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Optimization carries great significance in both human affairs and the laws of nature.
It refers to a positive and intrinsically human concept of minimization or maxi-
mization to achieve the best or most favorable outcome from a given situation.
Besides, as the resources are becoming scarce there is a need to develop methods
and techniques which will make the systems extract maximum from minimum use
of these resources, i.e. maximum utilization of available resources with minimum
investment or cost of any kind. The resources could be any, such as land, mate-
rials, machines, personnel, skills, time, etc. The disciplines such as mechanical,
civil, electrical, chemical, computer engineering as well as the interdisciplinary
streams such as automobile, structural, biomedical, industrial, environmental engi-
neering, etc. involve in applying scientific approaches and techniques in designing
and developing efficient systems to get the optimum and desired output. The multi-
faceted processes involved are designing, manufacturing, operations, inspection and
testing, forecasting, scheduling, costing, networking, reliability enhancement, etc.
There are several deterministic and approximation-based optimization methods that
have been developed by the researchers, such as branch-and-bound techniques,
simplex methods, approximation and Artificial Intelligence-based methods such
as evolutionary methods, Swarm-based methods, physics-based methods, socio-
inspired methods, etc. The associated examples are Genetic Algorithms, Differen-
tial Evolution, Ant Colony Optimization, Particle Swarm Optimization, Artificial
Bee Colony, Grey Wolf Optimizer, Political Optimizer, Cohort Intelligence, League
Championship Algorithm, etc. These techniques have certain advantages and limi-
tations and their performance significantly varies when dealing with a certain class
of problems including continuous, discrete, and combinatorial domains, hard and
soft constrained problems, problems with static and dynamic in nature, optimal
control, and different types of linear and nonlinear problems, etc. There are several
problem-specific heuristic methods are also existing in the literature.

This series aims to provide a platform for a broad discussion on the devel-
opment of novel optimization methods, modifications over the existing methods
including hybridization of the existing methods as well as applying existing opti-
mization methods for solving a variety of problems from engineering streams.
This series publishes authored and edited books, monographs, and textbooks. The
series will serve as an authoritative source for a broad audience of individuals
involved in research and product development and will be of value to researchers and
advanced undergraduate and graduate students in engineering optimization methods
and associated applications.
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Preface

This edited book aims to demonstrate and discuss the concepts of optimization
in structural engineering. Several structural frameworks, such as cranes, towers,
bridges, frames, vehicle chassis, are very much useful for the progression, living
of human society, and smooth transportation. It is also equally important for indus-
trial purposes such as safe handling of equipment, logistics, operations, and so on.
Resources such as man, machines, materials, and financial aspects are needed to
have efficient utilization so that structures can become viable or feasible in many
ways. For the resource management, traditional techniques are being used which are
based on trial and error, and some are deterministic and approximation methods. On
the other hand, vehicle parts, such as car frames, chassis, are complex design and
exceptionally challenging due to its nonlinear shape and dynamic loading conditions.
This edited volume intends to provide a platform to state-of-the-art discussion on
various structural applications, their mathematical modeling, complexity of prob-
lems, several metaheuristic optimization algorithms, and other software-based tech-
niques using finite element analysis (FEM). This edited book also aims to discuss the
literature survey on several nature-inspired optimization algorithms, its applicability
for solving single-objective and multi-objective structural engineering problems,
solution quality, challenges, opportunities, key features, and limitations.

All the chapters submitted in this volume are critically reviewed by at least two
expert reviewers. The critical suggestion given by the reviewers helped the authors to
enrich the quality of the chapter in terms of methodology, critical discussion perfor-
mance and solution quality, representation, etc. The volume serves as a contribution
of optimization for structural engineering domain. This book will be helpful for
the researchers, professors, and industry persons working in the field of structural
engineering.

The volume is divided into two parts. The detailed review on nature-inspired
metaheuristic algorithms, their applicability, challenges, and several applications on
structural engineering is discussed in Part I. The topology optimization of structures,
car suspension, crashworthiness during the impact of car, design of car chassis under
dynamic loading conditions using finite element methods are discussed in Part II.
The contribution of every chapter is discussed below in detail.

v
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Part I: Optimization of Weight, Shape, and Size of Structures
Using Different Nature-Inspired Metaheuristic Algorithms

InChap. 1 “ReviewofTurningMassDampers andApplication of ImprovedHarmony
Search,” Bekdaş et al. discussed the overview of turned mass dampers which is
generally installed at the top of the seismic structures tomeasure the amplitude during
disasters. The critical review on passive and active turningmass dampers is discussed
with its applications. Further, an improved harmony search metaheuristic algorithm
is used to examine the performance of active turned mass damper and passive turned
mass damper. The ten-story seismic structure is considered with multiple cases of
time delay of the controller and stroke capacity. The performance active turned mass
damper is observed to be better as it has reduced the displacement by 32.01% as
compared to passive turned mass damper.

In Chap. 2 “Optimal Design of Trusses: The Force Density Perspective,”
Dzierżanowski and Wójcik-Grząba designed a combined model of truss geometry
and topology optimization. The two-dimensional and three-dimensional structures of
cable nets and cantilever elements are considered for the optimization. The combined
geometry and topology optimization of the trusses in one numerical algorithm results
in high nonlinearity. So, the force density method is used to optimize the combined
geometry and topology of the truss structure to identify its reliability.

In Chap. 3 “CI-SAPF for Structural Optimization Considering Buckling and
Natural Frequency Constraints,” Kale and Khedkar investigated the constrained
version of socio-inspired cohort intelligence (CI) algorithm solving two cases 18-bar
truss structural problems for size optimization. Two types of constraints are associ-
ated with these problems such as buckling and natural frequency. These constraints
are handled using self-adaptive penalty function (SAPF) approach. The CI-SAPF
approach has obtained comparable results as compared to other nature-inspired tech-
niques. In CI algorithm, the roulette wheel approach plays an important role which
assists the CI candidate to improve their individual behavior (objective function).
This further helps to improve the behavior of the entire cohort.

In Chap. 5 “Truss StructureOptimizationUsingConstrainedVersion ofVariations
of Cohort Intelligence” by Kale et al., the follow-best and follow-better variations of
CI are used to optimize the weight of the truss structure. Instead of following random
candidate using roulette wheel approach, the best candidate is followed by other
candidates in follow-best approach, and better candidate is followed by other candi-
date in follow-better approach. The discrete variable 6-bar and 10-bar truss struc-
tures problems are considered. The constraints such as tensile/compression stress
and deflections associated with these problems are handled using SAPF approach.
Further CI algorithm is hybrid with fuzzy logic in Chap. 6 “Hybridization of Cohort
Intelligence and Fuzzy Logic (CIFL) for Truss Structure Problems” by Patel et al.
The two cases of 3-bar truss structure problems are solved using CIFL algorithm.

In Chap. 4 “Improved Drosophila Food-Search Algorithm for Structural and
Mechanical Optimization Problems,” the author Ali Mortazavi demonstrates the
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improved version ofmetaheuristic Drosophila food-search optimization (DFO) algo-
rithm to solve a spatial 72-bar truss structure problem and two design engineering
problems such as welded beam design problem and tubular column system problem.
In DFO, the three-phase search pattern is utilized to explore the desired problem’s
search domain, and to maintain the diversity of the population during the optimiza-
tion process, the quadratic approximation search approach is used to produce new
individuals.

In Chap. 7 “OptimumDesign of BRB Frame Based onDrift Uniformity, Structure
Weight, and Seismic Parameters Using Nonlinear Time History Analysis,” Razavi
and Shirjani presented the multi-objective problems of buckling-restrained braces
(BRBs) which are a popular seismic resistant structural system. This work aims to
minimize the cost of the braces by optimizing three objectives, i.e., bracing weight,
total weight of the structure (without bracingweight), and deviation from the uniform
drift over the height of the structure. The low-cycle fatigue constraint is considered
to ensure that the braces do not rupture during seismic event. To solve this problem,
several multi-objective optimization algorithms are used such asNSGA_II,MOPSO,
MOEA_D, PESA_II, SPEA_II, and comparison of results is discussed in details.

Part II: Topology Optimization and Design of Structures
Under Dynamic Conditions Using Finite Element Methods

Chapter 8 “Topology Optimization in Linear Elasticity, Plasticity and Fracture
Mechanics” by Desai discusses the theoretical and numerical study of topology
optimization of structures. For the topology optimization, the behaviors of elasticity
and plasticity must be complimentary to avoid the damage or fatigue. It discusses
the non-differentiable behavior of the governing equation of linear elasticity, plas-
ticity, and damage which needs to be overcome to withstand the structure and its
mechanical properties. For that, an approximation by penalization and regulariza-
tion is constructed using a level-set method which allows the body-fitted remeshing
and capture the boundary of shapes during the topology change. The topology
optimization of several 2D and 3D Frames is carried out using the level-set method.

In Chap. 9 “Design of Quarter Car Model for Active Suspension System and
Control Optimization,” Patel et al. describe the behavioral relationship between
suspension and the car body. The design and simulation of quarter car system are
presented here to stable the working control systems. This is usually carried out to
achieve the passenger’s comfort design, the road handling design, and a balanced
system. The H-infinity method is used to synthesize the control system and design
a controller based on the defined states and control inputs of the system. In order to
suppress the effect of the disturbances, the µ-Synthesis is used which helps to set
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the control systems and balance the design. The performance of control system is
measured on 7 cm and 10 cm bumps to investigate the proposed design of the quarter
car system.
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Grzegorz Dzierżanowski Faculty of Civil Engineering, Warsaw University of
Technology, Warsaw, Poland

Zong Woo Geem College of IT Convergence, Gachon University, Seongnam,
South Korea

Vijaykumar S. Jatti Symbiosis Institute of Technology (SIT), Symbiosis Interna-
tional University (SIU), Lavale, Pune, Maharashtra, India

Vinaykumar S. Jatti Symbiosis Institute of Technology (SIT), Symbiosis Interna-
tional University (SIU), Lavale, Pune, Maharashtra, India

Ishaan R. Kale Institute ofArtificial Intelligence,DrVishwanathKaradMITWorld
Peace University, Pune, MH, India

Aylin Ece Kayabekir Department of Civil Engineering, Istanbul Gelişim Univer-
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Chapter 1 
Review of Tuning Mass Dampers 
and Application of Improved Harmony 
Search 

Gebrail Bekdaş, Sinan Melih Nigdeli, Aylin Ece Kayabekir, Serdar Ulusoy, 
and Zong Woo Geem 

Abstract In this chapter, a review of the optimum design of passive and active 
tuned mass dampers for structures is presented. Metaheuristics have been often used 
in the optimum design of tuned mass dampers. As an example, an improved harmony 
search algorithm is presented for the optimum design of active tuned mass dampers 
(ATMDs) using proportional integral derivative type controllers. The ATMD was also 
compared via passive tuned mass damper (TMD) and the optimum design results 
are presented for a 10-story structure with multiple cases of the time delay of the 
controller and stroke capacity of ATMD. ATMD is better than TMD in the reduction 
of displacements up to 32.01%. 

Keywords Structural control · Harmony search algorithm · Tuned mass dampers ·
Active tuned mass damper
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1.1 Introduction 

To mitigate the structural responses of tall buildings and wide-span bridges against 
earthquake or wind-induced vibrations has been the subject of many studies in recent 
years. However, the energy absorption capacity of these types of structures alone 
is not sufficient without using additional mechanisms developed with technology. 
Therefore, many passive or active control devices have been installed in existing or 
newly designed structures. The main difference between active and passive control 
is whether the external force supply is present in the structure or not. The important 
representatives of passive control systems are base isolation, friction or visco-elastic 
dampers and tuned mass damper (TMD) while active control systems are active 
tendon control and active TMD (ATMD). Although base isolation, friction or visco-
elastic dampers are widely used in practical applications, TMD consisting of mass, 
spring and viscous damper is one of the preferred control systems due to its simplicity, 
reliability and energy absorbability compared to the other passive control systems. 
In addition, ATMD as an active control system attracts the attention of researchers 
to achieve less oscillation in structures subjected to near-fault ground motions which 
have impulsive characteristics such as high peak ground velocity. As practical exam-
ples for both control systems, the Taipei 101 building in Taiwan; ORC 2000 Symbol 
tower in Osaka; the Citicorp Center in New York; Berlin Television Tower in Berlin; 
Shinjuku Park Tower (227 m) in Tokyo; Shanghai World Financial Center in Shanghai 
can be given. TMD and its active form ATMD should be optimally tuned to do their 
job well. Therefore, some applications and simplifications are needed to determine 
the parameters of TMD and ATMD. Since the harmony search algorithm (HS) has 
successfully obtained the objective function in many different studies, the application 
examples in structural control systems have gradually increased. 

1.2 Review of TMD and ATMD 

1.2.1 Tuned Mass Dampers 

The first thought of using TMD with a mass bonded to spring is considered to avoid 
the resonance vibrations in vehicles such as ships and aircraft (Frahm 1911). TMD 
is recreated with the addition of damping to increase the effectiveness of the system 
against different frequencies other than its frequency (Ormondroyd and Hartog 1928). 
As a result of extensive research of Den Hartog, the design parameters of TMD such 
as basic frequency and damping ratio have emerged for undamped single degree 
of freedom (SDOF) main systems (Hartog 1947). The equations are used in many 
studies considering the effect of inherent damping (Bishop and Welbourn 1952; 
Snowdon 1959; Ioi and Ikeda 1978a). The formulations of frequency and damping 
ratio of undamped SDOF main systems are expressed by Warburton using the white 
noise excitation instead of harmonic excitation (Warburton 1982). A curve fitting
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method is proposed by Sadek et al. with the help of numerical algorithms to deter-
mine the expressions of main SDOF systems including inherent damping (Sadek 
et al. 1997). Also, the graphical method for these values is presented by Falcon et al. 
depending on the different types of excitations (Falcon et al. 1967). Different equa-
tions are applicable in determining the optimum parameters of multiple degrees of 
freedom (MDOF) systems with TMD taking into account the critical mode although 
these equations are derived for SDOF (Warburton and Ayorinde 1980). There are 
many studies on passive control with TMD in the literature to assess the effects on 
the structure. For example, a small mass for the design parameters of TMD leads to 
a decrease in the first modal response (Wirsching and Campbell 1973). The seismic 
performance of TMD is quite successful in terms of reducing the maximum displace-
ment (Adam and Furtmüller 2010) or both from the displacement and dissipated 
power perspectives (Greco and Marano 2013). The reduction rate of the structural 
responses is observed using a different combination of TMD parameters (McNa-
mara 1977). The optimization method of the spring constant of the damper and 
damping factor is explained to alleviate the vibration considering the three different 
possible scenarios (Ioi and Ikeda 1978). Also, the damping constant and the duration 
of earthquake records play an important role in changing the responses of struc-
tures with TMD (Kaynia et al. 1981). The influence of damping, which is one of 
the TMD parameters, on structural reactions is illustrated using numerical examples 
(Villaverde 1985). The optimally designed absorber under the band-limited white 
noise excitation is detected by reducing the response variance of the building (Wang 
and Wang 1988). The reduction of the vibrations of a long span bridge (Lin et al. 
2000), wind turbine (Hemmati et al. 2019; Gaur et al. 2020) and pedestrian bridge 
(Alhassan et al. 2020) are investigated using TMD. The effect of the soil–structure 
interaction (SSI) is examined to realize a real design of TMD (Pietrosanti et al. 2017). 
The robustness of optimally tuned mass damper with an inverter (mechanical devices) 
is evaluated and compared with classical TMD (Kamgar and Khatibinia 2019) or base  
isolation with supplemental damping (Domenico and Ricciardi 2018). On the other 
hand, optimally designed multiple tuned mass dampers (MTMD), multiple tuned 
mass dampers-inverters (MTMDI) and TMD with magnetoreological (MR) have 
better outcomes than TMD to suppress the structural reactions (Joshi and Jangid 
1997; Cao et al. 2020; Aldemir 2003). Moreover, metaheuristic algorithms inspired 
by nature instead of conventional mathematical methods are used to obtain optimum 
values of TMD or MTMD parameters under different conditions. Examples of these 
are particle swarm optimization (PSO) (Leung and Zhang 2009; Khatibinia et al. 
2016), differential evolution method (DEM) (Caicedo et al. 2021), genetic algorithm 
(GA) (Pourzeynali et al. 2013; Mohebbi et al. 2013), bat algorithm (BA) (Bekdaş et al.  
2018), flower pollination algorithm (FPA) (Yucel et al. 2019), artificial bee colony 
algorithm (ABC) (Farshidianfar and Soheili 2013), gravitational algorithm (Khat-
ibinia et al. 2018), simulated annealing (SA) (Yang and Li 2017), Jaya algorithm 
(JA) (Bekdaş et al.  2019), teaching–learning-based optimization (TLBO) (Nigdeli 
and Bekdas 2015), whale optimization algorithm (WOA) (Lara-Valencia et al. 2021) 
and chaotic optimization algorithm (COA) (Kaveh et al. 2020).
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1.2.2 Active Tuned Mass Dampers 

The active control of structures is firstly by Zuk proposed (Zuk 1968). Comparative 
studies between ATMD and other active control systems have been conducted in 
terms of their performance against earthquakes (Abdel-Rohman and Leipholz 1983; 
Ulusoy et al. 2021). Various feedback strategies such as displacement, velocity and 
acceleration feedback are used to actively control the structures with ATMD subjected 
to wind loading (Ankireddi et al. 1996). In the study of Mackriell et al., the best reduc-
tion of the first mode responses of structures with ATMD is obtained via acceleration 
algorithms (Mackriell et al. 1997). The accurate analytical expressions for the design 
of structures with ATMD under more complex wind load are examined (Yan et al. 
1999). A reduced-order modeling technique is presented to avoid the impractical 
installation of sensors on all floors of tall buildings with ATMD (Qu et al. 2001). 
The performance comparison between the linear quadratic regulator (LQR) and the 
fuzzy logic controller (FLC) is carried out in the benchmark model with ATMD 
under seismic excitations (Samali and Al-Dawod 2003). In another study of the same 
authors, the performance of the controllers such as FLC and linear quadratic Gaus-
sian (LQG) controller for the 76-story building exposed to cross wind load are exam-
ined (Samali et al. 2004). The structures with several ATMD called active multiple 
tuned mass dampers (AMTMD) are tested under the historical ground motions to 
achieve further reduction in structural reactions (Han and Li 2006; Li and Xiong 
2008). With the combination of genetic algorithm and FLC, it is aimed to design 
optimum parameters of ATMD and to achieve the best possible reduction in structural 
reactions (Pourzeynali et al. 2007). Also, a comparative study of Guclu and Yazıcı 
about the structural control with ATMD has shown that the FLC performs better 
than proportional-derivative (PD) controller under different loads and earthquakes 
(Guclu and Yazici 2008). Self-tuning fuzzy logic controllers (STFLC) and fuzzy 
proportional-integral-derivative (PID) controllers are suggested by the same authors 
for a nonlinear structural system with ATMD (Guclu and Yazici 2009a, 2009). An 
optimum design methodology is proposed for the asymmetric structures with ATMD 
to minimize the translational and the torsional responses in case of an earthquake (Li 
et al. 2010). Then, an asymmetric structure having soil–structure interaction (SSI) is 
investigated for the same purpose (Li 2012). A new method including linear quadratic 
regulator (LQR), discrete wavelet transform (DWT) and particle swarm optimization 
(PSO) is introduced to calculate the required control force for structures generated 
by ATMD (Amini et al. 2013). Linear quadratic Gaussian (LQG) and sliding mode 
controller (SMC) are applied to optimally control the structures with ATMD under 
fluctuating along-wind load (You et al. 2014) or earthquake loading (Khatibinia et al. 
2020), respectively. The efficiency of FLC optimized PSO on the structural responses 
is checked using an ATMD under near or far fault ground motions (Shariatmadar 
and Meshkat Razavi 2014). The interval type-2 FLC (IT2FLC) is offered for an 
ATMD system and has better outcomes than type-1 FLC in suppressing the struc-
tural responses (Shariatmadar et al. 2014). A methodological simulation approach 
with the help of a multi-objective adaptive genetic-fuzzy controller is introduced for
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benchmark 76-story building with ATMD to mitigate the vibrations because of the 
strong winds or high levels of seismic excitations (Soleymani and Khodadadi 2014). 
A hybrid controller consisting of a combination of LQR-PID controllers is used 
to actively control the structures with ATMD (Heidari et al. 2018). The optimiza-
tion of both the parameters of PID controller and physical parameters of ATMDs is 
determined using a hybrid metaheuristic method (Kayabekir et al. 2021). 

1.3 Modified Harmony Search Algorithm 

In this chapter, an adaptive version of harmony search (HS) was presented for 
optimum design of TMD and ATMD on structures. HS was developed by Geem et al. 
(2001) by the investigation of musical performances. The features such as playing 
popular notes, playing new notes and playing notes of similar known notes are the 
options of a musician who tries to adjust tune the aim of admiration of audience. 

In this study, the modified HS is used, and it contains adaptive parameter configu-
ration with respect to iteration number. A new design variable which will be evaluated 
for the next iteration (X , 

j,t+1) is generated as Eq. (1.1) for global optimization, and this 
type of optimization is used if harmony memory considering rate (HMCR) bigger 
than a random number between 0 and 1 (r1). 

Global optimization is the formulation of playing new notes. To consider the 
known notes, local optimization is used. If HMCR is smaller or equal to r1, local 
optimization is formulated as Eq. (1.2). 

X j,t+1 
i = Xi,min + rand(1)(Xi,max − Xi,min) if HMCR > r1 (1.1) 

X j,t+1 
i = X j+ni,t 

i + rand(1)FW(Xi,max − Xi,min) i f  HMCR ≤ r1 (1.2) 

rand(1) defines a random number between 0 and 1. FW is the specific parameter 
called fret width. The values of i, j and t define number for a problem with n design 
variables (i = 1 to  n), harmony or population (j = 1 to harmony memory size; HMS) 
and iteration number (t = 1 to maximum number of iteration), respectively. The 
ranges of design variables are defined by minimum (Xi,min) and maximum (Xi,max) 
limits. ni is the neighborhood index, and it is adjusted to select a random harmony 
from the existing solutions. Also, it is chosen as the best solution with the minimum 
objective function by checking a probability called best solution considering rate 
(BSCR). The parameters, FW and HMCR, are modified according to Eqs. (1.3) 
and (1.4) by using initial values of FW and HMCR defined as FWin and HMCRin, 
respectively. 

FW = FWin 

( 
1 − 

t 

mt 

) 
(1.3)
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HMCR = HMCRin 

( 
1 − 

t 

mt 

) 
(1.4) 

The flowchart of the optimization process is shown in Fig. 1.1. Firstly, the user-
defined values (design constants, ranges of design variables, ground motion accel-
eration data and algorithm parameters) are defined. Then, an initial solution matrix 
is generated including sets of design variables that are randomly assigned within 
the desired range. The number of sets is equal to the harmony memory size (HMS). 
As the iterative optimization process, new sets of design variables are generated via 
global and local optimization according to HMCR value. The existing solutions are 
updated if the newly generated one is better in the solution. The iterative optimiza-
tion continues for the maximum number of iterations. In the numerical examples, 
the algorithm parameters are taken as listed in Table 1.1.

1.4 The Optimization Problem 

For seismic structures, tuned mass dampers are generally installed on the top of the 
structure since the maximum amplitude of the first mode shape is seen on the top of 
the structure. In this section, the equation of motion of structure with a TMD on the 
top of a shear building is also presented. The control algorithm, which is optimized 
via metaheuristic methods, is also summarized for ATMD which is also given. 

