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Abstract Several nature-based optimization methods have been developed by the 
researchers to solve the real-world problems. There are certain characteristics of the 
inherent approaches associated with the algorithms which could be combined with 
other algorithm to enhance the exploration and exploitation quality of the algorithm. 
Cohort Intelligence (CI) is one of the socio-inspired optimization algorithms which 
is inspired from self-supervised learning of the candidates in a cohort. To further 
increase the performance of CI, it is hybridized with fuzzy logic (FL). FL is an 
approach that allows multiple possible truth values to be processed through variables. 
FL was used to solve problems with an open, imprecise data, and heuristics that make 
it possible to obtain accurate results. In this current work, a new combination of CI and 
FL named as CIFL is introduced for solving truss structure optimization problem. 
The validity of the algorithm is verified using two cases of three-bar truss design 
optimization problem. CIFL is applied to both discrete and continuous variable-
constrained problems. The self-adaptive penalty function (SAPF) approach is used 
to handle the constraints. The results obtained from CIFL are compared with other 
nature-inspired optimization techniques and discussed in details. 

Keywords Cohort intelligence · Self-adaptive penalty function · Fuzzy logic ·
Membership function · Truss structure 

6.1 Introduction 

Truss structure is one of the important real-world applications which typically used in 
bridges, towers, roofs, buildings, domes, various industrial sectors, etc. It is the most 
common lightweight structure used in practices. These systems are designed to meet

S. Patel · I. R. Kale (B) · A. J. Kulkarni 
Institute of Artificial Intelligence, Dr Vishwanath Karad MIT World Peace University, 
Pune 411038, India 
e-mail: ishaan.kale@mitwpu.edu.in 

A. J. Kulkarni 
e-mail: anand.j.kulkarni@mitwpu.edu.in 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
I. R. Kale and A. Sadollah (eds.), Optimization Methods for Structural Engineering, 
Engineering Optimization: Methods and Applications, 
https://doi.org/10.1007/978-981-99-2378-6_6 

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-2378-6_6&domain=pdf
mailto:ishaan.kale@mitwpu.edu.in
mailto:anand.j.kulkarni@mitwpu.edu.in
https://doi.org/10.1007/978-981-99-2378-6_6


80 S. Patel et al.

optimality criteria with the lowest weight, i.e., cost-effective with maximum relia-
bility. These truss structures are associated with number of members which sustain 
load acting on the structure. In order to withstand for the long life, the mechanical 
conditions such as deflection of nodes and stress exerted in the member must be 
satisfied. In these truss structure problems, the number members are equal to number 
of design variables. The variables are of continuous and discrete types. Increasing the 
number of members, complexity of the problems increases which may not be handled 
using tradition gradient-based optimization techniques. There are several heuristic 
and metaheuristic techniques that have been proposed by the researchers and applied 
to solve these problems. Those are Bat Algorithm (BA) Yang and Gandomi (2012), 
Cuckoo Search Algorithm (CSA) (Gandomi et al. 2013), Mine Blast Algorithm 
(MBA) (Sadollah et al. 2013), Particle Swarm Optimization (PSO) (Li et al. 2009), 
Probability Collectives (PC) (Kulkarni et al. 2016), Cohort Intelligence (Kale and 
Kulkarni 2018, 2021). Furthermore, several hybrid optimization techniques have also 
been proposed and applied to solve these truss structure problems such as Particle 
Swarm Optimization and Genetic Algorithm (PSOGA) (Omidinasab and Goodarz-
imehr 2020), Cohort Intelligence with self-adaptive penalty function and Colliding 
Bodies Optimization (CI-SAPF-CBO) (Kale and Kulakrni 2021). In this work, the 
concept of fuzzy logic is incorporated in CI algorithm to solve the truss structure 
domain problems. 

