
Since the size of in-set speaker dataset is too small, the system performance is
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degraded significantly. On the other hand, since the pitch shift AUG expand the
number of speakers, the EER of the system has been improved by 10% relatively.
The VC AUG with the PPP-to-Mel system also reduces the EER by relatively
20%. Moreover, it is observed that the system with both pitch shift AUG and
VC AUG achieves the best performance. Experimental results show that, in the
scenario of limited training data, the proposed method significantly reduces the
EER from 6.51% to 4.48%, and the performance of the mDCF0.1 also improves
from 0.265 to 0.212.

Without the Pitch shift Aug, the VC AUGin (PPP-to-Mel) have the lower
EER and mDCF0.1 than TTS Aug under the less speakers. Since all the synthe-
sized speech sentences have the similar tone regarding the TTS Aug system, the
VC Aug is more suitable than TTS Aug in the text-dependent speaker verifica-
tion task.

Furthermore, since the speech quality and speaker similarity of synthesized
speech from the PPP-to-Mel VC system are better than the Mel-to-Mel VC
system, a better result is achieved by using the PPP-to-Mel VC system for data
augmentation. Nevertheless, the Mel-to-Mel VC system explores the direction
of out-of-set unseen speaker augmentation and achieves some improvement. The
results obtained show that the VC Augin method is feasible, while the VC Augout
method still needs to be explored in the future.

5 Conclusion

This paper proposes two voice conversion based data augmentation methods to
improve the performance of text-dependent speaker verification systems under
the limited training data scenario. The results show that VC-AUG and pitch-shift
strategy are feasible and effective. In the future works, we will further explore
the methods and strategies for voice conversion based data augmentation with
unseen or even artificiality created speakers.
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Abstract. Emotion recognition in conversation (ERC) has attracted
much attention due to its widespread applications in the field of human
communication analysis. Compared with the vanilla sentiment analysis
of the single utterance, the ERC task which aims to judge the emotion
labels of utterances in the conversation requires modeling both the contex-
tual information and the speaker dependency. However, previous models
are limited in exploring the potential emotional relation of the utterances.
To address the problem, we propose a novel transformer-based potential
emotion relation mining network (TPERMN) to better explore the poten-
tial emotional relation and integrate the emotional clues. First, we uti-
lize the global gated recurrence unit to extract the situation-level emo-
tion vector. Then, different speaker GRU are assigned to different speakers
to capture the intra-speaker dependency of the utterances and obtain the
speaker-level emotion vector. Second, a potential relation mining trans-
former called PERformer is devised to extract the potential emotional rela-
tion and integrate emotional clues for the situation-level and speaker-level
emotion vector. In PERformer, we combine graph attention and multi-
head attention mechanism to explore the deep semantic information and
potential emotional relation. And an emotion augment block is designed
to enhance and complement the inherent characteristics. After multi-layer
accumulation, the updated representation is obtained for emotion classi-
fication. Detailed experiments on two public ERC datasets demonstrate
our model outperforms the state-of-the-art models.

Keywords: Emotion recognition in conversation · Transformer
encoder · Natural language processing

1 Introduction

Emotion intelligence is an important part of human intelligence and plays an
important role in our daily life [13]. Recently, with the continuous application of
emotion recognition in conversation (ERC) in the fields of opinion mining, social
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media analysis, and dialogue systems, ERC task has attracted much attention
from researchers and companies.

ERC task aims to identify the emotion of utterances in the conversation. Differ-
ent from the vanilla sentiment analysis of single utterance, ERC task not only needs
to model the context information but also needs to consider the speaker depen-
dency [2]. Contextual information contributes to emotional judgment, which plays
an important role in ERC tasks. In addition, due to the influence of the emotion
dynamics [4], speaker dependency also needs to be considered.

Recent works can be divided into recurrence-based models and graph-based
models. The recurrence-based models e.g., DialogueCRN [5], DialogueRNN [11],
COSMIC [1] use recurrence neural networks to process the utterance features
in sequence. However, the recurrence-based models are limited by their struc-
ture and can not learn the semantic information of utterances well. Some early
recurrence-based models e.g., HiGRU [7], BIERU [9] do not consider the speaker
dependencies, which also leads to the mediocre results. Graph-based models e.g.,
KET [18], DialogueGCN [2], DAG-ERC [14] can better reflect the struct of con-
versation and achieve the better results. However, these models are limited in
exploring the potential emotional relation of utterances in the conversation.

In order to identify the emotion of utterances effectively, it is necessary to
model the context and speaker information. Also, we can’t ignore the role of
the utterance’s potential emotional connections. The emotions of other utter-
ances have potential effects to the current utterance. These effects can be called
“emotional clues”, which can help the current utterance to make correct emo-
tional judgments as clues.

As shown in Fig. 1, speaker A couldn’t find his sandwich, so he asked B
whether he saw his sandwich. It can be seen from U2 that B ate the sandwich.
U5 shows that A did not want others to eat his sandwich. U7 has the potential
emotion relation with other utterances. It is difficult to judge the angry label
only by U7. By integrating the emotional clues and mining the potential relation
of utterance can we make a correct judgment.

Fig. 1. An example of the conversation segment from the MELD dataset.
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To address the problem, we propose a novel transformer-based potential emo-
tion relation mining network (TPERMN) to better explore contextual informa-
tion, speaker dependency, and potential emotion relation. The model is mainly
composed of two modules. In the emotion extraction module, we first utilize the
global gated recurrent unit (GRU) to capture the situation-level emotion vec-
tor. Afterward, aiming to capture the speaker dependency, the speaker GRUs
are assigned to different speakers to interact the utterances spoken by the same
speakers. Then, we restore the output of the speaker GRUs as the order of the
conversation to get the speaker-level emotion vector. After this stage, we obtain
the situation-level and the speaker-level emotion vector. In the potential relation
mining module, we introduce the Potential Emotional Relation mining trans-
former called PERformer to explore the potential relation of emotions and inte-
grate the emotional clues. Here, we first utilize the graph attention mechanism
and the multi-head attention to obtain semantic information of utterances and
explore the potential relationship. Then the emotion augment block is designed
to make the outputs of the two attention mechanisms complement each other
and enhance their inherent characteristics.

The contributions of our work are as follows:

– We propose a novel emotion extraction module which contains the global
GRU and speaker GRUs to extract the situation-level and speaker-level emo-
tion vector respectively.

– We present the parallel potential emotional relation mining transformer
(PERformer), namely, situation-level PERformer and speaker-level PER-
former, which can better explore the potential emotional relation and inte-
grate the emotional clues.

– Extensive experiments on the two public benchmarks show that our model
achieves the state-of-the-art result.

2 Related Work

2.1 Emotion Recognition in Conversation

Recurrence-Based Models. bc-LSTM [12] uses content-dependent LSTM
with an attention mechanism to capture contextual information. HIGRU [7]
obtains contextual information through the attention mechanism and hierarchi-
cal GRU. ICON [3] adds a global GRU based on CMN [4] to improve the previous
model. DialogueRNN [11] uses three GRU to model dialog dynamics and uses
the attention mechanism to capture contextual information.

Graph-Based Models. KET [18] combines external commonsense and trans-
former to model the context through a multi-layer attention mechanism. CTNET
[10] uses the transformer to model the intra- and cross-model interactions. Dia-
logueGCN [2] connects the utterance by a certain size window and uses the
relation graph attention network to aggregation information. DAG-ERC [14]
models conversation by a directed acyclic graph.
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Fig. 2. The framework of our potential emotion relation mining network (TPERMN).

3 Task Definition

In ERC task, conversation is defined as {u1, u2, ..., uN}, where N denotes the
utterance numbers. Each utterance ui = {w1, w2, ..., wn} formed by n words.
And we define Uλ to represent the utterances spoken by the speaker λ. uλ

i means
that utterance i is spoken by speaker λ. λ ∈ S, where S is the speaker set. And
each utterance has an emotion label yi ∈ E, where E is the emotion label set. Our
task is to predict the emotion label yi of a given utterance ui in a conversation
by the given context information and the speaker information.

4 Proposed Method

An ERC model requires advanced reasoning capability to understand the conver-
sation context and integrate emotion clues which lead to accurate classification
results.

We assume that the emotion of the utterances in conversation depends on
three factors:

– The contextual information.
– The speaker dependency.
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– The potential emotional relation of utterances.

Our TPERMN is modeled as follows:
We obtain the textual features of utterances extracted by RoBERTa. Then,

we input them into the emotion extraction module to get the situation-level emo-
tion vector and speaker-level emotion vector. Afterward, these representations
will be fed into the PERformer to explore the potential emotional relation and
integrate the emotional clues. Finally, the updated features will be used for the
final classification. The framework of the model is shown in Fig. 2.

4.1 Utterance Feature Extraction

Following Ghosal et al. [1], we get utterance features by RoBERTa-Large. For
utterance ui, a special token [CLS] is appended at the beginning, making the
input a form of [CLS], x1, x2, ..., xn. Then, the [CLS] token is used to classify its
lable. Once the model has been fine-tuned, we extract activations from the final
four layers of [CLS]. Finally, the four vectors are averaged as utterance features.

4.2 Emotion Extraction Module

After getting the utterance-level features ui ∈ R
d extracted by RoBERTa. We

use the global GRUg to model the global situation-level emotion vector. The
global situation-level emotion vector G = {g1, . . . , gN} can be formulated as
follows:

gi, h
g
i =

←−−→
GRU

g
(ui, h

g
i−1), (1)

where gi ∈ R
2d is the situation-level emotion vector representation, hg

i ∈ R
d is

the i-th hidden state of the global GRU, d is the hidden dimension of utterances.
We utilize different speaker GRUs to capture the intra-speaker dependency.

For each speaker λ ∈ {a, b}, GRUs
λ is utilized to model the emotional inertia of

speaker λ. The speaker-level emotion vector si ∈ R
2d is computed as follows:

sλ
i , hλ

i =
←−−→
GRUλ

s
(uλ

i , hλ
i−1), λ ∈ {a, b}, (2)

where uλ
i ∈ R

d are the utterances spoken by speaker λ , a, b are different speakers
in conversation, hλ

i ∈ R
d is the i-th hidden state of the speaker GRU.

After that, we restore the output of the speaker GRUs as the order of the
conversation to get the speaker-level emotion representation S = {s1, . . . , sN},
si ∈ R

2d.

4.3 PERformer Module

After the emotion extraction module, we get the situation-level emotion vec-
tor G = {g1, . . . , gN}, gi ∈ R

2d and the speaker-level emotion vector S =
{s1, . . . , sN}, si ∈ R

2d. Then, these representations are fed into the PERformer
respectively. In later section, we will mainly use the situation-level emotion vec-
tor G = {g1, . . . , gN}, gi ∈ R

2d to illustrate the structure of PERformer.
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Graph Attention. Graph attention Network (GAT) [15], leveraging self-
attention to assign different importance to neighbor nodes. In our work, we
utilize the graph attention mechanism to mining the deep semantic information
of the emotion vector.

αl
ij =

exp(F(gl
i, g

l
j))∑

j∈Ni
exp (F(gl

i, g
l
j))

, (3)

F(gl
i, g

l
j) = LeakyReLU

(
a�[Whgl

i‖Whgl
j ]

)
, (4)

ĝl
i = σ

( ∑

j∈Ni

αl
ijWhgl

j) , (5)

where l is the current layer, αl
ij is the weight calcuate via an attention process, Ni

is the neighbor nodes of i, we construct a fully-connect graph for the conversation
and j are the rest utterances. LeakyReLU is an activation function, Wh ∈
R

2d×2d
′
, a ∈ R

4d are the trainable weight matrixs. Then, we get the updated
representation in l layer Ĝl = {ĝl

1, . . . , ĝ
l
N}, where ĝl

i ∈ R
2d.

Multi-head Attention. We further adapt the multi-head attention mechanism
to combine different attentions in parallel, enabling the model to jointly attend
to important potential relations and emotional clues from various embeddings
at different positions. The similarity score of different utterances can be seen
as potential emotion relation. The process of aggregation can be seen as the
process of integrating emotional clues. Specially, in the l-th layer, PERformer
first transforms Ĝl into multiple subspaces with different linear transformations,

Qh,Kh, Vh = ĜlWQ
h , ĜlWK

h , ĜlWV
h (6)

where Ĝ is projected to three matrixs: query matrix Qh, key matrix Kh of
dimension dk, and value matrix Vh, WQ

h ,WK
h ,WV

h are trainable parameters.
Then, the self-attention is applied to calculate the potential relation,

Âl
h = softmax

(
QhK�

h√
dk

,dim=1
)

Vh, (7)

where Âl
h is the output of h-th head in self-attention mechanism. Then, we

concatenate the output of these attention heads to exlplore the potential relation
in parallel,

Âl = [Âl
1; Â

l
2; ...; Â

l
m]WO, (8)

where Âl ∈ R
2d is the final output of multi-head attention in l layer, m is the

number of parallel heads, WO is a fully connected layer to connect h heads.

Emotion Augment Block. We design an emotion augment block based on
the gating mechanism to make comprehensive use of the attention mechanisms
and enhance their inherent characteristics. The method has been shown effective
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in various past works [8]. The formulas are as follows:

R̂l = tanh(W l
mrĜ

l + W l
nrÂ

l + bl
mr), (9)

zl = σ(W l
mzĜ

l + W l
nzÂ

l + bl
mz), (10)

El
c = (1 − zl) � R̂l + zl � Ĝl, (11)

where l is the current layer, zl is the update gate, R̂l is a candidate of updated
representation, σ is sigmoid activation, tanh is a hyperbolic tangent activation, �
is the Hadamard product, wl

mr, wl
nr, wl

mz, and wl
nz are trainable weight matrix,

bl
mz, bl

mz are trainable bias, El
c ∈ R

2d is the augmented emotion clues. Then, a
feed-forward network is deployed to produce El

g in l layer,

F l
g = max(0,W l

mfEl
c + bl

mf )W l
nf + bl

nf , (12)

El
g = LayerNorm(El

c + F l
g), (13)

where W l
mf ,W l

nf are two trainable matrixs, bl
mf , bl

nf are trainable biases, and
El

g ∈ R
2d is the output of situation-level PERformer in l layer. Then, the output

of the l-th layer will continue to be calculated as the input of l + 1 layer.

4.4 Emotion Classifier

After stacking L layers, we get the final integrated emotion clues. For the
situation- and speaker-level representation G and S, the above processes can be
summarized as Eg =PRRformer(G), Es =PRRformer(S) respectively, where
Eg, Es ∈ R

N×2d. Then we connect them to get the finally representation
Ef = {[Ef ]1, . . . , [Ef ]N}, where [Ef ]i = [[Eg]i ⊕ [Es]i] ∈ R

4d. Finally, we change
the dimension to emotion classes and use the cross-entropy function to calculate
loss. The formulas are as follow:

Pi = Softmax(We[Ef ]i + be), (14)
yi = Argmax(Pi[k]), (15)

L(θ) = −
M∑

i=1

c(i)∑

j=1

logPi,j [yi,j ]. (16)

where M is the number of conversations, c(i) is the number of utterances in i-th
conversation, Pi,j is the probability of the label of utterance j in conversation i,
yi,j is the label of utterance j in conversation i, θ is the trainable parameters.

4.5 Datasets

5 Experiments

5.1 Datasets

We conduct detailed experiments on two public datasets. The specific informa-
tion of the datasets is shown in Table 1.
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Table 1. Data distribution of the two datasets.

Dataset # Conversations # Uterrances

Train Val Test Train Val Test

IEMOCAP 120 31 5810 1623

MELD 1038 114 280 9989 1109 2610

IEMOCAP: The conversations in IEMOCAP comes from the performance
based on script by two actors. There are in total six emotion classes neutral,
happiness, sadness, anger, frustrated, and excited.

MELD: A multi-speaker dataset collected from Friends TV series. MELD has
more than 1400 dialogues and 13000 utterances. There are seven emotion classes
including neutral, happiness, surprise, sadness, anger, disgust, and fear.

5.2 Implementation Details

In our experiment, the dimension of utterance features is 1024, we set the hidden
dimension d to 100. The learning rate is set to {0.0001, 0.001} and dropout is
set to {0.1, 0.2} for IEMOCAP and MELD dataset respectively. The batch
size is set to {16, 64} and l2 is set to {0.001, 0.002} respectively. As for the
potential emotional relation mining transformer (PERformer), we set the layer
of PERformer to 4, 5 respectively and we set the number of the multi-head
attention to 4, 8 respectively. The epoch is set to 50 and each training and
testing process runs on Tesla P100.

5.3 Evaluation Metrics

Following Ghosal et al. [1], we use the weighted-average F1 score as the evaluation
metrics. Besides, following Majumder et al. [11], we use Acc. to calculate the
classification accuracy.

5.4 Comparing Methods and Metrics

bc-LSTM [12] introduces the bidirectional LSTM and attention mechanism to
model the contextual information.
CMN [4] models the utterances spoken by different speakers respectively, and
uses the attention mechanism to fuse context information. ICON [3] adds a global
GRU based on CMN to improve the previous model.
DialogueRNN [11] uses three RNN to model dialog dynamics which include
the speaker, the context, and the emotion of the consecutive utterances and uses
the attention mechanism to capture contextual information.
AGHMN [6] uses the BiGRU fusion layer to model the correlation of historical
utterances. In addition, it uses the attention mechanism to update the internal
state of GRU.
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CoGCN [17] models utterance features and initialized speaker features as vertex
features to construct graph structure.
A-DMN [16] models self and inter-speaker dependency respectively and com-
bines them to update the memory.
BIERU [9] introduces a compact and fast emotional recurrent unit(ERU) to
obtain contextual information.
DialogueGCN [2] connects utterances in a certain window size and uses the
relation graph attention network to aggregation information.
COSMIC [1] proposes a new framework that introduces different commonsense.
CTNET [10] uses different transformers to model the intra- and inter-modal
information and the speaker embedding mechanism is used to add speaker infor-
mation.
DAG-ERC [14] models conversation by a directed acyclic graph(DAG) and uses
the contextual information unit to enhance the information of historical context.
DAG-ERC achieves superior performance as a strong baseline.

Table 2. Comparison of results of specific emotion categories on the IEMOCAP
dataset.

Methods IEMOCAP

Happy Sad Neutral Angry Excited Frustrated W-Avg

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

bc-LSTM 37.5 43.4 67.7 69.8 64.2 55.8 61.9 61.8 51.8 59.3 61.3 60.2 59.2 59.1

CMN 20.1 28.7 62.9 68.3 56.0 57.4 58.8 60.4 68.2 66.7 74.3 63.2 60.7 59.8

ICON 22.2 29.9 58.8 64.6 62.8 57.4 64.7 63.0 58.9 63.4 67.2 60.8 59.1 58.5

DialogueRNN 25.7 33.2 75.1 78.8 58.6 59.2 64.7 65.3 80.3 71.9 61.2 58.9 63.4 62.8

AGHMN 48.3 52.1 68.3 73.3 61.6 58.4 57.5 61.9 68.1 69.7 67.1 62.3 63.5 63.5

DialogueGCN 40.6 42.8 89.1 84.5 61.9 63.5 67.5 64.2 65.5 63.1 64.2 67.0 65.3 64.2

A-DMN 43.1 50.6 69.4 76.8 63.0 62.9 63.5 56.5 88.3 77.9 53.3 55.7 64.6 64.3

BiERU 54.2 31.5 80.6 84.2 64.7 60.2 67.9 65.7 62.8 74.1 61.9 61.3 66.1 64.7

COSMIC – – – – – – – – – – – – – 65.3

CTNET 47.9 51.3 78.0 79.9 69.0 65.8 72.9 67.2 85.3 78.7 52.2 58.8 68.0 67.5

DAG-ERC – – – – – – – – – – – – – 68.0

Ours 56.9 57.1 79.2 81.3 70.3 69.4 71.2 64.7 76.6 75.6 61.2 64.1 69.56 69.59

Table 3. Comparison of results of specific emotion categories on the MELD dataset.

Methods MELD

Anger Disgust Fear Joy Neutral Sadness Surprise W-Avg F1

CMN 44.7 0.0 0.0 44.7 74.3 23.4 47.2 55.5

bc-LSTM 43.4 23.7 9.4 54.5 76.7 24.3 51.0 59.3

ICON 44.8 0.0 0.0 50.2 73.6 23.2 50.0 56.3

DialogueRNN 43.7 7.9 11.7 54.4 77.4 34.6 52.5 60.3

CoGCN 46.8 10.6 8.7 53.1 76.7 28.5 50.3 59.4

A-DMN 41.0 3.5 8.6 57.4 78.9 24.9 55.4 60.5

DAG-ERC – – – – – – – 63.6

COSMIC – – – – – – – 65.2

Ours 53.4 16.1 20.3 65.3 79.2 42.4 59.5 65.8
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5.5 Compared with the State-of-the-art Method

In this section, we will compare our model with other benchmark models. The
results are shown in Table 2 and 3.