The equations of the motion of structure with ATMD are given in matrix form. 
Compared to the coupled equation of uncontrolled structures, the additional terms 
for ATMD are the control force and it is generated via the employed PID control 
algorithm. Also, the interaction of stiffness and damping force resulting via ATMD 
are added to the system matrices. As known, with the installment of ATMD or TMD 
on the top, the n degrees of freedom structural system will be transformed into an n 
+ 1 degrees of freedom system. The shear building models with passive and active 
control are given in Fig. 1.2.

Mass (mi), stiffness (ki) and damping coefficient (ci) of ith story are respec-
tively shown in Fig. 1.2. The parameters of TMD and ATMD for mass, stiffness and 
damping are shown as md , kd and cd , respectively. These parameters can be also used 
in the calculation of the period (Td) and damping ratio (ξ d) of TMD or ATMD as 
given in Eqs. (1.5) and (1.6). 

Generally, the mass of TMD or ATMD was taken as a design constant, and it is 
defined according to axial capacity and economic issues. The other TMD or ATMD 
parameters such as Td and ξ d are considered as design variables. 

Td = 2π 
/
md 

kd 
(1.5) 

ξd = cd 

2md 

/
kd 
md 

(1.6)
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Define the design constants, 
ranges, earthquake 

excitations, user-defined 
limits and parameters 

Generate an initial solution matrix 

Stop 

Start 

Calculate and store objective functions 

Calculate and store 
objective function 

Update solution matrix 
if the new ones are 

better 

Check 
maximum 

iteration number 

Not 
Provided 

Generate new 
solutions via best 

solution 

Compare with the 
existing results 
according to f1 

Provided 

Compare with the 
existing results 
according to f2 

f2>stmax f2<stmax 

BMCR≤rand 
Generate new 

solutions via randomly 
selected solution 

Update HMCR 
and FW 

parameters 

Fig. 1.1 Flowchart of the optimization methodology

The equations of motion in matrix form are shown as Eq. (1.7) having system 
matrices (mass (M), damping (C) and stiffness (K) matrices), a unit vector ({1}), 
the ground acceleration ( ẍg), the control force vector (F(t)) including the generated 
force via ATMD (Fu) and the displacement vector (x(t)) including the corresponding 
derivative of it. All matrices and vectors of Eq. (1.7) are  shown asEqs. (1.8–1.12). The 
story displacements and ATMD are shown as xi (for i = 1 to  n) and xd , respectively,
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Table 1.1 Algorithm 
parameters 

Symbol Definition Value 

HMS Harmony memory size 10 

mt Maximum iteration number 5000 

HMCRin Initial harmony memory considering rate 0.5 

FWin Initial fret width 0.05 

BSCR Best solution considering rate 0.3 

sp Switch probability 0.5

Fig. 1.2 Shear building with TMD (left) and ATMD (right)

and these displacements are respect to the ground. 

M ẍ(t) + C ẋ(t) + Kx(t) = −M{1}ẍg(t) + F(t) (1.7) 

M = diag[m1m2 . . .  mN md ] (1.8)
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C = 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

(c1 + c2) −c2 
−c2 (c2 + c3) −c3 

. .  

. . .  
. . .  

−cN (cN + cd ) −cd 
−cd cd 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(1.9) 

K = 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

(k1 + k2) −k2 
−k2 (k2 + k3) −k3 

. .  

. . .  
. . .  

−kN (kN + kd ) −kd 
−kd kd 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(1.10) 

x(t) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

x1 
x2 
... 
xN 
xd 

⎫⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

(1.11) 

F(t) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

0 

0 

... 
Fu 

−Fu 

⎫⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

(1.12) 

For ATMD, the three parameters of PID controller such as proportional gain (Kp), 
derivative time (Td) and integral time (Ti) are also taken as design variables. As 
Eq. 1.13, the control force is found via the trust constant (Kf ) and current of the 
armature coil (iATMD). By using Eq. (1.14), iATMD is calculated via R taken as the 
resistance value, Ke taken as the induced voltage constant of armature coil and u 
taken as the generated control signal. A structural response such as the velocity of 
the top story (ẋN ) and ATMD (ẋd ) is also used in Eq.  (1.14). 

Fu = K f iATMD (1.13) 

RiATMD + Ke( ̇xd − ẋN ) = u (1.14)
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The control signal was generated by using Eq. (1.15), and the controller transforms 
an error signal that is a feedback of the response of the system into a control signal. 
The top story velocity of the structure was taken as the error signal in this study. 

u = K p 
[ 
e(t) + Td 

de(t) 
dt 

+ 
1 

Ti 

∫ 
e(t)dt 

] 
(1.15) 

During the iterative stages of optimization, the equations of motion formulations 
of structure with and without control are analyzed via the code generated by using 
MATLAB with Simulink (MATLAB 2018), and the maximum of dynamic analysis 
as top story displacement (xN ) is used as the objective function that is tried to be 
minimized. The objective (f 1) is formulated as Eq. (1.16). 

f1 = max |xN | +  pen (1.16) 

A penalty function (pen) is used in the objective, and it represents the consideration 
of the maximum control force. As Eq. (1.17), the pen function is calculated and added 
to the objective if it exceeds the limit. 

pen = max |Fu | (1.17) 

A secondary objective is used in the methodology to consider the stroke capacity 
of the control system. This objective function (f 2) is given  as  Eq. (1.18). This function 
must be smaller than a user-defined parameter called stmax. Always, the values of f 2 
lower than stmax are considered as a better value. If both compared values are lower 
than stmax for f 2, the comparison is done via the minimization of f 1. In cases of 
both exceeding values of stmax, f 2 minimization is considered as better in solution. 

f2 = 
max(|xd − xN |)with ATMD 

max(|xN |)without ATMD 
(1.18) 

In the optimization, the optimum results are defined according to multiply analyses 
under different ground motion records. A set of far-faults records given in FEMA 
P:695: Quantification of Building Seismic Performance Factors (FEMA 2009) was  
taken. 

1.5 Numerical Examples 

In this section, the optimum results for the control system that is attached to the last 
story of a 10-story shear building are presented for different cases of stroke limits 
(stmax) and time delay (td). Tables 1.2 and 1.3 show the constant problem values in 
the example for structure and control system, respectively.
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Table 1.2 Structure design constants and design variable limits 

Parameter Name Value Unit 

mi Mass of the ith story 360 Ton 

ki Stiffness of the ith story 650 MN/m 

ci Damping coefficient of the ith story 6.2 MNs/m 

Table 1.3 Controller system design constants and design variable limits 

Parameter Name Value Unit 

md Mass of TMD or ATMD 180 Ton 

Td Period of TMD or ATMD 0.5–1.5 times of period of structure s 

ξ d Damping ratio  of  TMD or ATMD 1–50 % 

Kp Proportional gain (−10,000) to (10,000) Vs/m 

Td Derivative time (−10,000) to (10,000) s 

Ti Integral time (−10,000) to (10,000) s 

stmax Stroke limit 2 and  3 – 

td Time delay 10–50 ms 

R Resistance 4.2 Ω 
Kf Trust constant 2 N/A 

Ke Induced voltage constant 2 V 

The problem was optimized under a total of eight different cases. These are the 
combinations of two stroke limits and four time delays. The optimization results for 
ATMD are presented in Table 1.4. Nopt represents the number of iterations where the 
optimum result is obtained. Fmax defines the maximum control force, and the limit is 
taken as the amount of 10% of the total weight of the structure. The optimum results 
for TMD systems are also presented in Table 1.5.

The critical earthquake record is found as the BOL090 component of the Duzce 
earthquake record within 44 record components. Top story displacement are plotted 
for the critical earthquake excitation in Fig. 1.3, and it is found that both systems 
are very effective in reducing the top amplitude and providing a quick steady-state 
response.

For all earthquake records used in the optimization, the maximum results of the 
top story displacement are plotted as Fig. 1.4. The optimum ATMD system is also 
effective under other earthquake records that are not the critical one, and the effi-
ciency of ATMD is maximum under the excitations resulting big displacements at 
the structure.

The results of these analyzes are presented and discussed in the following section.
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Table 1.4 Optimum results for ATMD 

stmax = 2 stmax = 3 
td 10 20 30 50 10 20 30 50 

Td (s) 0.944 0.9731 0.953 0.974 1.021 1.009 0.975 0.957 

ξ d (%) 26.283 27.613 28.711 29.091 11.121 11.461 11.920 11.363 

Kp 
(Ns/m) 

803.94 −2214.8 582.190 −1313.5 −491.93 618.385 514.182 −947.5 

Td (s) −665.74 232.17 −953.67 379.956 1059.3 −821.484 −1055.8 515.50 

Ti (s) 618.19 7967.5 8305.46 −3845.9 6124.1 7420.85 9328.27 −4194 

f 2 1.999 1.999 1.999 1.999 2.999 2.999 2.999 2.999 

Nopt 4999 4999 4999 4992 4998 4995 4998 4998 

Fmax 
(kN) 

3530.2 3530 3530.12 3530.15 3530.2 3530.15 3530.11 3530.2 

f 1 (m) 0.2498 0.2528 0.2544 0.2612 0.2123 0.2173 0.2200 0.2285 

Table 1.5 Optimum results 
for TMD 

stmax TMD 

2 3 

Td (s) 0.9418 0.9434 

ξ d (%) 5.64 4.69 

f 2 1.9999 2.0755 

f 1 (m) 0.2820 0.2803

1.6 Conclusions 

According to the optimum period values, the increasing trend is observed with the 
increasing stmax values in both TMD and ATMD cases except for td = 50. Oppo-
sitely, a decreasing behavior of optimum damping ratios due to stmax values is seen. 
The change observed for TMD system is very low compared to the ATMD system. 
Also, the damping ratio and period values are lower than ATMD for TMD system. 

Two conclusions have been found about the stroke limits of TMD and ATMD 
systems. The stroke values for optimum results are different for TMD and ATMD 
systems. Secondly, for all stmax values, the values of second objective are equal to 
the upper limit in ATMD systems, but it is only at the upper limit for stmax 2 for 
TMD. This shows the need for big stroke capacity for the ATMD. 

According to the displacement values of the ATMD-controlled structure, the 
values show a big decrease when stmax value increases, but a significant change is 
not seen for TMD. ATMD has a more significant reduction performance of displace-
ments than TMD, and it is possible to see that the reduction differences between 
systems are between 7.95% and 12.89% for stmax 2, and 22.69% and 32.01% for 
stmax 3.
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Fig. 1.3 Top story displacements under critical earthquake record
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Fig. 1.4 Maximum values of top story displacements for FEMA P-695 far-field ground motions
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Chapter 2 
Optimal Design of Trusses: The Force 
Density Perspective 

Grzegorz Dzierżanowski and Izabela Wójcik-Grząba 

Abstract This paper concerns simultaneous geometry and topology optimization 
of truss structures. To be specific, coordinates of truss nodes and axial stress resul-
tants are admitted as design variables in the optimization process. Within this scope, 
two- and three-dimensional systems are considered; the latter also include cable 
nets in tension. In the analysis of such structures, curvilinear elements are repre-
sented as polygonal chains of straight members. Such approach is legitimate in 
light of computational line of discussion in the paper, and it also allows for a 
consistent description of statics in terms of the theory of trusses. Combining the 
optimal design of truss geometry and topology in one numerical algorithm results 
in a highly nonlinear problem involving algebraic functions. However, employing 
the idea of force densities—i.e., ratios of axial stress resultants to member lengths— 
makes it possible to recast the problem into the computationally less demanding form 
involving polynomials. The computational part of the study was performed in Scilab 
and MATLAB. The results obtained show that the proposed approach to optimal 
design of trusses and truss-like structures is scientifically reliable and may be used 
by civil engineers and architects. 

Keywords Force density method · Minimum volume problem · Trusses 

2.1 Introduction 

2.1.1 Motivation of the Study 

This study regards a non-classical approach to the optimal design of trusses and 
truss-like structures. The proposed optimization algorithm can be categorized as a
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simultaneous geometry and topology optimization method, because it incorporates 
the coordinates of truss nodes and axial stress resultants as design variables. In this 
regard, it differs from typically used topology optimization methods, which keep the 
geometry of nodes fixed and deal with truss member forces only. Mathematically, the 
novel approach leads to nonlinear and non-convex optimization problems, which are 
generally considered to be more CPU time demanding than the traditional ones. This 
shortcoming, however, is compensated for (to some extent) by the relatively small 
number of design variables required for obtaining the results, which are both scien-
tifically reliable and useful for civil engineers and architects in pursuing structural 
stiffness and efficiency of the use of materials. 

Limiting the scope of computations to structures with a moderate number of nodes 
and members has several advantages over large-scale optimization algorithms. First, 
it leads to solutions with a clear hint toward rational, manufacturable projects. Second, 
the proposed approach is very robust in tackling the problem of optimal positioning 
of load, i.e., a design challenge of finding such an architectural form of the structure, 
which optimally adjusts to the profile of the applied load. The optimization procedure 
allows for the migration of external forces in space and the shape of the structure 
closely follows their location. This process is known in the literature as form-finding, 
see (Adriaenssens et al. 2014) and references therein. However, reducing the number 
of truss members makes the proposed approach not suitable for the numerical study 
of Michell structures, and therefore, they lie outside of interest in this paper. For a 
comprehensive treatment of the topic, the reader is directed to Lewiński et al. (2019) 
and papers cited. 

A special emphasis of the research is placed on the form-finding of cable nets 
and archgrids. Mechanical understanding of the term cable net pertains to a spatial 
system entirely composed of elements in tension (ties). The term archgrid is consis-
tent with the one in Rozvany and Prager (1979)—it is a structure whose elements 
(struts) carry compressive stresses only. In this regard, cable nets and archgrids 
are complementary to one another. They are bending- and shear-free, with stresses 
distributed evenly in cross sections of all members, and the only difference is in the 
sign of stresses. Consequently, both bar assemblies can be analyzed by the same 
computational algorithm. 

Another point that needs to be explained is that the minimum volume problem can 
be fully based on the static analysis of trusses, without accounting for their kinematic 
response. Consequently, it is not necessary to provide the full data on mechanical 
properties and stress–strain relation for a material. In spite of this, the ability to 
control the accuracy of computations is not affected. It is routinely provided by the 
duality principle in mathematical optimization. This topic, however, lies outside of 
the scope of the paper.
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2.1.2 Archgrids, Cable Nets, and Polygonal Chains 

In the computational study of optimal archgrids and cable nets, it is convenient to 
implement the theory of trusses, that is pin-jointed, bending-, and shear-free bar 
systems, with external loads equilibrated by axial stress resultants only. Curved axes 
of single arches and cables are approximated by polygonal chains—line segments 
of any such chain are equivalent to truss members, while the vertices represent 
truss nodes (member joints). Mathematically speaking, the equilibrium equation 
for trusses plays a twofold role: (i) it serves as a condition for spatial assembly of 
polygonal chains to carry a load of a given intensity, and (ii) it allows to determine 
the distribution of chain vertices. 

To visualize the concept, consider a truss with m members, j pin joints (nodes), 
and r reactions at supports, with r = rx + ry + rz , since the number of reactions 
may be different  in  x-, y-, and z-directions in the chosen Oxyz  reference system. 
Supporting a node in some direction is equivalent to fixing its spatial coordinate in 
this direction. The terms fixed node coordinate and free node coordinate are used 
in the sequel to describe the features of nodes in the supported and unsupported 
directions, respectively. In what follows, vectors x, y, z of node coordinates are such 
that dim x = dim y = dim z = j . Vector x has rx components fixed, while the 
remaining kx = j − rx are free, thus subject to optimization. Similar arguments 
apply to the components of vectors y and z. 

Equilibrium equation for a truss reads 

Bn = f , B = 

⎡ 

⎣ 
Bx 

By 

Bz 

⎤ 

⎦, f = 

⎡ 

⎣ 
f x 
f y 
f z 

⎤ 

⎦, (2.1) 

where 

• f x , f y , f z , with dim
(
f x

) = dim
(
f y

) = dim
(
f z

) = j , are the vectors of forces 
applied at nodes. In light of the above, rx components of f x are the effective 
forces (loads minus reactions) x-aligned with fixed node coordinates, and kx 
components correspond to external loads applied along free node coordinates. 
Components of load vectors f y and f z are identified similarly. It is important to 
notice that the equilibrium in all supported directions is guaranteed upfront. In 
the flow of calculations, it can be simply assumed that reactions take the values 
necessary to equilibrate axial stress resultants in truss members. However, at the 
post-processing stage of static calculations, equilibrium equations in supported 
directions determine the values of reaction components. 

• n, with dim(n) = m, is the vector of axial stress resultants. 
• Bx , By , Bz , with dim(Bx ) = dim

(
By

) = dim(Bz) = j ×m, denote the matrices of 
direction cosines of member axes in the Oxyz  system. Note that B = B(x, y, z).
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2.1.3 Basic and Optimal Form-Finding Problems. Polygonal 
Chains of Minimum Weight 

Basic form-finding problems are straightforward to solve. They simply use (2.1) to  
determine x, y, z for fixed f and n. In the case of optimal form-finding, only the 
load vector f is fixed and vector n is subject to optimization. Usually, to compute 
n, some functional F(n) is introduced and then minimized by solving 

Fmin ≡ F (nmin) = min{F(n) | B n = f }. (2.2) 

Note that definitions introduced in Sect. 2.1.2 additionally assume n ≤ 0 (NM ≤ 
0, M = 1, . . . ,  m) in optimal form-finding problems for archgrids and n ≥ 0 (NM ≥ 
0) in case of cable nets. 

Any form-finding problem, basic or optimal, needs to be well-posed in terms of 
linear algebra. In particular, vectors f , n and matrix B = B(x, y, z) have to obey, 
see (Strang 2009),

{
f ∈ colsp(B) and n /∈ nullsp(B) if f �= 0, 
n ∈ nullsp(B) if f = 0. 

(2.3) 

Here, colsp(·) and nullsp(·) denote the column space and null space of a matrix, 
respectively. Another aspect of well-posedness of the form-finding problem is the 
existence of solutions under the constraints of n ≤ 0 (archgrids) and n ≥ 0 (cable 
nets). This question is thoroughly addressed in Bouchitté et al. (2019). 

In 1872, James Clerk Maxwell, (Maxwell 1872), considered a special class of 
trusses that are either statically determinate or carry a self-equilibrate load. In partic-
ular, Maxwell proved the theorem stating that regardless of the spatial layout of 
members in such systems the difference between the tension load path (the product of 
tensile force, T > 0, and tie length, LT > 0, summed over all ties) and the compres-
sion load path (the product of compressive force, C > 0, and strut length, LC > 0, 
summed over all struts) is constant. It can be written

∑
ties 

T LT −
∑
struts 

CLC = μ, (2.4) 

where μ is insensitive to the layout of truss members and depends only on the intensity 
of applied forces (including reactions) and their location in space. 

In fact, both sums in (2.4) apply to all truss members. Indeed, it is legitimate to 
write T > 0 and C = 0 for ties, similarly T = 0 and C > 0 for struts, while “zero” 
members admit T = C = 0. For the convenience of further exposition, fix l = [L M ], 
L M ≥ 0, M = 1, . . . ,  m, and 

n = t − c, t = [TM ], c = [CM ], TM ≥ 0, CM ≥ 0. (2.5)
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Hence, Maxwell theorem (2.4) now reads 

lT (t − c) = μ, where l = l(x, y, z), (2.6) 

and the requirements in (2.3) apply accordingly. The notation aT stands for the 
transposition of vector a. 

Almost 30 years later, in the seminal paper (Michell 1904), posed the question 
of finding the truss of minimum volume of material. His line of reasoning was the 
following. Assuming σT > 0 and σC > 0 for the limit tensile and compressive 
stresses in truss members, respectively, it is possible to express the minimum cross-
sectional areas of ties and struts as AT = T /σT and AC = C/σC . By this, the least 
volume of material, for which stresses in truss members stay within the (−σC , σT ) 
range, is 

Vtruss(x, y, z, t, c) =
∑
ties 

AT LT +
∑
struts 

AC LC 

= lT (x, y, z)
(

1 

σT 
t + 

1 

σC 
c
)

, (2.7) 

and the minimum volume problem for a truss reads, 

(Ptruss) : Vmin 
truss = min 

⎧⎨ 

⎩Vtruss(x, y, z, t, c)as in(2.7)

∣∣∣∣∣∣
B(x, y, z)(t − c) = f , 
t ◦ c = 0, 
(2.3)1 applies. 

⎫⎬ 

⎭ 

Here, a ◦ b denotes the Hadamard (component-wise) product of vectors a and b. 
If additionally, the truss is statically determinate or subject to a self-equilibrated 

set of forces, then any candidate structure allowed in (Ptruss) admits the same value 
of Maxwell’s constant μ, but different layout of members (hence, different tension 
and compression load paths). Introducing the affine transformation, 

Ftruss = 
2σT σC 

σT + σC 
Vtruss + 

σT − σC 

σT + σC 
μ = lT (x, y, z)(t + c), (2.8) 

immediately proves that the second component of the sum in the middle of 
(2.8) is constant. This means that Ftruss has the same minimizing argument 
(xmin, ymin, zmin, tmin, cmin) as Vtruss. In other words, among all trusses with the same 
μ, truss of minimum volume is the one for which the sum of tension and compression 
load paths is minimal, see (Baker et al. 2015) for illustrative examples regarding this 
topic. 

In light of the discussion in Sect. 2.1.2, the results above apply also to polygonal 
chains, with archgrids and cable nets fitting naturally in the framework by considering 
compression- or tension-only constraints, respectively. For definiteness, consider a 
cable net, thus setting n ≥ 0. With this, c = 0 in the entire cable net, n = t , hence
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(2.6) and (2.7) are replaced by 

μ = lT (x, y, z)t, Vcable = 
μ 
σT 

, (2.9) 

and (Ptruss) is modified to 

(Pcable) : Vmin 
cable = min 

⎧⎨ 

⎩Vcable(x, y, z, t) as in(2.9)

∣∣∣∣∣∣
B(x, y, z)t = f , 
t ≥ 0, 
(2.3)1 applies. 

⎫⎬ 

⎭ 

It is important to notice here that minimizing the volume of a cable net is equivalent 
to minimizing the value of Maxwell’s constant μ or optimizing the location of nodes 
at which the external load is applied. This observation follows immediately from 
(2.9) and (Pcable). The above is valid, mutatis mutandis, also in the case of archgrids, 
that is structures with n ≤ 0 (t = 0 in the entire system). 

Cable nets are often pre-tensioned to achieve structural stiffness, where pre-
tensioning amounts to stretching a slack net by pulling the cables at the supports. 
Tensile forces in net members are self-equilibrated, and no other external load is 
applied. Hence, f = 0 in (Pcable), which now takes the following form, 

(Ppre) : Vmin 
pre = min 

⎧⎨ 

⎩Vcable(x, y, z, t)as in (2.9)

∣∣∣∣∣∣
B(x, y, z)t = 0, 
t ≥ 0, 
(2.3)2 applies. 

⎫⎬ 

⎭ 

2.2 Force Density Method and Its Applications 

2.2.1 The Concept of Force Density 

In the original work, Maxwell expressed (2.4) in terms of the ratios of forces in ties 
and struts to member lengths. Setting γ = T/LT and π = C/LC , we get

∑
ties 

γ L2 
T −

∑
struts 

π L2 
C = μ. (2.10) 

The same quantities were re-invented in 1974 by Schek, (Schek 1974), who 
coined the term force density. In this section, the force density notation is used 
in reformulating the optimal form-finding problems. 