The concept of fuzzy is made from the things that are uncertain in nature. The 
theory of absolute true and absolute false doesn’t exist in fuzzy logic. In last three 
decades, fuzzy set and fuzzy logic theory have been evolving and have been used 
in multiple engineering and natural socioeconomics sciences. Fuzzy logic model 
can replicate human way of thinking in complex situation and that’s why it can be 
used as a tool examining natural complexity. Moreover, fuzzy logic can be exploited 
to predict chaotic behaviors. A fuzzy logic integrated with Genetic Programming 
(GP) is proposed by (Soh and Yang 2000) to increase the performance of the GP-
based approach for structural optimization. Fuzzy set theory is employed to deal 
with imprecise and vague information, during structural design process. In Fuzzy 
Tuned Interactive Search Algorithm (FTISA) by (Mortazavi 2019) proposed mech-
anism evaluates agents via two predefined concepts named as Normalized Objective 
Function (NOFi ) and Normalized Members Density (NMDi ). The defined nine-rule 
fuzzy mechanism takes these values as input parameters and through fuzzification– 
defuzzification process returns a Topology/Size (TS) regulator value for each agent. 
The hybrid fuzzy genetic system for optimizing cabled-truss structures (Finotto et al. 
2013) demonstrates an application of a hybrid fuzzy genetic system in the optimized 
lightweight structure is determined through a stochastic discrete topology and sizing 
optimization procedure that uses ground structure approach, nonlinear finite element 
analysis, genetic algorithm, and fuzzy logic. When performing optimization, the 
increase of the ground structure discretization led to a sharp increase of the search 
space. In addition, an increase in the number of evaluations of the FE model was 
also observed. This is because iterative procedures become part of the optimization 
problem when cable elements are used. For this reason, the effectiveness of the GA
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can be compromised since a relatively high number of evaluations may lead to a 
prohibitive computational cost. 

In this work, an intrinsic property of cohort intelligence and fuzzy logic is 
combined together to design the new hybridized version named as CIFL. In the 
last two decades, fuzzy theory has been applied to structural optimization. Their 
results show that use of fuzzy set can mitigate the shortcomings of the aforemen-
tioned approaches, the current study deals with putting forward a new approach 
that takes into account the search space of size and topology optimization using 
fuzzy logic. This strategy does not only remove randomization but also decreases 
the convergence rate. The proposed CIFL is examined on two cases of three-bar truss 
structural test problems. These problems are having continuous as well as discrete 
variable with nonlinear constraints. To handle the constraints a self-adaptive penalty 
function (SAPF). 

The chapter is organized as follows: Sect. 6.2 describes concept of CI algorithm. 
Section 2.1 explains the constrained handling SAPF approach. Section 6.3 describes 
detailed architecture of FL algorithm. The framework of hybrid CIFL is presented in 
Sect. 6.4. In Sect. 6.5, two cases of three-bar truss structure problems are presented. In 
Sect. 6.6, the results are analyzed and discussed with other contemporary algorithm. 
Section 6.7 concludes the proposed work. 

6.2 Cohort Intelligence (CI) Algorithm 

The CI method is inspired from social tendency of learning by cohort candidates 
through interaction and competition with every other candidate (Kulkarni et al. 2013). 
The cohort candidates with certain qualities make a particular behavior. Every candi-
date in a cohort follows certain behavior and adopts the associated qualities which 
assists to improve the behavior of individual candidates. This makes every candidate 
learn from one another and helps to evolve the overall cohort behavior. The cohort 
behavior is considered saturated if for considerable number of learning attempts (iter-
ations) the behavior of the candidates does not improve and becomes almost same. 
The characteristics of CI algorithm (Kale and Kulkarni 2021) are as follows: 

1. CI models the social behavior of learning candidates having common aim to 
achieve the best behavior by improving their individual qualities. 

2. For every learning attempt, the cohort candidates are keen to improve its 
individual behavior by observing self and other candidate’ behavior in a cohort. 

3. Every candidate of CI algorithm updates its search space for every learning 
attempt using sampling space reduction factor. 

