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Truss Structure Optimization Using 
Constrained Version of Variations 
of Cohort Intelligence 

Ishaan R. Kale, Ayush Khedkar, and Mandar S. Sapre 

Abstract An especially significant class of structurally constrained optimization 
problems is truss design. This study presents a constrained version of two varia-
tions of the Cohort Intelligence (CI) algorithm. In this work, discrete variable truss 
structures with six bars and two cases with ten bars are studied using follow-best 
and follow-better approaches, as well as the self-adaptive penalty function (SAPF). 
These problems are associated with two linear constraints: tensile/compressive stress 
and deflection. Algorithm efficiency is evaluated by counting the function evalua-
tions, computing CPU time, and determining the total weight of the truss struc-
ture. Compared to follow-better and other contemporary optimizers from literature, 
follow-best performs significantly better. 

Keywords Self-adaptive penalty function · Discrete variables · Variations of CI ·
Design of trusses 

5.1 Introduction 

Truss structure problems are structural constrained optimization problems consisting 
of continuous, discrete, or mixed variables. The constraints are usually nonlinear in 
nature. There have been several techniques inspired by nature to solve truss structures 
problems. Genetic Algorithm (GA), Firefly Algorithm (FA) (Gandomi et al. 2011), 
Particle Swarm Optimization (PSO) (Li et al. 2009), and Artificial Bee Colony (ABC) 
(Sonmez 2011) are few optimizers from literature applied in this domain.
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In an earlier study, Kale and Kulkarni (2018) used Cohort Intelligence (CI) with 
a static penalty function (SPF). Some limitations were observed when CI-SPF was 
used for solving the constrained problems. SPF approach is associated with a penalty 
parameter which needed to be set for every problem. To set the appropriate penalty 
parameter, certain preliminary trials are required. This may increase the initial 
computational cost. Self-adaptive penalty functions (SAPFs) have been proposed 
as a solution to overcome these limitations (Kale and Kulkarni 2021). SAPF-based 
constraint handling with CI algorithm facilitates the solution of constrained prob-
lems involving variables of discrete, continuous, and mixed nature. Furthermore, the 
hybrid CI-SAPF-CBO, refined the results. 

Patankar and Kulkarni (2018) developed seven variations of CI. These were 
applied to mesh smoothing of complex objects (Sapre et al. 2019) and for opti-
mizing the abrasive water jet machining process (Gulia and Nargundkar 2019). Two 
variations of CI are applied in this paper to solve three test problems from the truss 
structural domain, namely a six-bar test problem and two ten-bar test problems. These 
are the follow-best and follow-better approaches. For constrained problems, other 
rules such as roulette, alienation and random selection, follow-worst, and follow-
itself are not effective. Round-off integer sampling is used to handle discrete vari-
ables, and SAPF is used to handle constrained variables. The results obtained from 
follow-best and follow-better approaches are compared with those from GA, CI-
SAPF, CI-SAPF-CBO, ABC, Adaptive Dimensional Search Algorithm (ADS), and 
Probability Collectives (PC). 

The work is organized as follows: The mechanism of follow-best and follow-
better approach using CI-SAPF is explained in Sect. 5.2. The solution to the truss 
structure problems follows next. In Sect. 5.4, the results are analyzed and discussed 
in details. The last section represents conclusion and future directions. 

5.2 Mechanism of Follow-Best and Follow-Better Approach 
with SAPF 

In follow-best approach, the candidate follows other candidates in the cohort situ-
ated at the best behavior. This assists the individuals to learn faster and achieve the 
cohort goal within less computational efforts. In follow-better approach, the candidate 
follows subsequent candidate exhibiting a better behavior than itself. The pseudo-
code of variations of CI using follow-best and follow-better mechanism incorporated 
with SAPF approach (Kale and Kulkarni 2021) is presented in Fig. 5.1.
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Fig. 5.1 Pseudocode of variations of CI using follow-best and follow-better rule 