For this, first define m-vectors of member length projections at the axes of fixed 
Cartesian system Oxyz,
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l x = Hx x, 
l y = Hy y, 
l z = Hz z, (2.11) 

where Hx , Hy , Hz are incidence matrices with dim(Hx ) = dim
(
Hy

) = dim(Hz) = 
m × j . Now, the truss is understood to be a directed graph with m edges (truss 
members) and j vertices (truss nodes), and the term directed pertains to axes of truss 
members. They span two endpoints (nodes of a truss), and, for definiteness, it is 
assumed that each axis originates at the endpoint with the lower number. If A and B, 
such that 1 ≤ . . .  ≤ A < .  .  .  <  B ≤ . . .  ≤ j , are the numbers of endpoints of M-th 
truss member, then, by the axis direction convention, l M 

x = xB − xA, l M 
y = yB − yA, 

and l M 
z = zB − zA. Thus, the components of incidence matrices are either −1, 

0, or  1, and the nonzero values correspond to the coordinates of endpoints, see 
(Dzierżanowski and Wójcik-Grząba 2020) for more detailed explanations of this 
issue. Truss member lengths are given by the m-vector 

l = (
(l x )◦2 + (l y)◦2 + (l z)◦2

)◦ 1 
2 , (2.12) 

where a◦p is the p-th Hadamard (component-wise) power of vector a. 
Throughout the paper, lower-case bold characters (Latin or Greek) are used 

to denote vectors and upper-case bold characters symbolize matrices. It is also 
convenient to adopt the “vector-diagonal matrix” correspondence: if w = [wI ], 
dim(w) = i , denotes a vector, then W = diag[wI ], dim(W) = i × i , is the  
corresponding matrix. This notation, combined with (2.11), allows to split (2.1)1 
into separate equilibrium equations in the x-, y-, and z-directions according to the 
equations,

(
HT 

x LxL−1
)
(t − c) = f x ,(

HT 
y LyL−1

)
(t − c) = f y,(

HT 
z LzL−1

)
(t − c) = f z . (2.13) 

Defining the force density vectors, 

γ = L−1 t ≥ 0, 
π = L−1 c ≥ 0, (2.14) 

gives 

HT 
x Lx (γ − π) = f x , 

HT 
y Ly(γ − π) = f y, 

HT 
z Lz(γ − π) = f z . (2.15)
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Next, introducing (2.11) in (2.15) leads to 

Dx x = f x , Dx = HT 
x (� − �)Hx , 

Dz z = f z, where Dy = HT 
y (� − �)Hy, 

Dy y = f y, Dz = HT 
z (� − �)Hz . 

(2.16) 

It follows that (2.16) determine free components of vectors x, y, z for given γ, π, 
f x , f y and f z . Hence, they provide the solution to the basic form-finding problem 
for a truss. Additionally, with f x = f y = f z = 0, (2.16) are suitable for the 
form-finding of pre-stressed truss-like structures composed of ties and struts. In the 
literature, any such structure is referred to as tensegrity. 

2.2.2 Optimal Form-Finding in Terms of Force Densities 

The force density notation is useful in recasting Vtruss, (Ptruss), as well as the subse-
quent optimization problems, in the forms that are easier to deal with computationally. 
To this end, by abuse of notation, re-write (2.7), 

Vtruss(x, y, z, γ, π) =
∑
ties 

γL2 
T +

∑
struts 

πL2 
C 

= lT (x, y, z)
(

1 

σT
� + 

1 

σC
�

)
l(x, y, z), (2.17) 

and set 

(Ptruss) : Vmin 
truss = min 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

Vtruss(x, y, z, γ, π)as in (2.17)

∣∣∣∣∣∣∣∣∣∣∣

Dx (γ, π)x = f x , 
Dy(γ, π) y = f y, 
Dz(γ, π)z = f z, 
γ ◦ π = 0, 
(2.3)1 applies. 

⎫⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

In [1974, Ch. 4], Schek put forward minimization problems of form-finding, 
alternative to (Ptruss), noticing their simple description in the force density framework. 
As shown below, Schek’s problems of: (i) minimum sum of squared lengths, and (ii) 
minimum sum of lengths follow as a straightforward corollary from the works of 
Maxwell and Michell. 

To show this, introduce the quadratic form, 

Q(l, q) = lT Ql, (2.18) 

where l = l(x, y, z) and v is such that Q(l, q) > 0, i.e., the form is strictly positive. 
Next, minimize Q with respect to x, y, and z. More specifically, note that
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∂ l x 
∂ x 

= Hx , 
∂ l y 
∂ y 

= Hy, 
∂ l z 
∂ z 

= Hz, (2.19) 

results from (2.11), and 

∂Q 
∂ x 

= 2lT x Q 
∂ l x 
∂ x 

, 

∂Q 
∂ y 

= 2lT y Q 
∂ l y 
∂ y 

, 

∂Q 
∂ z 

= 2lT z Q 
∂ l z 
∂ x 

, 

(2.20) 

is a direct consequence of symmetry of Q. Combining (2.19) with (2.20) leads to 
necessary conditions of stationarity of the quadratic form in (2.18). They read, 

HT 
x QHx x = 0, 

HT 
y QHy y = 0, 

HT 
z QHz z = 0. (2.21) 

Taking particular representations of vector q, paves way to geometrical minimum 
properties reported in Schek’s paper. Indeed, setting q = 1 (qM = 1, M = 1, . . . ,  m), 
gives Q(l, q) = lT l = l2 1 + l2 2 +  · · ·  +  l2 M . Hence, (2.21) with Q = diag[qM ] 
provide the solution to the minimum sum of squared lengths problem. Alternatively, 
fixing q = l◦−1 (Hadamard inverse of l , qM = 1/ lM , M = 1, . . . ,  m) leads to 
Q(l, q) = lT 1 = l1 + l2 + . . .  + lM , thus (2.21) with Q = diag[1/ lM ] solve the 
problem of minimum sum of lengths. 

Note that (2.21) represent equilibrium equations of a tensegrity with tensile and 
compressive force densities given by vector q. Furthermore, setting q = γ and 
applying (2.14)1 in (2.9) gives  Vcable(x, y, z, γ) = (1/σT ) · Q(l(x, y, z), γ). As a  
result, the minimum volume problem for the pre-stressed cable net, (Ppre), becomes 

(Ppre) : Vmin 
pre = 

1 

σT 
min 

⎧⎪⎪⎨ 

⎪⎪⎩ 
Q(l(x, y, z), γ)

∣∣∣∣∣∣∣∣

Dx (γ, 0)x = 0, 
Dy(γ, 0) y = 0, 
Dz(γ, 0)z = 0, 
(2.3)2 applies. 

⎫⎪⎪⎬ 

⎪⎪⎭ 
. 

The minimum sum of lengths problem provides a certain variant of (Ppre). Namely, 
it amounts to the minimum volume problem for a cable net with constant cross section 
of cables. Note that if AM = A0 for all M = 1, . . . ,  m, then tensile axial forces are 
also constant in the entire structure, t = A0σT 1. This feature refers to optimality 
of “constructions” resulting from natural processes, e.g., spider webs or trunks of 
trees. Defining the force density vector γ = A0σT l

◦−1 and setting q = γ in (2.18)
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reformulates (2.21) to  

HT 
x Hx x = 0, 

HT 
y Hy y = 0, 

HT 
z Hz z = 0. (2.22) 

Thus, the optimization problem for a spider-web-like cable net reads 

(Pspider) : Vmin 
spider = A0 min

{
lT 1 | l = l(x, y, z), with x, y, z as in (2.22)

}
. 

2.3 Numerical Examples 

Simultaneous optimization of spatial distribution of truss nodes and values of axial 
stress resultants is a highly nonlinear problem in general. Indeed, taking x, y, z, t, c 
as design variables leads to (Ptruss) as in Sect. 2.1.3, and such a problem involves 
algebraic functions of the form f (u) = g(u)/h(u), with u = u(x, y, z) and h(u) = √
u. Introducing force densities, thus replacing (t, c) by (γ, π), recasts (Ptruss) into  

a form, where all functions are polynomials in five indeterminates: x, y, z, γ, and 
π. Treatment of polynomials is numerically less demanding than that for algebraic 
functions, even for nonlinear and non-convex optimization. 

2.3.1 Single Cable of Minimum Volume 

Consider a single cable shown in Fig. 2.1, pinned at the endpoints A and B and 
subjected to the lateral load p = p(x) of arbitrary intensity. Here, H denotes hori-
zontal thrust, i.e., the constant horizontal component of the tensile force in the cable, 
such that 

N (x) = H 

cos ϕ(x) 
, (2.23)

where N = N (x) represents the tensile force and ϕ = ϕ(x) stands for the angle of 
inclination of the tangent to the sag function z = z(x) at given x . 

By assumption, the cable is bending- and shear-free and thus remains in the static 
equilibrium under the action of lateral load p and axial forces N . It is a classical 
matter to conclude that in such a case, H , N , ϕ and p are linked through
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Fig. 2.1 Single cable under 
lateral load

dQ  

dx  
+ p = 0, Q(x) = H · tan ϕ(x), N (x) = H 

cos ϕ(x) 
. (2.24) 

Assuming constant stress σT in the entire cable, its minimum cross section is 
defined by 

A(x) = 
N (x) 
σT 

= 
1 

σT 

H 

cos ϕ(x) 
= 

H 

σT

(
1 + tan2 ϕ(x)

) 1 
2 . (2.25) 

Hence, with s = s(x) denoting the natural coordinate along cable axis, the formula 

V (H, Q) = 
s(l)∫

0 

A(x)ds(x) = 
l∫

0 

A(x) 
dx  

cos ϕ(x) 
= 

1 

σT 

l∫

0

(
H + 

Q2(x) 
H

)
dx  

= 
l 

σT

(
H + ‖Q‖2 2 

Hl

)
, (2.26) 

expresses the volume of a single cable. Here, ‖ f ‖2 is the norm in the space of 
square-integrable functions, f ∈ L2([0, l]; R). Minimizing V with respect to H 
gives 

Hopt = ‖Q‖2 √
l 

, (2.27) 

and defines H = Hopt for fixed Q satisfying (2.24)1. From (2.24)2 and tan ϕ = 
dz/dx , it follows that 

1 √
l

∥∥∥∥
dzopt 
dx

∥∥∥∥
2 

= 1, (2.28) 

which is the so-called Rozvany-Prager mean squared slope condition, see  (Lewiński 
et al. 2019). Originally, the formula (2.28) was derived in the context of an arch 
in compression, but it is also valid for checking the optimality of sag functions of 
cables. Combining (2.27) and (2.28) in (2.26) leads to



32 G. Dzierżanowski and I. Wójcik-Grząba

Table 2.1 Cable volume for different values of horizontal thrust H 

H[N] σT V
[
cm3

]
VFDM/Vexact Rozvany-Prager’s condition 

(2.28) 

Number of segments 

8 16 32 8 16 32 

10 933.333 0.986 0.996 0.999 8.203 8.301 8.325 

20 616.667 0.989 0.997 0.999 2.051 2.075 2.081 

28.868 577.350 0.992 0.998 0.999 0.984 0.996 0.999 

30 577.778 0.992 0.998 0.999 0.911 0.922 0.925 

40 608.333 0.995 0.999 ≈ 1.0 0.513 0.519 0.520 

50 666.667 0.996 0.999 ≈ 1.0 0.328 0.332 0.333 

Vopt = 2 
√
l 

σT
‖Qopt‖2 = 2 

Hopt 

√
l 

σT

∥∥∥∥
dzopt 
dx

∥∥∥∥
2 

= 2 
Hoptl 

σT 
. (2.29) 

For detailed derivation of the equations above, refer to Dzierżanowski and Hetmański 
(2021); see also Dzierżanowski and Czubacki (2021). 

In Table 2.1, the exact, analytically computed, volume of the single cable, Vexact, 
related to the given horizontal thrust H , are compared with the approximations, 
VFDM, computed through the numerical simulations by the force density method for 
8, 16, and 32 straight segments. In the calculations, it is assumed that l = 10m and 
p = 10N/m. Additionally: the differential Eq. (2.24)1 with Q(0) = −Q(l) = pl/2 
is used to calculate Q, formula  (2.27) gives  Hopt, Eq.  (2.24)2 with z(0) = z(l) = 0 
leads to zopt, and Eq. (2.29) provides Vopt. 

Thus, 

Qopt(x) = pl
(
x 

l 
− 

1 

2

)
, 

zopt(x) =
√
3x

(
1 − 

x 

l

)
, (2.30) 

and 

Hopt = 
50 √
3 
N ≈ 28.868 N , 

Vopt = 
1000 √
3σT 

cm3 ≈ 
577.35 

σT 
cm3 . 

(2.31)
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Fig. 2.2 Ground structure with member layout (black lines) and support location (red stars) of the  
cable net for study case 2.3.2.1—the axonometric view 

2.3.2 Cable Nets of Minimum Volume 

The example in Sect. 2.3.1 and also the problem (Ppre) deal with cables of variable 
cross section, A(x), and such cables are seldom used in real structures (the formula 
for Aopt(x) is not reported here). Also, it is a matter of straightforward calculations 

to check, that zopt(l/2) =
(√

3/4
)
l ≈ 4.33 m = 0.433 l is the sag at midspan of the 

optimal cable. Therefore, (Ppre) and (Pcable) are not practical in cable net optimization 
due to poor manufacturability and limited functionality. 

Several realistic designs of cable nets with constant cross-sectional area, AM = 
A0, M = 1, . . . ,  m, obtained through (Pspider) are presented below. It is necessary to 
remark here that the problem is generically three-dimensional, as the computational 
algorithm for

(Pspider
)
determines xopt, yopt, and zopt for fixed forces t = A0σT 1. 

Mathematically, vector t is not subject to optimization, it merely parameterizes the 
minimization problem. 

For each study case, the common goal was to optimize the location of cable joints 
assuming that forces in all—or almost all—cable segments are equal to 50 kN. 
Stresses in the entire structure are tensile and equal to the prefixed value σT . Initial 
member layout—usually referred to as the ground structure—is chosen arbitrarily 
and next gradually transformed to the optimal one by the computational algorithm. 
We emphasize that the topology of the ground structure is of secondary concern in 
the research, and therefore, this topic is intentionally not discussed in the paper. 

Study cases considered in this section are rooted in civil engineering, though 
the analyzed structures are simplified for the purpose of clarity. The algorithm for 
numerical simulations in this section has been developed from scratch in Scilab.
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Fig. 2.3 Initial layout of members and nodes (in the top view) and tensile forces in cable segments 
for study case 2.3.2.1 

Fig. 2.4 Optimum layout of members and nodes (in the top view) and values of tensile forces in 
cable segments for study case 2.3.2.1. Forces in inner cable segments are fixed to 50kN; forces in 
outer cable segments result from the solution of (Pspider)
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Fig. 2.5 Ground structure 
with member layout (black 
lines) and support location 
(red stars) of the cable net 
for study case 2.3.2.2—the 
axonometric view 

Fig. 2.6 Initial layout of members and nodes (in the top view) and tensile forces in cable segments 
for study case 2.3.2.2 

Fig. 2.7 Optimum layout of members and nodes (in the top view) and values of tensile forces in 
cable segments for study case 2.3.2.2. Forces in all cable segments are fixed to 50kN
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2.3.2.1 Cable Net Pinned at the Vertices of a Hexagon 

2.3.2.2 Cable Net Pinned at Four Parabolic Arches 

2.3.2.3 Cable Net Pinned at the Parabolic Contour Over the Circular 
Ring 

2.3.3 Trusses of Minimum Volume 

In this section, the force density method is used for numerical simulations of (Ptruss), 
see Sect. 2.2.2. Now, structural members of a truss are allowed to carry either tensile

Fig. 2.8 Ground structure 
with member layout (black 
lines) and support location 
(red stars) of the cable net 
for study case 2.3.2.3—the 
axonometric view 

Fig. 2.9 Initial layout of 
members and nodes (in the 
top view) and tensile forces 
in cable segments for study 
case 2.3.2.3
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Fig. 2.10 Optimum layout 
(in the  top view)  and values  
of tensile forces in cable 
segments for study case 
2.3.2.3. Forces in cable 
segments are fixed to 50kN, 
except 16 segments (dark 
red) whose axes run at 45◦ to 
the X - and  Y -coordinate 
lines

or compressive forces, and structures are optimized for equal limit stress in tension 
and compression, that is for σT /σC = 1. This simplification is made for clarity only; 
the algorithm admits any value of σT /σC in general. 

Similarly to Sec. 2.3.2, the initial configurations (ground structures) of trusses 
are chosen arbitrarily. The algorithm for numerical simulations has been developed 
from scratch in MATLAB. 

2.3.3.1 Cantilever Truss 

The initial configuration of a truss, as well as support and force locations, is shown 
in Fig. 2.11. Results of optimization are displayed in Fig. 2.12 with two subcases 
considered: (a) the design area is limited to the rectangle of dimensions a × 3a, and 
(b) the design area is a strip of width 3a and infinite height. Note that enlarging the 
larger design area results in lower volume.

2.3.3.2 Beam Girder 

Beam girder in this study case is optimized for σT /σC = 1. The initial configuration, 
as well as support and force locations, is shown in Fig. 2.13. Similarly, to study case 
2.3.3.1, two optimization cases are considered: (a) the design area is limited to the 
rectangle of dimensions a × 3a, and (b) the design area is a strip of width 3a and 
infinite height, see Fig. 2.14 for the results.
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Fig. 2.11 Initial configuration and loading of a cantilever truss pinned at two nodes and loaded by 
force P along the vertical line distanced by 3a from the line of supports—study case 2.3.3.1. The 
ground structure truss consists of 65 nodes and 368 members 

Fig. 2.12 Optimum layout of truss nodes and members for the study case 2.3.3.1 Members in 
tension are shown in navy color and those in compression are shown in red color, a the design 
area is limited to a rectangle of dimensions a × 3a, minimum volume Vopt,a = 13.76432Pa/σT , is  
only 1.2% larger than the analytical solution obtained in Graczykowski and Lewiński (2010); b the 
design area is a strip of width 3a and infinite height, minimum volume, Vopt,b = 13.324597 Pa/σT , 
is only 2.5% larger than the one obtained in Sokół (2011) by topology optimization

2.4 Conclusions 

The idea of force densities significantly helps in reformulating the problem of simul-
taneous geometry and topology optimization of truss and truss-like structures. To 
be specific, it allows to re-write the numerically demanding, original formulation 
involving node coordinate vectors x, y, z and axial force vectors t, c as design vari-
ables into more tractable version with x, y, z and axial force density vectors γ, π. As  
a result, it is possible to define optimization problems with a smaller total number of
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Fig. 2.13 Initial configuration and loading of a plane, simply supported beam girder loaded by 
three forces P , evenly distributed along the line spanning the supports. The ground structure truss 
consists of 65 nodes and 368 members 

Fig. 2.14 Optimum layout 
of truss nodes and members 
for the study case 2.3.3.2 
Members in tension are 
shown in navy color and 
those in compression are 
shown in red color, a the 
design area is limited to a 
rectangle of dimensions 
a × 3a, minimum volume 
Vopt,a = 10.581999 Pa/σT ; 
b the design area is a strip of  
width 3a and infinite height, 
minimum volume, 
Vopt,b = 8.908424 Pa/σT

unknowns. The proposed approach compensates for the larger CPU time than usually 
required for solving nonlinear problems and (more importantly) does not reduce the 
accuracy of numerical analysis. 

By-passing the large computational cost of the method is possible by incorporating 
the adaptive ground structure strategy, see (Gilbert and Tyas 2003). Briefly speaking, 
the method consists in making the algorithm of (Ptruss) capable of modifying the 
topology of the ground structure, that is adding (or removing) the truss members. 
For this, the kinematic response of a structure is taken into account along the static 
one. Mathematically, it amounts to considering both primal and dual solutions to 
(Ptruss). This topic lies outside of the scope of the present paper, but it is a subject of 
extensive research by the authors. 

Incorporating spatial distribution of truss nodes as design variables makes it 
possible to tackle the problem of optimal positioning of load, or, in other words,
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finding an architectural form of the structure, which optimally adjusts to the profile 
of the applied load. Allowing for the migration of external forces in space and shaping 
the structure in accordance to their actual location is known in the literature as form-
finding. The proposed algorithm, self-coded in Scilab and MATLAB, solves the 
form-finding problem for truss systems in both two- and three-dimensional settings. 
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Chapter 3 
CI-SAPF for Structural Optimization 
Considering Buckling and Natural 
Frequency Constraints 

Ishaan R. Kale and Ayush Khedkar 

Abstract Structural analysis is important as it provides the basis for structural design 
and assesses whether a particular structure design will be able to withstand external 
and internal pressures and forces. While solving the structural problems, we find that 
such problems are quite complex in solving and the number of iterations taken to find 
the optimal solution is quite high. Various techniques were used to solve such types of 
problems such as the artificial bee colony algorithm (ABC), fuzzy-controlled genetic 
algorithm (FCGA), approximation method algorithm, harmony search algorithm 
(HS), constrained mean–variance mapping algorithm, buckling restrained sizing, and 
shaping algorithm. The following paper uses the CI-SAPF approach to find the size 
optimization of truss structure using buckling and natural frequency constraints along 
with discrete variables. In this paper, two separate problems of 18-bar truss structure 
are considered. The solutions obtained from CI-SAPF algorithm are compared with 
other contemporary techniques. 

Keywords Truss structure · Cohort intelligence · Buckling constraint · Natural 
frequency constraint 

3.1 Introduction 

Over the past few years, many natures inspired optimization algorithms were applied 
to optimize the size, shape, and weight of the truss structures. These problems 
are associated with various constraints such as stress, deflection, Euler buckling,
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frequency, and other topological constraints. These algorithms include the artifi-
cial bee colony (ABC), particle swarm optimization (PSO), ant colony optimiza-
tion (ACO), fuzzy-controlled genetic algorithm (FCGA), approximation methods, 
harmony search (HS), constrained mean–variance mapping algorithm, buckling 
restrained sizing, and shaping algorithm so on and so forth (Kashani et al. 2022). Such 
algorithms have been applied on various truss structures such as 10-bar structures, 
17-bar structures, 18-bar structures, 72-bar structures, and so on. 

Jawad et al. (2021) solved the truss structure problems using ABC combining 
size and shape optimization by having the discrete and continuous variables. A 
well-known penalty function constraint handling approach was used to handle the 
displacement, size, and buckling constraints. This algorithm demonstrated a robust 
performance with a success rate of 100%. The FCGA was flexible to deal with 
rigidly jointed structures and it did not impose any kind of limitations as compared 
to other optimization methods. This method provided an easy way of dealing with 
complex problems because fuzzy models containing vagueness and impreciseness 
in knowledge representation could be built easily. This algorithm resulted in lesser 
weight with a smaller number of iterations and reduced the computational time and 
enhanced the search efficiency (Soh’ and Yang 1996). Approximation method for 
configuration optimization of trusses proposed by Hansen and Vanderplaats (1990) 
used the first order Taylor series expansion for the structural analysis. The degree 
of coupling between sizing and geometry design variables was reduced by force 
approximation which resulted an increase in the accuracy of the final result approxi-
mation. The HS algorithm was based on the concept of musical process of searching 
for a perfect state of harmony. This algorithm did not require any initial values and 
it used a random search instead of gradient search which made the derivative infor-
mation unnecessary. The results indicated that this technique was a powerful search 
and optimization method for solving the structural problems as compared to conven-
tional mathematical methods. From the convergence curve of this algorithm, it can 
be observed that this technique outperformed the GA-based algorithms, but fuzzy-
controlled method was better than this approach (Lee and Geem 2004). Another 
algorithm consisted of a single-solution and population-based variants of mean vari-
ance mapping optimization (MVMO) with an adaptive exterior penalty scheme to 
handle geometric and mechanical constraints. The results of this approach showed a 
rapid rate of convergence as compared to other algorithms. MVMO was a robust and 
reliable tool for computationally expensive problems with hundreds of constraints as 
this method was the combination of mapping functions, the archive of best points, the 
adaptive strategies employed in MVMO, and the dynamic exterior penalty function. 
A globally optimum solution with a minimum number of function evaluations was 
achieved for a population size of twice the number of variables using the MVMO 
method. Geometrically nonlinear forward model-based optimization algorithm was 
used for the analysis of derivative-free directionality-based optimization scheme 
to have minimum structural weight, as a large number of buckling constraints on 
cost function reduced computational efficiency and also violated constraints (Aslani 
et al. 2018). From the results, it was interpreted that the optimized cross-sectional
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area may become smaller than in the case of linear analysis solution by incorpo-
rating geometric nonlinearity in the forward model. Although the proposed algorithm 
appeared efficient, many aspects were needed to be investigated (Venkatesh Varma 
et al. 2020). 