4. The CI algorithm has an ability to solve problems having more number variables 
and constraints.
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6.2.1 Self-Adaptive Penalty Function (SAPF) 

SAPF approach is adopted from Kale and Kulkarni (2021). The mechanism of SAPF 
is as follows: 

The penalized or pseudo-objective function is written as 

φ
(
Xc

) = f
(
Xc

) + SAPF
(
Xc

)
, 

where SAPF(Xc) = f (Xc) × (∑p 
i=1 gi (X

c) + ∑m 
i=1 hi (X

c)
)
is the self-adaptive 

penalty function; 
f (Xc) is the behavior of individual candidate. 
The penalty parameter used in SAPF approach is itself a behavior of an individual 

candidate, i.e., f (Xc). Every candidate has a different penalty parameter, and it 
updates iteratively as the CI algorithm progresses. 

6.3 Fuzzy Logic 

Fuzzy represents unclear/vague/absolute, e.g., ON–OFF, 0–1, High-Low, True– 
False, etc. However, there are several applications or the situations where these 
vague/absolute outputs would not work which requires the degree of truth. Lotfi 
Zadeh proposed the fuzzy logic (FL) in 1960 to represent the vague information 
(fuzzy sets) in the form of actual degree of truth (crisp value). FL is a concept asso-
ciated with conventional logic which handles the information with partial truth (i.e., 
completely true or completely false). However, in the real-world applications or in 
day-to-day life activities it is necessary to analyze the exact degree of that partial 
truth. For that, FL method models the membership functions using certain rules 
based on the behavior of application. This rule-based system dives by an inference 
engine and provides the prescribed degree of truth. The FL methodology consists of 
four steps, such as (i) Fuzzification, (ii) Rule-base, (iii) Inference engine, and (iv) 
Defuzzification. The FL architecture is presented in Sect. 3.1. 

6.3.1 Fuzzy Logic Architecture 

The architecture of FL is divided into four parts as follows: 

1. Fuzzification—It is process of converting the crisp value input (precise value) 
in fuzzy inputs using the membership function defined for that application. The 
membership function is considered for the optimization of truss structure best, 
mean, and worst function value. 

2. Rule Base—In rule base, the defined if–then conditions are stored which is 
further used to control the decision-making system.
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3. Inference Engine—The inference engine used to process fuzzy input. It eval-
uates the degree of match between fuzzy set and defined rules. Based on the 
percentage of degree of match, the rules are further modified and implemented 
to develop the control action. 

4. Defuzzification—The processed fuzzy output generated by inference engine is 
then converted into crisp value using defuzzification step. 

The general block diagram of FL architecture is presented in Fig. 6.1. 
The term membership function used in fuzzification step specifies the degree 

of match of given input belonging to available sets. The degree of membership is 
represented between 0 and 1 which specifies the level of match of particular input 
belong to its set. This is also referred as the membership value of that variable. 
Different membership functions used to fuzzify a crisp (numerical) value are present 
in Fig. 6.2. 

Fig. 6.1 Fuzzy logic architecture 

Fig. 6.2 Examples of triangular and trapezoidal membership function
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6.4 Framework of CIFL 

The proposed CIFL procedure is explained as follows: 
Initialization of the number of cohort candidates C , variables t , sampling interval 

reduction factor R, and sampling interval Ψ. 

Minimize f (x) = f (x1, . . . ,  xi , . . . ,  xt ) (6.1) 

Subjected to Ψ lower ≤ xi ≤ Ψupper , i = 1, . . . ,  t 

Calculate probability of candidates based on objective function 

pc = 
1/

f (xc)
∑c 

c=1 
1/

f (xc) 
, (c = 1, . . . ,  C) (6.2) 

By using roulette wheel approach, it can decide which candidate to follow. The 
candidate that is being followed has produced the best results. This approach gives 
the candidates a choice to follow better behavior that their existing one. 

Every candidate C shrinks the sampling interval Ψ associated with each variable 
t based on whether condition is saturated or not. The cohort behavior is considered 
to be saturated if there are no further improvements, the results are observed. 