5.3 Truss Structure Test Problems 

This work is investigation of application of constrained version of variations of CI 
with SAPF approach in truss design. The six-bar and ten-bar examples were solved 
in the literature using GA (Nanakorn and Meesomklin 2001), CI-SAPD, CI-SAPF-
CBO (Kale and Kulkarni 2021), ABC (Sonmez 2011), ADS (Hasançebi and Azad 
2015), PC (Kulkarni et al. 2016). The mathematical formulation is shown in Eq. (5.1) 
as follows: 

Minimize W = 
N∑

i=1 
ρ Aili 

subject to 
|σi | ≤ σmax i = 1, 2 . . .  N 
|ui | ≤ umax j = 1, 2 . . .  M 

(5.1) 

where 

W Objective function (Weight)
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Ai Design variables—Cross section area of i th truss member where, i = 
1, 2, . . . ,  N 

ρ Material density 
li Length of each truss member i, i = 1, 2, . . . ,  N 
σmax Maximum allowable stress. 
umax Maximum allowable displacement. 

Weight reduction of the truss structure is the goal with the maximum allow-
able tensile and compressive stresses at every node, as well as maximum allowable 
displacements as the limitations. There are as many variables as members in a truss 
problem. So, a six-bar truss has six variables. Each link of these trusses is a separate 
entity. In both the cases, distinct discrete set is utilized for the selection of variables. 

Test Problem-1: Six-Bar Truss Structure 

The six-bar truss structure (refer to Fig. 5.2) problem was formerly discussed by 
Nanakorn and Meesomklin (2001) Kale and Kulkarni (2021). There are six design 
variables (cross-sectional area) equal to number of truss members. Here, Ai ∈{1.62, 
1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 
3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 
13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50} 
in2 . The allowable stress is given as 25,000 psi, and allowable deflection is given as 
2 in. The weight density of the material is 0.1 lb/in3 , and the modulus of elasticity 
is 107 psi. 

Test Problem-2: Ten-Bar Truss Structure 

The next example is shown in Fig. 5.3 and was previously discussed in (Nanakorn 
and Meesomklin 2001, Li et al.  2009; Sonmez 2011; Hasançebi et al. 2015). A ten-
bar truss structure made of aluminum 2024-T3 is used in the analysis. The material 
density ρ is 0.1 lb/in3 , and the modulus of elasticity E is 10, 000 ksi. As shown  
in Fig. 5.3, a represents the longest length of the truss member. The maximum 
allowable tensile and compressive stresses σmax on every member i are ± 25 ksi. 
The maximum allowable horizontal and vertical displacement umax at every node are

Fig. 5.2 Planar six-bar truss 
structure 
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Fig. 5.3 Planar ten-bar truss 
structure, a = 360 in 

±2 in. The applied forces are P1 = 100 kips and P2 = 0. This problem involves ten 
design variables and two sub-cases. 

Case 1: Ai ∈{1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 
3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 
7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 
26.50, 30.00, 33.50}in2 . 

Case 2: Ai ∈{0.1,0.5,1.0,1.5,2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 
8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 
16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20.0, 20.5, 21.0, 21.5, 22.0, 22.5, 23.0, 
23.5, 24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 27.0, 27.5, 28.0, 28.5, 29.0, 29.5, 30.0, 30.5, 
31.0, 31.5} in2 . 

5.4 Results and Discussion 

The use of follow-best and follow-better approaches for discrete variable problems is 
pioneered for the first time ever for truss structural problems. CI’s follow-best version 
is much more efficient than other algorithms. In CI-SAPF and CI-SAPF-CBO, the 
candidate’s follow other candidate in a cohort probabilistically due to which there was 
a possibility of following even the worst behavior of the candidate. This may require 
a greater number of learning attempts (iterations) for the convergence. In CI-SAPF, 
the performance of this approach is dependent on roulette wheel approach as well 
as the value of r . However, in these proposed approaches, solution value is driven 
by setting a suitable value of r (Kale and Kulakrni 2018). This model incorporates 
SAPF to handle linear constraints associated with test problems. 