The CI algorithm was implemented and proposed by Kulkarni et al. (2013). It is 
inspired from the socially learning behaviour of the with every other candidate in 
the cohort. This approach is also applied for solving real-world combinatorial prob-
lems from healthcare and logistics domains as well as for large-sized complex prob-
lems from the Cross-Border Supply Chain (Kulkarni et al. 2016) Domain Travelling 
Salesman Problem (TSP) and several benchmark problems (Kulkarni et al. 2017). 
It was also implemented for constrained problems from truss structure domain and 
mechanical engineering domain (Kale and Kulkarni 2018; Kale et al.  (2022); Kale 
and Kulkarni (2021a, b)). Further, a hybrid version CI-SAPF-CBO was proposed 
(Kale and Kulkarni 2021a, b) to overcome the limitation of CI (i.e. sampling space 
reduction factor). In this, self-adaptive penalty function (SAPF) is the modified 
version of penalty function approach which does not require tuning of penalty 
parameter. 

In this chapter, CI is investigated for solving the truss structure problems having 
bucking and nature frequency constraints. The truss structure problems are basically 
aimed to minimize the weight. For the application of the CI-SAPF algorithm, an 
18-bar as well as a 10-bar truss structure problem is taken into consideration. The 
members of the 18-bar truss structure are divided into four groups having the same 
cross-sectional area while handling the buckling constraint, whereas the 10-bar struc-
ture problem is solved while handling the frequency constraint. This paper aims at 
reducing the weight of the 18-bar and 10-bar truss structures. 

3.2 Cohort Intelligence (CI) 

Cohort intelligence is a self-organizing system which is based on artificial intelli-
gence (AI) concepts. The candidates in CI model interact with each other and try to 
compete with other candidates in order to achieve a certain objective. While trying 
to achieve this goal, each candidate tries to improve its own behaviour by observing 
and following the behaviour of other candidates present in that cohort. A candi-
date follows certain type of behaviour that results into the improvement of its own 
behaviour. A candidate having the best behaviour is followed by the other candidates 
by taking help of the roulette wheel approach which may result in the improvement of 
their own behaviour. Hence, each candidate learns from one another, and the overall 
cohort behaviour is evolved. If after considerable number of learning attempts the 
candidate does not show significant change in its behaviour, then the cohort behaviour 
is considered to be saturated. All the truss structure problems are successfully solved 
by using CI-SAPF algorithm. The SAPF function is used to handle the inequality 
constraints (Fig. 3.1).
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START 

Every candidate follows its best behavior from its set of 
behaviors 

n 

Cohort behavior 
saturated?

 

Evaluate behavior of each candidate and apply SAPF approach 
for constraint handling 

Calculate the probability of the behavior associated with each 
candidate 

Every candidate follows another candidate of its own choice 
approach 

Every candidate shrinks the sampling interval for every 
quality in its neighborhood 

in the updated interval 

STOP 

Candidates are categorized in slow learning and fast learning 
based on followed behaviour 

Fig. 3.1 Cohort Intelligence flowchart
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3.3 Test Problems 

The main objective of the truss structural optimization problems is to reduce the 
weight of the structure by achieving the optimum nodal coordinates and optimum 
element cross-sectional areas while satisfying constraints. These problems are previ-
ously solved using several metaheuristic algorithms such as HS (Lee and Geem 
2004), multiplier method (Imai and Schmit 1981), mean–variance mapping optimiza-
tion (MVMO) (Aslani et al. 2018), geometric nonlinear (GNL) (Venkatesh Varma 
et al. 2020), democratic particle swarm optimization (DPSO) (Kaveh and Zolghadr 
2012), school-based optimization (SBO) (Farshchin et al. 2016), vibrating parti-
cles system (VPS) (Kaveh and Ghazaan 2017), (Roulette Wheel Selection-Elitist-
Differential Evolution) (ReDe) (Ho-Huu et al. 2018), improved symbiotic search 
algorithm (ISOS) (Tejani et al. 2018), adaptive hybrid evolutionary firefly algo-
rithm (AHEFA) (Lieu et al. 2018), modified simulated annealing algorithm (MSAA) 
(Millan-Paramo 2020). In general, the truss structural problem is defined as follows: 

Minimize W (X ) = 
n∑

i=1 

ρ Ai Li 

Subject to fq − fq min ≥ 0 
fr− fr max ≤ 0 
Ai min ≤ Ai ≤ Ai max 

NC  j min ≤ NC  j ≤ NC  j max 

A = {A1, A2, . . . .,  An} and NC  = {NC1, NC2, . . . .,  NCm} 

where 

W is the weight of the structure; 
n is the total number of members of the structure; 
m is the total number of nodes; 
ρi is the material density; 
Ai is the cross-sectional area; 
Li is the length of the ith member; 
NC  j is a nodal coordinate

(
x j , y j , z j

)
of node jth of the truss; 

fq and fr are the qth and rth natural frequencies of the structure respectively and 
the superscripts, max and min denote maximum and minimum allowable 
limits, respectively. 

Test Problem 1: 18-bar truss structure problem 

The 18-bar truss structure problem (refer to Fig. 3.2) is taken into consideration for 
the investigation of CI-SAPF algorithm. The 18-bar structure problem was previously 
solved using different algorithms such as Multiplier method (Imai and Schmit 1981), 
HS (Lee and Geem 2004), MVMO (Aslani et al. 2018), and GNL (Venkatesh Varma
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Fig. 3.2 Spatial 18-bar truss structure 

et al. 2020). A force of 20 kips is applied in the downward direction on nodes 1, 2, 
4, 6, and 8, and the material density is considered to be 0.1 lb/m3. The members of 
the truss structure are divided into four groups having the same cross-sectional area. 
These are represented as A1 for members 1, 4, 8, 12, and 16; A2 for members 2, 6, 
10, 14, and 18; A3 for members 3, 7, 11, and 15, and A4 for members 5, 9, 13, and 
17. Euler buckling constraints are also taken into consideration and represented by: 

σb = −(K × E × Ai )/L
2 

where K is the buckling constant having a value of 4; E is the modulus of elasticity 
(E = 10,000 ksi); and L is the length of element. 

For solving the 18-bar truss structure problem, the results obtained using CI-SAPF 
approach are compared with other contemporary algorithms (refer Table 3.1). The 
best, mean, and worst function values obtained from 30 trials using CI-SAPF are 
2780.3374 lb, 2780.3430 lb, and 2780.3488 lb, respectively, with standard deviation 
0.0034, average function evaluations 3486, and average CPU time 23.87 s. It is 
observed that CI-SAPF algorithm received the significantly improved solution with 
slightly higher function evaluations as compared to multiplier method, HS algorithm, 
MVMO, and GNL algorithm.

Test Problem 2: 10-bar truss structure problem 

A 10-bar truss structure problem was taken into the consideration for the investigation 
of CI-SAPF algorithm. The 10-bar truss structure was previously analysed using 
various algorithms DPSO (Kaveh and Zolghadr 2012), SBO (Farshchin et al. 2016), 
VPS (Kaveh and Ilchi Ghazaan 2017), ReDe (Ho-Huu et al. 2018), ISOS (Tejani et al. 
2018), AHEFA (Lieu et al. 2018), and MSAA (Millan-Paramo 2020). A lumped mass 
of 454 kg was applied on the nodes 1, 2, 3, and 4. The material density considered is 
2770 kg/m3, and Young’s Modulus acting on the truss structure is 6.98 × 1010 N/m2. 
The size variables are within the limits of 0.645 ≤ A ≤ 50, whereas the frequency 
constraints are within the limits f1 ≥ 7, f2 ≥ 15 and f3 ≥ 20 (Fig. 3.3).

For solving the 10-bar truss structure problem, the results obtained using CI-
SAPF approach are compared with other contemporary algorithms (refer Table 
3.2). The best and average function values obtained from 30 trials using CI-SAPF
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Table 3.1 Comparison of results for 18-bar truss structure problem 

Weight lb Multiplier 
method (Imai 
and Schmit 
1981) 

HS (Lee and 
Geem 2004) 

MVMO (Aslani 
et al. 2018) 

GNL (Venkatesh 
Varma et al. 2020) 

CI-SAPF 

W-mean – – – 44,564 
(2021.4 kg) 

2780.343 

W-best 6430.0 6421.88 6418.725 44,024 
(1966.9 kg) 

2780.337 

W-worst – – – 46,590 
(2113.3 kg) 

2780.349 

FE – 2000 2200 2170 3486 

SD – – – – 0.0034

Fig. 3.3 10-Bar truss 
structure

are 524.5624 kg and 525.2325 kg, respectively, with standard deviation of 0.7366, 
average function evaluations 1185, and average CPU time 25.17 s. Along with the 
weight, the frequency of each variable was also calculated (refer Table 3.3) and was 
compared with other algorithms.

From the comparison table, it is observed that CI-SAPF obtained best weight of 
the truss structure as compared to DPSO, SBO, VPS, and MSAA algorithms. While 
the best weight obtained by CI-SAPF is precisely similar as compared to ReDe, ISOS, 
and AHEFA algorithms, the CI-SAPF algorithm also obtained the robust solution as 
compared to other cotemporary algorithm within less number of function evaluations. 

3.4 Result Analysis and Discussion 

The CI-SAPF algorithm is successfully validated by solving the 18-bar and 10-bar 
truss structure problems involving buckling and frequency constraints. The CI-SAPF
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algorithm is run for 30 times for both the problems. The results are presented in Table 
3.1, Table 3.2, and Table 3.3. Tables 3.1 and 3.2 present the best and mean weight 
including the standard deviation, average CPU time taken, and the function evalua-
tions obtained from CI-SAPF along with result comparisons with other algorithms. 
The buckling and frequency constraints associated with these problems are handled 
using SAPF approach and CI worked as a global optimizer. The results obtained 
from CI-SAPF algorithm for solving 18-bar and 10-bar truss structure problems are 
compared with several other metaheuristics optimization algorithms such as HS (Lee 
and Geem 2004), multiplier method (Imai and Schmit 1981), MVMO (Aslani et al. 
2018), GNL (Venkatesh Varma et al. 2020), DPSO (Kaveh and Zolghadr 2014), SBO 
(Farshchin et al. 2016), VPS (Kaveh and Ilchi Ghazaan 2017), ReDe (Ho-Huu et al. 
2018), ISOS (Tejani et al. 2018), AHEFA (Lieu et al. 2018), and MSAA (Millan 
Paramo 2020). 

The HS algorithm (Lee and Geem 2004) uses a stochastic random search approach 
incorporated with harmony memory considering rate (HMCR) and pitch adjusting 
rate (PAR). These two parameters play a crucial role to obtain the improved solu-
tion vectors. However, it is necessary to set an appropriate value of HMCR and 
PAR to obtain the better solution matrix. On the other hand, CI-SAPF does not 
require parameter tuning. Although it has computational parameters such as number 
of cohort candidates and sampling space reduction factor, these are selected based 
on analysis conducted in Kale and Kulkarni (2017). This helps in lower down the 
initial computational efforts. In Aslani et al. (2018), the gradient-based mean–vari-
ance mapping optimization (MVMO) is proposed to solve the constrained truss 
problems. An adaptive penalty function approach is proposed which is a modified 
version of exterior penalty function approach to handle the constraints. The gradient-
based algorithms are associated with Hessian matrix which became a limitation to 
the proposed constrained handling approach in MVMO. The DPSO algorithm does 
not tune the parameter thus reducing the tedious task of tuning and making this 
algorithm comparatively faster than other algorithms (Kaveh and Zolghadr 2012). 
The CI-SAPF achieved the same results with much lesser function evaluation due 
to the use of SAPF. In CI-SAPF algorithm, every candidate is self-supervised which 
follows a certain behaviour using a roulette wheel approach. This assists to get better 
position in the search space and make the algorithm to obtained better solutions. In 
SAPF approach, the function value is used as a penalty parameter which is updated 
in every iteration of the algorithm. This function value keeps on improving as the 
iteration progresses which accelerates the convergence rate and obtains better results 
with lesser computational cost. The main advantage of the proposed SAPF approach 
is that it can be directly applicable to a variety of constrained optimization problems 
without any previous trials. The CI-SAPF algorithm is reported to be more efficient 
which reduces the efforts of trial-and-error process of setting the suitable penalty 
parameters. The CI using SAPF approach obtained better results than other algo-
rithm, and it significantly reduced the weight of the truss structure. It was observed 
that CI-SAPF gave better results than other algorithms.
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3.5 Conclusion 

The following paper made use of the CI-SAPF approach to solve the 18-bar truss 
problem having buckling constraint as well as 10-bar truss structure problem having 
the frequency constraint. The CI-SAPF approach is used for the first time to solve 
problems having dynamic constraints. It was observed that CI-SAPF approach 
produced better solutions both the times. The solution obtained from this algo-
rithm showed significant reduction in the weight of the truss structure for 18-bar 
as well as 10-bar truss structure problems. The frequency obtained for each variable 
in the 10-bar truss structure problem was also better than other algorithms. CI-SAPF 
reduces the time taken to solve the problem and also gives better solution using a 
smaller number of iterations. The CI-SAPF algorithms can be applied for solving 
real-world mechanical design engineering, transportation problems in the near future. 
Based on the advantages and disadvantages, other nature inspired algorithms can be 
hybridized with CI-SAPF for solving challenging and complex real-world problems 
from various domains. 
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Chapter 4 
Improved Drosophila Food-Search 
Algorithm for Structural and Mechanical 
Optimization Problems 

Ali Mortazavi 

Abstract The metaheuristic optimization methods are non-gradient-based search 
techniques that wildly utilized for solving various optimization cases in the different 
disciplines. Drosophila food-search algorithm (DFO) is a metaheuristic search 
approach that models the food-search mechanism of the Drosophila Melanogaster 
incest in the nature. It applies a three-phase search pattern to explore the desired 
problem’s search domain. To provide a proper level of population diversity during 
the optimization process, it applied the quadratic approximation search approach. 
In this chapter, an improved version of the DFO is utilized for solving structural 
optimization problems. The attained outcomes are reported and compared with five 
other well-stablished methods as differential evolution (DE), firefly algorithm (FA), 
teaching and learning-based optimization (TLBO), Drosophila food-search opti-
mization (DFO), and integrated particle swarm optimization (iPSO). The acquired 
results demonstrate that the proposed IDFO, specially compared with the standard 
DFO, provides an appropriate dynamic balance between exploration and exploita-
tion search behaviors during the optimization process. Also, the proposed method 
in comparison with all other selected methods has the most stable behavior with the 
lowest standard deviation value. 

Keywords Drosophila food-search algorithm · Metaheuristic · Structural 
problems · Mechanical problems 

4.1 Introduction 

In the many cases, the optimal configuration (e.g., balancing the consumed material, 
serviceability, and economical properties) is the most important goal of the engi-
neering design process (Kazikova et al. 2021). Applying a proper optimization tech-
nique plays a key role to establish such an optimal condition (Mortazavi 2020a). The 
optimization methods can be categorized into two main sub-groups: stochastic and
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deterministic approaches (Mortazavi 2019a). The deterministic approaches indicate 
the conventional gradient-based approaches. Although these methods are efficient, 
they suffer from two major shortcomings; first, they required differentiable objective 
functions and its different grade gradients to define the steps sizes and directions 
during the procedure. Generally, in many complex optimization problems, it is very 
difficult or even impossible to define such an objective function (Mortazavi 2020b). 
Next, they are extremely vulnerable to the initial conditions of running procedure; it 
means if the population is selected through an inappropriate location of search space, 
the algorithm would simply converge to nearest local optima. Based on these facts, 
the non-deterministic approaches provide an alternative search mechanism to solve 
optimization problems. Metaheuristic methods form one of the main groups of the 
non-deterministic methods. These methods usually provide a mathematical model 
which mimics natural phenomena, physical rules, or social behaviors in the society 
(Degertekin et al. 2018). Distinct methods that their search patterns are inspired by 
different natural and physical models are generated and used in different fields of 
science and engineering (Kale and Kulkarni 2018, 2021). Also, the different rein-
forced methods are also generated to solve global optimization problems (Mortazavi 
2022, 2021; Mortazavi and Moloodpoor 2021a, b). 

Drosophila food-search mechanism (DFO) (Das and Singh 2014) is a meta-
heuristic search approach that simulates the food-search mechanism of Drosophila 
Melanogaster bug in the nature. This method uses a quadratic approximation 
approach to maintain the required diversity in the population during the optimiza-
tion process. In this phase, the DFO applies the data stored in three arbitrary agents, 
resulting a high level of exploration implementation during the optimization process. 
However, a proper search process requires an appropriate balance between local and 
global search behaviors (Mortazavi 2019b). To cover this aim, using the concept of the 
weighted agent, the quadratic search pattern of standard DFO is enhanced. The new 
method is called improved Drosophila food-search optimization (IDFO). Mostly in an 
engineering problem, to reach a feasible solution, the search domain of the problems 
should be limited by different restrictions. This issue makes the engineering problem 
more complex in comparison with standard unconstrained mathematical problems. 
Thus, these problems provide high challenging area for optimization techniques (Mei 
and Wang 2021). In the current chapter, the search performance of the developed 
IDFO is assessed on solving constrained structural and mechanical optimization 
problems. The results are evaluated and compared with five other techniques. In the 
next two subsections, the standard DFO and its improved version are described in 
detail, respectively. Then the numerical problems are solved using different methods, 
and results are compared. 

4.2 Drosophila Food-Search Algorithm (DFO) 

Drosophila food-search algorithm (DFO) is a metaheuristic optimization algorithm 
that imitates the mating and/or food-search behavior of Drosophila Melanogaster



4 Improved Drosophila Food-Search Algorithm for Structural … 55

bug. The DFO is the population-based algorithm (Das and Singh 2014). This method 
consists of two main search paradigms as proximity source searching and quadratic 
approximation (QA). The first paradigm is mathematically formulated as below: 

Ui,k = Vi,k

|
|Vr3,k − Vr4,k

|
|

Wi,k = Vi,k +
|
|Vr3,k − Vr4,k

|
| for k = r1 and r2; 

for j /= r1 and j /= r2, Ui,k = Vi, j and Wi, j = Vi, j 

V
'
i, j = Min{ f (Vi, j

)

, f
(

Ui, j
)

, f
(

Wi, j
)} for i = 1, 2, . . . ,  P and j = 1, 2, . . . ,  D 

(4.1) 

in which, i ∈ {1, 2, . . . ,  p}, and j ∈ {1, 2, . . . ,  D}; U and W are two alternative 
vectors which are used to update the location of the current agent; D and p respectively 
indicate dimension of the problem and population size. r1, r2 are random scalars 
selected from interval [1, D]. Also, the current and updated location for the current 
agent is shown by Vi,k and V

'
i, j , respectively. 

The employed quadratic approximation search pattern in the DFO is mathemati-
cally formulated as follows: 

Child = 0.5
(

R2 
2 − R2 

3

)

f (R1) +
(

R2 
3 − R2 

1

)

f (R2) +
(

R2 
1 − R2 

2

)

f (R3)
(

R2 − R3

)

f (R1) +
(

R3 − R1

)

f (R2) +
(

R1 − R2

)

f (R3) 
(4.2) 

where f (.) specifies the objective function value for any randomly selected 
individuals R1, R2 and R3 in the colony, while R1 /= R2 /= R3. 

To provide more information, a pseudo-code for the DFO is given as follows 
(Table 4.1). 

In the next section, the proposed improved Drosophila-food search algorithm 
(IDFO) method is described in detail.

Table 4.1 Pseudo-code for the DFO method 
Set the algorithm adjusting factors 
Calculate the objective value of each agent 
while (termination condition are not met) 
Apply tournament selection
   for (each agent)
       Do proximity search and renew the current agent’s location using Eq. (4.1)
       Calculate the objective function of the agent f(Xi)
        The best position of the current agent is saved
        If the difference between updated objective function value and its previous value is among 1% radius, then 

employ quadratic search using Eq. (4.2) 
Hold the updated location of the current if it is better than its old value, else reject it 

end 
end 
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4.3 Improved Drosophila Food-Search Algorithm (IDFO) 

In the standard Drosophila food-search method (DFO), the algorithm makes a 
quadratic search around the three randomly selected agents of the colony. Such a 
random search may be useful in the very first iterations by providing a high level of 
exploration, but more exploitation is needed as the process progresses. To miti-
gate this problem, the quadratic search approach in the standard DFO is modi-
fied by replacing a random agent with a weighted agent. The weighted agent is 
mathematically defined as follow: 

XW = 
M

∑

i=1 

cw i X 
P 
i 

cw i =
(

ĉw i / 
M

∑

i=1 

ĉw i

)

ĉw i = max1≤k≤M
(

f
(

X P k
)) − f

(

X P i
)

max1≤k≤M
(

f
(

X P k
)) − min1≤k≤M

(

f
(

X P k
)) + ε 

, i = 1, 2, . . . ,  M (4.3) 

where M is the population size; XW is the proposed weighted agent; ĉw i is 
the impact factor coefficient of each agent; f (.) is the objective function value; 
max1≤kw≤M

(

f
(

X P kw
))

and min1≤kw≤M
(

f
(

X P kw
))

are, respectively, the worst and best 
objective values of the population. The ε is a small positive number to avoid any 
probable division by zero. Thus, by substituting the R1 with Xw , quadratic search 
part of the proposed DFO is modified as follows: 
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(4.4) 

4.4 Numerical Tests 

In this section, the developed IDFO method is tested on handling of structural and 
mechanical optimization problems. The details about the problem such as constraints 
and objective function are given in the problem. For more clarity, the internal param-
eters settings for applied selected method (i.e., comparative methods) are given in 
flowing table (Table 4.2).
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Table 4.2 Parameter 
adjusting for the utilized 
methods 

Method Pop. size Parameter 

DE (Storn and Price 
1997) 

20 F ∈ [0, 2] 

FA (Yang 2009) 20 α = 0.5, βmin = 
0.2, γ  = 1 

TLBO (Sadollah et al. 
2012) 

20 T F  ∈ [1, 2] 

iPSO (Mortazavi and 
Toğan 2016) 

20 α = 0.4, C3 = C4 = 
1, C2 = 2 

DFO (Das and Singh 
2014) 

20 – 

IDFO 20 – 

4.5 Design of Welded Beam Problem 

In this section, as demonstrated in Fig. 4.1, an optimal welding parameter for a 
moment-resistance connection is considered as a mechanical optimization problem 
with some constraints. The total cost of the welding mechanism should be minimized. 
The minimization process is constrained with seven different linear and non-linear 
limitations. This objective function and the corresponding constraints are given in 
Eq. 4.5. In this equation, the terms are defined as follows: normal stress (σ ), shear 
stress (τ ), and displacement (δ). Design variables of this problem are considered as 
the welding part’s (shown in yellow), length (l), and height (h) and cross-sectional 
specifications as width (b) and thickness (t). The archived results for tested methods 
are tabulated in Table 4.3. According to the obtained results, the IDFO outperforms 
the other applied techniques in the term of stability; however, the iPSO requires the 
lowest number of objective function evaluation (OFEs). 