IEMOCAP: As shown in Table 2, our model achieves the best results on the
W-Avg Acc. and W-Avg F1 score. As for the performance on specific emotions,
our model is relatively balanced. On happy and neutral, our model achieves the
best performance. DAG-ERC is the start-of-the-art model which combines the
advantage of recurrence-based and graph-based models by using the directed
acyclic graph. Compared with DAG-ERC, our model improves by 1.59% on the
W-Avg F1 score. CTNET uses the transformer encoder to model the information
of different modals. Compared with CTNET, our model makes improvements
on the vanilla transformer encoder to mine the potential emotional relation and
integrate emotional clues. Besides, our model uses different GRUs to model the
speaker dependency is more reasonable. Thus, our model improves by 1.56%.
2.09% on Acc. and F1 respectively.

MELD: As shown in Table 3, our model achieves the best result of 65.8% on
the W-Avg F1. COSMIC is a strong baseline that introduces extra common-
sense knowledge to improve the results, and the structure of COSMIC is similar
to DialogueRNN. Compared with COSMIC, our model improves by 0.6% on the
F1 score. As for the specific emotional classification, our model performs better
compared to the baseline model. On the emotion of disgust and fear, most mod-
els perform poorly or even can not distinguish. But our model achieves 16.1%
and 20.3% on the F1 score respectively, which shows the excellent ability to
understand the conversation context. Compared with A-DMN, on the emotion
of anger, joy, sadness, and surprise, our model improves by 12.4%, 7.9%, 17.5%,
and 4.1% respectively.

5.6 Ablation Study

In this section, we will analyze the results of the ablation study on both IEMO-
CAP and MELD datasets as shown in Table 4 and 5. There are two main mod-

Table 4. The ablation study of our model.

Emotion Extraction PERformer IEMOCAP MELD

situation-level — speaker-level situation-level — speaker-level W-Avg F1

� � � � 69.59 65.82

� × � × 65.76 65.09

× � × � 68.21 64.55

� � × × 65.70 64.97

� � � × 66.57 65.14

� � × � 68.87 65.22

× × × × 54.55 62.02
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Table 5. The ablation study of PERformer.

Method IEMOCAP MELD

w/o emotion augment blcok 68.97 65.57

w/o graph attention layer 68.05 65.49

w/o graph attention layer and emotion augment blcok 67.87 65.24

OUR 69.59 65.82

ules in our paper: the emotion extraction module (EE) and the potential relation
mining transformer (PRMformer). Both modules are composed of speaker-level
and situation-level units.

The Effort of Different Level Modules: As shown in the first three rows in
Table 4, when the speaker-level emotion extraction modele (speaker GRUs) and
speaker-level PERformer are removed simultaneously, the results decrease by
3.83% and 0.73% respectively. And when the situation-level emotion extraction
modele (global GRU) and situation-level PERformer are removed simultane-
ously, the results decrease by 1.38% and 1.27% on the IEMOCAP and MELD
datasets respectively. This result shows that both the situation-level and speaker-
level modules have unique functions, and they can complement each other’s miss-
ing information to make the final result better. The best results are obtained
when they are used simultaneously. In addition, the speaker-level modules is
more important for the IEMOCAP dataset, and the situation-level modules is
more important for the MELD dataset. The results are caused by the IEMOCAP
is a two-speaker dataset and the MELD is a multi-speaker dataset. In the emo-
tion extraction module, our model only divided the utterances spoken by two
different speakers. In addition, the utterances in MELD are short and highly
dependent on the context information.

The Effort of PERformer: As shown in the fourth row of Table 4, when the
PERformer is removed, the results are sharply dropped by 3.89%, 0.85%. These
are caused by our PERformer can better mine the potential emotion relation
and integrate the emotional clues. When the speaker-level and situation-level
PERformer are removed respectively, the results also decline to a certain extent.

As shown in Table 5, we will analyze the effort of the internal components
of the PERformer. When the graph attention mechanism is removed, the F1
decreases by 1.54% and 0.33%, respectively on the IEMOCAP and MELD
datasets. And when the emotion augment block is removed, the F1 decreases
by 0.62% and 0.25%. When two components are used at the same time, our
model achieves the best results.

5.7 Analysis on Parameters

In this section, we will analyze the multi-head number M and the PERformer
layer L. The results are shown in Fig. 3. We choose L from {1,...,8 } and M from
{1,...,12}, respectively.
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As shown in Fig. 3(a) and 3(b). On IEMOCAP, when L increases from 1 to
4, F1 always increases. When L = 4, the best result is obtained for 69.59%.
However, F1 score declines after L = 4. On MELD, the best result is achieved
when L=5. The phenomenons show that increasing the number of layers will
improve the experimental results, but too deep layers will extract more useless
potential relations.

As shown in Fig. 3(c) and 3(d). The increase in the number of heads M will
improve the ability of our model to mine the potential emotional relation and
integrate emotional clues. On the IEMOCAP dataset, when M = 4, our model
achieves the best result. After this point, the F1 begins to decrease. On MELD,
when M = 8, our model achieves the best result. The results indicate that too
many attention heads will not improve the experimental results, but will learn
redundant information.

Fig. 3. Parameter analysis of the module layers (L) and the multi-head number (M).

5.8 Error Study

In this section, we will analyze the misclassification through the confusion
matrix. The columns and rows on confusion matrix indicate the true and pre-
dicted labels, respectively.

As shown in Fig. 4, our model has a good performance in all kinds of emo-
tion discrimination and the accuracy is high in most emotion categories. For
example, our model correctly judges 194 sad emotion with a total of 245 on
the IEMOCAP dataset, and the accuracy rate of our model is 79.18%. On the
emotion of anger, our model correctly judges 121 anger emotion with a total of
170 on the IEMOCAP dataset, and the accuracy rate of our model is 71.17%.
However, on the IEMOCAP dataset, our model is insufficient in distinguishing
similar emotions. happy and excited are similar emotions and our model is easy
to misjudge them. In addition, frustrated is easy to be misjudged as natural and
angry.

On the MELD dataset, there are 1256 shapes of neutral labels in the test set.
Because of this uneven distribution, our model will misjudge other emotions as
natural. As can be seen from Fig. 4, the number of other emotions misjudged as
neutral is the largest. For the fear and disgust labels, there are only 50 and 68
in the test set, respectively. The accuracy of a judgment is not high due to too
few samples.
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Fig. 4. Confusion matrix on the IEMOCAP and MELD dataset.

6 Conclusion

In this paper, we propose a model entitled transformer-based potential emo-
tion relation mining network (TPERMN) to model the conversation context,
speaker information, and the potential emotional relation simultaneously. We
first utilize the emotion extraction module to obtain the situation-level and
speaker-level emotion vectors. Then, the potential emotional relation mining
transformer (PERformer) is introduced to explore the potential relationship
and integrate emotional clues. In addition, we propose two parallel PERformers
called situation-level PERformer and speaker-level PERformer to model these
representations respectively. The method complements each other to improve the
performance of the final emotional clues. Empirical results on two ERC datasets
show that our model is effective in solving the ERC task. However, our model
has shortcomings in similar emotional judgment. Our feature work will focus on
the application of multi-modals features.
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Abstract. Foley sound in movies and TV episodes is of great impor-
tance to bring a more realistic feeling to the audience. Traditionally,
foley artists need to create the foley sound synchronous with the con-
tent occurring in the video using their expertise. However, it is quite
laborious and time consuming. In this paper, we present FastFoley, a
Transformer based non-autoregressive deep-learning method that can be
used to synthesize a foley audio track from the silent video clip. Existing
cross-model generation methods are still based on autoregressive mod-
els such as long short-term memory (LSTM) recurrent neural network.
Our FastFoley offers a new non-autoregressive framework on the audio-
visual task. Upon videos provided, FastFoley can synthesize associated
audio files, which outperforms the LSTM based methods in time synchro-
nization, sound quality, and sense of reality. Particularly, we have also
created a dataset called Audio-Visual Foley Dataset(AVFD) for related
foley work and make it open-source, which can be downloaded at https://
github.com/thuhcsi/icassp2022-FastFoley.

Keywords: Foley · Cross-Modal · Audio-Visual · Transformer · Video
Sound Generation

1 Introduction

Sound is the earliest way for us to contact this world. Heartbeat, breathing,
knocking, running water and footsteps..., it can be said that sound is the first
step for us to communicate with this world. It extends from information to
emotion and supports the commonality of people’s psychology and senses.
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Sound effects mean the sound added to the vocal cords to enhance the realism
or atmosphere of a scene. As sound is passively accepted by users, it is easier to
use sound effects to convey information than visual communication. Foley is a
kind of sound effect, which is usually created by foley designers using props in
a noiseless environment. For digital media applications such as movies, games,
and children’s picture books, adding foley sound corresponding to the video
content on top of the original vocals and background music greatly enhance
the audience’s immersive experience [2]. But the design of foley relies heavily
on the personal understanding and creativity of foley designers themselves. The
foley sound creation is extremely restricted by the environment and inspiration,
and also very time-consuming and laborious. Now, some teams are trying to
automate this process, e.g. AutoFoley [8]. However, the existing methods are
mostly based on autoregressive models, which need a long time to train and are
not robust enough. Non-autoregressive Transformer can offer a better ability to
fit the visual features of the front-end and the audio features of the back-end,
which can avoid over-fitting that often occurs in LSTM.

Generating foley sound from videos is a task of cross-modal generation. There
are already a lot of works on audio-visual tasks, such as audio-visual repre-
sentation [5,18]. Synthesizing audio for video has recently attracted consider-
able attention. Recent works have explored the relationship between auditory
and visual modalities, such as Visual2Sound collected an unconstraint dataset
(VEGAS) that includes 10 types of sounds recorded in the wild and proposed
a SampleRNN-based method to directly generate a waveform from a video [30];
Audeo [22] and FoleyMusic [6] focus on generating music from the image infor-
mation including musicians playing instruments; Listen to the Image [14] aims
to assist the blind in sensing the visual environment better by translating the
visual information into a sound pattern, and proposed a new method to evalu-
ate the sensing ability by machine, not human; REGNET [3] focuses on learning
how to only keep the sound of the object in the video contents; AutoFoley [8]
proposed two different streams of networks for synthesizing foley sound, one is
traditional CNN and LSTM, the other is based on Temporal-Relation-Network
(TRN); FoleyGAN [9] is the follow-up work of AutoFoley, which introduced
GAN [10] to generate more realistic sound; CMCGAN [12] offered a novel model
based on CycleGAN, as a uniform framework for the cross-modal visual-audio
mutual generation. Similar to AutoFoley, we consider generating foley sound
from videos.

In this paper, a Transformer-based non-autoregressive sound generation net-
work is proposed as an automatic tool for foley sound synthesis, named Fast-
Foley. The FastFoley task is similar to text-to-speech (TTS) that aims to syn-
thesize acoustic speech from text. In our task, we consider visual information
as the input to generate various kinds of foley sound that is synchronized with
the motions in the input silent video. Different from the existing cross-model
generation methods where autoregressive models such as LSTM are used, our
proposed method offers a new non-autoregressive framework on the auto-visual
task. Experimental results demonstrate that our proposed method outperforms
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the LSTM-based methods in time synchronization, sound quality and sense of
reality. In addition, we also created a dataset called Audio-Visual Foley Dataset
(AVFD) for the related foley work and make it open-source for public access.

2 Method

In this section, we first introduce the overview of our method and then describe
the sound generation pipeline in the following subsections. As shown in Fig. 1,
the proposed framework consists of three major parts: 1) Audio and visual fea-
tures extraction. 2) Acoustic model which transforms the visual features to the
corresponding spectrograms. 3) Sound generation based on converting the spec-
trograms to the waveforms.

Fig. 1. The structure of proposed FastFoley network.

2.1 Audio and Visual Features Extraction

The original video clips and audios are all 5 s. The Short-Time Fourier Transform
(STFT) [11] is used to get the spectrograms from audio files as the audio features.
The sampling rate of the audio files is 44.1 kHz. When computing STFT, Hanning
window is used, with window size 1024 and window shift 256. Therefore the
dimensions of the spectrogram are 513 * 860.

Before moving towards the visual feature extraction step, aligning the video
frames with the audio feature frames by interpolating the original video is of
great importance to make the sound and video frames synchronous. The original
videos are with the frame rate of 25 or 30 FPS (frames per second). To match
with the 860 frames with 5 s of the audio features, the videos have been adjusted
from their inherent FPS to 172 FPS after interpolation by using m-interpolation
filter in the FFmpeg [24] package that can generate intermediate frames instead
of simple duplication.

The information of a video not only includes the texture and color of the
objects but also the motion information that can be extracted from consecutive
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video frames. The motion information is quite important to model the syn-
chronicity between video and audio frames. Previous work [8] has shown that
ResNet-50 is better than VGG-19, hence we extract the motion information as
well as the texture and color information separately using a pre-trained ResNet-
50 [13] and concatenate them together as the visual features. For extraction
the motion information, the current, previous and next video frames are firstly
gray-scaled and input to ResNet-50 as three channels. By doing so, the motion
information can be represented better because at each step it contains the con-
secutive motion, contributing to more continuous visual features. Meanwhile, we
input the current frame with RGB channels to ResNet-50 to extract the texture
and color information.

2.2 Acoustic Model

Basically, the proposed model is similar to the acoustic model in TTS. Previ-
ous neural TTS models such as Tacotron [26] first generate Mel-spectrograms
autoregressively from text and then synthesize speech from the generated Mel-
spectrograms using a separately trained vocoder. As for foley sound generation,
[3,8] both take an autoregressive model as the acoustic model, [3] which makes
it a model looks like Tacotron.

As shown in Fig. 2, the proposed acoustic model is based on a non-
autoregressive model with Feed-Forward Transformer blocks [25], which can
parallelize the process to generate spectrograms with extremely fast speed. As
Fig. 2(a) shows, Transformer blocks are based on the attention mechanism, with
which long-range dependencies of the input visual features can be learnt that
contribute to the generation of foley sound. The sequential information between
different visual features is also crucial for modeling the synchronicity between
foley sound and visual input. To help the Transformer blocks distinguish differ-
ent positions of the visual features, positional embeddings [25] are added to the
encoded visual features.

In TTS, the length regulator [19] is essential so that the linguistic features
can be aligned with the acoustic features. However, in the proposed model there
is no longer a need for the length regulator as video frames and audio frames
have already been aligned. The linear layer in encoder is used to transform the
dimension of visual features to the dimension of encoder hidden. Additionally,
class embedding [4] is added to the encoder output for the support of training
with multiple sound classes, to ensure the matching between feature extraction
and acoustic model. The average spectrograms of respective classes are viewed
as a conditional input to the decoder output so that the acoustic model only
predicts the residual between the average spectrograms and the ground-truth.
The class embedding is a look-up table consisting of the class label of datasets.
The dimention of class embedding is the number of classes. We expand the
dimension of class embedding to the dimension of encoder output and then add
them up. The average spectrograms are obtained by calculating the average value
of each class’s spectrogram of the corresponding audio files. The linear layer in
decoder is used to transform the dimension of decoder hidden to the dimension
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of spectrogram. As is shown in Fig. 2(b), the PostNet contains 5 1D convlutional
layers and BatchNorm layers. The input of PostNet is added to the output via
residual connections. We reduce the difference between the ground-truth and the
predicted sound feature for every time step by calculating the Smooth L1 Loss,
which is found better than L1 Loss and L2 loss during experiments.

Fig. 2. Transformer Block and PostNet structure.

For sound generation from predicted spectrograms, the Inverse Short Time
Fourier Transform (ISTFT) [11] method with Hanning window is performed
because of its less computational complexity than neural-based vocoder. For
phase reconstruction from the spectrogram, the iterative Griffin-Lim algorithm
[11] is adopted when performing ISTFT.

3 Dataset

The goal of this work is to generate matched and synchronized sound effects
according to video content, so the content of audio must be highly matched with
the action in the video. Towards this, we found some datasets related to motion
recognition, video understanding and audio-visual synchronization tasks, such as
HMDB [16], UCF101 [21], VEGAS [30]. However, most of these datasets pay too
much attention to video content but neglect the importance of sound. Elements
such as human voice, background music, noise, and even the absence of sound
have a great impact. We also found some datasets in the film field. For example,
MovieNet [15] is a large-scale dataset for comprehensive movie understanding.
But it is too artistic and talks more about the hierarchical and content structure
of the film itself. We consider adding the artistic quality evaluation in the future,
but it is not suitable for our current work.
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In order to complete this foley task, we construct the Audio-Visual Foley
Dataset (AVFD)1 derived from AudioSet [7], UCF101 [21] and VEGAS [30].

AudioSet is a dataset that consists of 2,084,320 human-labeled 10-second
sound clips drawn from YouTube videos. Although these video files own cor-
responding natural sound, AudioSet isn’t absolutely ideal for our task because
many videos and audios are loosely related [30]. So we screened out some suitable
classes manually for further cleaning, such as JackHammer, Sawing, and so on.
According to AudioSet ontology’s JSON file, we know the id of each class. Conse-
quently, we could obtain the YouTube URL of all videos belonging to this class.
Then, we download all of them by YouTube-dl [1] and select the available video
manually. As the downloaded video is the complete video in YouTube, the digital
media editor uses FFmpeg [24] and Adobe Premiere Pro to extract the exact
video clips according to the timestamp tag provided by AudioSet. In addition,
we noticed that part of videos in UCF101 and VEGAS also meet the require-
ments (little noise, no vocals, no background music). So we have also screened
out the available video from these datasets and integrated them together with
the videos from AudioSet to construct the AVFD.

Fig. 3. The Audio-Visual Foley Dataset (AVFD) Video Classes.

Altogether, our Audio-Visual Foley Dataset(AVFD) contains a total of 5,565
videos from 12 different classes, as is shown in Fig. 3. 5 sound classes namely
Hammer, BoxingSpeedBag, Gun, TableTennisShot, and Typing are selected from
UCF101 and VEGAS. The other classes are obtained from AudioSet, namely
Hammer (merged with the same Hammer class in UCF101), Chopping, Clapping,
Footsteps, Powertool, JackHammer, Waterfall and Sawing. There are 464 videos
1 https://github.com/thuhcsi/icassp2022-FastFoley.

https://github.com/thuhcsi/icassp2022-FastFoley
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in each class on average, and the duration of each video is within 10 s. We make
this Audio-Visual Foley Dataset (AVFD) open-source for public access.

4 Experiments and Results

4.1 Implementation Details

Firstly we dynamically extract gray-scale feature maps and RGB feature maps
and then feed them to ResNet-50 to extract visual features, which is used for
training the acoustic model. In this way, the whole framework is in end-to-end
mode. However, we found that dynamically extracting the feature maps leads to
a fairly slow training process. Hence, we separate the training process into two
stages: 1) Extract the visual features with ResNet-50 and compute the audio
features, and save them as NumPy arrays. 2) Training the acoustic model with
prepared audio and visual features.

At first stage, we compute audio features using librosa [17], an audio pro-
cessing package from Python. The configurations are mentioned in Sect. 2.1. For
every sound class, we compute an average spectrogram. For video interpolation,
we use the m-interpolation filter in the FFmpeg video editing tool [24]. To get
visual features, we separately take the current, previous frame and next frames
as the three-channel input of ResNet-50 to get a 2048-d vector containing motion
information, and use the RGB frame in the same way to get a 2048-d vector with
texture and color information at each time step. The final visual embeddings are
derived by concatenating the two vectors, leading to a 4096-d vector.

At second stage, the acoustic model is trained, in which the encoder and
decoder are both made of one Feed-Forward Transformer block. For each Trans-
former block, the hidden dimension is 512, and the heads of multi-head attention
are set as 2. The category embedding is a look-up table, which introduces the
class information of data. We add it to the encoder output to support multi-class
training.

The dataset is divided into 80% for training, 10% for validation to make sure
the training process is not over-fitting, and the last 10% for testing. For training,
we use minibatch gradient descent with the Adam optimizer. The minibatch size
and learning rate are 16 and 0.001 respectively. Warm-up strategy is urse for the
first thousand steps, and gradient clipping is used to avoid exploding. The model
has been trained 3000 epochs, using an NVIDIA RTX 2080 Ti GPU.