After that every candidate forms a behavior by sampling qualities from within 
the updated sampling intervals. Then it uses the updated sampling intervals for the 
membership function. Use updated sampling intervals as crisp input and convert 
them into fuzzy set. Create fuzzy rule base for the algorithm. After that convert the 
fuzzy set into crisp output. Check if the obtained solution is converged; if not, start 
the process again from calculating the objective function. A FL hybridized with CI to 
increase the performance of the CI algorithm for structural optimization. Fuzzy set 
theory is employed to deal with imprecise and vague information, during structural 
design process. 

In CI algorithm, the solutions are randomly generated using uniformly distributed 
approach within its sampling interval. This range is iteratively modified using a 
sampling space reduction factor R. In the current work, the hybridization of FL with 
CI algorithm is demonstrated and it is referred as CIFL. In CI algorithm, modified 
sampling intervals for every candidate c associated with each variable t . Whereas, in 
CIFL these modified sampling intervals are treated as crisp input set which further 
utilized in the fuzzification process. In fuzzification, the crisp input is converted into 
fuzzy set which is defined as best, medium, and worst, respectively. Further inference 
engine helps to determine the degree of match of fuzzy input using if–then rule. As the 
algorithm progresses, the degree of match iteratively updated based on the modified 
sampling intervals. Next step is to defuzzify the fuzzy input into crisp values using 
Eq. (6.3).
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x∗ = 
∫ μc(x).xdx 

∫ μc(x).dx 
(6.3) 

After the defuzzification, these crisp values are further used to evaluate the func-
tion. If after significant number of iterations, the solution is converged and the solution 
does not improve and also becomes the same accept it as the final solution and stop, 
else repeat the process from the objective function. The flowchart of the proposed 
CIFL is presented in Fig. 6.3.

The hybrid CIFL algorithm was coded in Python3 on Visual Studio Code Platform 
with an Apple M1 chip @3.2 GHz octa-core processor with 8 GB RAM at Institute 
of Artificial Intelligence, MIT World Peace University, Pune, India (Fig. 6.4).

6.5 Three-Bar Truss Structure Problems 

There are many heuristic as well as metaheuristic techniques have been used to 
solve the three-bar truss design optimization problem such as Swarm Optimization 
Approach (SOA) (Ray and Saini 2001), Cuckoo Search Algorithm (CSA) (Gandomi 
et al. 2013), Bat Algorithm (BA) (Yang and Gandomi 2012), Mine Blast Algorithm 
(MBA) (Sadollah et al. 2013), Cricket Algorithm (CA) (Canayaz and Karci 2016), 
Artificial Atom Algorithm (A3) (Yildirim and Karci 2018). 

Case 1: Three-bar truss structure is shown in Fig. 6.5. The volume of the truss 
structure is to be minimized subject to stress constraints.

There are two design variables (x1, x2) and three nonlinear constraint functions 
in this problem. The problem is expressed mathematically as follows: 

Objective function: 

Min f (x) =
(
2 
√
2x1 + x2

)
× L (6.4) 

Constraints: 

g1 =
√
2x1 + x2 √

2x2 1 + 2x1x2 
P − σ ≤ 0 (6.5) 

g2 = x2 √
2x2 1 + 2x1x2 

P − σ ≤ 0 (6.6) 

g3 = 1 

x1 + 
√
2x2 

P − σ ≤ 0 (6.7) 

where 0 ≤ x1, x2 ≤ 1. The constants are L = 100 cm, P = 2 KN/cm2, and 
σ = 2 KN/cm2
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Fig. 6.3 Hybrid CIFL flowchart
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Fig. 6.4 Hybrid CIFL pseudo-code

Fig. 6.5 Three-bar truss 
design Case 1 (Ayse and 
Karci 2018)

Case 2: The indeterminate three-bar truss structure (refer Fig. 6.6) is subject to 
vertical and horizontal forces at a single node which is an intersection of all the 
three members. The aim is to minimize the structural weight W and is minimized 
under the constraint that the stress in all members should be smaller than allowable 
stress σ0 in absolute magnitude. After nondimensionalization of the objective func-
tion and variables, F = σ0W/Ppl  and xi = ai σ0/P . This problem is previously



88 S. Patel et al.

Fig. 6.6 Three-bar truss design Case 2 (Shin et al. 1990) 

solved by using CI-SPF (Kale and Kulkarni 2018), Multi-Random Start Local Search 
(MRSLS), CI-SAPF, and CI-SAPF-CBO (Kale and Kulkarni 2021). 