To minimize

Fig. 4.1 Welded beam 
problem (Yang 2009)
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Table 4.3 Optimal outcomes for the welded beam problem 

Variables DE (Storn 
and Price 
1997) 

FA (Yang 
2009) 

TLBO 
(Sadollah 
et al. 2012) 

iPSO 
(Mortazavi 
and Toğan 
2016) 

DFO (Das 
and Singh 
2014) 

IDFO 

x1(h) 0.248729 0.202369 0.206428 0.205729 0.202369 0.205730 

x2(l) 2.95378 3.544214 3.461341 3.470493 3.544214 3.470489 

x3(t) 8.362973 9.048210 9.021457 9.036626 9.048210 9.036624 

x4(b) 0.249008 0.205723 0.206422 0.205729 0.205723 0.205730 

f (X) 

Best 1.900415 1.728024 1.727353 1.724857 1.728024 1.724856 

Mean 2.559287 1.748831 1.729874 1.724853 1.748831 1.824997 

Std 1.983998 0.013 0.005898 6.9 E−019 0.024100 0.005569 

OFEs 8865 47,850 28,650 1240 24,450 5680

cost (X) = 1.10471x2 1 x2 + 0.04811x3x4(14 + x2) 
X = {x1, x2, x3, x4} (4.5) 

Subjected to 

g1(x) = τ (x) − τmax ≤ 0 
g2(x) = σ (x) − σmax ≤ 0 
g3(x) = x1 − x4 ≤ 0 
g4(x) = 0.10471x2 1 + 0.04811x3x4(14 + x2) − 5 ≤ 0 
g5(x) = 0.125 − x1 ≤ 0 
g6(x) = δ(x) − δmax ≤ 0 
g7(x) = p − pc(x) ≤ 0 
0.1 ≤ x1 ≤ 2 0.1 ≤ x2 ≤ 10 0.1 ≤ x3 ≤ 10 0.1 ≤ x4 ≤ 2 (4.6) 

where, 

τ (x) =
/

(τ ')2 + 2τ 'τ '' x2 
2R 

+ (τ '')2 

τ ' = P √
2x1x2 

τ '' = 
MR  

J 
M = P

(

L + 
x2 
2

)

R =
/

x2 2 
4 

+
(
x1 + x3 

2

)2
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J = 2

{√
2x1x2

[

x2 2 
12 

+
(
x1 + x3 

2

)2
]}

Pc(x) = 
4.013 

/

E
(

x3 2 x
6 
4 /36

)

L2

(

1 − 
x3 
2L 

/

E 

4G

)

(4.7) 

4.6 Design of Tubular Column System 

In this section, the tubular column presented in Fig. 4.2 is desired to be designed in 
minimum cost. The density, yielding stress, and elasticity modulus of the utilized 
material are ρ = 0.0025 kgf/cm3, σy = 500 kgf/cm2, and E = 0.85×106 kgf/cm2, 
respectively. The column’s length (l) is 250 cm, and it is carrying a compressive load 
as P = 2500 kgf. There are two decision variables: the column diameter (d as × 1) 
and its wall thickness (t as × 2). 

To minimize 

f (X) = 9.82x1x2 + 2x1 
X = {x1, x2} (4.8)

Fig. 4.2 Tubular column 
system (Yang 2009) 
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Table 4.4 Results for the tubular column design problem 

Variables DE (Storn 
and Price 
1997) 

FA (Yang 
2009) 

TLBO 
(Sadollah 
et al. 2012) 

iPSO 
(Mortazavi 
and Toğan 
2016) 

DFO (Das 
and Singh 
2014) 

IDFO 

x1(d) 5.324786 5.451206 5.451156 5.451235 5.451241 5.451151 

x2(t) 0.313227 0.292091 0.291965 0.291961 0.294960 0.291963 

f (X) 

Best 27.028023 26.538349 26.531328 26.531571 26.692041 26.531201 

Mean 27.028210 26.658410 26.400236 26.531653 26.535960 26.531556 

Std 2.31E−05 7.04E−06 3.05E−04 8.50E-06 4.26E−05 3.61E−06 

OFEs 4400 11,950 7600 2600 10,050 3750 

Subjected to 

g1(X) = P 

π x1x2σy 
− 1 ≤ 0 

g2(X) = 8Pl2 

π 3 Ex1x2
(

x2 1 + x2 2
) − 1 ≤ 0 

g3(X) = 
2.0 

x1 
− 1 ≤ 0 

g4(X) = 
x1 
14.0 

− 1 ≤ 0 

g5(X) = 
0.2 

x2 
− 1 ≤ 0 

g6(X) = 
x2 
0.8 

− 1 ≤ 0 

2 ≤ x1 ≤ 14, 0.2 ≤ x2 ≤ 0.8 (4.9) 

Optimal results obtained using the selected methods are given in Table 4.4. 
According to the achieved outcomes, the IDFO algorithm puts forward more accurate 
values. Based on the reported statistical data (i.e., Std. values), the stable behavior of 
the IDFO algorithm is apparent. In addition, the number of objective function eval-
uations (OFEs) presents the speed of the approaches in finding the optimal result. 
The iPSO is more rapid than the other approaches. 

4.6.1 Design of 72-Bar Truss Structure 

In this section, a 72-bar truss system (given in Fig. 4.3) is applied as a structural opti-
mization problem to evaluate the search capability of the proposed EQB technique.
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The density and module of elasticity of the material of the structure are 0.1 lb/in3 and 
10,000 ksi, respectively. The structure’s elements are gathered into 16 independent 
categories. For all nodes, allowable displacements in all directions are limited to ± 
0.25 in. For all principal directions also, the stress of all compressive and tensile 
members is restricted up to 25 ksi. Node 17 of this structure is subjected to Px = 5, 
Py = 5 and Pz = −5 kips. Upper and lower bounds of sizing variables are restricted 
to 0.01 in2 and 0.1 in2, respectively. Achieved results for current example are given in 
Table 4.5. Based on these achievements, the standard DFO shows the costliest search 
performance (i.e., require 19,260 number of objective function evaluation). This is 
due to multiple structural analyses required in each iteration of the DFO method. 
However, considering the standard deviation (Std.) values reported for optimization 
processes, the IDFO shows the most stable search behavior for all runs (Table 4.5).

4.7 Non-Parametric Statistical Tests 

In this to check the significance of the obtained results, a Friedman rank test is 
performed on the attained outcomes. The achieved results are tabulated in Table 
4.6. Based on these results, the IDFO in comparison with other methods, specially 
in comparison with standard DFO, represents an advanced performance from both 
accuracy and stability aspects.

4.8 Conclusions 

This chapter deals with developing a new search methos so-called improved 
Drosophila food-search (IDFO) and assessing its search capability on handling 
the structural and mechanical minimization problems (which are categorized as the 
constrained engineering optimization problem). The results are compared with five 
other well-stablished metaheuristic algorithms as differential evolution (DE) method, 
firefly algorithm (FA), teaching and learning-based optimization (TLBO), Drosophila 
food-search optimization (DFO), and integrated particle swarm optimization (iPSO). 
In IDFO algorithm, the totally random behavior of the standard DFO is modified 
process by contributing a new agent so-called weighted agent into the search process 
of the algorithm. 

It is notable that the costliest part of a complex engineering (e.g., structural, and 
mechanical) optimization problem is spent to evaluate the objective function of the 
problem, so the reaching to the optimal state with the lower number of objective 
function evaluation (OFEs) is one of the key factors that should be considered in 
selecting proper optimization technique for handling this class of optimization prob-
lems. On the other hand, the stability is also one of the important specifications that 
is required for a robust search technique. 

In this regard, reported standard deviation values reveal that the IDFO shows the 
most stable search behavior among all other selected methods. Attained outcomes
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b) Side view 

a) 3D view c) Partial view 

Fig. 4.3 72-bar truss structure (Yang 2009)

shows that required OFEs for the proposed IDFO are less than the other selected 
methods, especially in comparison with the standard DFO method. This indicates 
that additional agents can work properly in increasing the performance of the opti-
mization method. The accuracy of the obtained solutions demonstrates that the search 
performance of the proposed method is also improved. Furthermore, the acquired 
statistical results prove the significancy of the obtained solutions by proposed IDFO 
method. Consequently, based on the acquired results, the IDFO method can be applied 
as a robust method for solving the constrained engineering optimization problems.
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Table 4.5 The optimal outcomes for the 72-bar truss structure 

Design 
variables 

Optimal cross–sectional area (in2) 

DE (Storn 
and Price 
1997) 

FA (Yang and 2009) TLBO 
(Sadollah 
et al. 2012) 

iPSO 
(Mortazavi 
and Toğan 
2016) 

DFO (Das 
and Singh 
2014) 

IDFO 

A1–A4 1.9 1.9 1.9 1.9 1.9 1.9 

A5–A12 0.5 0.5 0.5 0.5 0.5 0.5 

A13–A16 0.1 0.1 0.1 0.1 0.1 0.1 

A17–A18 0.1 0.1 0.1 0.1 0.1 0.1 

A19–A22 1.2 1.2 1.3 1.3 1.3 1.3 

A23–A30 0.5 0.5 0.5 0.5 0.5 0.5 

A31–A34 0.1 0.1 0.1 0.1 0.1 0.1 

A35–A36 0.1 0.1 0.1 0.1 0.1 0.1 

A37–A40 0.5 0.5 0.5 0.5 0.5 0.5 

A41–A48 0.5 0.5 0.5 0.5 0.5 0.5 

A49–A52 0.1 0.1 0.1 0.1 0.1 0.1 

A53–A54 0.1 0.1 0.1 0.1 0.1 0.1 

A55–A58 0.2 0.2 0.2 0.2 0.2 0.2 

A59–A66 0.6 0.6 0.5 0.5 0.5 0.5 

A67–A70 0.4 0.4 0.4 0.4 0.4 0.4 

A71–A72 0.6 0.6 0.6 0.6 0.6 0.6 

Best 
weight 
(lb) 

379.9 379.9 379.7 379.7 379.7 379.7 

Mean 
weight 
(lb) 

382.2 383.6 381.7 381.7 381.8 381.9 

Std. (lb) 1.9 2.8 1.4 1.3 2.2 1.3 

OFEs 13,200 22,200 17,220 10,200 17,220 10,520
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Table 4.6 Friedman rank test for mean and Std. values for engineering problems 

Test for optimal mean value Test for optimal Std. value 

Method Friedman 
value 

Normalized 
value 

Rank Friedman 
value 

Normalized 
value 

Rank 

DE (Storn and 
Price 1997) 

17.5 0.257143 6 14 0.321429 5 

FA (Yang 
2009) 

14 0.321429 5 12 0.375000 3.5 

TLBO 
(Sadollah et al. 
2012) 

7.5 0.600000 2.5 12 0.375000 3.5 

iPSO 
(Mortazavi and 
Toğan 2016) 

7.5 0.600000 2.5 5.5 0.818182 2 

DFO (Das and 
Singh 2014) 

12 0.375000 4 15 0.300000 6 

IDFO 4.5 1.000000 1 4.5 1.000000 1
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Chapter 5 
Truss Structure Optimization Using 
Constrained Version of Variations 
of Cohort Intelligence 

Ishaan R. Kale, Ayush Khedkar, and Mandar S. Sapre 

Abstract An especially significant class of structurally constrained optimization 
problems is truss design. This study presents a constrained version of two varia-
tions of the Cohort Intelligence (CI) algorithm. In this work, discrete variable truss 
structures with six bars and two cases with ten bars are studied using follow-best 
and follow-better approaches, as well as the self-adaptive penalty function (SAPF). 
These problems are associated with two linear constraints: tensile/compressive stress 
and deflection. Algorithm efficiency is evaluated by counting the function evalua-
tions, computing CPU time, and determining the total weight of the truss struc-
ture. Compared to follow-better and other contemporary optimizers from literature, 
follow-best performs significantly better. 

Keywords Self-adaptive penalty function · Discrete variables · Variations of CI ·
Design of trusses 

5.1 Introduction 

Truss structure problems are structural constrained optimization problems consisting 
of continuous, discrete, or mixed variables. The constraints are usually nonlinear in 
nature. There have been several techniques inspired by nature to solve truss structures 
problems. Genetic Algorithm (GA), Firefly Algorithm (FA) (Gandomi et al. 2011), 
Particle Swarm Optimization (PSO) (Li et al. 2009), and Artificial Bee Colony (ABC) 
(Sonmez 2011) are few optimizers from literature applied in this domain.
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In an earlier study, Kale and Kulkarni (2018) used Cohort Intelligence (CI) with 
a static penalty function (SPF). Some limitations were observed when CI-SPF was 
used for solving the constrained problems. SPF approach is associated with a penalty 
parameter which needed to be set for every problem. To set the appropriate penalty 
parameter, certain preliminary trials are required. This may increase the initial 
computational cost. Self-adaptive penalty functions (SAPFs) have been proposed 
as a solution to overcome these limitations (Kale and Kulkarni 2021). SAPF-based 
constraint handling with CI algorithm facilitates the solution of constrained prob-
lems involving variables of discrete, continuous, and mixed nature. Furthermore, the 
hybrid CI-SAPF-CBO, refined the results. 

Patankar and Kulkarni (2018) developed seven variations of CI. These were 
applied to mesh smoothing of complex objects (Sapre et al. 2019) and for opti-
mizing the abrasive water jet machining process (Gulia and Nargundkar 2019). Two 
variations of CI are applied in this paper to solve three test problems from the truss 
structural domain, namely a six-bar test problem and two ten-bar test problems. These 
are the follow-best and follow-better approaches. For constrained problems, other 
rules such as roulette, alienation and random selection, follow-worst, and follow-
itself are not effective. Round-off integer sampling is used to handle discrete vari-
ables, and SAPF is used to handle constrained variables. The results obtained from 
follow-best and follow-better approaches are compared with those from GA, CI-
SAPF, CI-SAPF-CBO, ABC, Adaptive Dimensional Search Algorithm (ADS), and 
Probability Collectives (PC). 

The work is organized as follows: The mechanism of follow-best and follow-
better approach using CI-SAPF is explained in Sect. 5.2. The solution to the truss 
structure problems follows next. In Sect. 5.4, the results are analyzed and discussed 
in details. The last section represents conclusion and future directions. 

5.2 Mechanism of Follow-Best and Follow-Better Approach 
with SAPF 

In follow-best approach, the candidate follows other candidates in the cohort situ-
ated at the best behavior. This assists the individuals to learn faster and achieve the 
cohort goal within less computational efforts. In follow-better approach, the candidate 
follows subsequent candidate exhibiting a better behavior than itself. The pseudo-
code of variations of CI using follow-best and follow-better mechanism incorporated 
with SAPF approach (Kale and Kulkarni 2021) is presented in Fig. 5.1.
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Fig. 5.1 Pseudocode of variations of CI using follow-best and follow-better rule 

5.3 Truss Structure Test Problems 

This work is investigation of application of constrained version of variations of CI 
with SAPF approach in truss design. The six-bar and ten-bar examples were solved 
in the literature using GA (Nanakorn and Meesomklin 2001), CI-SAPD, CI-SAPF-
CBO (Kale and Kulkarni 2021), ABC (Sonmez 2011), ADS (Hasançebi and Azad 
2015), PC (Kulkarni et al. 2016). The mathematical formulation is shown in Eq. (5.1) 
as follows: 

Minimize W = 
N∑

i=1 
ρ Aili 

subject to 
|σi | ≤ σmax i = 1, 2 . . .  N 
|ui | ≤ umax j = 1, 2 . . .  M 

(5.1) 

where 

W Objective function (Weight)
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Ai Design variables—Cross section area of i th truss member where, i = 
1, 2, . . . ,  N 

ρ Material density 
li Length of each truss member i, i = 1, 2, . . . ,  N 
σmax Maximum allowable stress. 
umax Maximum allowable displacement. 

Weight reduction of the truss structure is the goal with the maximum allow-
able tensile and compressive stresses at every node, as well as maximum allowable 
displacements as the limitations. There are as many variables as members in a truss 
problem. So, a six-bar truss has six variables. Each link of these trusses is a separate 
entity. In both the cases, distinct discrete set is utilized for the selection of variables. 

Test Problem-1: Six-Bar Truss Structure 

The six-bar truss structure (refer to Fig. 5.2) problem was formerly discussed by 
Nanakorn and Meesomklin (2001) Kale and Kulkarni (2021). There are six design 
variables (cross-sectional area) equal to number of truss members. Here, Ai ∈{1.62, 
1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 
3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 
13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50} 
in2 . The allowable stress is given as 25,000 psi, and allowable deflection is given as 
2 in. The weight density of the material is 0.1 lb/in3 , and the modulus of elasticity 
is 107 psi. 

Test Problem-2: Ten-Bar Truss Structure 

The next example is shown in Fig. 5.3 and was previously discussed in (Nanakorn 
and Meesomklin 2001, Li et al.  2009; Sonmez 2011; Hasançebi et al. 2015). A ten-
bar truss structure made of aluminum 2024-T3 is used in the analysis. The material 
density ρ is 0.1 lb/in3 , and the modulus of elasticity E is 10, 000 ksi. As shown  
in Fig. 5.3, a represents the longest length of the truss member. The maximum 
allowable tensile and compressive stresses σmax on every member i are ± 25 ksi. 
The maximum allowable horizontal and vertical displacement umax at every node are

Fig. 5.2 Planar six-bar truss 
structure 



5 Truss Structure Optimization Using Constrained Version of Variations … 71

Fig. 5.3 Planar ten-bar truss 
structure, a = 360 in 

±2 in. The applied forces are P1 = 100 kips and P2 = 0. This problem involves ten 
design variables and two sub-cases. 

Case 1: Ai ∈{1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 
3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 
7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 
26.50, 30.00, 33.50}in2 . 

Case 2: Ai ∈{0.1,0.5,1.0,1.5,2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 
8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 
16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20.0, 20.5, 21.0, 21.5, 22.0, 22.5, 23.0, 
23.5, 24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 27.0, 27.5, 28.0, 28.5, 29.0, 29.5, 30.0, 30.5, 
31.0, 31.5} in2 . 

5.4 Results and Discussion 

The use of follow-best and follow-better approaches for discrete variable problems is 
pioneered for the first time ever for truss structural problems. CI’s follow-best version 
is much more efficient than other algorithms. In CI-SAPF and CI-SAPF-CBO, the 
candidate’s follow other candidate in a cohort probabilistically due to which there was 
a possibility of following even the worst behavior of the candidate. This may require 
a greater number of learning attempts (iterations) for the convergence. In CI-SAPF, 
the performance of this approach is dependent on roulette wheel approach as well 
as the value of r . However, in these proposed approaches, solution value is driven 
by setting a suitable value of r (Kale and Kulakrni 2018). This model incorporates 
SAPF to handle linear constraints associated with test problems. 

The comparison is shown in Table 5.1. The standard deviation using the follow-
best approach is 9.7666, average function evaluation count is 615, while the average 
CPU time is 0.64 sec. In terms of function evaluations and computational time, 
follow-best approach has shown much better performance in comparison with follow-
better, CI-SAPF, CI-SAPF-CBO, and GA. The convergence trend can be observed 
from Figs. 5.4 and 5.5, respectively.
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Table 5.1 Comparative analysis of optimizers for six-bar truss structures 

Design 
variables 
(in2) 

GA (Nanakorn and 
Meesomklin 2001) 

CI-SAPF (Kale 
and Kulkarni 
2021) 

CI-SAPF-CBO 
(Kale and 
Kulkarni 2021) 

Follow-best Follow-better 

A1 30 30 30 30 30 

A2 19.9 19.9 19.9 19.9 19.9 

A3 15.5 15.5 15.5 15.5 15.5 

A4 7.22 7.22 7.22 7.22 7.22 

A5 22 22 22 22 22 

A6 22 22 22 22 22 

Truss 
weight 
W (lb) 

4962.0966 4962.0966 4962.0966 4962.0966 4962.0966 

Function 
evaluations 

– 2250 1740 615 1865 

Time – – – 0.64 0.26 

NA Not Available 

Fig. 5.4 Convergence trend of follow-best for solving six-bar truss problem

As compared to ABC (Sonmez 2011) and ADS (Hasançebi and Azad 2015) 
algorithms, the follow-best approach successfully solved Case 1 with a very small 
computational effort (refer to Table 5.2). The average count of function evaluations 
is 1855, standard deviation is 54.2289, average computational time required is 6.21 s. 
The function evaluations are very less as compared to other compared algorithms 
except ADS. This results to lower down CPU time as well. On the other hand, the
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Fig. 5.5 Convergence trend of follow-better for solving six-bar truss problem

follow-better approach failed to obtain comparable solution. The convergence trend 
can be observed from Figs. 5.6 and 5.7, respectively.

It has been shown in Table 5.3 that the follow-best method of CI results is superior 
to PSO, PSOPC, and HPSO in solving case 2 (Li et al. 2009), marginally worse than 
CI-SAPF and CI-SAPF-CBO (Kale and Kulkarni, 2021) algorithms, and completely 
worse than PC (Kulkarni et al. 2016). The standard deviation with the follow-best 
approach was 21.5726, average function evaluation count is 2070, and average CPU 
time was 6.62 sec. The convergence trends for ten-bar Case 2 can be observed from 
Figs. 5.8 and 5.9, respectively.

5.5 Conclusions and Future Directions 

Follow-best and follow-better versions of CI are successfully applied and validated 
for solving discrete variable truss structures with linear constraints in two cases of 6 
bars and two cases of 10 bars. An integer sampling approach is used to handle discrete 
variables. In contrast, SAPF is used to manage the constraints associated with the 
problems. It must be noted that the CI variations doesn’t require any preliminary trials 
as SAPF approach is self-supervised. The sampling space reduction factor is one of 
the solution driving factors; however, it is pre-defined within the range [0.95, 0.98] 
for these problems. The follow-best approach has obtained better results than follow-
better approach due to the higher probability of following a good candidate/behavior 
from the set-in follow-best approach. There is a scope of following a worse solution 
in follow-better approach. We intend to apply this approach for complex 3-D spatial 
truss structure problems. The follow-best mechanism with SAPF approach could be
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Fig. 5.6 Convergence trend of follow-best for case 1 of ten-bar truss problem 

Fig. 5.7 Convergence trend of follow-better for case 1 of ten-bar truss problem

used to solve the scheduling and transportation problems as well as mixed variable 
design engineering problems.
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Fig. 5.8 Convergence trend of follow-best for case 2 ten-bar truss problem 

Fig. 5.9 Convergence trend of follow-better for ten-bar case 2 truss problem
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Chapter 6 
Hybridization of Cohort Intelligence 
and Fuzzy Logic (CIFL) for Truss 
Structure Problems 

Saif Patel, Ishaan R. Kale, and Anand J. Kulkarni 

Abstract Several nature-based optimization methods have been developed by the 
researchers to solve the real-world problems. There are certain characteristics of the 
inherent approaches associated with the algorithms which could be combined with 
other algorithm to enhance the exploration and exploitation quality of the algorithm. 
Cohort Intelligence (CI) is one of the socio-inspired optimization algorithms which 
is inspired from self-supervised learning of the candidates in a cohort. To further 
increase the performance of CI, it is hybridized with fuzzy logic (FL). FL is an 
approach that allows multiple possible truth values to be processed through variables. 
FL was used to solve problems with an open, imprecise data, and heuristics that make 
it possible to obtain accurate results. In this current work, a new combination of CI and 
FL named as CIFL is introduced for solving truss structure optimization problem. 
The validity of the algorithm is verified using two cases of three-bar truss design 
optimization problem. CIFL is applied to both discrete and continuous variable-
constrained problems. The self-adaptive penalty function (SAPF) approach is used 
to handle the constraints. The results obtained from CIFL are compared with other 
nature-inspired optimization techniques and discussed in details. 