4.2 Experiments and Results

Baseline. AutoFoley [8] has achieved good effects in foley sound generation,
therefore we consider it as our baseline. However, the implementation and syn-
thesized demos of AutoFoley have not been released, so we reproduce the Aut-
oFoley framework with CNN and LSTM as the baseline and use the generated
results for performance comparisons.
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Subjective Evaluation. As the task is to generate the audio corresponding to
the video contents, making the sound more realistic and more synchronous with
the video is essential. We choose 16 pairs of videos with audio tracks synthesized
by the proposed model and baseline and then shuffle the videos before conducting
the experiments. The experiments are ABX tests, which contain four standards
for selection: 1) Select the more realistic sample; 2) Select the sample with better
quality; 3) Select the most synchronized sample; 4) Select the sample the partic-
ipant prefers more in overall. The experiments are conducted by 33 participants.
The results are shown in Table 1, where NP means no preference between the two
methods. The average preference rates of the FastFoley model for all metrics are
higher than the sum of baseline and NP, which explicitly demonstrates the pro-
posed system receives a better preference rate in all standards.

Objective Evaluation. As the task of sound generation is similar to speech
synthesis, we draw on some metrics that evaluate speech quality to objectively
evaluate our generation results, such as MS-STFT-Loss (Multi-resolution-STFT-
Loss) [28], SSIM (Structure Similarity Index Measure) [27], STOI (Short-Time
Objective Intelligibility) [23], PESQ (Perceptual evaluation of speech quality)
[20]. MS-STFT-Loss is proposed to apply the needs of waveform generation, a
single STFT-Loss is defined as:

Ls(G) = Ez∼p(z),x∼pdata
[Lsc(x, x̂) + Lmag(x, x̂)] (1)

where x̂ represents the generated sample, also known as G(z), Lsc represents
spectral convergence loss, and Lmag represents log STFT magnitude loss, respec-
tively, as defined below:

Lsc(x, x̂) =
‖ |STFT (x)| − |STFT (x̂)| ‖F

| ‖STFT (x)‖ |F (2)

Lmag(x, x̂) =
1
N

‖ log|STFT (x)| − log|STFT (x̂)| ‖1 (3)

Multi-resolution STFT loss is multiple single-short-time Fourier transform
losses using different analytical parameters (such as Fourier transform size FFT
size, window size, frame shift). Combining multiple short-term Fourier transform
losses under different analytical parameters shows that the proposed method is
0.1944, better than the baseline, which is 0.2961.

The SSIM(Structure Similarity Index Measure) metric measures the degree
of distortion of a picture, as well as the similarity of two pictures, which is often
used in the image generation task. Therefore, we extracted the spectrogram of
the generated audios by the proposed method and baseline, and then extracted
the ground truth spectrogram for experimentation. The result shows that the
proposed method has gotten 0.6742 while the baseline has gotten 0.5373.

The STOI and PESQ are often used as metrics to measure the quality of syn-
thesized speech, which actually need the synthesized speech contain the semantic
information. Short-Time Objective Intelligibility (STOI) is an important indi-
cator of speech comprehensibility. For a word in the speech signal, only can be
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understood and can not be understood two cases, from this point of view can
be considered to be diverse, so the value range of STOI is quantified in 0 to
1, representing the percentage of words that are correctly understood, and the
value of 1 means that the speech can be fully understood. Perceptual Evalu-
ation of Speech Quality (PESQ) is one of the most commonly used indicators
to evaluate speech quality, the calculation process includes preprocessing, time
alignment, perceptual filtering, masking effect, etc., the value range is −0.5–4.5,
the higher the PESQ value indicates that the tested voice has better auditory
speech quality. However, in the foley sound generation task, which is specific,
the sound generated and ground truth are without semantic information, only
convey the acoustic information, so we defined the lower the STOI and PESQ
metrics of the model, the better the sound generated. The results show that
the proposed model has reach 0.1185 of STOI and 0.2978 of PESQ, while the
baseline’s are 0.1704 of STOI and 0.3383 (Table 2).

Table 1. ABX tests between the proposed method and baseline under the four stan-
dards (Reality, Quality, Synchronization, Prefer).

Reality Quality Synchronization Prefer

Baseline 11.9% 8.3% 17.4% 14.2%

NP 18.2% 22.3% 21.2% 9.5%

FastFoley 69.9% 69.3% 61.4% 76.3%

Table 2. objective metrics measured by the proposed method and baseline.

MS-STFT-Loss SSIM STOI PESQ Speed

Baseline 0.2961 0.5373 0.1704 0.3383 0.45 iter/s

FastFoley 0.1944 0.6742 0.1185 0.2978 3.32 iter/s

Visualization. Figure 4 explicitly shows the audio waveforms of two video
clips, denoting the ground truth waveform extracted from the original video,
the waveform synthesized by baseline, and the waveform synthesized by FastFo-
ley respectively. The results show that FastFoley performs better. The left one
(a) shows that compared with Ground-Truth, the waveform synthesized by the
baseline may occur sound redundant and missing. Sound redundant may also
happen to FastFoley. The right one (b) shows that both baseline and FastFo-
ley presented sound temporal mismatch to some extent. However, the temporal
mismatch occurring in the baseline is ahead of the real sound in time. While,
in FastFoley, there exists hysteresis against the Ground-Truth. According to
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human perception, people always feel the sight first, then the hearing. Hence it
is more reasonable that the synthesized waveforms by FastFoley are perceived
better in subjective experiments than the baseline. Fig. 5 shows the generated
spectrograms of baseline and the proposed method, which is a “Chopping” foley
sound. The result demonstrates that the spectrogram generated by the proposed
method is much more similar to ground-truth, while much noise is included in
the spectrogram generated by the baseline.

Fig. 4. The visualization results of waveforms.

Fig. 5. Spectrograms of Ground Truth, Baseline, FastFoley.

5 Conclusion

In this paper, we proposed FastFoley to synthesize foley sound related to video
contents. We also built a foley dataset, which contains various kinds of foley
sound with audio-video pairs. Compared with the existing work, the results
demonstrate that FastFoley outperforms subjectively in time synchronization,
foley authenticity, and audio quality, and performs better objectively in MS-
STFT-Loss, SSIM, STOI, PESQ. Due to the novelty of this task, we will try to
introduce more effective front-end video feature engineering such as pre-trained
or prompt Vision-Language models [29] in future work, also we will attempt to
set up more reasonable objective experiments to evaluate the quality and the
effects of the generated sound.
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Abstract. Dialogue policy training for composite tasks, such as restau-
rant reservations in multiple places, is a practically essential and chal-
lenging problem. Recently, hierarchical deep reinforcement learning
(HDRL) methods have achieved excellent performance in composite
tasks. However, in vanilla HDRL, both top-level and low-level policies
are all represented by multi-layer perceptrons (MLPs), which take the
concatenation of all observations from the environment as the input for
predicting actions. Thus, the traditional HDRL approach often suffers
from low sampling efficiency and poor transferability. In this paper, we
address these problems by utilizing the flexibility of graph neural net-
works (GNNs). A novel ComNet is proposed to model the structure of a
hierarchical agent. The performance of ComNet is tested on composited
tasks of the PyDial benchmark. Experiments show that ComNet outper-
forms vanilla HDRL systems with performance close to the upper bound.
It not only achieves sample efficiency but also is more robust to noise
while maintaining the transferability to other composite tasks.

Keywords: Hierarchical Deep Reinforcement Learning · Dialogue
Policy · Graph Neural Network

1 Introduction

Different from normal one-dialogue-one-domain dialogue task [5], the compos-
ite dialogue task may involve multiple domains in a single dialogue. The agent
must complete all subtasks (accomplish the goals in all domains) to get posi-
tive feedback. Consider the process of completing a composite task (e.g., multi-
area restaurant reservation). An agent first chooses a subtask (e.g., reserve-
Cambridge-restaurant), then makes a sequence of decisions to gather related
information (e.g., price range, area) until all information required by users are
provided, and this subtask is completed. Then chooses the next subtask (e.g.,
reserve-SF-restaurant) to complete. The state-action space will increase with
the number of subtasks. Thus, dialogue policy learning for the composite task
needs more exploration, and it needs to take more dialogue turn between agent
and user to complete a composite task. The sparse reward problem is further
magnified.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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Fig. 1. A composite dialogue task contains two subtasks, where (a) is the graph of the
top-level policy and (b) is the graph of the low-level policy.

Solving composite tasks using the same method as the one solving single
domain tasks may hit obstacles. The complexity of the composite task makes
it hard for an agent to learn an acceptable strategy. While hierarchical deep
reinforcement learning (HDRL) [1] shows its promising power, by introducing
the framework of options over Markov Decision Process (MDP), the original task
can be decomposed into two parts: deciding which subtask to solve and how to
solve one subtask, thus simplifying the problem.

However, in previous works, multi-layer perceptrons (MLPs) are often used
in DQN to estimate the Q-value. MLPs use the concatenation of the flatten dia-
logue state as its inputs. In this way, it cannot capture the structural information
of the semantic slots in that state easily, which results in low sampling efficiency.
In our work, we propose ComNet, which makes use of the Graph Neural Net-
work (GNN) [3] to better leverage the graph structure in the observations (e.g.,
dialogue states) and being coherent with the HDRL method.

Our main contributions are three-fold: (1). We propose a new framework
ComNet combining HDRL and GNN to solve the composite tasks while achieving
sample efficiency. (2). We test ComNet based on PyDial [17] benchmark and show
that our result over-performed the vanilla HDRL systems and is more robust to
noise in the environment. (3). We test the transferability of our framework and
find that an efficient and accurate transfer is possible under our framework.

2 Related Work

Reinforcement learning is a recently mainstream method to optimize statistical
dialogue management policy under the partially observable Markov Decision Pro-
cess (POMDP) [21]. One line of research is on single-domain task-oriented dia-
logues with flat deep reinforcement learning approaches, such as DQN [2,4,8],
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policy gradient [19,20] and actor critic [9,10,13]. Multi-domain task-oriented dia-
logue task is another line, where each domain learns a separate dialogue pol-
icy [5,6]. The performance of this one domain model is tested on different domains
to highlight its transferability. The composite dialogue task is presented in [11].
Different from the multi-domain dialogue system, the composite dialogue task
requires all the individual subtasks have to be accomplished. The composite dia-
logue task is formulated by options framework [14] and solved using hierarchical
reinforcement learning methods [1,11,15]. All these works are built based on the
vanilla HDRL, where the policy is represented by multi-layer perceptron (MLP).
However, in this paper, we focus on designing a transferable dialogue policy for the
composite dialogue task based on Graph Neural Network [12].

GNN is also used in other aspects of reinforcement learning to provide fea-
tures like transferability or less over-fitting [18]. In dialogue system building,
models like BUDS also utilize the power of graph for dialogue state tracking
[16]. Previous works also demonstrated that using GNN to learn a structured
dialogue policy can improve system performance significantly in a single-domain
setting by creating graph nodes corresponding to the semantic slots and opti-
mizing the graph structure [3]. However, we need to exploit the particularity of
the tasks and change the complete framework for the composite dialogue.

3 Hierarchical Reinforcement Learning

Before introducing ComNet, we first present a short review of HRL for a compos-
ite task-oriented dialogue system. According to the options framework, assume
that we have a dialogue state set B, a subtask (or an option) set G and a primitive
action set A.

Compared to the traditional Markov decision process (MDP) setting where
an agent can only choose a primitive action at each time step, the decision-
making process of hierarchical MDP consists of (1) a top-level policy πb that
selects subtasks to be completed, (2) a low-level policy πb,g that selects primitive
actions to fulfill a given subtask. The top-level policy πb takes as input the belief
state b generated by the global state tracker and selects a subtask g ∈ G. The
low-level policy πb,g perceives the current state b and the subtask g, and outputs
a primitive action a ∈ A. All subtasks share the low-level policy πb,g.

In this paper, we take two Q-function to represent these two-level policies,
learned by deep Q-learning approach (DQN) and parameterized by θe and θi

respectively. Corresponding to two-level policies, there are two kinds of reward
signal from the environment (the user): extrinsic reward re and intrinsic reward
ri. The extrinsic rewards guide the dialogue agent to choose the right subtask
order. The intrinsic rewards are used to learn an option policy to achieve a
given subtask. The extrinsic reward and intrinsic reward are combined to help
the dialogue agent accomplish a composite task as fast as possible. Thus, the
extrinsic and intrinsic rewards are designed as follows:

Intrinsic Reward. At the end of a subtask, the agent receives a positive intrin-
sic reward of 1 for the success subtask or 0 for the failure subtask. To encourage
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Fig. 2. The low-level policy model of ComNet contains three parts: input module,
graph-info extraction module and output module. In the input module, for each node,
ComNet fetches the corresponding elements from the observation. ComNet then com-
putes the messages sent to neighbors in the graph and updates the embedding vector of
each node. The main content of the output module is how to use the highest embedding
vectors of all the nodes to calculate the corresponding Q-values. The subscript shapes
like (k, i) denotes the i-th node corresponding to subtask k. The top-level policy model
of ComNet has a similar structure.

shorter dialogues, the agent receives a negative intrinsic reward of −0.05 at each
turn.

Extrinsic Reward. Let K be the number of subgoals. At the end of a dialogue,
the agent receives a positive extrinsic reward of K for the success dialogue or 0
for the failure dialogue. To encourage shorter dialogues, the agent gets a negative
extrinsic reward of −0.05 at each turn.

Assume we have a subtask trajectory of T turns: Tk = (bk
0 , a

k
0 , r

k
0 , . . . ,

bk
T , ak

T , rk
T ), where k represents the k-th subtask gk. The dialogue trajectory

consists of a sequence of subtask trajectories T0,T1. . . . . According to Q-learning
algorithm, the parameter θe of the top-level Q-function is updated as follows:

θe ← θe + α · (qk − Q(gk|bk
0 ; θe)) · ∇θe

Q(gk|bk
0 ; θe),

where

qk =
T∑

t=0

γtre
t + γT max

g′∈G
Q(g′|bk

T ; θe),

and α is the step-size parameter, γ ∈ [0, 1] is a discount rate. The first term of
the above expression of q equals to the total discounted reward during fulfilling
subtask gk, and the second estimates the maximum total discounted value after
gk is completed.

The learning process of the low-level policy is in a similar way, except that
intrinsic rewards are used. For each time step t = 0, 1, . . . , T ,

θi ← θi + α · (qt − Q(at|bk
t , gk; θi)) · ∇θi

Q(at|bk
t , gk; θi),



268 Z. Chen et al.

where

qt = ri
t + γ max

a′∈A
Q(a′|bk

t+1, gk; θi).

In vanilla HDRL, the above two Q-functions are approximated using MLP.
The structure of the dialogue state is ignored in this setting. Thus the task of the
MLP policies is to discover the latent relationships between observations. This
leads to longer convergence time, requiring more exploration trials. In the next
section, we will explain how to construct a graph to represent the relationships
in a dialogue observation.

4 ComNet

In this section, we first introduce the notation of the composite task. We then
explain how to construct two graphs for two-level policies of a hierarchical dia-
logue agent, followed by the description of the ComNet.

4.1 Composite Dialogue

Task-oriented dialogue systems are typically defined by a structured ontology.
The ontology consists of some properties (or slots) that a user might use to frame
a query when fulfilling the task. As for composite dialogue state, which contains
K subtasks, each subtask corresponds to several slots. For simplification, we take
the subtask k as an example to introduce the belief state. There are two boolean
attributes for each slot of the subtask k, whether it is requestable and informable.
The user can request the value of the requestable slots and can provide specific
value as a search constraint for the informable slots. At each dialogue turn, the
dialogue state tracker updates a belief state for each informable slot.

Generally, the belief state consists of all the distributions of candidate slot
values. The value with the highest belief for each informable slot is selected as
a constraint to search the database. The information of the matched entities in
the database is added to the final dialogue state. The dialogue state bk of the
subtask k is decomposed into several slot-dependent states and a slot-independent
state, represented as bk = bk,1 ⊕bk,2 ⊕ · · · ⊕bk,n ⊕bk,0. bk,j(1 ≤ j ≤ n) is the
j-th informable slot-related state of the subtask k, and bk,0 represents the slot-
independent state of the subtask k. The whole belief state is the concatenation
of all the subtask-related state bk, i.e. b = b1 ⊕ · · · ⊕ bK , which is the input of
the top-level dialogue policy.

The output of the top-level policy is a subtask g ∈ G. In this paper, we
use a one-hot vector to represent one specific subtask. Furthermore, the whole
belief state b and the subtask vector g are fed into the low-level policy. The
output of the low-level policy is a primitive dialogue action. Similarly, for each
subtask k, the dialogue action set Ak can be divided into n slot-related action
sets Ak,j(1 ≤ j ≤ n), e.g. request slotk,j , inform slotk,j , select slotk,j and a
one slot-independent action set Ak,0, e.g. repeatk,0, reqmorek,0, . . . , byek,0. The
whole dialogue action space A is the union of all the subtask action spaces.
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4.2 Graph Construction

As introduced in Sect. 4.1, the dialogue state b consists of K subtask-related
state, and each subtask-related state can further be decomposed into several
slot-dependent states and a slot-independent state, which are logically inde-
composable, named atomic states. The hierarchical format of the dialogue state
can be naturally regarded as a graph. Each node in the graph represents the
corresponding atomic state. To simplify the graph’s structure, we choose the
slot-independent nodes as the delegate of the nodes which correspond to the
same subtask. All the slot-independent nodes are fully connected in the top-
level graph, and the slot-dependent nodes are only connected to their delegate
node. Unlike the input of top-level policy, the input of the low-level policy adds
a new node named subtask node to represent the goal information produced by
the top-level policy. In the low-level graph, the slot-independent nodes are all
connected to the subtask node (or the global delegate nodes) instead of fully
connecting.

4.3 ComNet as Policy Network

We now turn to ComNet, which parameterizes two-level policies with two Graph
Neural Networks (GNNs). Before delving into details, we first introduce our
notation. We denote the graph structure as G = (V,E) with nodes vi(0 ≤ i ≤
n) ∈ V and directed edges eij ∈ E. The adjacency matrix Z denotes the structure
of G. If there is a directed edge from i-th node vi to j-th node vj , the element
zij of Z is 1, otherwise zij is 0. We denote the out-going neighborhood set of
node vi as Nout(vi). Similarly, Nin(vi) denotes the in-coming neighborhood set
of node vi. Each node vi has an associated node type pi. Each edge eij has an
edge type ce, which is determined by starting node type pi and ending node type
pj . In other words, two edges have the same type if and only if their starting
node type and ending node type are both the same.

For top-level policy, it has two types of nodes: slot-dependent nodes (S-
nodes) and slot-independent nodes (I-node). Since there is no edge between
slot-dependent nodes, it has only four edge types. Similarly, for low-level policy,
it has three types of nodes (slot-dependent, slot-independent and subtask
(T-node)) and four edge types. The two level graphs show in Fig. 1.

Until now, the graphs of top-level policy and low-level policy are both well
defined. ComNet, which has two GNNs, is used to parse these graph-format
observations of the low-level policy and top-level policy. Each GNN has three
parts to extract useful representation from initial graph-format observation:
input module, graph-info extraction module and output module.

Input Module. Before each prediction, each node vi of top-level and low-level
graphs will receive the corresponding atomic state b or subtask information g
(represented as xi), which is fed into an input module to obtain a state embed-
ding h0

i as follows:

h0
i = Fpi

(xi),
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where Fpi
is a function for node type pi, which may be a multi-layer perceptron

(MLP). Normally, different slots have a different number of candidate values.
Therefore, the input dimension of the slot-dependent nodes is different. However,
the belief state of each slot is often approximated by the probability of sorted
top M values [7], where M is usually less than the least value number of all the
slots. Thus, the input dimension of nodes with the same type is the same.

Graph-Info Extraction Module. The graph-info extraction module takes h0
i

as the initial embedding for node vi, then further propagates the higher embed-
ding for each node in the graph. The propagation process of node embedding at
each extraction layer shows as the following operations.

Message Computation. At l-th step, for every node vi, there is a node embed-
ding hl−1

i . For every out-going node vj ∈ Nout(vi), node vi computes a message
vector as below,

ml
ij = M l

ce(h
l−1
i ),

where ce is edge type from node vi to node vj and M l
ce is the message generation

function which may be a linear embedding: M l
ce(h

l−1
i ) = Wl

ceh
l−1
i . Note that

the subscript ce indicates that edges of the same edge type share the weight
matrix Wl

ce to be learned.