Objective function Min: f (x) = 2x1 + x2 +
√
2x3 (6.8) 

Subject to: 

g1 = 1 −
√
3x3 + 1.932x3 

1.5x1x2 +
√
2x2x3 + 1.319x3 

≥ 0 (6.9) 

g2 = 1 − 0.634x1 + 2.828x3 
1.5x1x2 +

√
2x2x3 + 1.319x3 

≥ 0 (6.10) 

g3 = 1 − 0.5x1 + 2x2 
1.5x1x2 +

√
2x2x3 + 1.319x3 

≥ 0 (6.11) 

g4 = 1 + 0.5x1 − 2x2 
1.5x1x2 +

√
2x2x3 + 1.319x3 

≥ 0 (6.12) 

xi = {0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.2}, i = 1, 2, 3
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6.6 Results Analysis and Discussion 

The algorithm is validated by solving two cases of three-bar truss structure-
constrained optimization problems for the minimization of weight. The solutions 
obtained from proposed CIFL algorithm for three-bar truss structure Case 1 problem 
are compared with Swarm Optimization Algorithm (SOA), Cuckoo Search Algo-
rithm (CSA), Bat Algorithm (BA), Mine Blast Algorithm (MBA), Cricket Algorithm 
(CA), and Artificial Atom Algorithm (A3) presented in Table 6.1. The statistical 
results such as best, mean, and worst function values, standard deviation, average 
CPU time and average function evaluations are obtained from 30 independent trails. 
From the result comparison, it shows that the proposed CIFL algorithm yielded satis-
factory results compared with other algorithms (refer Table 6.1). It is observed that 
the solution precisely worst by 0.19% as compared to the latest solution obtained by 
A3 (Yildirim and Karci 2018) and CA (Canayaz and Karci 2016). The convergence 
plot of Case 1 of three-bar truss structure problem is presented in Fig. 6.7. 

In CSA (Gandomi et al. 2013), Lévy’s flight approach was employed with three 
key rules such as selection of the best, exploitation by local random walk, and explo-
ration by randomization. The performance of the CSA is dependent on the parameter 
which needs to be fine-tuned. It may require certain preliminary trail to set an appro-
priate value. The CSA adopts Lévy’s flight strategy so that only best solution can be 
obtained which is close to optimal value. Like CSA, Bat Algorithm (BA) (Yang and 
Gandomi 2012) is also required fine-tuning of two computational parameters which 
directly affect the convergence of BA. The Bat Algorithm (BA) models the foraging 
behavior of bats. Bat uses echolocation to sense the distance food and background 
barrier. The Cricket Algorithm (CA) (Canayaz and Karci 2016) which models the 
behavior of cricket insect. These cricket insects intercommunicate with their peers 
through the sound in nature. They generate the sound by chirping of their wings 
based on the atmospheric temperature. An A3 (Yildirim and Karci 2018) referred to

Table 6.1 Comparison of 
results for three-bar truss 
structure optimization 
problem Case 1 

Algorithm x1 x2 f (x) 
SOA (Ray and Saini 
2001) 

0.79500 0.39500 264.3000 

CSA (Gandomi et al. 
2013) 

0.78867 0.40902 263.9716 

BA (Yang and Gandomi 
2012) 

0.78863 0.43838 263.8962 

MBA (Sadollah et al. 
2013) 

0.7885650 0.4082482 263.8958 

CA (Canayaz and Karci 
2016) 

0.78863 0.408368 263.8958 

A3 (Yildirim and Karci 
2018) 

0.7887357 0.408078 263.8958 

CIFL 0.7049 0.5800 264.4031



90 S. Patel et al.

Fig. 6.7 Conversion plot for three-bar truss structure optimization problem Case 1

as Artificial Atom Algorithm is based on chemical compounding processes. There 
are two operators in A3 which are iconic bond and covalent bond. It is associated 
with the conceptual strategy of an electron, atom, and atom set. Number of design 
variables are considered while determining number of electrons. The atom is formed 
randomly according to constraint conditions (Table 6.2). 