Keywords Cohort intelligence · Self-adaptive penalty function · Fuzzy logic ·
Membership function · Truss structure 

6.1 Introduction 

Truss structure is one of the important real-world applications which typically used in 
bridges, towers, roofs, buildings, domes, various industrial sectors, etc. It is the most 
common lightweight structure used in practices. These systems are designed to meet
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optimality criteria with the lowest weight, i.e., cost-effective with maximum relia-
bility. These truss structures are associated with number of members which sustain 
load acting on the structure. In order to withstand for the long life, the mechanical 
conditions such as deflection of nodes and stress exerted in the member must be 
satisfied. In these truss structure problems, the number members are equal to number 
of design variables. The variables are of continuous and discrete types. Increasing the 
number of members, complexity of the problems increases which may not be handled 
using tradition gradient-based optimization techniques. There are several heuristic 
and metaheuristic techniques that have been proposed by the researchers and applied 
to solve these problems. Those are Bat Algorithm (BA) Yang and Gandomi (2012), 
Cuckoo Search Algorithm (CSA) (Gandomi et al. 2013), Mine Blast Algorithm 
(MBA) (Sadollah et al. 2013), Particle Swarm Optimization (PSO) (Li et al. 2009), 
Probability Collectives (PC) (Kulkarni et al. 2016), Cohort Intelligence (Kale and 
Kulkarni 2018, 2021). Furthermore, several hybrid optimization techniques have also 
been proposed and applied to solve these truss structure problems such as Particle 
Swarm Optimization and Genetic Algorithm (PSOGA) (Omidinasab and Goodarz-
imehr 2020), Cohort Intelligence with self-adaptive penalty function and Colliding 
Bodies Optimization (CI-SAPF-CBO) (Kale and Kulakrni 2021). In this work, the 
concept of fuzzy logic is incorporated in CI algorithm to solve the truss structure 
domain problems. 

The concept of fuzzy is made from the things that are uncertain in nature. The 
theory of absolute true and absolute false doesn’t exist in fuzzy logic. In last three 
decades, fuzzy set and fuzzy logic theory have been evolving and have been used 
in multiple engineering and natural socioeconomics sciences. Fuzzy logic model 
can replicate human way of thinking in complex situation and that’s why it can be 
used as a tool examining natural complexity. Moreover, fuzzy logic can be exploited 
to predict chaotic behaviors. A fuzzy logic integrated with Genetic Programming 
(GP) is proposed by (Soh and Yang 2000) to increase the performance of the GP-
based approach for structural optimization. Fuzzy set theory is employed to deal 
with imprecise and vague information, during structural design process. In Fuzzy 
Tuned Interactive Search Algorithm (FTISA) by (Mortazavi 2019) proposed mech-
anism evaluates agents via two predefined concepts named as Normalized Objective 
Function (NOFi ) and Normalized Members Density (NMDi ). The defined nine-rule 
fuzzy mechanism takes these values as input parameters and through fuzzification– 
defuzzification process returns a Topology/Size (TS) regulator value for each agent. 
The hybrid fuzzy genetic system for optimizing cabled-truss structures (Finotto et al. 
2013) demonstrates an application of a hybrid fuzzy genetic system in the optimized 
lightweight structure is determined through a stochastic discrete topology and sizing 
optimization procedure that uses ground structure approach, nonlinear finite element 
analysis, genetic algorithm, and fuzzy logic. When performing optimization, the 
increase of the ground structure discretization led to a sharp increase of the search 
space. In addition, an increase in the number of evaluations of the FE model was 
also observed. This is because iterative procedures become part of the optimization 
problem when cable elements are used. For this reason, the effectiveness of the GA
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can be compromised since a relatively high number of evaluations may lead to a 
prohibitive computational cost. 

In this work, an intrinsic property of cohort intelligence and fuzzy logic is 
combined together to design the new hybridized version named as CIFL. In the 
last two decades, fuzzy theory has been applied to structural optimization. Their 
results show that use of fuzzy set can mitigate the shortcomings of the aforemen-
tioned approaches, the current study deals with putting forward a new approach 
that takes into account the search space of size and topology optimization using 
fuzzy logic. This strategy does not only remove randomization but also decreases 
the convergence rate. The proposed CIFL is examined on two cases of three-bar truss 
structural test problems. These problems are having continuous as well as discrete 
variable with nonlinear constraints. To handle the constraints a self-adaptive penalty 
function (SAPF). 

The chapter is organized as follows: Sect. 6.2 describes concept of CI algorithm. 
Section 2.1 explains the constrained handling SAPF approach. Section 6.3 describes 
detailed architecture of FL algorithm. The framework of hybrid CIFL is presented in 
Sect. 6.4. In Sect. 6.5, two cases of three-bar truss structure problems are presented. In 
Sect. 6.6, the results are analyzed and discussed with other contemporary algorithm. 
Section 6.7 concludes the proposed work. 

6.2 Cohort Intelligence (CI) Algorithm 

The CI method is inspired from social tendency of learning by cohort candidates 
through interaction and competition with every other candidate (Kulkarni et al. 2013). 
The cohort candidates with certain qualities make a particular behavior. Every candi-
date in a cohort follows certain behavior and adopts the associated qualities which 
assists to improve the behavior of individual candidates. This makes every candidate 
learn from one another and helps to evolve the overall cohort behavior. The cohort 
behavior is considered saturated if for considerable number of learning attempts (iter-
ations) the behavior of the candidates does not improve and becomes almost same. 
The characteristics of CI algorithm (Kale and Kulkarni 2021) are as follows: 

1. CI models the social behavior of learning candidates having common aim to 
achieve the best behavior by improving their individual qualities. 

2. For every learning attempt, the cohort candidates are keen to improve its 
individual behavior by observing self and other candidate’ behavior in a cohort. 

3. Every candidate of CI algorithm updates its search space for every learning 
attempt using sampling space reduction factor. 

4. The CI algorithm has an ability to solve problems having more number variables 
and constraints.
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6.2.1 Self-Adaptive Penalty Function (SAPF) 

SAPF approach is adopted from Kale and Kulkarni (2021). The mechanism of SAPF 
is as follows: 

The penalized or pseudo-objective function is written as 

φ
(
Xc

) = f
(
Xc

) + SAPF
(
Xc

)
, 

where SAPF(Xc) = f (Xc) × (∑p 
i=1 gi (X

c) + ∑m 
i=1 hi (X

c)
)
is the self-adaptive 

penalty function; 
f (Xc) is the behavior of individual candidate. 
The penalty parameter used in SAPF approach is itself a behavior of an individual 

candidate, i.e., f (Xc). Every candidate has a different penalty parameter, and it 
updates iteratively as the CI algorithm progresses. 

6.3 Fuzzy Logic 

Fuzzy represents unclear/vague/absolute, e.g., ON–OFF, 0–1, High-Low, True– 
False, etc. However, there are several applications or the situations where these 
vague/absolute outputs would not work which requires the degree of truth. Lotfi 
Zadeh proposed the fuzzy logic (FL) in 1960 to represent the vague information 
(fuzzy sets) in the form of actual degree of truth (crisp value). FL is a concept asso-
ciated with conventional logic which handles the information with partial truth (i.e., 
completely true or completely false). However, in the real-world applications or in 
day-to-day life activities it is necessary to analyze the exact degree of that partial 
truth. For that, FL method models the membership functions using certain rules 
based on the behavior of application. This rule-based system dives by an inference 
engine and provides the prescribed degree of truth. The FL methodology consists of 
four steps, such as (i) Fuzzification, (ii) Rule-base, (iii) Inference engine, and (iv) 
Defuzzification. The FL architecture is presented in Sect. 3.1. 

6.3.1 Fuzzy Logic Architecture 

The architecture of FL is divided into four parts as follows: 

1. Fuzzification—It is process of converting the crisp value input (precise value) 
in fuzzy inputs using the membership function defined for that application. The 
membership function is considered for the optimization of truss structure best, 
mean, and worst function value. 

2. Rule Base—In rule base, the defined if–then conditions are stored which is 
further used to control the decision-making system.
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3. Inference Engine—The inference engine used to process fuzzy input. It eval-
uates the degree of match between fuzzy set and defined rules. Based on the 
percentage of degree of match, the rules are further modified and implemented 
to develop the control action. 

4. Defuzzification—The processed fuzzy output generated by inference engine is 
then converted into crisp value using defuzzification step. 

The general block diagram of FL architecture is presented in Fig. 6.1. 
The term membership function used in fuzzification step specifies the degree 

of match of given input belonging to available sets. The degree of membership is 
represented between 0 and 1 which specifies the level of match of particular input 
belong to its set. This is also referred as the membership value of that variable. 
Different membership functions used to fuzzify a crisp (numerical) value are present 
in Fig. 6.2. 

Fig. 6.1 Fuzzy logic architecture 

Fig. 6.2 Examples of triangular and trapezoidal membership function
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6.4 Framework of CIFL 

The proposed CIFL procedure is explained as follows: 
Initialization of the number of cohort candidates C , variables t , sampling interval 

reduction factor R, and sampling interval Ψ. 

Minimize f (x) = f (x1, . . . ,  xi , . . . ,  xt ) (6.1) 

Subjected to Ψ lower ≤ xi ≤ Ψupper , i = 1, . . . ,  t 

Calculate probability of candidates based on objective function 

pc = 
1/

f (xc)
∑c 

c=1 
1/

f (xc) 
, (c = 1, . . . ,  C) (6.2) 

By using roulette wheel approach, it can decide which candidate to follow. The 
candidate that is being followed has produced the best results. This approach gives 
the candidates a choice to follow better behavior that their existing one. 

Every candidate C shrinks the sampling interval Ψ associated with each variable 
t based on whether condition is saturated or not. The cohort behavior is considered 
to be saturated if there are no further improvements, the results are observed. 

After that every candidate forms a behavior by sampling qualities from within 
the updated sampling intervals. Then it uses the updated sampling intervals for the 
membership function. Use updated sampling intervals as crisp input and convert 
them into fuzzy set. Create fuzzy rule base for the algorithm. After that convert the 
fuzzy set into crisp output. Check if the obtained solution is converged; if not, start 
the process again from calculating the objective function. A FL hybridized with CI to 
increase the performance of the CI algorithm for structural optimization. Fuzzy set 
theory is employed to deal with imprecise and vague information, during structural 
design process. 

In CI algorithm, the solutions are randomly generated using uniformly distributed 
approach within its sampling interval. This range is iteratively modified using a 
sampling space reduction factor R. In the current work, the hybridization of FL with 
CI algorithm is demonstrated and it is referred as CIFL. In CI algorithm, modified 
sampling intervals for every candidate c associated with each variable t . Whereas, in 
CIFL these modified sampling intervals are treated as crisp input set which further 
utilized in the fuzzification process. In fuzzification, the crisp input is converted into 
fuzzy set which is defined as best, medium, and worst, respectively. Further inference 
engine helps to determine the degree of match of fuzzy input using if–then rule. As the 
algorithm progresses, the degree of match iteratively updated based on the modified 
sampling intervals. Next step is to defuzzify the fuzzy input into crisp values using 
Eq. (6.3).
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x∗ = 
∫ μc(x).xdx 

∫ μc(x).dx 
(6.3) 

After the defuzzification, these crisp values are further used to evaluate the func-
tion. If after significant number of iterations, the solution is converged and the solution 
does not improve and also becomes the same accept it as the final solution and stop, 
else repeat the process from the objective function. The flowchart of the proposed 
CIFL is presented in Fig. 6.3.

The hybrid CIFL algorithm was coded in Python3 on Visual Studio Code Platform 
with an Apple M1 chip @3.2 GHz octa-core processor with 8 GB RAM at Institute 
of Artificial Intelligence, MIT World Peace University, Pune, India (Fig. 6.4).

6.5 Three-Bar Truss Structure Problems 

There are many heuristic as well as metaheuristic techniques have been used to 
solve the three-bar truss design optimization problem such as Swarm Optimization 
Approach (SOA) (Ray and Saini 2001), Cuckoo Search Algorithm (CSA) (Gandomi 
et al. 2013), Bat Algorithm (BA) (Yang and Gandomi 2012), Mine Blast Algorithm 
(MBA) (Sadollah et al. 2013), Cricket Algorithm (CA) (Canayaz and Karci 2016), 
Artificial Atom Algorithm (A3) (Yildirim and Karci 2018). 

Case 1: Three-bar truss structure is shown in Fig. 6.5. The volume of the truss 
structure is to be minimized subject to stress constraints.

There are two design variables (x1, x2) and three nonlinear constraint functions 
in this problem. The problem is expressed mathematically as follows: 

Objective function: 

Min f (x) =
(
2 
√
2x1 + x2

)
× L (6.4) 

Constraints: 

g1 =
√
2x1 + x2 √

2x2 1 + 2x1x2 
P − σ ≤ 0 (6.5) 

g2 = x2 √
2x2 1 + 2x1x2 

P − σ ≤ 0 (6.6) 

g3 = 1 

x1 + 
√
2x2 

P − σ ≤ 0 (6.7) 

where 0 ≤ x1, x2 ≤ 1. The constants are L = 100 cm, P = 2 KN/cm2, and 
σ = 2 KN/cm2
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Fig. 6.3 Hybrid CIFL flowchart
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Fig. 6.4 Hybrid CIFL pseudo-code

Fig. 6.5 Three-bar truss 
design Case 1 (Ayse and 
Karci 2018)

Case 2: The indeterminate three-bar truss structure (refer Fig. 6.6) is subject to 
vertical and horizontal forces at a single node which is an intersection of all the 
three members. The aim is to minimize the structural weight W and is minimized 
under the constraint that the stress in all members should be smaller than allowable 
stress σ0 in absolute magnitude. After nondimensionalization of the objective func-
tion and variables, F = σ0W/Ppl  and xi = ai σ0/P . This problem is previously
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Fig. 6.6 Three-bar truss design Case 2 (Shin et al. 1990) 

solved by using CI-SPF (Kale and Kulkarni 2018), Multi-Random Start Local Search 
(MRSLS), CI-SAPF, and CI-SAPF-CBO (Kale and Kulkarni 2021). 

Objective function Min: f (x) = 2x1 + x2 +
√
2x3 (6.8) 

Subject to: 

g1 = 1 −
√
3x3 + 1.932x3 

1.5x1x2 +
√
2x2x3 + 1.319x3 

≥ 0 (6.9) 

g2 = 1 − 0.634x1 + 2.828x3 
1.5x1x2 +

√
2x2x3 + 1.319x3 

≥ 0 (6.10) 

g3 = 1 − 0.5x1 + 2x2 
1.5x1x2 +

√
2x2x3 + 1.319x3 

≥ 0 (6.11) 

g4 = 1 + 0.5x1 − 2x2 
1.5x1x2 +

√
2x2x3 + 1.319x3 

≥ 0 (6.12) 

xi = {0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.2}, i = 1, 2, 3
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6.6 Results Analysis and Discussion 

The algorithm is validated by solving two cases of three-bar truss structure-
constrained optimization problems for the minimization of weight. The solutions 
obtained from proposed CIFL algorithm for three-bar truss structure Case 1 problem 
are compared with Swarm Optimization Algorithm (SOA), Cuckoo Search Algo-
rithm (CSA), Bat Algorithm (BA), Mine Blast Algorithm (MBA), Cricket Algorithm 
(CA), and Artificial Atom Algorithm (A3) presented in Table 6.1. The statistical 
results such as best, mean, and worst function values, standard deviation, average 
CPU time and average function evaluations are obtained from 30 independent trails. 
From the result comparison, it shows that the proposed CIFL algorithm yielded satis-
factory results compared with other algorithms (refer Table 6.1). It is observed that 
the solution precisely worst by 0.19% as compared to the latest solution obtained by 
A3 (Yildirim and Karci 2018) and CA (Canayaz and Karci 2016). The convergence 
plot of Case 1 of three-bar truss structure problem is presented in Fig. 6.7. 

In CSA (Gandomi et al. 2013), Lévy’s flight approach was employed with three 
key rules such as selection of the best, exploitation by local random walk, and explo-
ration by randomization. The performance of the CSA is dependent on the parameter 
which needs to be fine-tuned. It may require certain preliminary trail to set an appro-
priate value. The CSA adopts Lévy’s flight strategy so that only best solution can be 
obtained which is close to optimal value. Like CSA, Bat Algorithm (BA) (Yang and 
Gandomi 2012) is also required fine-tuning of two computational parameters which 
directly affect the convergence of BA. The Bat Algorithm (BA) models the foraging 
behavior of bats. Bat uses echolocation to sense the distance food and background 
barrier. The Cricket Algorithm (CA) (Canayaz and Karci 2016) which models the 
behavior of cricket insect. These cricket insects intercommunicate with their peers 
through the sound in nature. They generate the sound by chirping of their wings 
based on the atmospheric temperature. An A3 (Yildirim and Karci 2018) referred to

Table 6.1 Comparison of 
results for three-bar truss 
structure optimization 
problem Case 1 

Algorithm x1 x2 f (x) 
SOA (Ray and Saini 
2001) 

0.79500 0.39500 264.3000 

CSA (Gandomi et al. 
2013) 

0.78867 0.40902 263.9716 

BA (Yang and Gandomi 
2012) 

0.78863 0.43838 263.8962 

MBA (Sadollah et al. 
2013) 

0.7885650 0.4082482 263.8958 

CA (Canayaz and Karci 
2016) 

0.78863 0.408368 263.8958 

A3 (Yildirim and Karci 
2018) 

0.7887357 0.408078 263.8958 

CIFL 0.7049 0.5800 264.4031
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Fig. 6.7 Conversion plot for three-bar truss structure optimization problem Case 1

as Artificial Atom Algorithm is based on chemical compounding processes. There 
are two operators in A3 which are iconic bond and covalent bond. It is associated 
with the conceptual strategy of an electron, atom, and atom set. Number of design 
variables are considered while determining number of electrons. The atom is formed 
randomly according to constraint conditions (Table 6.2). 

For three-bar Case 2 truss structure problem, CIFL is compared with CI-SPF, 
CI-SAPF, MRSLS, CI-SAPF-CBO algorithm presented in Table 6.3. The statistical 
results obtained from 30 trials are presented in Table 6.4. It is observed that the CIFL 
algorithm has obtained same function value. The convergence plot of Case 2 of 
three-bar truss structure problem is presented in Fig. 6.8. The average computational 
time obtained from CIFL for Case 1 and Case 2 is 7.04 and 7.55 s, respectively. 
The constraints associated with these problems are very much crucial task. Here, in 
CIFL algorithm SAPF approach is incorporated to deal with the constraints. This 
is important to note that it does not need to set a penalty parameter. It is adaptively 
set as the algorithm progresses. This SAPF approach is also used in CI-SAPF, CI-
SAPF-CBO, and MRSLS. In CI-SPF, the static penalty function is incorporated to 
deal with the constraints; however, it requires to fine-tuning to set an appropriate 
value of penalty parameter.

Table 6.2 Statistical results 
obtained from CIFL for 
three-bar truss design 
optimization problem Case 1 

Best 264.4031 

Mean 273.9651 

Worst 286.3454 

Standard deviation 6.249121 

Avg. function evaluations 821 

Avg. CPU time (s) 7.04 
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Table 6.3 Comparison of 
results for three-bar truss 
design optimization problem 
Case 2 

Algorithms Function value Optimum variables 

NEWSUMT-A (Shin 
et al. 1990) 

3.0414 [1.2, 0.5, 0.1] 

CI-SPF (Kale and 
Kulkarni 2018) 

3.0414 [1.2, 0.5, 0.1] 

MRSLS (Kale and 
Kulkarni 2021) 

3.0414 [1.2, 0.5, 0.1] 

CI-SAPF (Kale and 
Kulkarni 2021) 

3.0414 [1.2, 0.5, 0.1] 

CI-SAPF-CBO (Kale and 
Kulkarni 2021) 

3.0414 [1.2, 0.5, 0.1] 

CBO (Kale and Kulkarni 
2021) 

3.0414 [1.2, 0.5, 0.1] 

CIFL 3.0414 [1.2, 0.5, 0.1] 

Table 6.4 Statistical results 
for three-bar truss design 
optimization problem Case 2 

Best 3.0414 

Mean 3.5050 

Worst 3.7071 

Standard deviation 0.1511 

Avg. function evaluation 250 

Avg. CPU time (s) 7.55 

Fig. 6.8 Conversion plot for three-bar truss design optimization problem Case 2
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In CIFL as well every candidate updates its sampling interval for every iteration 
using a sampling space reduction factor. It also requires certain preliminary trials 
however, according to the analysis conducted in Kale and Kulkarni (2018) the  value  
of R can be set between 0.95 and 0.97. This eliminates the tuning of parameter R. 
The role of FL in CIFL is to nullify the randomly regeneration of variable values. 
The sampling space updates in every iteration are considered for the membership 
function. Then using a rule base condition, the fuzzy system provides the crisp values 
which are further used as a set of variables. 

6.7 Conclusions 

The CIFL algorithm is successfully applied to solve the two cases of constrained 
three-bar truss structure problem. These problems are associated with discrete as 
well as continuous variables and have nonlinear constraints. For discrete variables, 
a round-off integer sampling is incorporated. The performance of CIFL is observed 
to be precisely similar as compared to other metaheuristic algorithms. The hybrid 
version of CIFL algorithm eliminates the randomly generated solutions which in 
CI algorithm for every learning attempt. The SAPF approach is incorporated to 
handle the constraints associated with the problems. After the extensive comparative 
study, it is observed that CIFL obtained satisfactory results as compared to other 
contemporary metaheuristic algorithms. The CIFL algorithm can be used to solve 
more design engineering problems as well as structural engineering problems. 
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Chapter 7 
Optimum Design of BRB Frame Based 
on Drift Uniformity, Structure Weight, 
and Seismic Parameters Using Nonlinear 
Time History Analysis 

S. Ali Razavi and Rouhollah Shirjani 

Abstract Buckling-restrained braces (BRBs) are one of the popular seismic-
resistant structural systems. The cross-sectional area and length of the BRB is one 
of the most important characteristics of these braces that directly affect their cost. 
Since columns, beams, and connections are designed for the maximum force deliv-
ered by the brace, the decrease in cross-sectional area of the BRB causes a decrease 
in dimensions of the columns and beams. On the other hand, drift uniformity over 
the height of the structure is accounted as a structural health index and would lead 
in efficiency of BRB system in a seismic event. The aim of this study is then to 
optimize three objectives including weight of the BRB, weight of the structure, and 
uniformity of the drift profile over the height of structure by changing the cross-
sectional area and the length of the BRB at the height of the structure using genetic 
algorithms and other multi-objective optimization algorithms. Optimization is based 
on the results of nonlinear time history analysis of 2D frames. Seven earthquake 
records are selected to conduct nonlinear time history analysis using OpenSees soft-
ware. To this end, the desired functions and constraints were defined in the genetic 
algorithms, i.e., NSGA_II, MOPSO, MOEA_D, PESA_II, SPEA_II, and the initial 
created population was entered as the initial cross-sectional area and length of the 
braces in the OpenSees software. The optimization results showed that for all three 
objective functions, the weight of the structure, the weight of the BRB brace, and 
the uniformity of drift in the height of the structure can be optimized largely using a 
nonlinear time history analysis. 
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7.1 Introduction 

Optimization is an important and decisive activity in design of structures. Designers 
will only be able to design better models if they use optimization methods to save 
time and design expenses. Many optimization problems in engineering are naturally 
more complex and difficult than they could be solved by conventional optimization 
methods, such as linear programming methods and the like. One of the solutions to 
deal with such problems is the use of evolutionary algorithms. In addition, the goal of 
optimization is to find the best acceptable solution with regard to the limitations of the 
problem. There may be different solutions for a problem, and in order to compare 
them and select the optimal solution, a function called the objective function is 
defined. 