Message Aggregation. After every node finishes computing message, The mes-
sages sent from the in-coming neighbors of each node vj will be aggregated.
Specifically, the aggregation process shows as follows:

ml
j = A({ml

ij |vi ∈ Nin(vj)}),

where A is the aggregation function which may be a summation, average or
max-pooling function. ml

j is the aggregated message vector which includes the
information sent from all the neighbor nodes.

Embedding Update. Until now, every node vi has two kinds of information,
the aggregated message vector ml

i and its current embedding vector hl−1
i . The

embedding update process shows as below:

hl
i = U l

pi
(hl

i,m
l
i),

where U l
pi

is the update function for node type pi at l-th extraction layer, which
may be a non-linear operation, i.e.

hl
i = δ(λlWl

pi
hl

i + (1 − λl)ml
i),

where δ is an activation function, i.e. RELU, λl is a weight parameter of the
aggregated information which is clipped into 0 � 1, and Wl

pi
is a trainable

matrix. Note that the subscript pi indicates that the nodes of the same node
type share the same instance of the update function, in our case the parameter
Wl

pi
is shared.
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Output Module. After updating node embedding L steps, each node vi has a
final representation hL

i , also represented as hL
k,i, where the subscript k, i denotes

the node vi corresponds to the subtask k.

Top-Level Output: The top-level policy aims to predict a subtask to be ful-
filled. In the top-level graph, for a specific subtask, it corresponds to several S-
nodes and one I-node. Thus, when calculating the Q-value of a specific subtask,
all the final embedding of the subtask-related nodes will be used. In particular,
for each subtask k, we perform the following calculating:

qk
top = Otop(

∑

vi∈S−node

hL
k,i,h

L
k,0),

where Otop is the output function which may be a MLP and the subscripts k, 0
and k, i denote the I-node and i-th S-node of the subtask k, respectively. In
practice, we take the concatenation of

∑
vi∈S−node h

L
k,i and hL

k,0 as the input of
a MLP and outputs a scalar value. For all the subtask, this MLP is shared. When
making a decision, all the qk

top will be concatenated, i.e. qtop = q1top ⊕ · · · ⊕ qK
top,

then the subtask is selected according to qtop as done in vanilla DQN.

Low-Level Output: The top-level policy aims to predict a primitive dialogue
action. As introduced in Sect. 4.1, a primitive dialogue action must correspond to
a subtask. If we regard slot-independent nodes as a special kind of slot-dependent
nodes, a primitive dialogue action can further correspond to a slot node. Thus,
the Q-value of each dialogue action contains three parts of information: subtask-
level value, slot-level value and primitive value. We use T-node embedding hL

T

to compute subtask-level value:

qT
subt = OT

subt(h
L
T ),

where OT
subt is output function of subtask-level value, which may be a MLP. The

output dimension of OT
subt is K where each value distributes to a corresponding

subtask. The nodes vi that belong to S-nodes and I-nodes will compute slot-level
value and primitive value:

qk,i
slot = Opi

slot(h
L
k,i),

qk,i
prim = Opi

prim(hL
k,i),

where Opi

slot and Opi

prim are output functions of slot-level value and primitive
value respectively, which may be MLPs in practice. Similarly, the subscript pi

indicates that the nodes of the same node type share the same instance of the
output functions. The Q-value of an action ak,i corresponding to the slot node vi

is qk,i
low = (qT

subt)k +qk,i
slot +qk,i

prim, where + is element-wise operation and (qT
subt)k

denotes the k-th value in qT
subt. When predicting a action, all the qk,i

low will be
concatenated, i.e. qlow = q1,1

low ⊕ · · · ⊕ qK,0
low , then the primitive action is chosen

according to qlow as done in vanilla DQN.
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Discussion. Note that although the parameters of the input module and graph-
info extraction module are not shared between the top-level GNN and low-level
GNN (shown as Fig. 2), there are many shared parameters in each single GNN.
Assume that now the composite task is changed, and one subtask adds some new
slot. We only need to create new nodes in each GNN. If the number of the edge
type has not changed, the parameters of the GNN will stay the same after adding
new nodes. This attribution of ComNet leads to transferability. Generally, if the
node-type set and edge-type set of the composite task Task1 are both subsets of
another task Task2’s, the ComNet policy learned in Task2 can be directly used
on Task1.

Since the initial output of the same type of nodes has a similar semantic
meaning, they share the parameters in ComNet. We hope to use the GNN to
propagate the relationships between the nodes in the graph based on the con-
nection of the initial input and the final outputs.

5 Experiments

In this section, we first verify the effectiveness of ComNet on the composite tasks
of the PyDial benchmark. We then investigate the transferability of ComNet.

5.1 PyDial Benchmark

A composite dialogue simulation environment is required for the evaluation of our
purposed framework. PyDial toolkit [17], which supports multi-domain dialogue
simulation with error models, has laid a good foundation for our composite task
environment building.

Table 1. The number of data constraints, the number of informative slots that user
can request and the number of database result values vary in different composite tasks.
Semantic error rate (SER) presents an ascending order in three environments.

Composite Tasks Constraints Requests Values

CR+SFR 9 20 904

CR+LAP 14 30 525

SFR+LAP 17 32 893

Env. 1 Env. 2 Env. 3

SER 0% 15% 30%

We modified the policy management module and user simulation module to
support 2-subtask composite dialogue simulation among three available subtasks,
which are Cambridge Restaurant (CR), San Francisco Restaurant (SFR), and
generic shopping task for laptops (LAP). We still preserve fully functional error
simulation of different levels in Table 1. Note that in the policy management
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module, we discard the domain input provided by the dialogue state tracking
(DST) module to make a fair comparison. We updated the user simulation mod-
ule and evaluation management module to support the reward design in Sect. 3.

5.2 Implementation

We implement the following three composite task agents to evaluate the perfor-
mance of our proposed framework.

– Vanilla HDQN: A hierarchical agent using MLPs as its models. This serves
as the baseline for our comparison.

– ComNet: Our purposed framework utilizing the flexibility of GNNs. The
complete framework is discussed in Sect. 4.

– Hand-crafted: A well-designed rule-based agent with a high success rate in
composite dialogue without noise. This agent is also used to warm up the
training process of the first two agents. Note that this agent uses the precise
subtask information provided by DST, which is not fair comparing with the
other two.

Here, we train models with 6000 dialogues or iterations. The total number of
the training dialogues is broken down into milestones (30 milestones of 200 itera-
tions each). At each milestone, there are 100 dialogues to test the performance of
the dialogue policy. The results of 3 types of composite tasks in 3 environments
are shown in Fig. 3.

5.3 Analysis

From Fig. 3, we can observe that ComNet outperforms the vanilla MLP policy
in all nine settings (3 environments * 3 types of composite tasks) in both success
rate and learning speed. In ComNet, the top-level policy and low-level policy are
both represented by a GNN where the same of type nodes and the same type
of edges share the parameters. It means that the same type of nodes shares the
input space (belief state space). Thus the exploration space will greatly decrease.
As shown in Fig. 3, ComNet learns to vary faster than vanilla MLP policy. Note
that the hand-crafted agent performs well because it has cheated by peeking at
the precise subtask information, which means the hand-crafted agent is solving
the multi-domain tasks. This should be the upper bound for the performance
of our model. Comparing with vanilla HDQN, our ComNet shows its robustness
in all environment by a greater margin, which is helpful for dialogue system
building when an ASR or a DST with high accuracy is not available.

We also compared the difference of the dialogues produced by both vanilla
HDQN and ComNet after 6000-dialogue training, which is shown in Table 2.
After that much training, it seems that the vanilla HDQN agent still cannot
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Table 2. This table is an example of two different trained agents handling the same
composite task with same user goal. On the left-hand side, vanilla HDQN succeed in
finishing the first subtask but failed to produce meaningful action in the second. On
the right-hand side, ComNet successfully full-filled two subtasks, thus succeed in the
dialogue.

User Goal

CR: restaurant

[(‘pricerange’, ‘=’, ‘dontcare’),

(‘area’, ‘=’, ‘centre’),

(‘food’, ‘=’, ‘mediterranean’)]

req: [‘name’, ‘description’]

SFR: restaurant

[(‘pricerange’, ‘=’, ‘cheap’),

(‘allowedforkids’, ‘=’, ‘dontcare’),

(‘area’, ‘=’, ‘civic center’)]

req: [’name’]

Vanilla HDQN ComNet

CR domain

Sys : hello(help)

User : inform(type= “restaurant”,
pricerange= “dontcare”, area=
“centre”, food= “mediterranean”)

Sys : request(area)

User : inform(area= “centre”)

Sys : inform(food= “mediter-
ranean”, pricerange= “expensive”,
name= “la mimosa”, area= “cen-
tre”)

User : thankyou()

Sys : inform(food= “mediter-
ranean”, pricerange= “expensive”,
name= “la mimosa”, area= “cen-
tre”)

User : request(description)

Sys : inform(name= “la mimosa”,
description= “not available”)

SFR domain

User : hello(type= “restaurant”,
pricerange= “cheap”, allowed-
forkids= “dontcare”, area= “civic
center”)

Sys : request(area)

User : inform(area= “civic cen-
ter”)

Sys : request(area)

User : inform(area= “civic cen-
ter”)

Sys : request(area)

User : inform(area= “civic cen-
ter”)

Sys : request(area)

User : inform(area= “civic cen-
ter”)

Sys : request(area)

User : bye()

Sys : bye()

*FAILED, subtask-2 is not fin-
ished.

CR domain

Sys : hello(help)

User : inform(type= “restaurant”)

Sys : request(area)

User : inform(area= “centre”)

Sys : request(food)

User : inform(food= “mediter-
ranean”)

Sys : request(pricerange)

User : inform(= “dontcare”)

Sys : inform(food= “mediter-
ranean”, pricerange= “expensive”,
name= “la mimosa”, area= “cen-
tre”)

User : thankyou()

Sys : reqmore()

User : request(description)

Sys : inform(name= “la mimosa”,
description= “not available”)

SFR domain

User : inform(type= “restaurant”,
area= “civic center”)

Sys : request(allowedforkids)

User : inform(goodformeal=
“lunch”)

Sys : request(allowedforkids)

User : inform(allowedforkids=
“dontcare”)

Sys : request(food)

User : inform(= “dontcare”,
pricerange= “dontcare”)

Sys : inform(goodformeal= “lunch”,
name= “sai jai thai restaurant”,
area= “civic center”, food= “thai”,
allowedforkids= “1”, pricerange=
“cheap”)

User : bye()

Sys : bye()

*SUCCESS
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Fig. 3. The comparison between 3 kinds of agent. ComNet achieved performance close
to the upper bound (hand-crafted) while there is still room for improvement for vanilla
DQN.

choose a proper action in some specific dialogue state, which results in the loss
of customer patience. On the other hand, ComNet also chose the same action,
but it advanced the progress of the dialogue as soon as it got the information it
needed, thus finished the task successfully. This also helps to find that ComNet
is more sample efficient comparing to the vanilla framework.

5.4 Transferability

As we discussed in Sect. 4.3, another advantage of ComNet is that because of the
flexibility of GNNs, ComNet is transferable naturally. To evaluate its transfer-
ability, we first trained 6,000 dialogues on the CR+SFR task. We then initiate
the parameters of the policy models on the other two composite tasks using
trained policy and continue to train and test the models. The result is shown in
Fig. 4.

We can find that the transferred model learned on the CR+SFR task is com-
patible with the other two composite tasks. It demonstrates that ComNet can
propagate the task-independent relationships among the graph nodes based on
the connection of the initial nodes’ inputs and final outputs. Under the frame-
work of ComNet, it is possible to boost the training process for a new composite
task by using pre-trained parameters of related tasks. After all, It is essential to
solving the start-cold problems in the task-oriented dialogue systems.
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Fig. 4. The model pretrained on CR+SFR task is compared with the one started with
randomized parameters.

6 Conclusion

In this paper, we propose ComNet, a structured hierarchical dialogue policy
represented by two graph neural networks (GNNs). By replacing MLPs in the
traditional HDRL methods, ComNet makes better use of the structural informa-
tion of dialogue state by separately feeding observations (dialogue state) and the
top-level decision into slot-dependent, slot-independent and subtask nodes and
exchange message between these nodes. We evaluate our framework on the mod-
ified PyDial benchmark and show high efficiency, robustness, and transferability
in all settings.
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Abstract. Dialogue state tracking (DST) is a crucial module in dialogue man-
agement. It is usually cast as a supervised training problem, which is not conve-
nient for on-line optimization. In this paper, a novel companion teaching based
deep reinforcement learning (DRL) framework for on-line DST optimization is
proposed. To the best of our knowledge, this is the first effort to optimize the
DST module within DRL framework for on-line task-oriented spoken dialogue
systems. In addition, dialogue policy can be further jointly updated. Experiments
show that on-line DST optimization can effectively improve the dialogue man-
ager performance while keeping the flexibility of using predefined policy. Joint
training of both DST and policy can further improve the performance.

Keywords: Task-oriented Dialogue System · Joint Training · Reinforcement
Learning

1 Introduction

A task-oriented spoken dialogue system usually consists of three modules: input, out-
put and control, shown in Fig. 1. The input module which consists of automatic speech
recognition (ASR) and spoken language understanding (SLU) extracts semantic-level
user dialogue actions from user speech signal. The control module (referred to as dia-
logue management) has two missions. One is to maintain dialogue state, an encoding
of the machine’s understanding about the conversation. Once the information from the
input module is received, the dialogue state is updated by dialogue state tracking (DST).
The other is to choose a semantic-level machine dialogue action to response the user,
which is called dialogue decision policy. The output consists of natural language gen-
eration (NLG) and text-to-speech (TTS) synthesis, which convert dialogue action to
audio. Dialogue management is an important part of a dialogue system. Nevertheless,
there are inevitable ASR and SLU errors which make it hard to track true dialogue state
and make decision. In recent statistical dialogue system, the distribution of dialogue
state, i.e. belief state, is tracked. A well-founded theory for belief tracking and deci-
sion making is offered by partially observable Markov Decision Process (POMDP) [14]
framework.
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Fig. 1. Spoken dialogue system.

Previous DST algorithms can be divided into three families: hand-crafted rules [24,
27], generative models [1,31], and discriminative models [12,25]. Recently, since the
Dialog State Tracking Challenges (DSTCs) have provided labelled dialog state tracking
data and a common evaluation framework and test-bed, a variety of machine learning
methods for DST have been proposed. These methods rely strictly on set of labelled off-
line data. Since the labelled data are off-line, the learning process of these supervised
learning methods is independent on the dialogue policy module. The key issues of these
supervised learning methods are poor generalization and over-tuning. Due to the lack
of labels, these approaches can not be easily used for on-line update of DST.

This work marks first step towards employing the deep deterministic reinforcement
learning method into dialogue state tracking (DST) module. The performance of the
DST module is optimized during the conversation between the user and the dialogue
system. We call the DRL-based DST module as the tracking agent. In order to bound
the search space of the tracking agent, we propose a companion teaching framework
[3]. Furthermore, under this framework, we can train tracking agent and dialogue policy
agent jointly with respective deep reinforcement learning (DRL) algorithms in order to
make these two agents adaptive to each other. The paper has two main contributions:

– The paper provides a flexible companion teaching framework which makes the DST
be able to be optimized in the on-line dialogue system.

– We can jointly train DST agent and dialogue policy agent with different reinforce-
ment learning algorithms.

The rest of the paper is organized as follows. Section 2 gives an overview of related
work. In Sect. 3, the framework of on-line DST are presented. The implementation
detail is represented in Sect. 4. In Sect. 5, the joint training process is introduced.
Section 6 presents experiments conducted to evaluate the proposed framework, fol-
lowed by the conclusion in Sect. 7.
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Fig. 2. The companion teaching framework for the on-line DST.

2 Related Work

Recent mainstream studies on dialogue state tracking are discriminative statistical meth-
ods. Some of the approaches encode dialogue history in features to learn a simple classi-
fier. [11] applies a deep neural network as a classifier. [29] proposed a ranking algorithm
to construct conjunctions of features. The others of the approaches model dialogue as
a sequential process [28], such as conditional random field (CRF) [15] and recurrent
neural network (RNN) [12]. All of these approaches need massive labelled in-domain
data for training, they are belong to off-line and static methods.

In contrast to dialogue state tracking, the dialogue policy in task-oriented SDS has
long been trained using deep reinforcement learning (DRL) which includes value func-
tion approximation methods, like deep Q-network (DQN) [2–4,19,33], policy gradient
methods, e.g. REINFORCE [23,30], advantage actor-critic (A2C) [5], and inverse rein-
forcement learning [26]. In our experiments, the dialogue policies of our provided sys-
tems are optimized by DQN [18] under POMDP framework. Our proposed framework
is also inspired by the success of the companion teaching methods [3] in the dialogue
policy.

In this work, we propose a companion teaching framework to generate the tracker
from the on-line dialogue system. But the space of the belief state is continuous, it is
difficult to be optimized by normal RL algorithms. [8] provided an efficient method to
extend deep reinforcement learning to the class of parameterized action space MDPs
and extend the deep deterministic policy gradient (DDPG) algorithm [16] for bound-
ing the action space gradients suggested by the critic. This method greatly reduces the
difficulty of the exploration.

The closest method is the Natural Actor and Belief Critic (NABC) algorithm [13]
which jointly optimizes both the tracker and the policy parameters. However, the tracker
in [13] uses a dynamic Bayesian Network to represent the dialogue state. In our work,
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the dialogue management system which includes the DST and the dialogue policy is
purely statistical. Recently, [17] proposed an end-to-end dialogue management system,
which directly connects the dialogue state tracking module and the dialogue decision
policy module with the reinforcement learning method. There are many problems with
this approach in the practical dialogue system, where end-to-end dialogue systems are
not as flexible and scalable as the modular dialogue system.

3 On-line DST via Interaction

Discriminative machine learning approaches are now the state-of-the-art in DST. How-
ever, these methods have several limitations. Firstly, they are supervised learning (SL)
approaches which require massive off-line data annotation. This is not only expen-
sive but also infeasible for on-line learning. Secondly, given limited labelled data,
over-tuning may easily happen for SL approaches, which leads to poor generalization.
Thirdly, since SL-based DST approaches are independent of dialogue policy, the DST
module can’t dynamically adapt to the habit of the user. These limitations prohibit DST
module from on-line update. To address this problem, we propose a deep reinforcement
learning (DRL) framework for DST optimization via on-line interaction.

Reinforcement learning (RL) has been popular for updating the dialogue policy
module in a task-oriented dialogue system for a long time. However, except for a few
joint learning model for both DST and policy, RL has not been used specifically for the
DST module. In this paper, under the RL framework, we regard the DST as an agent,
referred to as tracking agent, and the other parts of the dialogue system as the envi-
ronment. To our best knowledge, this is the first attempt to employ the reinforcement
learning framework specifically for on-line DST optimization.

Different from the policy agent, the decision (belief state) made by the tracking
agent is continuous. Hence, in this paper, DST is cast as a continuous control problem
which has a similar challenge as robot control. There are several advanced algorithms
to tackle the continuous control problems, e.g. DDPG algorithm. However, since the
continuous belief state is both continuous and high-dimensional, the straightforward
application of existing RL algorithms do not work well. In this paper, we borrow the
companion teaching idea [3] to construct a novel RL framework for DST. Here, an
auxiliary well-trained tracker, e.g. a traditional tracker trained off-line, is used as the
teacher to guide the optimizing process of the actual DST agent (the student) to avoid
over-tuning and achieve robust and fast convergence.

The companion teaching RL-DST framework is shown in Fig. 2, where ba is the
auxiliary belief state produced by the auxiliary DST model and be is the exploration
belief state produced by the tracking agent. The difference between ba and be will be
fed into the reward signal to significantly reduce the search space of the tracking agent.

It is also worth comparing the proposed framework with end-to-end dialogue sys-
tems which can also support on-line update. Firstly, the modular structure of the RL-
DST framework allows more flexible and interpretable dialogue management models
to be used. For example, interpretable dialogue policy, such as rule-based policy, can be
easily used with arbitrary DST models. This flexibility is practically very useful. Sec-
ondly, due to the use of a teacher DST model, the optimizing process of the tracking
agent requires few dialogue data and the training is more robust.
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3.1 Input and Output

To avoid confusion with the concepts of the policy agent, we replace input and output
for state and action of the tracking agent respectively. In this work, only semantic-
level dialogue manager is considered. Thus, the input is semantic features of each slot,
which are extracted from system action, spoken language understanding (SLU) output
and context from the previous turn. The output of the tracking agent is belief state of
the corresponding slot at the current turn. In contrast to the system action of the policy
agent, the output of the tracking agent, i.e. belief state, is continuous. In this paper, the
input of the tracking agent is represented as s and the output as be.