The comparison is shown in Table 5.1. The standard deviation using the follow-
best approach is 9.7666, average function evaluation count is 615, while the average 
CPU time is 0.64 sec. In terms of function evaluations and computational time, 
follow-best approach has shown much better performance in comparison with follow-
better, CI-SAPF, CI-SAPF-CBO, and GA. The convergence trend can be observed 
from Figs. 5.4 and 5.5, respectively.
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Table 5.1 Comparative analysis of optimizers for six-bar truss structures 

Design 
variables 
(in2) 

GA (Nanakorn and 
Meesomklin 2001) 

CI-SAPF (Kale 
and Kulkarni 
2021) 

CI-SAPF-CBO 
(Kale and 
Kulkarni 2021) 

Follow-best Follow-better 

A1 30 30 30 30 30 

A2 19.9 19.9 19.9 19.9 19.9 

A3 15.5 15.5 15.5 15.5 15.5 

A4 7.22 7.22 7.22 7.22 7.22 

A5 22 22 22 22 22 

A6 22 22 22 22 22 

Truss 
weight 
W (lb) 

4962.0966 4962.0966 4962.0966 4962.0966 4962.0966 

Function 
evaluations 

– 2250 1740 615 1865 

Time – – – 0.64 0.26 

NA Not Available 

Fig. 5.4 Convergence trend of follow-best for solving six-bar truss problem

As compared to ABC (Sonmez 2011) and ADS (Hasançebi and Azad 2015) 
algorithms, the follow-best approach successfully solved Case 1 with a very small 
computational effort (refer to Table 5.2). The average count of function evaluations 
is 1855, standard deviation is 54.2289, average computational time required is 6.21 s. 
The function evaluations are very less as compared to other compared algorithms 
except ADS. This results to lower down CPU time as well. On the other hand, the
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Fig. 5.5 Convergence trend of follow-better for solving six-bar truss problem

follow-better approach failed to obtain comparable solution. The convergence trend 
can be observed from Figs. 5.6 and 5.7, respectively.

It has been shown in Table 5.3 that the follow-best method of CI results is superior 
to PSO, PSOPC, and HPSO in solving case 2 (Li et al. 2009), marginally worse than 
CI-SAPF and CI-SAPF-CBO (Kale and Kulkarni, 2021) algorithms, and completely 
worse than PC (Kulkarni et al. 2016). The standard deviation with the follow-best 
approach was 21.5726, average function evaluation count is 2070, and average CPU 
time was 6.62 sec. The convergence trends for ten-bar Case 2 can be observed from 
Figs. 5.8 and 5.9, respectively.

5.5 Conclusions and Future Directions 

Follow-best and follow-better versions of CI are successfully applied and validated 
for solving discrete variable truss structures with linear constraints in two cases of 6 
bars and two cases of 10 bars. An integer sampling approach is used to handle discrete 
variables. In contrast, SAPF is used to manage the constraints associated with the 
problems. It must be noted that the CI variations doesn’t require any preliminary trials 
as SAPF approach is self-supervised. The sampling space reduction factor is one of 
the solution driving factors; however, it is pre-defined within the range [0.95, 0.98] 
for these problems. The follow-best approach has obtained better results than follow-
better approach due to the higher probability of following a good candidate/behavior 
from the set-in follow-best approach. There is a scope of following a worse solution 
in follow-better approach. We intend to apply this approach for complex 3-D spatial 
truss structure problems. The follow-best mechanism with SAPF approach could be
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Fig. 5.6 Convergence trend of follow-best for case 1 of ten-bar truss problem 

Fig. 5.7 Convergence trend of follow-better for case 1 of ten-bar truss problem

used to solve the scheduling and transportation problems as well as mixed variable 
design engineering problems.
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Fig. 5.8 Convergence trend of follow-best for case 2 ten-bar truss problem 

Fig. 5.9 Convergence trend of follow-better for ten-bar case 2 truss problem
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