Currently, in order to waste earthquake energy, the use of energy dampers in 
structures has been considered. Conventional braces normally dissipate energy while 
they are loaded in tension. In compression, the occurrence of buckling phenomenon 
before yielding results in less energy dissipation, reduced lateral stiffness of the 
frame, reduced closed area of the hysteresis loops, and instability in one story or the 
whole structure (Ali Razavi 2011; Uang et al. 2003; Clark et al. 1999). 

BRBs are a relatively new and improved type of concentric braced frames, whose 
performance is almost identical both in tension and compression (Fig. 7.1). In these 
braces, the axial stresses are tolerated by a steel core. The buckling resistance of 
the brace is provided by an external encasing made of concrete, steel, or any other 
combination of steel concrete material. While the encasing prohibits the brace from 
global buckling, the steel core only withstands uniform axial strains both in compres-
sion and tension (Lopez and Sabelli 2004). The aim of this research is therefore to 
achieve an optimal design for the cross section and length of BRBs at the height of the 
structure while providing the desired constraints. This aim has been accomplished 
using the genetic algorithm and the multi-objective algorithm. 

Genetic algorithm is an optimization method inspired by the living nature (living 
organisms) that can be considered as an evolutionary algorithm in the classification of 
optimization methods from among a set of randomly guided search algorithms. This 
is an iteration-based algorithm, and its basic principles are adopted from genetics.

Fig. 7.1 Schematic behavior 
of BRB (Lopez and Sabelli 
2004) 
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Genetics is the scientific study of how biological traits are inherited and passed from 
one generation to the next. Chromosomes and genes are the main factors in the transfer 
of biological traits in living organisms, and the way they work is such that eventually 
the superior and stronger genes and chromosomes survive and the weaker ones are 
destroyed. In other words, the result of the interaction of genes and chromosomes is 
the survival of the fittest. The genetic algorithm likewise finds the best optimization 
solution accordingly. In addition, in this research, multi-objective algorithms such 
as NSGA_II, MOPSO, MOEA_D, PESA_II, SPEA2 have been used. 

Since the cost-controlling factor in BRB depends on their core’s cross section and 
their length, the main purpose of this study is to optimize the core’s cross section 
of these braces and their length in the height of 2D frames. One of the constraints 
is that in all stories, the story drift satisfies the allowable limit. Three objective 
functions are defined including bracing weight, total weight of the structure (without 
bracing weight), and deviation from the uniform drift over the height of the structure. 
In the optimization process, another constraint was controlled which addresses the 
low-cycle fatigue to ensure that the braces do not rupture during seismic event. 

In order to achieve the optimal distribution, meta-heuristic algorithms were 
applied in MATLAB and a nonlinear analysis was conducted under seven ground 
motions using OpenSees software. At a part of research implementation, a bilateral 
connection was established between OpenSees and MATLAB software. 

7.2 Multi-objective Optimization 

In the single-objective optimization, the algorithm ends by optimizing the objective 
function. However, in multi-objective problems, optimizing several objective func-
tions at the same time is complicated and time-consuming. Furthermore, in most of 
the problems, a number of acceptable solutions are obtained based on unfavorable 
criteria. Thus, the final solution is in the form of a set of solutions that is indicative of 
a balanced representation of the various objective functions of the problem. Finally, 
one of the solutions is selected as the reference solution by the decision maker. A 
general multi-objective optimization problem can be defined as Eq. (7.1): 

f (x) = [
f1(x), f2(x), . . . ,  fQ(x)

]

Subject : x ∈ X 
, (7.1) 

where X ⊆ RQ is the problem-solving space and x = {
x1, x2, . . . ,  xp

}
is the set 

of decision variables in the next p-space. Among this set of finite solutions, the 
appropriate solution will be the answers that have acceptable performance with regard 
to all goals. Solving multi-objective problems using the beam approach is among 
more complex problems. This is because there is usually no specific optimal solution 
for these methods (Deb 2001).
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To make appropriate comparisons in multi-objective optimization, the concept 
of dominance is used, assuming that F is the total space of the problem and 
x1, x2 ∈ F are two answers of this problem. x1 dominates x2 (or x2 is 
defeated by x1) if and only, x1 is not worse than x2 in neither of the objectives 
( fi (x1) ≤ fi (x2)∀i ∈ {1, 2, . . . ,  m}) and x1 is definitely better than x2 in at least one 
of the objectives ( fi (x1) < fi (x2)). In other words, unresolved solutions are solu-
tions that cover other solutions, but are not themselves covered by other solutions. 
Now, according to this concept, two operators have been added to single-objective 
algorithms and are known as multi-objective algorithms. These two operators are 
fast non-dominated sorting (FNDS) and crowding distance (CD) (Deb 2001). 

7.2.1 Structural Geometry 

The structure presented by Hosseini Hashemi et al. (2016) is considered as a bench-
mark. The aforementioned structure is located in Tehran with soil type II. The 
structure is seismically designed using the Iranian seismic regulations according 
to Standard 2800 (BHRC 2014). Figure 7.2 shows the A-axis frame which is used 
for nonlinear modeling and optimization of the braces. The optimization of the two 
structures, a 6-story building and a 10-story building, will be performed in two dimen-
sions. The elevations of these structures are shown in Fig. 7.3a and b, respectively. 
Table 7.1 shows the seismic load-resisting system parameters.

7.2.2 Nonlinear Structural Modeling 

OpenSees, which is an open-source software, was used for modeling and nonlinear 
analysis of the structure. The braces are modeled using a nonlinear beam–column 
element and a fiber-based cross section. In this method, the desired cross-sectional 
area is divided into small elements, and by assigning the desired material to each of 
the elements, instead of assuming the process of plasticization in certain parts of the 
structure (such as assuming a plastic hinge in the middle or two ends of the beam), 
plasticization can be considered as distributed along the entire length of the element, 
which increases the accuracy of the modeling process (Tauer et al. 1991). 

As explained in the previous sections, the columns and beams of the BRBs frame 
must be strong enough to remain elastic during the earthquake and not to enter 
the inelastic region. Therefore, assigning the elastic beam–column element to the 
columns and beams does suffice and the speed of nonlinear analysis is reduced. 
However, in order to control the behavior of these elements and to know whether 
they have entered the nonlinear region or not, the nonlinear beam–column element 
has been used. In both structures, the A-axis frame is considered for nonlinear 2D 
analysis and optimization.
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Fig. 7.2 Braced frame plan (Hosseini Hashemi et al. 2016)

The stress–strain material model of steel sections is simulated using Steel02 mate-
rials in OpenSees software. These materials approximate the cyclic behavior well 
and consider the strain stiffness kinematically. 

The parameters required to determine the behavior of Steel02 materials are as 
follows: Fy is yield stress, E is initial elastic stiffness, b is strain stiffness ratio, and 
R is the degree of curvature at the intersection of the two lines of the diagram. The 
yield stresses of the steel core of the BRBs and the columns and beams are 2620 and 
2400 kg/cm2, respectively. Steel02 was calibrated according to the test data obtained 
from Ali Razavi et al. (2018). 

As a means to estimate the of low-cycle fatigue status of BRBs modeled in 
OpenSees, fatigue material has been used in order to control the damage criterion. 
This material is defined by Uriz (2005), which considers the effect of low-cycle 
fatigue on the model. Based on the cumulative damage of Miner (1945) and the 
Coffin-Manson equation (Stephens et al. 2000), this material determines the damage 
criterion in the braces that are allocated to Steel02 material. The parameters required 
to define this material are the yield stress of the cross-sectional steel as well as 
the two values m and E0, which indicate the slope of the Coffin-Manson curve 
in the logarithmic space and the amount of strain in the loops leading to rupture, 
respectively.
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(b) (a) 

Fig. 7.3 Frame elevation of 6 and 10 floors  

Table 7.1 Seismic load-resisting system parameters 

Parameter Value Regulations 

Structure height 18.30 m – 

Location of the structure Tehran – 

Design basis acceleration (a) 0.35 Standard No. 2800 

Soil type II Standard No. 2800 

User Residential and office – 

Significance factor 1 Standard No. 2800 

Seismic-bearing system BRBF with simple beam–column 
connections 

– 

Behavior coefficient (R) 7 Standard No. 2800 

Cd 5.5 Standard No. 2800

7.2.3 Time History Analysis 

Nonlinear dynamic analysis was performed on the frame in 6- and 10-story structures. 
According to scaling guidelines of Standard No. 2800, the selected ground motions 
should preferably reflect the actual motion of the ground at the construction site 
during an earthquake. To reach this goal, at least seven pairs of horizontal ground 
motions are required. Therefore, seven pairs of accelerograms have been used in this 
research in order to use the average of their responses in the optimization process.
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7.2.4 Ground Motion Records 

In order to perform nonlinear dynamic analyses, seven records including Nahanni, 
Loma Prieta, Cape Mendecino, Northrukidge, Chichi, Irpinia, and Loma Prieta were 
used to calculate the responses, so that their average responses could be used. Records 
were selected from the set of records provided by PEER. Table 7.2 shows the speci-
fications of the selected records, and Fig. 7.4 shows the chart of time history of the 
acceleration of the selected records. 

Figure 7.5 shows the average of acceleration response spectrum of the selected 
records.

7.3 Optimization Process 

The purpose of optimization in this study is to minimize the length and cross-sectional 
area of the BRBs by observing the defined constraints. To calculate and control the 
constraints, the average of the results obtained from the nonlinear analysis of frames 
under seven earthquakes by OpenSees software in the optimization algorithm coded 
in MATLAB has been used. For this purpose, it was necessary to establish a connec-
tion between OpenSees and MATLAB software, so that the results of nonlinear 
analysis in OpenSees could be used as the input of the optimization algorithm and 
vice versa. In other words, the sections generated by the optimization algorithm could 
be used in OpenSees. The process is presented in the following section.

Table 7.2 Specifications of earthquake records (http://peer.berkeley.edu/nga) 

Earthquake name Recording station Year Magnitude Mechanism Epicentral 
dist. (Km) 
(Rjb) 

Soil 
type 

Nahanni_Canada Site 1 1985 6.76 Reverse 2.48 II 

Loma Prieta BRAN 1989 6.93 Reverse 
oblique 

3.85 II 

Cape Mendocino Cape Mendocino 1992 7.01 Reverse 0 II 

Northridge-01 LA—Sepulveda 
VA Hospital 

1994 6.69 Reverse 0 II 

Chi-Chi_Taiwan TCU084 1999 7.62 Reverse 
oblique 

0 II 

Irpinia_Italy-01 Sturno (STN) 1980 6.9 Normal 6.78 II 

Loma Prieta Saratoga—Aloha 
Ave 

1989 6.93 Reverse 
oblique 

7.58 II

http://peer.berkeley.edu/nga
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Fig. 7.4 Average of the response spectrum of the acceleration records

Fig. 7.5 Scaling the average response spectrum of earthquakes with the soil response spectrum II

7.3.1 Formulation of the Optimization Problem 

Optimization searches for the optimal values of design variables, so that the best 
output could be given to the objective function and could meet the criteria of the
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Table 7.3 Parameters used in the algorithm for optimization 

2D Frame Algorithm Number of design 
variables 

Population size Number of optimization 
steps (generation) 

6 Story NSGA_II 12 30 100 

6 Story SPEA2 12 50 100 

6 Story PESA_II 12 25 100 

6 Story MOPSO 12 100 100 

6 Story MOEA_D 12 25 100 

10 Story NSGA_II 24 30 100 

10 Story SPEA2 24 50 100 

10 Story PESA_II 24 25 100 

10 Story MOPSO 24 300 100 

10 Story MOEA_D 24 25 100 

regulations and the designer’s objective (constraints). The optimal value can be the 
minimum or maximum value of the desired function. In this research, the minimum 
value of the objective function is the answer to the optimization problem. 

In order to use the multi-objective algorithms such as NSGA_II MOPSO, 
MOEA_D, PESA_II, SPEA2 in the optimization process, the parameters required 
in this algorithm are shown in Table 7.3. 

7.3.2 Design Variables 

During a seismic event, the BRBs effectively dissipate the input energy both in tension 
and compression. Changes in the cross-sectional area, length and characteristics of 
the material used in the bracing core, and its installation location in the structure 
affect the yield of the bracing core. The total weight of the braces, the total weight of 
the structure excluding the weight of the braces, and the drift uniformity are selected 
as the target functions. The thickness of the brace sections is considered constant 
value of 30 mm and the design variable; i.e., the width of the sections and the length 
of the brace are considered for optimization (Formulas (7.2) and (7.3)) (Ali et al. 
2014). 

X = (b1, b2, b3, . . . ,  bn) (7.2) 

L = (l1, l2, l3, . . . ,  ln) (7.3) 

where n is the number of the stories and li is the width of the section and bi is the 
length of the i brace. It should be noted that a common brace is considered for each 
floor.
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7.3.3 Design Constraints 

In structural design, variables cannot have any value and must be limited by a series 
of requirements and constraints called design constraints. The most important neces-
sity in BRBFs after the earthquake is to minimize the residual deformations in the 
structure and the amount of damage to it. In this research, providing such a require-
ment is accomplished by satisfying the criteria of limiting the lateral displacement of 
the story to the allowable amount, i.e., Formula (7.4). In order to control the residual 
displacement of the structure, the amount addressed in Eq. (7.5), is considered as the 
upper permissible limit. 

Allowable Drift = 0.02 (7.4) 

Residual Displacement = 0.005H, (7.5) 

where H is the height of the structure. In the above equations, allowable drift is the 
relative displacement of the floor, and residual displacement is the amount of residual 
displacement allowed. The amount of relative lateral displacement of the floors shall 
be limited to 2% according to ASCE 7–16 (American Society of Civil Engineers 
2016). 

The maximum brace strain is not the only criterion for the proper performance of 
BRB up to the end of loading, since according to the cumulative damage criterion, 
a set of low-cycle fatigue losses in different cycles should be considered in order to 
guarantee the BRB stable performance. Accordingly, the end of the performance of 
BRBs during seismic loads is the rupture due to low-cycle fatigue. It is noteworthy 
that the probability of this rupture is increased by reduction in the length of the 
braces. According to the explanations provided, a constraint has been considered to 
control the criterion of damage due to low-cycle fatigue. The criterion of damage 
for each brace is calculated during a chronological analysis. The criterion of fatigue 
damage (FDI index) of all braces during each of the seven chronological analyses 
must be less than one. 

In addition, other lateral constraints such as the minimum and maximum amount 
for the width of the braces core section are equal to 1 cm and 20 cm, respectively. 
The minimum length of the BRB length is considered 35 cm both the six-story and 
ten-story frame. 

Furthermore, since the number of analyses in optimizations is high and each of 
them is important, there is a limit to the adequacy of shear, flexural, and axial forces 
for beams and columns, meaning that in each analysis, individual beams and columns 
are examined. And their appropriate cross section will be selected from the list of 
prepared cross sections.
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7.3.4 Objective Functions 

The objective function, commonly known as a cost or performance criterion, is 
defined based on design variables and decision motivation. In optimal design, the 
best value of the objective function (minimum or maximum) is obtained, so that all 
constraints will be met. It is, therefore, important to select an appropriate objective 
function. In this research, a multi-objective optimization problem is solved using the 
objective function related to cost under seismic loads. The aim is to minimize the cross 
section and length of BRBs by three objective functions. The first objective function 
is to minimize the weight of BRBs (7.6), the other is to minimize the weight of the 
whole structure without BRBs (7.7), and the last is the uniform relative displacement 
(Drift) in the structure, Eq. (7.8). 

Minimize F1(x) = S f

(

ρ 
n∑

i=1 

f p 
fd 

{Li · Ai } + ρ 
n∑

i=1 

fd 
f p 

{Li · Ai }
)

, (7.6) 

where n is the number of braces, A is the core area of the brace, i and L are the length of 
the brace, and i and ρ are the specific gravity of the steel used for beams and columns. 
S f is a coefficient to control low-cycle fatigue. If any of the braces buckle due to 
low-cycle fatigue, this coefficient sets the whole function of the BRB weight (F1(x)) 
equal to a maximum value to prevent it from being percent in later generations. Only 
one of the terms of Eq. (7.6) will be calculated depending on which of the applied 
force or the axial strength of the brace is greater. This is because somehow less or 
more effect than the required cross-sectional capacity of the brace can be seen in 
optimization algorithms. Here S f , f p, and fd play the role of the penalty function. 
In order to consider the effect of the constraints in determining the best population 
(minimum value for the objective function), a penalty function proportional to the 
distance of the constraints from the permissible space of the problem’s decision is 
defined, which is then applied to the objective function. As the value of the target 
function of a population increases, the probability of selecting that population as the 
best solution decreases. 

Minimize F2(x) = ρ 
n∑

j=1

{
L j · A j

}
, (7.7) 

where n is the number of beams and columns and A is the cross-sectional area of 
the beam and column i, and L is the length of the beam and column, i and ρ are the 
specific gravity of the beams and columns. 

In Eq. (7.8), the first part of the equation is related to the objective function of 
uniform relative displacement itself, and the second and third parts are the functions of 
relative displacement penalty and residual displacement of the permissible values, 
respectively. This function is such that the less its value is, the better will be the 
uniformity of drift in the structure.
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Minimize F3(x) = 
n∑

j=1

∣∣AvgDrift − storyDrift
∣∣ + WDrift 

⎛ 

⎝ 
n∑

j=1

∣∣Driftstory − 0.02
∣∣

⎞ 

⎠ 

+ WDisp 

⎛ 

⎝ 
n∑

j=1

∣
∣Dispstory − 0.005H

∣
∣

⎞ 

⎠ (7.8) 

where AvgDrift is the average relative displacement (Drift) of the whole structure, 
storyDrift and Driftstory is the relative displacement (Drift) of each floor, Dispstory is 
the residual displacement in each floor, H is the height of the structure and WDrift 

and WDisp are the reduction coefficients that will be multiplied by the constraints, so 
that the values of the constraint terms do not dominate the objective function. 

Obtaining the values of the objective function requires going through several 
steps, which include checking the shear flexural adequacy and axial force of the 
beams and columns. Moreover, the adequacy of the relative displacement in the 
height of the structure is examined. The steps are shown in Fig. 7.6. Most of the  
algorithms used in this research support the Pareto system, meaning that in addition 
to the response values, the response space is also examined. Consequently, infinite 
and empty answers are not acceptable and interfere with the optimization process. In 
case of the occurrence of changes in generations, unacceptable numbers in the form 
of structural geometry are not entered in the OpenSees program. These constraints 
are considered in the program to obtain acceptable and logical answers.

7.3.5 Evaluation of Optimization Results 

The optimization will be done using NSGA_II, MOPSO, MOEA_D, PESA_II, 
SPEA2 multi-objective optimization algorithms, and the results will be shown by 
three-dimensional diagrams, each axis of which symbolizes one of the objective 
functions. The goal is considered simultaneously. 

The general process for all optimization algorithms is that by creating an initial 
population and examining it and using the formulas and methods in each of the 
algorithms, the best solutions are selected. Then, the features and characteristics 
in each of the populations are used in the next generations to create the best new 
populations, and in all these cases, all the target functions are examined. The results 
shown in the diagrams represent the selected populations in the latest generations or 
the best solutions in all generations depending on the performance of the algorithm. 

Optimization will be done for two 6- and 10-story structures. First, the results 
of the 6-story structure, then the results of the 10-story structure, and then the 
performance of both 6- and 10-story structures will be shown in a diagram for 
each of the algorithms. Finally, the optimization results for all algorithms will be 
shown simultaneously in a three-dimensional diagram for each of the 6- and 10-story 
structures.
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Fig. 7.6 Different steps of obtaining objective functions and the effect of some constraints in 
OpenSees

7.4 Results of Optimization Algorithms for 6-Story 
Structures 

The optimization results for the 6-story structure under different algorithms are 
shown below. These algorithms have fine convergence that the values of drift unifor-
mity increase with the increase in the weight of the structure. Furthermore, with 
the increase in the weight of the BRB, the amount of weight of the structure and 
the amount of drift uniformity decrease. Moreover, it has been attempted to find a 
variety of objective functions to achieve the necessary coherence and convergence 
in the solutions. Similar to a catalog, the obtained solutions are selected from the 
best solutions obtained in the thousands of analyses performed by the algorithm, and 
the respondent can choose and use one of the solutions depending on his needs and 
the values required for the objective functions. Although the range of solutions is 
different from each other, the algorithm has attempted to select the whole desired 
range and the best possible solutions and to show the best results in the end, as well 
as to create the necessary consistency between the solutions.
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Figures 7.7, 7.8, 7.9, 7.10, 7.11 and 7.12 show the optimization results for the 
6-story structure. It should be noted that the values of the objective functions are 
adjusted in such a way that lower values will be better solutions. However, given 
the fact that there are three objective functions and a change in one of the objective 
functions will cause a change in the others, the algorithm selects a set of solutions 
at different intervals so that the best solutions could be selected. Meanwhile, the 
solutions have even better values compared to the results obtained from the algorithm 
itself, and they are selected and superior solutions. 

Considering the results of the diagrams, it can be inferred that with an increase in 
the weight of the structure, the values of the weight function of the BRB decrease. 
The population is at the lowest level for the weight of the brace.

Fig. 7.7 Comparison of the results of all multi-objective optimization algorithms for 6-story 
structures 

Fig. 7.8 Results of SPEA2 algorithm optimization for 6-story structures
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Fig. 7.9 Results of MOPSO algorithm optimization for 6-story structures 

Fig. 7.10 Results of PESA2 algorithm optimization for 6-story structures

These results indicate the accuracy of the solutions obtained from different algo-
rithms relative to each other; and the obtained solutions are in a significant range for 
the weight function of the BRB, which decreases with the increase in the values of 
the structure weight function and the relative displacement uniformity according to 
the diagram.
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Fig. 7.11 Results of MOEA-D algorithm optimization for 6-story structures 

Fig. 7.12 Results of NSGA II algorithm optimization for 6-story structures

7.5 Results of Optimization Algorithms for 10-Story 
Structures 

The solutions are scattered and the algorithm has attempted to achieve the necessary 
convergence by finding different solutions in different intervals. By decreasing the 
values of the weight function of the BRB, the values of the weight function of the 
structure increase. By decreasing the weight of the BRB, the values of the relative
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displacement uniformity function also increase. Figures 7.13, 7.14, 7.15, 7.16, 7.17 
and 7.18 show the optimization results for the 10-story structure. 