3.2 Tracking Policy

The tracking policy denotes a mapping function between s and be which aims to maxi-
mize the expected accumulated reward. Since the search space of the tracking agent is
continuous, deterministic reinforcement learning algorithms, such as DDPG algorithm,
is used to optimize the tracking policy as in the robotic control problem [6,7,16].

3.3 Reward Signal

Dialogue system reward is usually defined as a combination of turn penalty and suc-
cess reward [4,33]. The policy agent can be effectively optimized using the two reward
signals. However, for the tracking agent, due to the large search space caused by the con-
tinuous output, the two signals are not sufficient to achieve fast and robust convergence.
To address this problem, we design another basic score reward signal to constrain the
search space of the tracking agent. Therefore, the overall reward of the tracking agent
consists of three kinds of signals:

Turn Penalty, denoted as rtp, is a negative constant value to penalize long dia-
logues. The assumption here is that shorter dialogue is better.

Success Reward, denoted as rsr, is a delayed reward for the whole dialogue at
the last turn. When the conversation between the user and the machine is over, the
user gives an evaluation value to judge the performance of the dialogue system. If the
whole conversation has not achieved the user’s goal, the success reward will be zero.
Otherwise, success reward will be a positive constant value.

Basic Score, denoted as rbs, is used to reduce the search space for tracking agent. As
shown in Fig. 2, an auxiliary DST is used. We use the auxiliary belief state ba to guide
the exploration of the tracking agent. If the exploration belief state be is far away from
the auxiliary belief state, a penalty is given as in Eq. (1). Thus, basic score is inversely
proportional to the distance between auxiliary belief state and exploration belief state.

rbs = −α||be − ba||2
where || · ||2 is L2 distance and α ≥ 0 is referred to as trust factor. With larger α,
performance of the tracking agent is closer to the auxiliary DST model.

In the middle of a conversation, the immediate reward of the exploration belief state
is rtp + rbs, the immediate reward of the last turn is rsr.
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Fig. 3. Example with polynomial dialogue state tracking.

4 Implementation Detail

In the companion teaching RL-DST framework, the auxiliary DST can make use of
arbitrary well trained DST model and the tracking agent can be optimized by any deter-
ministic reinforcement learning algorithm. In this section, we will introduce the dia-
logue tasks as well as the specific algorithm implementations, though the actual algo-
rithms are not constrained to the below choices. Note that, the tracking agent, i.e. the
DST to be optimized, takes a form of deep neural network in this paper.

In this work, we evaluate the proposed framework on the task-oriented dialogue
systems in the restaurant/tourism domain in DSTC2/3 [9,10]. These systems are
slot−based dialogue systems. There are three slot types: goal constraint, request slots
and search method. The goal constraints are constraints of the information/restaurant
which the user is looking for. The search methods describe the way the user is trying to
interact with the system. The request slots are demands which the user has requested.
The three different types of slots have different influences on the dialogue performance.
Therefore, we use multiple tracking agents, each agent per type, to represent dialogue
tracking policy instead of only one overall tracking agent. Each agent has its own input
and output. The final overall output is simply the concatenation of the outputs from all
agents.

4.1 Auxiliary Polynomial Tracker

In this paper, a polynomial tracker is used as the auxiliary DST. It is also referred to as
Constrained Markov Bayesian Polynomial (CMBP) [32] which is a hybrid model com-
bining both data-driven and rule-based models. CMBP has small number of parameters
and good generalization ability. In CMBP, the belief state at current turn is assumed to
be dependent on the observations of the current turn and the belief state of the previous
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turn. A general form of CMBP is shown as below:

bt+1(v) = P(P+
t+1(v), P

−
t+1(v), P̃

+
t+1(v), P̃

−
t+1(v), b

r
t , bt(v)),

s.t.constraints, (1)

where P(·) is a polynomial function, bt+1(v) which denotes the probability of a spe-
cific slot taking value v at the (t + 1)th turn is a scalar value and constraints include
probabilistic constraints, intuition constraints and regularization constraints. And there
are six probabilistic features for each v defined as below

– P+
t+1(v): sum of scores of SLU hypotheses informing or affirming value v at turn

t + 1
– P−

t+1(v): sum of scores of SLU hypotheses denying or negating value v at turn t+1
– P̃+

t+1(v) =
∑

v′ /∈{v,None} P+
t+1(v

′)
– P̃−

t+1(v) =
∑

v′ /∈{v,None} P−
t+1(v

′)
– br

t : probability of the value being ‘None’ (the value not mentioned) at turn t
– bt(v): belief of “the value being v at turn t”

In this paper, polynomial order is 3. The coefficients of polynomial P(·) are opti-
mized by the off-line pre-collected training data. Each slot type in DSTC2/3 (goal,
request, method) has its own polynomial model, represented by Pg(·), Pr(·) and Pm(·)
respectively. The belief state of different slot-value pairs within the same slot type is
updated by the same polynomial. For example, in our work, we set Pg(·) as:

bt+1(v) =(bt(v) + P+
t+1(v) ∗ (1 − bt(v))) ∗ (1 − P−

t+1(v) − P̃+
t+1(v)).

An example of updating belief state of the slot pricerange using polynomial tracker is
shown in Fig. 3.

4.2 Tracking Agents

Three types of the slots (goal, request, method) in DSTC2/3 are not to affect each other.
Therefore, the DST tracking agent can be decomposed into three independent track-
ing agents for DSTC2/3 tasks, represented by TA G, TA R and TA M in Fig. 4. These
tracking agents have individual RL components as described in Sect. 3. The three track-
ing agents correspond to the auxiliary DST trackers Pg(·), Pr(·) and Pm(·) respec-
tively. Note that the forms of the DST tracking agents are deep neural networks instead
of polynomials.

In this paper, the input of each tracking agent which represents as sg , sr and sm is
consistent with the input of polynomial tracker represented in Eq. (1) where each slot is
represented by six probabilistic features. The output of each tracking agent represented
by beg , ber and bem in Fig. 4 is belief state of corresponding slots at the next turn. In
this work, we adopt deep deterministic policy gradient (DDPG) algorithm to optimize
these three tracking agents. The flexibility of our framework is that we can optimize the
selective parts of DST module, the other parts of belief state can still be produced by
the auxiliary polynomial DST. We can also figure out which parts of DST module have
the bigger effect on the dialogue performance.



Deep Reinforcement Learning for On-line Dialogue State Tracking 285

Fig. 4.Multi-agent Tracking in DSTC2/3.

4.3 DDPG for Tracking Policy

In order to optimize three tracking agents in Fig. 4 which have continuous and high
dimensional output spaces, we use DDPG algorithm [16] which is an actor-critic,
model-free algorithm based on the deterministic policy gradient that can operate over
continuous action spaces. This algorithm combines the actor-critic approach with
insights from the DQN algorithm which has a replay buffer and adopts the soft-update
strategy.

During training of the three agents, there are three experience memories for each
tracking agent respectively. The format of the data in memories is (st,bet , rt, st+1).
st is slot feature vector and bet is the exploration belief state of corresponding slots.
The immediate reward rt is produced by reward function R(st,bet ,b

a
t ) at each turn,

presented at Sect. 3.3.
The DDPG algorithm uses the deterministic policy gradient (DPG) method to

update the deep neural networks. There are two functions in DDPG algorithm: the actor
policy function π(st|θ) deterministically maps the input to output, and the critic func-
tion Q(st,bet |β) is learned using the Bellman equation as in Q-learning which aims to
minimize the following loss function,

L(β) = Est,bet,rt
[(Q(st,bet |β) − yt)2], (2)

where yt = rt+λQ(st+1, π(st+1|β)), rt) is immediate reward at tth turn and λ ∈ [0, 1]
is discount factor.

The target of the actor policy is to maximize the cumulative discounted reward
from the start state, denoted by the performance objective J(π) = E[

∑T
t=1 γt−1rt|π].

[22] proved that the following equation is the actor policy gradient, the gradient of the
policy’ s performance:

∇θJ ≈ Est [∇beQ(s,be|β)|s=st,be=π(st)∇θπ(s|θ)|s=st ], (3)

where ∇beQ(s,be|β) denotes the gradient of the critic with respect to actions and
∇θπ(s|θ) is a Jacobian matrix such that each column is the gradient ∇θ[π(s|θ)]d of
the dth action dimension of the policy with respect to the policy parameters θ. The
implementation details of the DDPG algorithm are provided in [16].
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5 Joint Training Process

In Sect. 4, we discuss the implementation details of the on-line DST in DSTC2/3 cases.
During the learning process of the tracking agent, the dialogue policy is fixed and the
tracker keeps changing. Since the DST is part of the environment for the dialogue policy
agent, when the tracking agent is optimized, the environment of the dialogue policy
agent is also changed. Thus, we can choose to further optimize the dialogue policy in
order to get even more improved dialogue system performance. This is referred to as
joint training of DST and policy. The process of joint training consists of four phases:
the pre-training of the dialogue policy agent, the pre-training of the tracking agent, the
training of the dialogue policy agent and the training of the tracking agent. The details
of the joint training shows in Algorithm 1.

Algorithm 1: The process of joint training
1: Initialize dialogue policy Q(φ), TA G tracking agent Q(βg), π(θg), TA R tracking

agent Q(βr), π(θr), TA M tracking agent Q(βm), π(θm)
// pre-train dialogue policy agent

2: Set polynomial method as the tracker of the system
3: for episode = 1 : N1 do
4: Update dialogue policy using DQN algorithm
5: end for

// pre-train tracking agents
6: for episode = 1 : N2 do
7: Update the actors π(θg), π(θr), π(θm) of the tracking agents by minimizing mean

squared error with the output of polynomial tracker bag , bar and bam .
8: end for

// optimize tracking agents
9: Set multi-tracking agent as the tracker of the system
10: for episode = 1 : N3 do
11: Update the critics Q(βg), Q(βr), Q(βm) of the multi-tracking agent by minimizing

equation (2)
12: Update the actors π(θg), π(θr), π(θm) of the multi-tracking agent by equation (3)
13: end for

// optimize dialogue policy agent
14: for episode = 1 : N4 do
15: Update dialogue policy using DQN algorithm
16: end for

6 Experiments

Two objectives are set for the experiments: (1) Verifying the performance of the SDS
with the optimized on-line DST. (2) Verifying the performance of the dialogue system
which jointly train the DST and the dialogue policy.
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Fig. 5. The learning curves of joint training dialogue systems and baseline system in DSTC2 (left)
and DSTC3 (right).

6.1 Dataset

The proposed framework is evaluated on domains of DSTC2/3 [9,10]. In DSTC2, there
are 8 requestable slots and 4 informable slots. In DSTC3, there are 12 requestable slot
and 8 informable slots. Therefore the task in DSTC3 is more complex. Furthermore, the
semantic error rate in DSTC3 is higher than the semantic error rate in DSTC2.

Based on the datasets in DSTC2/3, an agenda-based user simulator [20] with error
model [21] was implemented to emulate the behaviour of the human user and errors
from the input module.

6.2 Systems

In our experiments, six spoken dialogue systems with different DST models were com-
pared:

– Polynomial is the baseline system. The polynomial DST as described in Sect. 4.1 is
used. The corresponding policy agent is a two-layer DQN network with 128 nodes
per layer.

– TA G is a DST tracking agent as in Fig. 4. It only estimates the belief state of goal
constraint and the other two parts of belief state are produced by the polynomial
tracker.

– TA R is a DST tracking agent as in Fig. 4. It only estimates the belief state of request
slots and the other two parts of belief state are produced by the polynomial tracker.

– TA M is a DST tracking agent as in Fig. 4. It only estimates the belief state of
search method and the other two parts of belief state are produced by the polyno-
mial tracker.

– TA ALL is a DST tracking agent as in Fig. 4. Here, the whole belief state is directly
produced by the above three tracking agents.

– TA noteaching is similar to TA ALL except the basic score reward signal is not
used. This is equivalent to directly on-line directly train a neural network DST
tracker.

In traditional supervised-learning based DST approaches, metrics such as accuracy
or L2 norm are used for evaluation. However, on-line DST optimization does not require
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Table 1. The performances of tracking agents in DSTC2. The symbol ‘-’ means the dialogue
system crashed.

DST Success #Turn Reward

Polynomial 0.769 5.013 0.519± 0.016

TA ALL 0.775 4.474 0.551± 0.018

TA G 0.767 4.375 0.548± 0.020

TA R 0.763 5.057 0.510± 0.022

TA M 0.765 5.121 0.509± 0.018

TA noteaching − − −

Table 2. The performances of tracking agents in DSTC3. The symbol ‘-’ means the dialogue
system crashed.

DST Success #Turn Reward

Polynomial 0.744 6.566 0.415± 0.077

TA ALL 0.713 4.117 0.507± 0.083

TA G 0.719 4.290 0.505± 0.075

TA R 0.701 6.438 0.379± 0.028

TA M 0.731 6.540 0.404± 0.021

TA noteaching − − −

semantic annotation and the optimization objective is to improve dialogue performance.
Hence, in this paper, metrics for dialogue performance are employed to evaluate on-
line DST performances. There are two metrics used for evaluating the dialogue system
performance: average length and success rate. For the reward in Sect. 3.3, at each turn,
the turn penalty is −0.05 and the dialogue success reward is 1. The summation of the
two rewards are used for evaluation, hence, the reward in below experiment tables are
between 0 and 1. The trust factors of the basic score in TA G, TA R and TA M tracking
agents are 0.2, 0.2, 4 in DSTC2 and 0.07, 0.07, 4 in DSTC3. For each set-up, the moving
reward and dialogue success rate are recorded with a window size of 1000. The final
results are the average of 25 runs.

6.3 DRL-based DST Evaluation

In this subsection, we evaluate the performances of the systems with five different on-
line DST models (TA G, TA R, TA M, TA ALL and TA noteaching). The dialogue
policy agents of these five systems are optimized by DQN for N1 (10000/20000 in
DSTC2/3) episodes/dialogues with the same polynomial trackers. Next, these five sys-
tems start to train tracking agents. In the first N2 (1000 in DSTC2/3) episodes, we
pre-train actor part of DDPG with the output of polynomial tracker using mean squared
error (MSE) in all tracking agents. After pre-training, tracking agents of these five sys-
tems are optimized by DDPG for N3 (19000/29000 in DSTC2/3) episodes. In the poly-
nomial SDS, the dialogue policy agent is optimized for N1 + N2 + N3 episodes.
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Table 3. The performances of joint training in DSTC2.

DST Success #Turn Reward

Polynomial 0.784 4.995 0.535± 0.015

TA ALL 0.810 4.566 0.581± 0.022

TA G 0.805 4.497 0.580± 0.015

TA R 0.782 5.052 0.530± 0.014

TA M 0.782 5.051 0.530± 0.020

Table 4. The performances of joint training in DSTC3.

DST Success #Turn Reward

Polynomial 0.754 6.580 0.425± 0.071

TA ALL 0.795 4.317 0.578± 0.064

TA G 0.800 4.579 0.571± 0.068

TA R 0.747 6.654 0.414± 0.069

TA M 0.759 6.605 0.429± 0.022

In Fig. 5, after the tracking agents are optimized for almost 10000 episodes, the
tracking agents in these four on-line DST systems achieve the convergence nearly in
DSTC2/3. It demonstrates that the companion teaching framework for the on-line DST
is efficient. In Table 1 and Table 2, the tracking agents in the TA ALL system and
the TA G system improve the performances of the SDS significantly in DSTC2 and
DSTC3. The tracking agents in the TA ALL and the TA G learned a tracking policy
which can track the goal of the user accurately. Thus, compared with the polynomial
system, the length of dialogue in these two systems decrease sharply. The rewards in
these two systems increase significantly. The performances of the TA R system and
the TA M system are similar with polynomial system. We can conclude that goal con-
straint plays a more important role in dialogue state than request slots and search
method. The TA noteaching system crashed during the optimizing process of the
tracking agents. It reflects the effectiveness of our proposed companion teaching frame-
work.

6.4 Joint Training Evaluation

In this subsection, we evaluate the performances of the systems (except for the
TA noteaching system) which jointly train dialogue policy agent and tracking agent. In
the first N1+N2+N3 episodes, training processes of five models have been mentioned
in Sect. 6.3. As shown in Fig. 5, in the latter N4 (30000 in DSTC2/3) episodes, four
models which contain tracking agents stop optimizing corresponding tracking agents
and start to optimize dialogue policy agent and the baseline system continues to train
dialogue policy agent. In Fig. 5, we compare the above five systems and the final per-
formances show in Table 3 and Table 4. Compared with the results of the optimized
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tracking agents in Table 1 and Table 2, the success rates in the TA ALL system and the
TA G system increase significantly. It demonstrates that the dialogue policies in the
TA ALL and the TA G have adapted the optimized tracking agents respectively.

Compared the results in DSTC3 with the results in DSTC2, we can find that the
boost of performance in DSTC3 is larger than that in DSTC2. The reason is that the
semantic error rate of SLU in DSTC3 is higher than that in DSTC2, therefore the belief
state tracker plays a more important role in DSTC3. These results also indicate that our
proposed DRL-based tracker is robust to the input errors of SDS.

7 Conclusion

This paper provides a DRL-based companion teaching framework to optimize the DST
module of the dialogue system. Under this framework, the tracker can be learned during
the conversations between the user and the SDS rather than produced by the off-line
methods. We can also choose to jointly train dialogue policy agent and the tracking
agent under this framework. The experiments showed that the proposed companion
teaching framework for the on-line DST system achieved promising performances in
DSTC2 and DSTC3.
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Abstract. In task-oriented multi-turn dialogue systems, dialogue state refers to
a compact representation of the user goal in the context of dialogue history. Dia-
logue state tracking (DST) is to estimate the dialogue state at each turn. Due to
the dependency on complicated dialogue history contexts, DST data annotation
is more expensive than single-sentence language understanding, which makes
the task more challenging. In this work, we formulate DST as a sequence gener-
ation problem and propose a novel dual-learning framework to make full use of
unlabeled data. In the dual-learning framework, there are two agents: the pri-
mal tracker agent (utterance-to-state generator) and the dual utterance gener-
ator agent (state-to-utterance generator). Compared with traditional supervised
learning framework, dual learning can iteratively update both agents through the
reconstruction error and reward signal respectively without labeled data. Reward
sparsity problem is hard to solve in previous DST methods. In this work, the
reformulation of DST as a sequence generation model effectively alleviates this
problem. We call this primal tracker agent dual-DST. Experimental results on
MultiWOZ2.1 dataset show that the proposed dual-DST works very well, espe-
cially when labelled data is limited. It achieves comparable performance to the
system where labeled data is fully used.

Keywords: Dual Learning · Dialogue State Tracking · Reinforcement Learning

1 Introduction

Dialogue state tracker is a core part of the task-oriented dialogue system, which records
the dialogue state. The dialogue state consists of a set of domain-slot-value triples,
where the specific value represents the user goal, e.g., hotel(price = cheap). The
dialogue system responds to the user just based on the dialogue state. Thus, in order
to make the dialogue process natural and fluent, it is essential to extract the dialogue
state from the dialogue context accurately. However, the paucity of annotated data is
the main challenge in this field. In this work, we solve a key problem that how to
learn from the unlabeled data in DST task. We design a dual learning framework for
DST task, where the dialogue state tracker is the primal agent and the dual agent is the
utterance generator. Within the dual learning framework, these two primal-dual agents
help to update each other through external reward signals and reconstruction errors by
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using unlabeled data. It only needs a few of labeled dialogue data to warm up these two
primal-dual agents.

However, there are two main challenges when combining dual learning framework
with previous dialogue state tracking (DST) methods:

How to represent dialogue state under dual learning framework? Dual learning
method is first proposed in the neural machine translation (NMT) task. The outputs of
the primal-dual agents in NMT task are both sequential natural languages. However, in
DST task, the output of the dialogue state tracker consists of isolated domain-slot-value
triples. The traditional DST task is formulated as a classification problem with the given
ontology, where all the possible values of the corresponding slot are listed. Under this
problem definition, the previous classification methods just choose the right value for
each slot. The recent innovated tracker TRADE [25] directly generates the values slot
by slot using copy mechanism from dialogue context. However, these tracker methods
get slot values independently. During the dual learning loop, it is hard to get reward
signal from these independent slot values. The reward signal from dual utterance gen-
erator is also hard to allocate to these isolated value generation processes. Since the
relations of the predicted values are not modeled and they are assumed to be indepen-
dent with each other, it would face serious reward sparse problem. In this work, we
reformulate the dialogue state tracking task as a sequential generation task. The whole
dialogue state is represented by a sequence with structured information. For example,
the state hotel(price = cheap, area = centre), taxi(destination = cambridge) can
be represented as “<hotel> <price> cheap <area> centre </hotel> <taxi>
<destination> cambridge </taxi> ”.