For three-bar Case 2 truss structure problem, CIFL is compared with CI-SPF, 
CI-SAPF, MRSLS, CI-SAPF-CBO algorithm presented in Table 6.3. The statistical 
results obtained from 30 trials are presented in Table 6.4. It is observed that the CIFL 
algorithm has obtained same function value. The convergence plot of Case 2 of 
three-bar truss structure problem is presented in Fig. 6.8. The average computational 
time obtained from CIFL for Case 1 and Case 2 is 7.04 and 7.55 s, respectively. 
The constraints associated with these problems are very much crucial task. Here, in 
CIFL algorithm SAPF approach is incorporated to deal with the constraints. This 
is important to note that it does not need to set a penalty parameter. It is adaptively 
set as the algorithm progresses. This SAPF approach is also used in CI-SAPF, CI-
SAPF-CBO, and MRSLS. In CI-SPF, the static penalty function is incorporated to 
deal with the constraints; however, it requires to fine-tuning to set an appropriate 
value of penalty parameter.

Table 6.2 Statistical results 
obtained from CIFL for 
three-bar truss design 
optimization problem Case 1 

Best 264.4031 

Mean 273.9651 

Worst 286.3454 

Standard deviation 6.249121 

Avg. function evaluations 821 

Avg. CPU time (s) 7.04 
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Table 6.3 Comparison of 
results for three-bar truss 
design optimization problem 
Case 2 

Algorithms Function value Optimum variables 

NEWSUMT-A (Shin 
et al. 1990) 

3.0414 [1.2, 0.5, 0.1] 

CI-SPF (Kale and 
Kulkarni 2018) 

3.0414 [1.2, 0.5, 0.1] 

MRSLS (Kale and 
Kulkarni 2021) 

3.0414 [1.2, 0.5, 0.1] 

CI-SAPF (Kale and 
Kulkarni 2021) 

3.0414 [1.2, 0.5, 0.1] 

CI-SAPF-CBO (Kale and 
Kulkarni 2021) 

3.0414 [1.2, 0.5, 0.1] 

CBO (Kale and Kulkarni 
2021) 

3.0414 [1.2, 0.5, 0.1] 

CIFL 3.0414 [1.2, 0.5, 0.1] 

Table 6.4 Statistical results 
for three-bar truss design 
optimization problem Case 2 

Best 3.0414 

Mean 3.5050 

Worst 3.7071 

Standard deviation 0.1511 

Avg. function evaluation 250 

Avg. CPU time (s) 7.55 

Fig. 6.8 Conversion plot for three-bar truss design optimization problem Case 2
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In CIFL as well every candidate updates its sampling interval for every iteration 
using a sampling space reduction factor. It also requires certain preliminary trials 
however, according to the analysis conducted in Kale and Kulkarni (2018) the  value  
of R can be set between 0.95 and 0.97. This eliminates the tuning of parameter R. 
The role of FL in CIFL is to nullify the randomly regeneration of variable values. 
The sampling space updates in every iteration are considered for the membership 
function. Then using a rule base condition, the fuzzy system provides the crisp values 
which are further used as a set of variables. 

6.7 Conclusions 

The CIFL algorithm is successfully applied to solve the two cases of constrained 
three-bar truss structure problem. These problems are associated with discrete as 
well as continuous variables and have nonlinear constraints. For discrete variables, 
a round-off integer sampling is incorporated. The performance of CIFL is observed 
to be precisely similar as compared to other metaheuristic algorithms. The hybrid 
version of CIFL algorithm eliminates the randomly generated solutions which in 
CI algorithm for every learning attempt. The SAPF approach is incorporated to 
handle the constraints associated with the problems. After the extensive comparative 
study, it is observed that CIFL obtained satisfactory results as compared to other 
contemporary metaheuristic algorithms. The CIFL algorithm can be used to solve 
more design engineering problems as well as structural engineering problems. 
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