Is it reasonable that generating the whole dialogue context from dialogue state?
The intuitive dual task of the state tracker is dialogue context generation. However, in
MultiWOZ 2.1 [7] dataset, the dialogue context has more than 10 turns on average and
the average length of each sentence is over 10 tokens. It is very difficult in generating
accurately a dialogue context with a dialogue state. Because the dialogue context is
too long, it is hard to guarantee that the generated dialogue context contains the same
semantics with the given state. In this work, we simplify the dual task into a user utter-
ance generation task which ignores the specific values of the given state. The input of
the dual task is composed of two parts (i.e., the delexicalized system utterance and the
turn state), and its output is the delexicalized user utterance. The delexicalized script
is copied from the released code1. The system utterance and user utterance can be lex-
icalized respectively according to the given turn state. We get a new pseudo-labeled
dialogue turn. In order to produce multi-turn pseudo-labeled data, we sample a labeled
dialogue data and combine it with the pseudo-labeled dialogue turn, where the dialogue
turn directly adds to the end of the sampled dialogue context and the turn state covers
into the label of the sampled state. Finally, we get a new dialogue context and pseudo
label of the state, as the intuitive dual-task does.

The main contributions of this paper are summarized as follows:

– An innovative dialogue state tracking framework based on dual learning is proposed,
which can make full use of the unlabeled dialogue data for DST task.

1 https://github.com/ConvLab/ConvLab.

https://github.com/ConvLab/ConvLab
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Fig. 1. The coarse-to-fine tracker model, which consists of four parts: context encoder, state
sketch decoder, sketch encoder and sketch-guided state decoder.

– In this paper, we reformulate the dialogue state tracking as a sequence generation
task and propose an efficient state generation model.

– In MultiWOZ 2.1 dataset, our proposed tracker achieves an encouraging joint accu-
racy. Under dual learning framework, when the labeled dialogue data is limited, the
dual-DST works very well.

2 Tracker and Dual Task

In this section, we introduce the primal-dual models for DST task under dual learning
framework.

Different from previous DST approaches, we formulate the dialogue state track-
ing task as a sequence generation task. We represent the dialogue state as a structured
sequence, rather than a set of isolated state triples. There are two important benefits: (1)
The structured state representation keeps the relation information among the different
slot values. The relation of these values contains some useful information, for example,
the value of the slot departure is different from the value of the destination in flight
ticket booking task. (2) Compared with isolated state representation, the state sequence
is more applicable to the dual learning. It is easy to measure using BLEU score and
evaluate using normal language model (LM) [17].
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Fig. 2. Abstraction of the dual learning framework. The dotted box means the start input content
of the dual learning game.

2.1 Coarse-to-Fine State Tracker

In this work, we adopt coarse-to-fine decoding method [6] to generate the sequential
dialogue state. If specific values in sequential dialogue state are removed, we denote the
rest representation as state sketch, which only contains domain-slot information, e.g.,
“<hotel> <price> <area> </hotel> <taxi> <destination> </taxi>”.
In order to simplify state generation, the coarse-to-fine method first generates the state
sketch and then produces the final state guided by the state sketch. The coarse-to-fine
state generation model consists of four parts: dialogue context encoder, state sketch
decoder, sketch encoder and sketch-guided state decoder, as shown in Fig. 1.

Context Encoder: The input x of coarse-to-fine tracker is composed of two compo-
nents: current w dialogue turns ut−w+1 ∼ ut and (t−w)-th dialogue state bt−w, where
w is window size of the dialogue context and earlier dialogue utterances is replaced by
(t − w)-th dialogue state. In this work, we directly concatenate them together and use
bi-directional gated recurrent units (GRU) to encode the input as:

−→
h i = fx

GRU(hi−1,xi), i = 1, . . . , |x|, (1)
←−
h i = fx

GRU(hi+1,xi), i = |x|, . . . , 1, (2)

hi = [
−→
h i,

←−
h i] (3)

where xi is embedding of i-th token of the input x, [·, ·]means the concatenation of two
vectors and fx

GRU is the input GRU function.
State Sketch Decoder: The sketch decoder generates a state sketch a conditioned

on the encoded context. We use a unidirectional GRU to decode the state sketch with
the attention mechanism [16]. At t-th time step of sketch decoding, the hidden vector is
computed by dt = fa

GRU(dt−1,at−1), where fa
GRU is the GRU function and at−1 is the

embedding of previously predicted token. The initial hidden state d0 is
←−
h 1. The atten-

tion weight from t-th decoding vector to i-th vector in encoder is sti = exp(ut
i)∑|x|

j=1 exp(ut
j)
.
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Fig. 3. Utterance generation model.

The attention score ut
i is computed by

ut
i = vT tanh(W1dt +W2hi + b), (4)

where v, W1, W2 and b are parameters. Then we calculate the distribution of the t-th
sketch token p(at|a<t) using

p(at|a<t) = softmax(Wa[dt, st] + ba), (5)

st =
|x|∑

i=1

ut
ihi, (6)

where Wa and ba are trainable parameters. Generation terminates until the end token
of sequence “<EOB>” is emitted.

Sketch Encoder: We use another bidirectional GRU to map the sketch state into a
sequence of sketch vectors {vi}|a|

i=1, as context encoder does.
Sketch-Guided State Decoder: The final state generation is similar to sketch gen-

eration. The difference comes from that the state generation tries to use the generated
sketch state. In sketch generation process, the input of the sketch decoder is always pre-
viously predicted token. However, during state generation, the input of state decoder at
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t-th time step zt is

zt =

{
vk, yt−1 is equal to ak

yt−1, otherwise,
(7)

where yt−1 is the embedding of the predicted token at (t − 1)-th time step.

2.2 Dual Task

As introduced in Sect. 1, the dual task of dialogue state tracker is simplified into a user
utterance simulation task.

Encoder: The input of utterance generation model is composed of two parts: turn
state and system utterance (or wizard utterance). The turn state means the dialogue
state mentioned by current dialogue turn, which consists of several domain-slot-value
triples. We use a bidirectional GRU to encode each triple into a state vector respectively,
as shown in Fig. 3. We map the system utterance into a sequence of token vectors. Then
we use a self-attention layer [24] to encode state vectors and token vectors together to
get final encoded vector.

Decoder: The utterance decoder generates the user utterance conditioned on the
designed turn state and system utterance. We use a unidirectional GRU to generate the
user utterance with attention mechanism. The initial hidden state of the decoder is sum
pooling of final encoded vector.

In the dual task, the given system utterance and the generated user utterance are
delexicalized, which means that specific values of the dialogue state in two utterances
are removed and replaced by common domain-slot flags. For example, if the turn state
is hotel(star = 5), the system utterance could be “Do you want to reserve <hotel>-
<star> star hotel?” and the user utterance could be “Yes, I need <hotel>-<star> star.”.
Inversely, when the delexicalized utterance is given, we can use the corresponding turn
state to get lexicalized utterance. Because the delexicalized system utterance is easy
to collect, the function of the dual model can be regarded as to generate a lexicalized
dialogue turn given a turn dialogue state.

3 Dual Learning for DST

In this section, we present the dual learning mechanism for dialogue state tracking.
Before introduce the dual learning method for DST, we define the state tracking model
and dual generation model as P (·|Θu2s) and P (·|Θs2u), respectively. Similar to dual-
NMT [11], we have also two pretrained language models to evaluate the generated state
and user utterance, which are indicated as LMs and LMu. Noticing that we pretrain
language model for the sketch of the dialogue state, where the slot values are removed.
We regard two language models as two kinds of external knowledge. The dual game
of DST task consists of two sub-games: state reconstruction and utterance reconstruc-
tion. In other words, the dual learning method contains two kinds of training loop. The
abstract of the dual learning method shows in Fig. 2.

The first training loop for state reconstruction starts from a turn state. The utter-
ance generator P (·|Θs2u) generates the delexicalized user utterance with a sampled
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Algorithm 1: Dual learning method for dialogue state tracking
Input: unlabeled dialogue data Du, unlabeled turn state Ds, labeled dialogue-state pairs

(D̂u, D̂s), corresponding delexicalized dialogue context D̂dex
u , the language model

of user utterance LMu, the language model of coarse state LMs, state tracker
P (·|Θu2s), utterance generator P (·|Θs2u)

repeat
� State-Context-State Loop;

(1) Sample an unlabeled turn state ds from Ds and a related delexicalized system
utterance uttrdexs ;
(2) Generate delexicalized user utterance uttrdexu using generator P (·|Θs2u);
(3) Lexicalize uttrdexs and uttrdexu using turn state and get a dialogue turn du =
(uttrs, uttru);
(4) Evaluate the user utterance uttru using LMu and get external-knowledge reward
r1k ;

(5) Sample a labeled dialogue-state pair (d̂u, d̂s) and combine this pair with (du, ds)
to get a new dialogue-state pair (d̄u, d̄s) ;
(6) Update tracker P (·|Θu2s) using (d̄u, d̄s);
(7) Generate the dialogue state d̄′

s using tracker P (·|Θu2s) and get BLEU score
reward r1b with d̄s ;
(8) Update generator P (·|Θs2u) by policy gradient loss with reward
r1 = αr1k + (1− α)r1b ;

� Context-State-Context Loop;

(9) Sample a unlabeled dialogue context du from Du;
(10) Generate the dialogue state st and previous dialogue state st−1 and get t-th turn
state ds;
(11) Evaluate the sketch of state st using LMs and get external-knowledge reward r2k;
(12) Get delexicalized utterances (uttrdexs , uttrdexu ) of t-th turn in du with turn state
ds;
(13) Update generator P (·|Θs2u) by cross-entropy loss with uttrdexs , ds and uttrdexu ;
(14) Generate the user utterance using P (·|Θs2u) with uttrdexs and ds and lexicalize it
into uttr′

u;
(15) Calculate the BLEU score of uttr′

u as the reward r2b and update tracker
P (·|Θu2s) by policy gradient loss with reward r2 = αr2k + (1− α)r2b ;

until Convergence;

delexicalized system utterance. Noticing that the sampled utterance normally contains
some domain-slots. The generated utterance can be evaluated by LMu. We use logarith-
mic of the utterance probability calculated by language model as external-knowledge
reward r1k. Then we pair the given state and the generated utterances as pseudo labeled
data to update the tracker P (·|Θu2s). Because this pair data contains only one turn,
we sample from labeled multi-turn data and combine them together to get new multi-
turn data. The tracker P (·|Θu2s) can further predict the state of concatenated utterances
in the new multi-turn data. Then we can get BLEU score of the predicted state with
combined state. The BLEU score can be regarded as another reward r1b to indicate the
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quality of the generated utterance. At the end of this loop, the generator P (·|Θs2u)
can be updated using weight-sum reward r1 = αr1k + (1 − α)r1b by policy gradient
loss [21], where α is the hyper-parameter. The data flow of state reconstruction game is
state-context-state.

The second training loop for utterance reconstruction starts from dialogue context
with t dialogue turns. The tracker P (·|Θu2s) predicts the t-th dialogue state st and the
previous state st−1. The sketch of the predicted state st can be evaluated by LMs. The
external-knowledge reward r2k is still logarithmic of the probability of the generated
state sketch. Then we can get the t-th turn state ds. We can further get t-th delexical-
ized system utterance utterdexs using the ds. The generator generates the user utterance
with turn state ds and system utterance utterdexs . Then we calculate the BLEU score
of the user utterance utter′

u, which is lexicalized from the generated user utterance.
The BLEU score is an implicit reward r2b to measure the generated state. Similarly, the
tracker P (·|Θu2s) can be updated using weight-sum reward r2 = αr2k + (1 − α)r2b by
policy gradient loss. The data flow of utterance reconstruction game is context-state-
context.

The specific process of the dual learning for DST is shown in Algorithm 1, where
state-context-state loop means state reconstruction process and context-state-context
loop indicates utterance reconstruction process.

4 Experiments

4.1 Dataset

We evaluate our methods in MultiWOZ 2.1 dataset, which is the largest task-oriented
dialogue dataset for multi-domain dialogue state tracking task. MultiWOZ 2.1 dataset
contains 8438 multi-domain dialogues and spans 7 dialogue domains. For dialogue state
tracking task, there are only 5 domains (restaurant, hotel, attraction, taxi, train) in
validation and test set. The domains hospital, bus only exist in training set. Around
70% dialogues have more than 10 turns and the average length of the utterances in the
dialogue is over 10.

4.2 Training Details

Similar to TRADE, we initialize all the embeddings using the concatenation of Glove
embeddings [18] and character embeddings [10]. We set the window size as 10 turns.
The hidden size of all GRUs is 500. Under the dual learning framework, there are two
training phases: pretraining phase and dual learning phase. The pretraining phase aims
to warm up the state tracker and the utterance generator with labeled data. We adopt
Adam [14] optimizer with learning rate 1e−4. During the dual learning phase, the learn-
ing rate is 1e−5. In order to stabilize the dual learning, we still use the cross-entropy
loss to update the above two models with labeled data. The reward weight α is 0.5.
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Table 1. The results of baseline models and our proposed coarse-to-fine tracker in MultiWOZ 2.1
dataset. +BERT means that the tracking model encodes the utterances using pretrained BERT.
ITC means the inference time complexity, which measures the calculation time of evaluating
state. In ITC column, M is the number of slots and N is the number of values. Joint Acc. means
the joint goal accuracy.

Model +BERT Joint Acc.
MultiWOZ 2.1

ITC

DS-DST Y 51.21% O(M)

SOM-DST Y 52.57% O(1)

DST-picklist Y 53.30% O(MN)

HJST N 35.55% O(M)

DST Reader N 36.40% O(M)

FJST N 38.00% O(M)

HyST N 38.10% O(M)

TRADE N 45.60% O(M)

Coarse2Fine DST(ours) N 48.79% O(1)

dual-DST(ours) N 49.88% O(1)

4.3 Baseline Methods

We first compare our proposed coarse-to-fine state tracker with previous state tracking
methods, when all the labeled training data is used.

– FJST [7] and HJST [7] are two straightforward methods, which directly predict all
the slot values based on the encoded dialogue history. Instead of directly concatenat-
ing the whole dialogue history as input in FJST, HJST takes the hierarchical model
as the encoder.

– HyST [9] is a hybrid method that improves HJST by adding the value-copy mecha-
nism.

– TRADE [25] directly generates the slot value from the dialogue history.
– DS-DST [28] and DST-picklist [28] divide the slots as uncountable type and count-
able type and generate the slot value in a hybrid method like HyST. Compared
with DS-DST, DST-picklist knows all the candidate values of the slots, including
uncountable slots.

– SOM-DST [13] feeds dialogue history and previous state as the input and modifies
the state with dialogue history into the current state.

– DST Reader [8] formulates DST task as a machine reading task and leverages the
corresponding method to solve the multi-domain task.

The second experiment is to invalid the dual learning framework for DST task. In
this experiment setup, we randomly sample 20%, 40%, 60% and 80% labeled data in
training data. The rest data is used as unlabeled data. We compare dual learning method
with pseudo labeling method, which is an important approach to use the unlabeled
data. The pseudo labeling method first uses the sampled labeled data to pretrain our
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proposed tracker. During the training of pseudo labeling method, the pretrained tracker
is used to generate the state of the unlabeled dialogue context. Then, the dialogue con-
text and the generated state are paired together as the pseudo-labeled data to retrain the
tracker. In order to stabilize the training process of the pseudo labeling method, we also
mixture the pseudo labeled data and labeled data as a batch to update the pretrained
tracker.

4.4 Results

The performance of our trackers: As shown in Table 1, our proposed coarse-to-fine
tracker achieves the highest joint goal accuracy in the BERT-free models. Our pro-
posed tracker directly generates all the slot values, which is represented as a structured
sequence. Compared with the methods that predict the values slot by slot, the infer-
ence time complexity (ITC) is O(1). This property is important for the dialogue system.
The response time of the dialogue system effects user experience seriously. Compared
with SOM-DST, our proposed tracker does not rely on the pretrained BERT [5], whose
model size is more than 110M. This is another challenge for memory-starve devices.
Compared with recently proposed TRADE, our proposed coarse-to-fine tracker not
only reduces the inference time, but also gets the absolute 3.19% joint goal accuracy
improvement.

Fig. 4. The joint goal accuracy with unlabeled data.

The performance of dual learning: In order to validate the effectiveness of our proposed
dual learning framework, we randomly sample parts of training dataset as the small
training set. The rest data is regarded as unlabeled data. In this experiment, we randomly
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sample 20%, 40%, 60% and 80% labeled data. As shown in Fig. 4, we can see that the
joint goal accuracy improves as the labeled data increases. It indicates that the scale of
the annotated data is a big challenge for the multi-domain DST task. In this work, we
propose a dual learning framework for DST to help to improve the performance of the
tracker with the unlabeled data.

When the training data is starved, the dual learning method can improve the perfor-
mance of the pretrained tracker by efficiently using the unlabeled data. Compared with
pseudo labeling method, our proposed dual learning method is able to treat the exter-
nal knowledge (two kinds of language models: coarse state language model and user
utterance language model) as reward function to feedback to the tracker and improve
the performance. Especially, when the labeled data is extremely limited that only has
20% sampled data, the dual learning method achieves a larger performance gain than
the pseudo labeling method. As shown in Fig. 4, we can see that the pseudo labeling
method only gets less improvement. As we introduce in Sect. 4.1, the multi-domain
DST task in MultiWOZ 2.1 dataset is more complex than single-domain DST task. The
positive influence of the pseudo labeled data for pretrained tracker is limited.

When the training data is fully used, the dual learning method can be still used to
fine-tune the pretrained tracker. During the dual learning process, all the training data
can be regarded as the unlabeled data. As shown in Table 1, the dual-DST can get further
improvement from the fully pretrained tracker.

5 Related Work

Multi-Domain DST: With the release of MultiWOZ dataset [1], one of the largest task-
oriented dialogue datasets, many advanced dialogue state tracking methods for multi-
domain task have been proposed. The previously proposed multi-domain state track-
ing approaches can be divided into two categories: classification [7,26] and genera-
tion [3,12,15,19,25]. The classification methods usually require that all the possible
slot values are given by ontology. However, in real dialogue scenarios, some slot val-
ues cannot be enumerated. To alleviate this problem, the generative methods have been
proposed, where the slot values are directly generated from the dialogue history. Like
the classification methods, most of the generative methods generate slot value one by
one, until all the slots on different domains have been visited. The methods that pre-
dict the slot values independently can not be used in dual learning framework. In this
work, we redefine the dialogue state as a structured representation. We further propose
a coarse-to-fine tracking method to directly generate the structured dialogue state.

Dual learning: Dual learning method is first proposed to improve neural machine trans-
lation (NMT) [11]. In NMT task, the primal task and the dual task are symmetric, while
not in DST task. We design a state tracking model and an utterance generation model
under the dual learning framework of DST. The idea of dual learning has been applied
into various tasks, such as Question Answer [22]/ Generation [4,23], Image-to-Image
Translation [27], Open-domain Information Extraction/Narration [20] and Semantic
Parsing [2]. To the best of our knowledge, we are the first to introduce the dual learning
in dialogue state tracking.
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6 Conclusion

In this work, we first reformulate the dialogue state tracking task as a sequence gen-
eration task. Then we adopt a coarse-to-fine decoding method to directly generate the
structured state sequence. The proposed coarse-to-fine tracker achieves the best perfor-
mance among BERT-free methods. The main contribution of this work lies on building a
dual learning framework for multi-domain DST task. The experimental results indicate
that our proposed dual learning method can efficiently improve the pretrained tracker
with unlabeled data. In future work, we will further improve the state tracking model
and dual utterance generation model using pretrained models, e.g. BERT.
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Abstract. The current text-to-speech technique has developed to a
close-to-human state, and more research interest has been paid to highly
expressive and more controllable speech synthesis. Stress detection and
modeling in the Mandarin TTS(Text-to-speech) system have been ver-
ified to be an efficient and direct way to enhance the rhythm and
prosody performance in previous studies. But labeling stress in training
data manually needs linguistic knowledge and is also time-consuming.
In this paper, an automatic syllable-level stress annotation mechanism
is proposed. Then based on the automatically annotated stress labels, a
transformer-based ALBERT front-end module is built for stress label pre-
diction from the text. In the experiment part, a DurIAN-based expressive
text-to-speech system is built with the proposed automatic stress anno-
tation and prediction module. Experiments show the proposed method
can consistently predict stress from linguistic context input, and speech
synthesis systems with proposed stress annotation and prediction com-
ponents outperform baseline systems.

Keywords: Speech synthesis · Stress modeling · Expressive speech
synthesis · Mandarin Text-to-speech · Rule-based

1 Introduction

Natural and expressive mandarin speech synthesis continues to receive increased
attention. Mandarin, as a tonal language, performs to emphasize the importance
of different tones in distinguishing the meaning of words, ie. “书" (shu1 means
book) and “树" (shu4 means tree). In natural conversation, both intonation
and syllable tone cause changes in the meaning of the sentence. Stressed and
unstressed syllables often demonstrate where the felicitous emphasis is placed
within a sentence and the improper location of stress always makes the speech
flow unnatural and even difficult to understand. Therefore, stress modeling and
stress detection mechanism is fundamental research in Text-to-speech system.

Stress is the perceptual prominence within a prosodic word or utterance [5]
which could bring about the fluctuation of pitch contour. However, it is still con-
troversy regarding the definition of stress in Mandarin. In this paper, we consider
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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stress to be a syllable-level phenomenon with four degrees: Strong Stressed(SS),
Regular Stressed(RS), and Unstressed(US). The majority of previous studies
show that pitch and duration have been proven to be the two complemen-
tary important acoustic features to influence stress perception by researchers
[3,20,21]. Further research [13] proved that some specific combinations of tonal
patterns indicate whether the syllable is stressed or not.

In existing related work of stress detection and annotation, the Fujisaki model
[4] describes the fundamental frequency contour as the superposition of the out-
puts of phrase and tone (or accent) commands that match the two-level hierar-
chical stress model we proposed. [7,11] utilize this model for generating stress
and controlling prosodic F0. Furthermore, other statistical methods based on a
large corpus are of great help in the study of stress annotation, like ToBI [22],
C-ToBI [10] etc. Relying entirely on manual annotation of stress is undoubtedly
very time-consuming and inaccurate. [24] used Decision Trees and Markov mod-
els to determine the type of syllable discontinuity and the presence of stress.
[12,16] described the performance of the machine learning-based utilization like
SVM, CART, and AdaBoost with CART in both English and Mandarin. [26]
introduced the use of continuous lexical embedding in the BLSTM model which
gains an F1 score. Inspired by [1,11,13,21,23,26], the main contribution of this
paper is that we proposed a heuristic automatically rule-based stress detection
mechanism from audio files for labeling stress to deal with the time-consuming
and the bias when annotating manually by different annotators. Besides, these
labeling data successfully model the stress in both acoustic model DurIAN [25]
and front-end model ALBERT [9] for building a controllable stress TTS. The
effectiveness of and the performance of stress controllable TTS system is evalu-
ated using comprehensive objective and subjective experiments. The audio sam-
ples are available at https://misakamikoto96.github.io/stress-tts.github.io/.

2 Methodology

2.1 Proposed Method for Stress Detection

Data Preparation and Statistic Result. First, we carried out an analysis of
a large-scale corpus to investigate prosodic variation in different contexts. The
corpus used for the experimental study in this paper is taken from the single-
speaker Mandarin novel-style corpus with distinctive style and variable pitch
contour to capture more perceptual prominence within words or utterances.
The linguistic experts annotate the corpus with prosody boundaries, pinyin,
and stress by using Praat [2] toolkit. Then, all the syllable units are classified
in to different categories, see in Table 1. From the theoretical and heuristically
statistical results of the experiment mentioned above, we conclude that: (1)
Stressed/Unstressed classification of syllables is meaningful for improving the

https://misakamikoto96.github.io/stress-tts.github.io/
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naturalness of mandarin speech synthesis. (2)By observing the pitch curve, we
can determine to stress or unstress a syllable based on whether the syllable has a
significantly higher pitch maximum than its preceding or following syllables, or
whether a syllable is significantly performed better than non-stressed syllables
in their ability to maintain its ’typical tonal patterns shape’ [21]. The study
result illustrates that stress is influenced not only by pitch range and duration
of the syllables, but also by the neighboring silence, neighboring tone pattern,
and neighboring stresses. Therefore, we proposed an automatically rule-based
mechanism for syllable-level stress labeling from audio files.

Table 1. The part of categories for syllable unit classification

Categorise Description
tone_categorise Tone categorise
stressed_or_not Whether the syllable is stressed
left/right_prosodic_categories the prosody boundaries categories of

its preceding/next syllable
left/right_syllable_tone the tone categories of its

preceding/next syllable
left/right_f0_max the max(f0) of its preceding/next

syllable

Details. The code reproduction could be done with the pseudo-code of three
steps of the Stress Detection Rule, all the scalar coefficients included are orig-
inated from our previous statistical results, control experiments, and empirical
values.

– ST stands for the sequence of Stress labels for the input text, including Strong
stressed(SS), Regular stressed(RS), and Unstressed(US), zero-initialized from the
pre-annotation step.

– P sy l stands for the discrete semitone value [[P1], [P2], ..., [Pt]], Pi contains the set
of points of syllable-level semitone contour for the i-th syllable.

– P phr stands for discrete points value of phrase-level semitone contour (split a sen-
tence into phrases by punctuation and prosody boundary >= IPH))

– P adds all the elements Pi of an iterable P syl , P = [P1, P2, ..., Pt], stand for all the
points of the whole sequence.

– T o stands for Tone including T1(high), T2(rising), T3(dipping), T4(falling) and
T5(neutral).

– D stands for the slicing timeline list of all syllables. Di[−1] − Di[0] means the
duration list for the i-th syllable, D = [D1, D2, ..., Dt]

– ΔO stands for the |Δtimestamps| of the highest and lowest points on the pitch
curve of a syllable.

– k stands for the slope between the highest and lowest point on the pitch curve,
k = |max(P syl

i )− min(P syl
i )|/ΔO
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Initial settings. Firstly, Kaldi toolkit [18] is utilized to do forced-alignment for
getting phoneme-level duration. Based primarily on experience, we pre-set an
initial pitch array getting from WORLD [15] and perform linear interpolation,
then align it to be the syllable-level F0 sequence, which is defined as Pinit. As
humans perceive differences in pitch levels as approximate logarithmic levels,
rather than linear levels, all pitch values were normalized in this study from
the hertz scale to the semitone scale. Each current syllable-level semitone value
Si = 12× log2(F0i/F0ref ), where F0 stands for syllable-level F0 value sequence
with valid hop length, and F0ref usually represent the lower limit of the speaker’s
vocal range.

Pre-annotation . The rule for syllable-level pre-annotation of stress label is
firstly done by detecting the convex pitch contour in the whole sentence. We set
a zero-initialized stress label array St = {St1, St2, St3, ..., Stt} which length is
equal to the syllable-level linguistic feature. In syllable-level semitone contour
S, we detect those syllables where the peak of the contour is highest than its
previous one and its next one. We detect a syllable-level semitone value Si whose
highest point is the maximum of [max(Si−1),max(Si),max(Si+1)], and then, we
calculate the stress level on this syllable by the equation below:

Sti =

⎧
⎪⎨

⎪⎩

Simax
> Med(S) + 1.5 ∗ δ(S), SS → 2

Simax
> Med(S) + 0.5 ∗ δ(S), RS → 1

else, US → 0

Forward and Cancel Movement . In order to maintain the integrity of the
tone contour, the movement of the stress label might be moved forward or can-
celed. For syllables whose pre-labeled stress results are unequal to 0, we initially
adjust the position of the stress label based on its pitch curve. The STi of the i-th
syllable is shifted forward to the nearest j-th syllable(j < i), with its Ti−n �= 5,
and the current STi = 0. See in Algorithm1.

Supplementary Movement . For dealing with syllables in which the stress
label is unmarked in the pre-annotation phase when its tone is T2 or T3. When
considering the falling-rise tone and rising tone, the probability of stress is highly
related to the syllable duration to express the feeling of stress in Mandarin
speech. Supplementary means the action to re-label some syllable with signif-
icant duration characteristics.

Expand Movement . To detect the syllable has been omit-stressed in the pre-
vious steps when a current i-th syllable Syli is stressed, there is a comparison
among the maximum of syllable-level semitone value of its preceding syllable
Syli−1, following syllable Syli+1, and the overall pitch level of the entire sentence
when the tone of Syli−1 or Syli+1 is T1 or T4. Expand represents extending
the stress label to its eligible preceding and following part in a sequence. See in
Algorithm 3.
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Algorithm 1. Forward movement of stress label
Ensure: Si �= 0

for i ← 1 to Len(ST ) do
if Ti = 5 and Ti = 3 then

∗MoveForward

else if Ti = 2 then
if max(P syl

i ) − min(P syl
i ) < 0.5 ∗ δ(St) then

∗MoveForward

else
∗Cancel

end if
else if Ti = 4 then

if k < 10 and Ti−1 in[2, 3] then
∗Move Forward

else if k > 10 and max(P syl
i ) < Med(P ) + 0.75 ∗ δ(P ) then

∗Cancel

else
∗Cancel

end if
else if Ti = 1 and k then

if k < 15 and max(P syl
i ) < Med(P ) + 0.5 ∗ δ(P ) then

∗Cancel

end if
end if

end for

Algorithm 2. Supplementary Movement of stress label
for i ← 1 to Len(ST ) do

if Ti = 3 then
if min(P syl

i ) ≤ min(min(P syl
i ), max(P syl

i+1)) then
if max(P syl

i ) = min(P ) and Di > max(Di−1, Di+1) and Di > avg(Dur) then
∗STi = 2

end if
else if max(P syl

i ) <= min(Pphr
i ) and Di > avg(D) then

∗STi = 1

end if
else if Tonei = 2 then

if k > 30and|ΔO| > 0.5 ∗ Di then
if Di > 1.75 ∗ avg(D) then

∗STi = 2

else if Di > 1.2 ∗ avg(D) then
∗STi = 1

end if
end if

end if
end for
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Algorithm 3. Expand Movement of stress label
Ensure: Sti �= 0

for i ← 1 to Len(ST ) do
if max(P syl

i ) > Med(P ) + 0.5 ∗ δ(P ) then
if max(P syl

i ) − max(P syl
i+1) < 0.45 ∗ δ(P ) or max(P syl

i ) − max(P syl
i−1) < 0.45 ∗ δ(P ) then

if Ti−1 in [1, 4] then
∗Forward Expansion of STi until condition false

end if
if Ti+1 in [1, 4] then

∗Backward Expansion of STi until condition false

end if
end if

end if
end for

Fig. 1. The architecture of the models

2.2 Textual-Level Stress Prediction

The main architecture of the proposed textual-level stress prediction is shown
in Fig. 1(a). A transformer-based pre-trained model ALBERT has been used as
the baseline. Compared to ALBERT, multiple stress-related prior information
including lexicon character-words pair [14], hierarchical prosody, tone pattern,
and chapter-level context information are integrated into the network effectively.
Input sentence T = [t1, t2, ..., tN ], N is the length of utterance and also the
number of stress labels for each syllable S = [s1, s2, ..., sN ] with < eos > and
< bos > padding in the head and tail.

The char-lexicon pair informationElexicon passed through theLexiconAdapter
which follows the same setup of [14] for the in-depth fusion of lexicon features
and ALBERT representation. The tone and prosody boundary of each syllable
are obtained from the multi-task ALBERT based Ximalaya self-developed fron-
tend system, Etone = eT (Tt) and Eprosody = eP (Pt) where eT and eP are train-
able randomly initialized embedding lookup tables with size 5 and 3 (as Tclass =
{T1, T2, T3, T4, T5} andPclass = {PW,PPH, IPH}) respectively.Also, inspired
by [6], from the similar structure setup of its conversational context encoder, we
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select the sequence of BERT sentence embeddings Et−2:t with the length c from
Et−2 to the current sentence Et as the inputs to get the output Echapter to directly
extract stress position-related contextual features from sentence embeddings. We
finetune from the pre-trained Albert-Chinese-base model with randomly initial-
ized dense layers and use the CRF layer for sequence labeling. In the training pro-
cess, the model task is to minimize the sentence-level negative log-likelihood loss
as well as in the decoding stage, the most likely sequence will be obtained by the
Viterbi algorithm, as the setting in [9].

2.3 Modeling Stress in Acoustic Model

To generate a target Mel-spectrogram sequence including expressive stress-
related performance, we tried to ways to do stress modeling in an acoustic model.
The main architecture of the acoustic model follows DurIAN, [25] while the
enhancement is constructed by adding extra predictors of phoneme-level f0 and
energy which follows the same setup as in [19] and the real values are quantized
into trainable embeddings. As the prosody bottleneck sub-network [17] has been
proven to produce significant performance improvements in the TTS system, we
follow the same setup in our architecture. As shown in Fig. 1(b), the syllable-level
stress label sequence obtained from the rule-based stress detector is mapped into
an IPA-level sequence. The predicted values of f0 and energy are quantized into
trainable embeddings, concatenated with 128-dimension stress embedding, and
scaled duration output, to condition the decoder for speech synthesis.

3 Experiments

For the acoustic model, an internal male audio corpus is used in this experiment
containing 13049 sentences in a novel genre including narration and dialogue
(about 108,741 prosodic words and 326,225 syllables), which were uttered by
a professional male speaker, and saved in WAV files (16-bit mono, 24kHz). 80-
dimensional Mel-spectrograms are extracted by using Hanning Window with hop
size 240 (frameshift 10ms). Kaldi toolkit [18] is utilized for forced alignment and
getting phoneme-level duration and prosody boundaries from silence. F0 and
energy are extracted following the same setup in [19]. We obtained the syllable-
level f0 by aggregating the slicing-aligned duration of each phoneme. The tone
and the prosody boundaries of each syllable are contained in the input IPA
sequence, which is used as the input of the rule-based stress extraction tool for
generated stress annotation, together with the same level duration and f0.

For the textual-level stress prediction, the corpus we selected are internal
parallel datasets of different speakers in the same novel domain and gave the
corresponding audio for accent detection and alignment to each word as the tar-
get for front-end model training. Moreover, we use several different combinations
of linguistic textual features to investigate which have the greatest impact on
the accuracy of stress sequence prediction.
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3.1 Complete Stress-Controllable TTS System

There are two ways to perform stress in the whole TTS system:

– MANUAL The stress label sequence is assigned manually by professional linguists
based on the semantics of the sentence, from the SSML input.

– FE The stress label sequence is predicted from the Albert-based Front-end system
as described in para 2.2.

– BASELINE The baseline modified DurIAN model without any stress modeling.

3.2 Experimental Results

Performance of rule-based stress extraction. An initial syllable-level man-
ual check of overall accuracy rates on the annotation result of the stress extrac-
tion tool, three linguistic experts are involved in the evaluation stage. We ran-
domly selected 100 audio samples of each speaker distributed in female(data
from 2 internal speakers), male(data from 2 internal speakers), child(data from
1 internal child speaker), and male elder(data from 1 internal speaker) respec-
tively with different vocal ranges to verify the accuracy of the rule-based stress
extraction tool in detecting stress on Wav. The precision and f1-score of each
stress label shown in Table 2 illustrate that the stress detection rule could gen-
erally achieve accurate detection of stress for different speakers.

Table 2. Precison and F1-score of the generated results of SS , RS and US for each
syllable, and the overall Accuracy from the stress extraction tool.

Speaker Type SS RS US Acc
prec f1-score prec f1-score prec f1-score

Male 0.9679 0.9837 0.9760 0.9803 0.9979 0.9953 0.9918
Female 0.9714 0.9714 0.9382 0.9255 0.9700 0.9738 0.9619
Child 1.0000 1.0000 0.9796 0.9143 0.9572 0.9755 0.9648
Elder 0.9767 0.9882 0.9518 0.9693 0.9959 0.9878 0.9837

Accuracy of the Frontend model. As a sequence labeling task, stress pre-
diction should be evaluated with consideration of all the stresses. The trained
classifiers are applied to a test corpus to predict the label of each stress. Table 3
shows that the accuracy and the macro-f1 score of FE model increased when
testing different feature embeddings combination added in the ALBERT model.
Tone and prosody boundaries have the greatest impact on the improvement of
prediction accuracy.

Ablation Studies. Stress, as a high-level feature, is strongly correlated with f0
and energy, which is a refined expression of the prosody feature. There is a con-
sideration that the prediction of the f0 and the energy may perhaps bring about
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Table 3. Accuracy and macro-f1 score of FE model

Features used Accuracy(%) macro-f1
ALBERT baseline 75.46 0.3462
lexicon ALBERT(LA) 76.01 0.4548
LA + chapter 76.45 0.4532
LA + tone 76.51 0.4688
LA + prosody 76.64 0.4583
LA + prosody + chapter 76.31 0.4776
LA + tone + chapter 76.85 0.4697
LA + tone + prosody 76.87 0.5076
LA + tone + prosody + chapter 76.75 0.4710

some conflict or negative impact. So, the ablation study is employed for explor-
ing a better way to maintain more stress information. As displayed in Table 4,
we randomly pick up 50 single long sentences and 10 paragraphs in the same
genre as the training speaker’s data, it shows that the accurate stress annotation
generated from our rule-based detector makes that simple 128-dimensional stress
embedding to be sufficient to describe the prosody feature, which could replace
lower-level features like f0 and energy as the condition of the decoder (Table 5).

Table 4. The MOS in different levels, comparison of 3 systems for the Ablation
study.

System MOS of Sentence MOS of Paragraph
Stress 3.86429 3.94375
Stress + f0&energy modeling 3.8619 3.825
Baseline 3.77381 3.76875

Similarity. Here, Mel-cepstral distortion [8] (MCD) is utilized to calculate the
difference between the synthesized results and ground-truth speech, which uses
dynamic time warping (DTW) to align these two sequences. We synthesize 100
Wav samples by the manual stress for each character from the ground truth Wav
which is annotated by linguists with cross-validation. The smaller result in our
experiments (see in Table 4) shows that the synthesized speech is more similar
to the ground truth, indicating the great accuracy of the stress annotation rules
and the better performance of its modeling in the TTS system.

Stress modeling and controbility . To further verify the efficiency of the stress
modeling in the whole TTS system and the importance of stress in contextualized
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Table 5. The MCD test with synthesized audio file from TTS with stress modeling
and TTS Baseline.

System MCD
Baseline 7.790668
Stress + f0&energy modeling 7.645527
Stress 7.260958

scenarios, 50 groups of Q&A test set have been designed and adopted by linguists,
each group includes 1 question and its corresponding answer, which is adopted
as the input of the speech synthesis system. The examples of Q&A below present
the different locations of the stress making various meanings:

– Q1:“张三今天中午吃了【【【什什什么么么】】】？”(What did Zhang San eat for lunch
today?)
A1:“张三今天中午吃了【粽子】。”(Zhang San had dumplings for lunch
today.)

– Q2:“张三【【【哪哪哪天天天】】】中午吃了粽子？” (Which day did Zhang San eat
dumplings at noon?)
A2:“张三【【【今今今天天天】】】中午吃了粽子。”(Today, Zhang San had dumplings for
lunch.)

The result in Table 6 demonstrates that the Baseline model without fron-
tend and backend stress modeling is difficult to perform correct semantics in a
Q&A context. Meanwhile, two different ways for stress conditions bring a more
accurate semantic representation.

Audio Naturalness. We conduct the MOS (mean opinion score) evaluation on
the test set to measure the audio naturalness. We randomly selected 50 sentences

Table 6. Score of correctness of the answer to its corresponding question

System Score
MANUAL 4.438
FE 3.893
BASELINE 3.301

Table 7. MOS of naturalness in sentence-level test and chapter-level test

System MOS of Sentence MOS of Paragraph
MANUAL 4.139 4.210
FE 4.050 3.981
BASELINE 3.73 3.820
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with 5 chapters from the test set of our novel domain dataset as an evaluation set
for the test phase. The MOS results of the overall naturalness are also shown in
Table 7 demonstrating that the stress modeling in TTS outperforms our baseline.

4 Conclusion

To conclude, we proposed a generalized rule-based stress detection mechanism for
automatic labeling from parallel text-audio files, and the usage of its annotated
stress data could successfully do stress modeling in both the acoustic model
and the textual front-end model. According to the results of our experiments, a
stress-controllable TTS system outperforms the baseline to generate speech with
more expressive prosody.
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Abstract. Text-to-Speech (TTS) synthesis for low-resource languages
is an attractive research issue in academia and industry nowadays. Mon-
golian is the official language of the Inner Mongolia Autonomous Region
and a representative low-resource language spoken by over 10 million peo-
ple worldwide. However, there is a relative lack of open-source datasets
for Mongolian TTS. Therefore, we make public an open-source multi-
speaker Mongolian TTS dataset, named MnTTS2, for the benefit of
related researchers. In this work, we prepare the transcription from var-
ious topics and invite three professional Mongolian announcers to form
a three-speaker TTS dataset, in which each announcer records 10 h of
speeches in Mongolian, resulting 30 h in total. Furthermore, we build
the baseline system based on the state-of-the-art FastSpeech2 model
and HiFi-GAN vocoder. The experimental results suggest that the con-
structed MnTTS2 dataset is sufficient to build robust multi-speaker
TTS models for real-world applications. The MnTTS2 dataset, train-
ing recipe, and pretrained models are released at: https://github.com/
ssmlkl/MnTTS2.

Keywords: Mongolian · Text-to-Speech (TTS) · Open-Source
Dataset · Multi-Speaker

1 Introduction

Text-to-Speech (TTS) aims to convert the input text to human-like speech [1].
It is a standard technology in human-computer interaction, such as cell phone
voice assistants, car navigation, smart speakers, etc. The field of speech synthesis
has developed rapidly in recent years. Different from the traditional methods,
which use concatenation [2], statistical modeling [3] based methods to synthesize
speech, neural end-to-end TTS models achieve remarkable performance with the
help of Encoder-Decoder architecture [4]. Typical models include Tacotron [5],
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Tacotron2 [1], Transformer TTS [6], Deep Voice [7], etc. To further accel-
erate the inference speed, the non-autoregressive TTS models, such as Fast-
Speech [8], FastSpech2(s) [9], are proposed and become the mainstream meth-
ods of TTS. Note that armed with the neural network based vocoder, including
WaveNet [10], WaveRNN [11], MelGAN [12], HiFi-GAN [13], etc., the TTS
model can synthesize speech sounds that are comparable to human sounds.

We note that an important factor in the rapid development of neural TTS
mentioned above is the large scale corpus resources. This is especially true for
languages such as English and Mandarin, which are widely spoken worldwide.
However, low-resource language such as Mongolian [14] have been making slow
progress in related research due to the difficulties in corpus collection. Therefore,
building a large-scale and high-quality Mongolian TTS dataset is necessary. In
addition, our lab have previously open-sourced a single-speaker dataset called
MnTTS [15], which was recorded by a young female native Mongolian speaker
and received much attention from academia and industry upon its release. This
also shows the necessity of continuing to collect and organize Mongolian speech
synthesis datasets and opening the baseline model’s source code.

Motivated by this, this paper presents a multi-speaker Mongolian TTS
dataset, termed as MnTTS2, which increases the number of speakers to three
and increases the data size from 8 to 30 h, with an average of 10 h per speaker.
The textual content has been further expanded and enriched in the domain.
Similar with our MnTTS, MnTTS2 dataset is freely available to academics and
industry practitioners.

To demonstrate the reliability of MnTTS2, we combined the state-of-the-art
FastSpeech2 [9] model and the HiFi-GAN [13] vocoder to build the accompa-
nied baseline model for MnTTS2. We conduct listening experiments and report
the Naturalness Mean Opinion Score (N-MOS) and Speaker Similarity Mean
Opinion Score (SS-MOS) results in terms of naturalness and speaker similarity
respectively. The experimental results show that our system can achieve satis-
factory performance on the MnTTS2, which indicates that the MnTTS2 corpus
is practically usable and can be used to build robust multi-speaker TTS system.

The main contributions are summarized as follows. 1) We developed a multi-
speaker TTS dataset, termd as MnTTS2, containing three speakers. The total
audio duration is about 30 h. The transcribed text covers various domains, such
as sports and culture, etc. 2) We used the state-of-the-art non-autoregressive
FastSpeech2 model to build the baseline model and validate our MnTTS2. 3) The
MnTTS2 dataset, source code, and pre-trained models will be publicly available
to academics and industry practitioners.

The rest of the paper is organized as follows. Section 2 revisits the related
works about the Mongolian TTS corpus. In Sect. 3, we introduce the details of
MnTTS2, including the corpus structure and statistical information. Section 4
explains and discusses the experimental setup and experimental results. Section 5
discusses the challenges faced by Mongolian speech synthesis and the future
research directions. Section 6 concludes the paper and summarizes the work and
research of this paper.
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2 Related Work

For mainstream languages such as English and Mandarin, there are many free
and publicly available TTS datasets. For example, LJSpeech [16] is a single-
speaker dataset for English. To rich the speaker diversity, some multi-speaker
TTS dataset are released, such as Libritts [17] for English and Aishell [18] for
Chinese.

For the low-resource language such as Mongolian, the available resources
are pretty limited. We note that some attempts tried to improve the effect of
TTS synthesis under low resource data with unsupervised learning [19], semi-
supervised learning [20], and transfer learning [21] methods, etc. However, due
to the lack of large-scale training data, all the mentioned methods are difficult
to achieve the effect that meets the requirements of practical scenarios.

In order to promote the development of Mongolian TTS, some works built
their own Mongolian TTS corpus and designed various models to achieve good
results. For example, Huang et al. established the first emotionally controllable
Mongolian TTS system and achieved eight emotional embeddings by transfer
learning and emotional embedding [22]. Rui Liu et al. introduced a new method
to segment Mongolian words into stems and suffixes, which greatly improved the
performance of the Mongolian rhyming phrase prediction system [23]. Immedi-
ately after that, Rui Liu proposed a DNN-based Mongolian speech synthesis
system, which performs better than the traditional HMM [24]. Also, he intro-
duced the Bidirectional Long Term Memory (BiLSTM) model to improve the
phrase break prediction step in the traditional speech synthesis system, making
it more applicable to Mongolian [25]. Unfortunately, none of the Mongolian TTS
dataset from the above works have been released publicly and are not directly
available to the public. We also found that some dataset in related fields, such
as M2ASR-MONGO [26] for Mongolian speech recognition, are public recently.
However, the speech recognition corpus cannot be applied in the TTS filed due
to the environment noise and improper speaking style issues etc.

We previously released the single-speaker MnTTS dataset [15], called
MnTTS. The total duration of the MnTTS is 8 h, and it was recorded in a
studio by a professional female native Mongolian announcer. However, the dura-
tion and speaker diversity still needs to be further expanded. In a nutshell, it is
necessary to construct a high-quality multi-speaker Mongolian TTS dataset to
further promote the Mongolian TTS research, which is the focus of this paper.
We will introduce the details of the MnTTS2 at the following subsection.

3 MnTTS2 Dataset

In this section, we first revisit the MnTTS dataset briefly and then introduce
our MnTTS2 by highlighting the extended content.
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3.1 MnTTS

In the preliminary work, we presented a high-quality single-speaker Mongolian
TTS dataset, called MnTTS [15]. The transcription of the dataset was collected
from a wide range of topics, such as policy, sports, culture, etc. The Mongolian
script was then converted to Latin sequences to avoid as many miscoding issues
as possible. A professional female native Mongolian announcer was invited to
record all the audio. A Mongolian volunteer was invited to check and re-align
the alignment errors. The audio containing ambient noise and mispronunciation
was removed to ensure the overall quality.

MnTTS has received much attention from researchers in the same industry
upon its release. Furthermore, the subset was used in the Mongolian Text-to-
Speech Challenge under Low-Resource Scenario at NCMMSC20221. The orga-
nizers provided two hours of data for all participants to train their models. This
competition also promotes the development of intelligent information processing
in minority languages within China.

3.2 MnTTS2

The construction pipeline of MnTTS2 consists of “Text collection and narration”,
“Text preprocessing” and “Audio recording and audio-text alignment”. We will
introduce them in order and then report the corpus structure and statistics.

Text Collection and Narration. Similar with MnTTS [15], the first step in
building the MnTTS2 dataset is to collect a large amount of transcription. The
natural idea for collecting such a text materials is crawl text information from
websites and electronic books. The text topics should cover human daily usage
scenarios as much as possible. Following this, we crawled 23, 801 sentences, that
are rich in content and have a wide range of topics (e.g., politics, culture, econ-
omy, sports, etc.), to meet our requirements well. At the same time, we manually
filtered and removed some texts with unsuitable content, which may involve sen-
sitive political issues, religious issues or pornographic content. These contents are
removed in the hope that our dataset can make a positive contribution to the
development of Mongolian language, which is the original intention of our work.

Text Preprocessing. Compared to mainstream languages, such as Mandarin
and English, traditional Mongolian performs agglutinative characteristic [27].
This makes the Mongolian letters express different styles in different contexts
and brings a serious harmonic phenomenon [15]. In order to solve this problem,
we transformed the texts into a Latin alphabet, instead of traditional Mongolian
representation, for TTS training. The entire pipeline of converting Mongolian
texts into Latin sequences is divided into three steps: encoding correction, Latin
conversion and text regularization. The detailed description can be found in our
previous work MnTTS [15].
1 http://mglip.com/challenge/NCMMSC2022-MTTSC/index.html.

http://mglip.com/challenge/NCMMSC2022-MTTSC/index.html
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Fig. 1. The folder structure of the MnTTS2 corpus.

Audio Recording and Audio-Text Alignment. Different with the MnTTS
[15], we invited three native Mongolian-speaking announcers to record the audio.
Each announcer volunteered to participate and signed an informed consent form
to be informed of the data collection and use protocol. F1, F2 and F3 are three
native Mongolian speaking females, with F2 being a little girl and F1 and F3
being slightly older in grade. All recordings were done in a standard recording
studio at Inner Mongolia University. We choose Adobe Audition2 as the recording
software.

During the recording process, we asked the announcer to keeps a 0.3 s pause at
the beginning and end of each audio segment, keeps a constant distance between
the lips and the microphone, performs a slight pause at the comma position, and
performs an appropriate pitch boost at the question mark position.

To ensure the quality of the recording data, we rechecked the recording data
after completing the recording work. Specifically, we invited three volunteers
to check each text against its corresponding natural audio. These volunteers
are responsible for splitting the recorded audio file into sentences and aligning
the split sentences with the text. The Mongolian text is represented by a Latin
sequence, where each Latin word in the sequence becomes a word and each letter
that makes up the word is called a character. Characters also include punctuation
marks, such as commas (‘,’), periods (‘.’), question mark (‘?’), exclamation mark
(‘ !’) etc. Finally, we obtained about 30 h of speech data, which were sampled at
44.1kHz with a sampling accuracy of 16bit.

Corpus Structure and Statistics. The file structure of the MnTTS2 corpus
is shown in Fig. 1. Each speaker’s recording file and the corresponding text col-
lection are saved in a folder named after the speaker. All audios are stored in
WAV format files , sampled at 44.10kHz, and coded in 16 bits. All text is saved

2 https://www.adobe.com/cn/products/audition.html.

https://www.adobe.com/cn/products/audition.html
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Table 1. The statistics results of MnTTS2 dataset.

Statistical Unit Speaker ID
F1 F2 F3

Character Total 572016 459213 601366
Mean 79 61 67
Min 12 2 2
Max 189 188 190

Word Total 88209 71245 92719
Mean 12 9 10
Min 3 1 1
Max 29 30 29

Fig. 2. Word number distributions (a, b, c) and sentence duration distributions (d, e,
f) for all speakers of MnTTS2.

in a TXT file encoded in UTF-8. The file name of the audio is the same as the
corresponding text file name, and the name of each file consists of the speaker,
document ID, and corpus ID.

The statistical results of the MnTTS2 data are shown in Table 1 and Fig. 2.
As shown in Table 1, the entire corpus has a total of 23, 801 sentences. Take the
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speaker F1 for example, F1 with a total of 572,016 Mongolian characters, and
the average number of characters per sentence is 79, with the shortest sentence
having 12 characters and the longest sentence having 189 characters. If words
are used as the statistical unit, the total number of words in this dataset for F1 is
88,209, the mean value of words in each sentence is 12, the minimum value is 3,
and the maximum value is 29. As shown in Fig. 2, we also counted the sentence
duration to draw a histogram. Take speaker F1 for example, the word numbers
of the sentences are concentrated in 12–15, and duration are concentrated in 4–5
seconds. In comparison, we found that the word numbers of sentences for F2 was
not particularly concentrated, and the duration were relatively scattered. F3, on
the other hand, is more similar to F1, with a more obvious concentration. The
statistics of all three speakers are in line with the normal distribution.

4 Speech Synthesis Experiments

To verify the validity of our MnTTS2, we conducted Mongolian TTS experi-
ments based on the FastSpeech2 model and HiFi-GAN vocoder and evaluated
the synthesized speech using Mean Opinion Score (MOS) metric in terms of
naturalness and speaker similarity.

4.1 Experimental Setup

We use the TensorFlowTTS toolkit3 to build an end-to-end TTS model based on
the FastSpeech2 model. The FastSpeech2 model converts the input Mongolian
text into Mel-spectrogram features, and then the HiFi-GAN vocoder reconstructs
the waveform by the Mel-spectrogram features. FastSpeech2 is a state-of-the-art
non-autoregressive [28] speech synthesis model that extracts duration, pitch, and
energy directly from the speech waveform and uses these features as input con-
ditions in training. This model can effectively solve errors such as repetition and
word skipping, and has the advantage of fast training speed. FastSpeech2 intro-
duces more variance information to alleviate the one-to-many mapping problem.
Also, the pitch prediction is improved by wavelet transform. Most of all, Fast-
Speech2 has the characteristics of fast, robust, and controllable speech synthesis.
This is the main reason why we choose FastSpeech2. As shown in Fig. 3, based on
FastSpeech2, we implement the multi-speaker FastSpeech2 by adding the speaker
encoder module. The speaker encoder includes speaker embedding, dense, and
softplus layers 3. In the network architecture setting, the number of speakers
is 3. The dimension of speaker embedding is 384. The hidden side of the text
encoder is 384 and the number of hidden layers is 4, the hidden layer size of the
decoder is 384 and the number of hidden layers is 4. The number of Conv layers
of the variance predictors is 2 and the dropout rate is 0.5. The initial learning
rate is 0.001 and the dropout rate is 0.2.

The HiFi-GAN vocoder builds the network through a generative adversar-
ial network to converts Mel-spectrogram into high-quality audio. The genera-
tor of HiFi-GAN consists of an upsampling structure, which consists of a one-
dimensional transposed convolution, and a multi-receptive filed fusion module,
3 https://github.com/TensorSpeech/TensorFlowTTS.

https://github.com/TensorSpeech/TensorFlowTTS
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Fig. 3. The structure of the FastSpeech2+HiFi-GAN model. We implement the multi-
speaker FastSpeech2 by adding the speaker encoder module.

which is responsible for optimizing the upsampling points. HiFi-GAN, as a gener-
ative adversarial network, has two kinds of discriminators, including multi-scale
and multi-period discriminators. The generagor kernel size of HiFi-GAN is 7 and
the upsampling ratio is (8,8,2,2). The list of discriminators for the cycle scale is
(2,3,5,7,11). The Conv filters of each periodic discriminator are 8. The pooling
type of output downsampling in the melgan discriminator is AveragePooling1D,
the kernel size is (5,3), and the activation function is LeakyReLU. HiFi-GAN is
trained independently of FastSpeech2. For each speaker, the generator with only
stft loss is first trained for 100 k steps, and then the generator and discriminator
are trained for 100k steps. This gives us the corresponding vocoder for each of
the three speakers.

Note that a teacher Tacotron2 model trained for each speaker was used to
extract duration from the attention contrast for subsequent FastSpeech2 model
training. For each speaker, the Tacotron2 model trained with 100 k steps of
MnTTS was used to extract the duration. After that, the multi-speaker Fast-
Speech2 model was trained with 200 k steps to do the final speech generation.
100 k steps were trained for HiFi-GAN’s generator and 100k steps for jointly
training the generator and discriminator. All the above models were trained on
2T V100 GPUs.



326 K. Liang et al.

4.2 Naturalness Evaluation

For a full comparison of naturalness, we compared our baseline system,
FastSpeech2+HiFi-GAN with the Ground Truth speech. In addition, to
verify the performance of HiFi-GAN, we added a FastSpeech2+Griffin-Lim
baseline model for further comparison. The Griffin-Lim algorithm can directly
obtain the phase information of the audio to reconstruct the waveform without
additional training. We used the Naturalness Mean Opinion Score (SS-MOS)
[29] to assess naturalness. For each speaker, we randomly select 20 sentences as
the evaluation set, which are not used for training. The model-generated audio
and the ground truth audio were randomly disrupted and distributed to listen-
ers. During the evaluation process, 10 native Mongolian speakers were asked to
evaluate the naturalness of the generated 400 audio speeches in a quiet environ-
ment.

The N-MOS results are given in Table 2. Ground truth speech gets the
best performance without a doubt. FastSpeech2+HiFi-GAN outperforms the
FastSpeech2+Griffin-Lim and achieves much closer performance to the ground
truth. Each speaker’s N-MOS score was above 4.0 on the combination of Fast-
Speech2 and HiFi-GAN.

Specifically, for the F1, F2, and F3, the N-MOS of FastSpeech2+HiFi-GAN
achieved 4.02, 4.15, and 4.29 respectively, which is encouraging. This proves
that high-quality Mongolian speech can be synthesized using MnTTS2 and the
proposed model. In a nutshell, all results prove that our MnTTS2 dataset can
be used to build a robust TTS system for high-quality speech generation.

Table 2. Naturalness mean opinion score (N-MOS) results for all systems with 95%
Confidence intervals.

System Speaker ID
F1 F2 F3

FastSpeech2+Griffin-Lim 3.56± 0.18 3.59± 0.04 3.86± 0.12
FastSpeech2+HiFi-GAN 4.02±0.18 4.15±0.06 4.29±0.11
Ground Truth 4.73±0.08 4.70±0.14 4.68±0.09

4.3 Speaker Similarity Evaluation

We further conduct listening experiments to evaluate the speaker similarity per-
formance for the FastSpeech+HiFi-GAN baseline system. The Speaker Similarity
Mean Opinion Score (SS-MOS) results are reported in Table 3.

We synthesized 20 audios for each speaker by FastSpeech2+HiFi-GAN base-
line system. Ten native Mongolian-speaking volunteers were also invited to par-
ticipate in the scoring. Each volunteer needs to evaluate whether the speaker
is the same person or not in the synthesized and the ground truth audio.
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The SS-MOS scores for F1, F2, and F3 are 4.58, 4.04, and 4.12 respectively,
which is encouraging. The results show that the audio synthesized by the
FastSpeech2+HiFi-GAN system performs good performance in terms of speaker
similarity. The highest SS-MOS score was obtained for speaker F1. Auditioning
the audio, we can find that F1’s timbre has significant characteristics and the
synthesized audio represents the speaker’s voice information well. In a nutshell,
this experiment shows that the MnTTS2 dataset can be used for speech synthesis
work in multi-speaker scenarios.

Table 3. Speaker Similarity Mean opinion score (SS-MOS) results for
FastSpeech2+HiFi-GAN system with 95% Confidence intervals.

System Speaker ID
F1 F2 F3

FastSpeech2+HiFi-GAN 4.58± 0.21 4.04± 0.16 4.12± 0.10

5 Challenges and Future Work

With the development of “Empathy AI”, the research of emotional TTS has
attracted more and more attention [30]. Speech synthesis in conversational sce-
narios and emotional speech synthesis are hot research topics nowadays [31].
Furthermore, how to control the emotion category and the emotional intensity
during speech generation is an interesting direction [32]. However, our MnTTS2
does not involve information related to emotion category and emotion intensity.
In future work, we will carry out a more comprehensive and in-depth expansion
of the data to serve the development of emotional Mongolian TTS.

6 Conclusion

We presented a large-scale, open-source Mongolian text-to-speech corpus,
MnTTS2, which enriches MnTTS with more durations, topics, and speakers.
Releasing our corpus under the Knowledge Attribution 4.0 International License,
the corpus allows both academic and commercial use. We describe in detail the
process of building the corpus, while we validate the usability of the corpus by
synthesizing sounds with the FastSpeech2 model and the HiFi-GAN vocoder.
The experimental results show that our system can achieve satisfactory perfor-
mance on the MnTTS2, which indicates that the MnTTS2 corpus is practically
usable and can be used to build robust multi-speaker TTS system. In future
work, we will introduce emotional TTS dataset to further enrich our corpus.
We also plan to compare the effects of different TTS architectures and model
hyperparameters on the results and conduct subsequent analyses.
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