Figure 7.13 shows the optimization results for a 10-story structure under all the 
algorithms used in this research. The results obtained from this diagram also reveal 
that the results of different algorithms are consistent with each other, indicating that 
the obtained solutions are in the acceptable range. Regarding the analysis of the 
diagram itself, it can be stated that with the decrease in the weight of the brace, the 
values of the structure weight, and the relative displacement of the floors increase, 
which is common for all the used algorithms. In addition to confirming the solutions 
obtained by other algorithms, it also shows the trend of the movement of the value

Fig. 7.13 Comparison of the results of all multi-objective optimization algorithms for 10-story 
structures 

Fig. 7.14 Results of NSGA II algorithm optimization for 10-story structures
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Fig. 7.15 Results of SPEA2 algorithm optimization for 10-story structures 

Fig. 7.16 Results of MOEA-D algorithm optimization for 10-story structures

of the objective function. Furthermore, the range of changing the solutions for the 
objective functions was relatively the same in different algorithms, which indicates 
the agreement of the solutions in different algorithms.
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Fig. 7.17 Results of PESA2 algorithm optimization for 10-story structures 

Fig. 7.18 Results of MOPSO algorithm optimization for 10-story structures

7.6 Comparison of the Results of Optimization Algorithms 
for 6- and 10-Story Structures 

Figures 7.19, 7.20, 7.21, 7.22 and 7.23 show the comparison between the optimization 
of 6-story and 10-story structures. The value of the response intervals for the objective 
function of the weight of the brace in the 10-story structure is higher than in the 6-
story structure, which is due to its higher number of floors. Moreover, the structure 
weight in a 10-story structure is more than that of a 6-story structure. However, the 
values of the uniform relative displacement function in a 10-story structure change
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between numbers two and zero and in a 6-story structure between zero and eight. 
This indicates that the algorithm in the 10-story structure could better solution the 
objective of drift uniformity. Also, in the 6-story structure this value is several times 
greater than that of the 10-story structure, both of which are less than the amount of 
static analysis results that will be compared in the following sections. 

The value of the BRB weight function is in relatively similar ranges, and it is 
because of the performance of this brace that the selected range in which the brace 
could move has been analyzed by every range. Therefore, the range of solutions

Fig. 7.19 Optimization results of MOEA-D algorithm for 6- and 10-story structures 

Fig. 7.20 Optimization results of SPEA2 algorithm for 6- and 10-story structures
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Fig. 7.21 Optimization results of PISA II algorithm for 6- and 10-story structures 

Fig. 7.22 Optimization results of NSGA II algorithm for 6- and 10-story structures

obtained for it is greater than other algorithms. However, the results of the uniform 
relative displacement function are much better for a 10-story structure than for a 6-
story structure, which is similar to other algorithms and performs better in a 10-story 
structure.
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Fig. 7.23 Optimization results of MOPSO algorithm for 6- and 10-story structures

7.7 Comparison of the Results of All Multi-objective 
Optimization of 6- and 10-Story Structures 
with the Results of Static Linear Analysis 

Due to the nature of the solutions in the multi-objective optimization algorithm, a 
set of solutions is obtained, each of which shows better performance in one of the 
objective functions or in several objective functions. Thus, it will not be possible to 
compare it with one of the results. Therefore, the performance of all algorithms as 
well as the range of solutions obtained shall be compared. The value of the three 
objective functions for the 6-story and 10-story structures under static linear analysis 
is shown in Tables 7.4 and 7.5. 

Figures 7.7 and 7.13 show the optimization results of 6- and 10-story structures 
resulted from optimization algorithms. According to the solution range in 6-story 
structure for the BRB weight function, the majority of optimization results are less 
than 50% that of the linear elastic analysis. Moreover, all the solutions obtained

Table 7.4 Values of 
objective functions for 6-story 
structures under static 
analysis 

Drift function Structure weight 
function 

Braces weight function 

8.1 81,910.4 2715.6 

Table 7.5 Values of 
objective functions for 
10-story structures under 
static analysis 

Drift function Structure weight 
function 

Braces weight function 

7.2 134,288.1 8821.2 
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from the optimization algorithms are less than the static linear analysis in terms of 
structure weight. The majority of the results are less than the values corresponding 
to that of static linear analysis in terms of drift uniformity function. 

Considering the range of solutions in the 10-story structure for the BRB weight 
function, it is shown that the majority of the solutions are in the range of 2000–7000, 
which is less than those of the 6-story structure for the BRB weight function, as well 
as all the solutions obtained in the section. The weight of the structure is less than 
the weight of the structure in linear static analysis. Also, the points obtained for the 
uniform drift function are all less than the amount of the linear static, indicating better 
optimization performance for the 10-story structure in the drift uniformity function. 

The comparison of the objective functions with the results obtained in the linear 
static analysis shows that the optimization has been able to show quite significant 
percentages of reduction of values for each of the objective functions, which shows 
the importance and efficiency of optimization in the designs. Also, due to the presence 
of control coefficients in the values of the objective functions, a specific unit cannot 
be considered for the objective functions, including the results of the linear static 
analysis. 

7.8 Conclusion 

In the present research, meta-heuristic algorithms such as NSGA_II, MOPSO, 
MOEA_D, PESA_II SPEA2 were used in MATLAB software to search for the best 
solution in a set of possible solutions for BRB cross sections and lengths. Moreover, 
in order to consider the actual behavior of the structures and to use the maximum 
capacity of the braces, the structures were analyzed under seven earthquake records 
in OpenSees software using nonlinear dynamic procedure. 

By applying constraints to the optimization problem, a set of possible solu-
tions was generated, and during several optimization steps, an attempt was made 
to select the solution that results in the least value for the three objective functions of 
BRB weight, total weight of the structure without a brace and drift uniformity. The 
constraints considered in this study were the allowable amount of lateral displacement 
(Drift) in all stories, control of residual displacement, control of flexural and shear 
forces of beams and columns, and control of failure of the BRB cores due to low-
cycle fatigue. Based on the extent each of the constraints were exceeded, a penalty 
function was defined for each individual in the population, which correspondingly 
reduced or increased the likelihood of that member being selected. 

The frames were modeled in OpenSees software. After creating the length and 
cross-sectional area using optimization algorithm, the braces entered the OpenSees 
environment. After examining the structure for satisfying code criteria, the results 
of nonlinear time history analysis were used to get the output to obtain the values of 
the objective functions. 

Since the use of optimization algorithm and nonlinear analysis are all effective in 
reducing the cross section and length of BRB, their effect was investigated separately
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by the three objective functions, i.e., BRB weight, total weight of bracing structure 
and relative displacement uniformity in structure height. Using the optimization 
algorithm, the solutions were directed so that the minimum solutions were selected 
for the objective functions, while the interaction of these three objective functions is 
reflected in the generated diagrams. 

According to the results of the performed algorithms, it can be concluded that 
reducing the value of the weight function of the BRB increases the total weight of 
the structure and increases the value of the drift uniformity function. 

Moreover, by comparing the optimization results with the results of linear static 
analysis, it was found that the values obtained in optimization process reduce the 
values of bracing weight, structure weight and drift uniformity with quite significant 
percentages. This further shows the importance of optimization in designs. 

These diagrams generated in this research act as a catalog showing the effect of 
each of the objective functions on each other. One can select this structure from the 
diagram and take the length of the brace and area of the core to gain an optimum 
design. 
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Chapter 8 
Topology Optimization in Linear 
Elasticity, Plasticity and Fracture 
Mechanics 

J. Desai 

Abstract This chapter presents the theoretical and the numerical study of shape 
and topology optimization for linear elasticity, plasticity and fracture using the 
level-set method. The governing equation of linear elasticity is theoretically shape-
differentiable, while that of plasticity and damage is not shape-differentiable. To 
overcome the non-differentiability issue for the latter, we construct an approxima-
tion by penalization and regularization. For the three physics, the shape sensitivity 
analysis is performed using Céa’s technique. The shape optimization is implemented 
numerically using a level-set method with body-fitted remeshing, which captures the 
boundary of the shapes while allowing for topology changes. Numerical results are 
presented in 2D and 3D. 

Keywords Shape and topology optimization · Level-set method · Damage 
model · Fracture mechanics · Plasticity with isotropic and kinematic hardening 

8.1 Introduction 

Structural optimization aims at determining mechanical structures with desired prop-
erties. The industrial goal of this optimization is to design structures that are stiff, 
resistant to external loads and lightweight, hence cheaper or less energy-consuming. 
Depending on the number of parameters involved in the structural optimization, it 
can be broadly divided in three categories, 

1. Parametric optimization: 
The shape is parametrized using a limited number of variables, for instance, the 
“thickness” of a structure (Pedersen 1991), or the truss configuration (Gomes 
2011). Given the simplicity of parametric optimization, it has a wide variety of 
industrial applications 
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2. Geometric shape optimization: 
The shape is parametrized using the boundary of the structure. This parametriza-
tion can be brought about using the mesh boundary (Allaire and Pantz 2006), 
splines (Seo et al. 2010), NURBS (non-uniform rational basis splines) (Costa 
et al. 2019), etc. This method is very robust, except that it cannot introduce 
topological changes. 

3. Topology optimization: 
By topology of a structure, we mean the number of holes in the structure in two 
dimensions and the Euler characteristic in three dimensions. Two structures have 
the same topology, if one structure can be warped smoothly into another without 
changing its number of holes. In topology optimization, the topology is defined 
by a density function (Bendsoe and Sigmund 2004), a level-set (Allaire et al. 
2020) or a characteristic function. The function is then evolved using a heuristic 
approach or a shape derivative, and the topology of the structure is optimized. 

Evidently, there is gradual rise in the number of optimization parameters as one moves 
from parametric optimization to topology optimization. Topology optimization is 
what we deal with in this chapter. 

8.2 Existing Methods 

A holistic review on the several topology optimization methods can be found in 
Sigmund and Maute (2013). Any topology optimization method must facilitate a 
“way” to define the topology. There are several ways, which exist in literature. The 
oldest known method is homogenization (Allaire 2012; Bendsøe and Kikuchi 1988; 
Hassani and Hinton 1998a, b). This method results in an optimal shape, that is a 
density function taking values between zero and one. For instance, a 2D cantilever 
beam (optimized for compliance) obtained via this method is plotted in Fig. 8.1. As  
can be seen from the image, there is no clear description of a boundary and there 
are large gray zones (the region where the optimized density function takes a value 
between 0 and 1). 

In order to overcome this drawback of homogenization, one resorts to a penal-
ization approach, where the density function (representing the shape) is forced to 
takes binary values, 0 or 1. One of the most successful penalization approaches is 
the so-called solid isotropic material with penalization (SIMP) approach (Bendsøe 
and Sigmund 1999; Bendsoe and Sigmund 2004). In this approach, the density of the 
structure is raised to an exponent p. The value of this exponent is chosen heuristi-
cally, typically 3. The previous 2D cantilever beam obtained using SIMP is plotted in 
Fig. 8.1. As seen in the figure, the density function seems to have lesser gray zones. 
This marks the success of SIMP, making it one of the most widely used methods 
in literature and in commercial packages like Optistruct and ANSYS. However, one 
very well-known drawback of SIMP is the fact that there are still a few gray zones 
in the optimized density function. These gray zones are hard to interpret from the
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Fig. 8.1 Cantilever computed with the homogenization method. Composite (left) and penalized 
solution (right), taken from Allaire et al. (2002) 

fabrication point of view. Incorrect interpretation can result in loss of optimality of 
the optimized density function. There are several ways to avoid these gray zones, the 
most famous being the density-filter developed by Sigmund (2007). Another pos-
sibility is to project the density function and eliminate the gray zones (Wang et al. 
2011). There are several approaches that do not rely on a density function. Evolution-
ary structural optimization (ESO) is a heuristic method, where one removes material 
from low stressed regions in the structure (Xie and Steven 1993). Bi-evolutionary 
structural optimization (BESO) is a modification of ESO, where one can in addition 
add material wherever needed (Huang and Xie 2009) in a fixed design space. Here, the 
boundary of the structure is clearly defined as there are no density functions. These 
two methods are very easy to implement and known to work well for compliance 
minimization. These methods can be combined with extended finite element method 
(XFEM) approach to remesh the structure at every shape optimization iteration (Liu 
et al. 2016; Martínez-Frutos and Herrero-Pérez 2018). 

One strength of ESO/BESO is the fact that it can introduce holes in the structure 
and hence bring about topological changes quite easily. But the two methods are 
heuristic. A mathematically rigorous way of introducing holes in the structure is 
using the so-called topological derivative (Sokolowski and Zochowski 1999). In this 
approach, one computes the topological derivative everywhere in the structure and 
determines the most feasible location of adding an infinitesimal hole. The topological 
derivative can then be considered in conjunction with the shape derivative of the 
structure to optimize the topology of the structure (Allaire et al. 2011). 

Another method to deal with topological changes is using the level-set function. 
The level-set function is a continuous function, whose zero isovalue defines the 
shape (see Eq. (8.18) for a precise definition). One can then work with this level-set 
function, instead of dealing only with the boundary of the shape like in typical shape 
optimization approaches. This facilitates changes in topology. The level-set method 
was integrated into the shape and topology optimization framework in Sethian and 
Wiegmann (2000), Osher and Santosa (2001), Allaire et al. (2002) and Wang et al. 
(2003), and developed over the years, finding several applications such as robust 
design (Gournay et al. 2008; Martínez-Frutos et al. 2016), manufacturing constraints 
(Allaire et al. 2016), composite design (Allaire and Delgado 2016). In the method 
proposed by Allaire et al. (2002) and Wang (2003), the evolution of the level-set
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function is brought about by solving the transport equation (see Eq. 8.19). By doing 
so, the zero isovalue of the level-set function (representing the boundary of the 
structure) moves, and the creation of holes is facilitated. Another way to bring about 
the evolution of the level-set function is by solving the convection-diffusion equation, 
proposed by Yamada (2010). Using this approach, one can create holes inside the 
structure without waiting for the boundary to move and collapse, unlike in the case 
of transport equation. 

In most level-set-based approaches, the magnitude of velocity of advection is taken 
equal to the shape derivative and not the topological derivative (which is cumbersome 
to calculate). Hence, we study the shape optimization problem in the framework of 
the level-set method for topology optimization. In the next section, we discuss about 
the mathematical formulation of the shape optimization problem for linear elasticity. 

8.3 Mathematical Framework of Shape Optimization 

The shape or the structure we deal with in this chapter is represented by an open 
set Ω ⊂ Rd (d = 2 or 3 being the dimension of the problem). The structure has a 
boundary ∂Ω = [N ∪ [D ∪ [, such that it is fixed on[D and loaded on[N as shown 
in Fig. 8.2. 

8.3.1 Problem Formulation 

The open set Ω ∈ Uad, which is a set of admissible shapes (typically defined by 
the user, see Definition (8.4) for an example). As stated earlier, via structural opti-
mization, we wish to determine structures with desired mechanical properties. These 
mechanical properties can be viewed as an objective function denoted by J (Ω), that 

Fig. 8.2 Shape Ω and boundary conditions
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ought to be minimized. A general mathematical formulation of a shape optimization 
problem then reads 

inf
Ω∈Uad 

J (Ω). (8.1) 

One particular form of J (Ω) that one typically considers is 

J (Ω) =
{

Ω

m(u(Ω)) dx +
{

∂Ω

p(u(Ω))ds, (8.2) 

where u(Ω) is solution to a partial differential equation (e.g., solution to equation 
(8.9)), and m(·), p(·) are functions that are assumed to be at least C1 smooth such 
that m ', p' have a linear growth rate. These regularity assumptions are made on m(·) 
and p(·) so that the objective function is well-defined. 

The above expression of the objective J (Ω) can represent several mechanical 
properties such as the total compliance, elastic energy, stress as well as geometric 
properties such as volume and perimeter. One objective function that almost every 
researcher working on shape optimization deals with is compliance, given by 

J (Ω) =
{

Ω

f · u(Ω)dx +
{

[N 

g · u(Ω) ds, (8.3) 

where f is the body force and g, the surface force applied on the structure. Com-
pliance is the work done by the external force. Lesser compliance implies a lesser 
deformation at the zone of application of the force ([N ) and in the shapeΩ and hence 
results in a lesser energy transferred to the structure from the external force. In the 
framework of linear elasticity, compliance is directly proportional to the inverse of 
rigidity of the structure. Thus, minimizing compliance implies maximizing rigidity 
(only in the case of linear elasticity). 

Typically, the structure or the shape Ω is conceived inside a fixed design space 
D ⊂ Rd (e.g., see Fig. 8.4). The set of admissible shapes Uad is user-defined. Here, 
it is defined as 

Uad = 

⎧⎨ 

⎩Ω ⊂ D :
{

Ω

dx = Vt 

⎫⎬ 

⎭ , (8.4) 

where Vt is a target volume. The existence of optimal shapes is subject to the choice 
of Uad. For instance, if one puts a perimeter constraint on Ω in (8.4), one can show 
the existence of a global minimum to the problem (8.1). In general, the question of 
existence of optimal shapes Ω is theoretically involved and we shall not dwell into 
it (see Henrot and Pierre (2018) and Chenais (1975) for more details). Rather, we 
content ourselves with computing numerical minimizers, using a gradient-descent 
method. A priori, this results in the determination of a local minimum.
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8.3.2 Hadamard’s Approach 

Gradient-based optimization methods demand an explicit expression of the derivative 
of the objective function J (Ω). The gradient in the context of shape optimization is 
based on the notion of the Hadamard shape derivative (Allaire 2007; Allaire et al. 
2020; Henrot and Pierre 2018; Sokolowski and Zolésio 1992). As shown in Fig. 8.3, 
starting from a smooth domain Ω, the perturbation of the domain is expressed as

Ωθ = (Id + θ )(Ω), 

where θ ∈ W 1,∞(Rd , Rd ) and Id is the identity map. It is well-known that when the 
W 1,∞ norm of θ is sufficiently small, the map Id + θ is a diffeomorphism in Rd . With 
this perturbation of the domain, one can define the notion of a Fréchet derivative for 
the function J (Ω). 
Definition 1 The shape derivative of J (Ω) at Ω is defined as the Fréchet derivative 
in W 1,∞(Rd , Rd ) evaluated at 0 for the mapping θ |→ J ((Id + θ )(Ω)) i.e., 

J ((Id + θ )(Ω)) = J (Ω) + J '(Ω)(θ ) + o(θ ) with lim 
θ →0 

o(θ )
||θ||W 1,∞ 

= 0, 

where J '(Ω) is a continuous linear form on W 1,∞(Rd , Rd ). 
For the objective function (8.2), the shape derivative J '(Ω) can be written using a 
function j (Ω) such that 

J '(Ω)(θ ) =
{

∂Ω

j (Ω)θ · n dx 

(n being the outward normal to the Ω). One can then set the descent direction to 
θ = −t j  (Ω)n, where t ∈ R+ is the descent step. For the new shapeΩt = (Id + θ )Ω, 
one can formally write 

Fig. 8.3 Perturbation of Ω

using Hadamard’s method
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Fig. 8.4 Design domain D and the shape Ω

J (Ωt ) = J (Ω) − t
{

∂Ω

j (Ω)2 ds + O(t2 ). 

Choosing a descent step t sufficiently small, one can show that the left hand side of 
the above is smaller than J (Ω), which guarantees a descent. Given an initial shape
Ω, one can then apply the above gradient J '(Ω), and move the shape iteratively, min-
imizing the objective. In general, nothing ensures that our iterations would converge. 
Moreover, even in the case of convergence, one ends up in a final shape, which is 
often a local minimum, depending on the choice of the initial shape. 

As shown in Fig. 8.4, the blue region represents the shape Ω, and the blue and 
gray area represent the design space D. Typically when a structure is designed, the 
clamped and the forced boundaries are assumed to be non-optimizable. Hence in 
all our optimizations, only [ is allowed to move along θ as shown in Fig. 8.4. This  
constraint can be incorporated by introducing the space 

W 1,∞ 
0 (Rd , Rd ) = {θ ∈ W 1,∞(Rd , Rd ) : θ = 0 on [N ∪ [D} (8.5) 

and state a classical lemma, which shall use for the derivation of shape derivative. 

Lemma 1 Let Ω be a smooth bounded open set and ϕ, ψ, ξ ∈ W 1,1(Rd , R). Define 
JV (Ω), JS(Ω) and JN (Ω) by 

JV (Ω) =
{

Ω

ϕ(x)dx JS(Ω) =
{

[

ξ(x) ds, JN (Ω) =
{

[N 

ψ(x) ds 

then the functions JV (Ω), JS(Ω) and JN (Ω) are differentiable at Ω in the direction 
θ ∈ W 1,∞ 

0 (Rd , Rd ) with the derivative 

J '
V (Ω)(θ ) =

{

[

θ · nϕ ds, J '
S(Ω)(θ ) =

{

[

θ · n
)

∂ξ 
∂n 

+ H ξ
)
ds, J '

N (Ω)(θ ) = 0, 

where H is the mean curvature of ∂Ω (assumed to be smooth).
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In Lemma 1, one differentiates a functional whose integrand functions are inde-
pendent ofΩ. To determine a shape derivative, one ought to differentiate (8.2), whose 
integrand functions (m(u(Ω)) and p(u(Ω))) are dependent on Ω. This dependency 
arises from the fact that u(Ω) is solution to the partial differential equation defined 
on Ω. One thus needs to determine the derivative of u(Ω) with respect to Ω. In this 
regard, there exist two notions of derivatives: Eulerian and Lagrangian. We do not 
expound on the Eulerian and Lagrangian derivatives (see Allaire (2007) for  more  
details). Instead, we use the “fast derivation” method, proposed by Céa (1986). This 
method is presented for linear elasticity in Sect. 8.3.3, plasticity in Sect. 8.6.4 and 
fracture in Sect. 8.8.3. 

8.3.3 Shape Derivative Computation for Linear Elasticity 

Structural optimization is often performed assuming the structure to be linear with 
respect to external forcing. Linear elasticity is a mathematical model that assumes all 
mechanical deformations to be linear with respect to the external force. Throughout 
this chapter, we use the convention of representing all scalar mathematical entities 
by lowercase italic alphabets. The structure is represented by Ω as  shown in Fig.  8.2. 
Let Md 

s represent the set of symmetric d × d matrices, I represent the fourth-order 
identity tensor of dimension d, u : Ω → Rd denote the displacement field, σ denote 
the second order stress tensor, ε(u) denote the second order strain tensor, and n 
denote the outward normal to ∂Ω. σ and ε(u) are second order tensors of dimension 
d. The structure when subjected to a body force f : Ω → Rd and a surface force 
g : [N → Rd respects the momentum balance equation: 

div(σ ) + f = 0 in Ω, (8.6a) 

σ · n = g on [N , (8.6b) 

σ · n = 0 on [, (8.6c) 

u = 0 on [D. (8.6d) 

In the framework of linear elasticity, the mechanical displacement is assumed to be 
small. In this case, the strain tensor ε(u) is given by 

ε(u) = 
1 

2

(∇u + (∇u)T
)
, 

and the constitutive law is given by 

σ = Cε(u), (8.7)
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where C is the Hooke’s tensor. The Hooke’s tensor C is a fourth-order tensor of 
dimension d and for a structure composed of an isotropic material, given by 

C = λ1 ⊗ 1 + 2μI, 

where λ, μ are the Lamé coefficients and 1 is second order identity tensor of dimen-
sion d. For most materials, the tensor C is coercive, i.e., there exists c0 > 0 such 
that, 

Cξ : ξ ≥ c0|ξ |2 ∀ξ ∈ Md 
s . (8.8) 

Then using Eqs. (8.6) and the constitutive equation (8.7), the linear elasticity model 
is given by 

div(Cε(u)) + f = 0 in Ω, (8.9a) 

Cε(u) · n = g on [N , (8.9b) 

Cε(u) · n = 0 on [, (8.9c) 

u = 0 on [D. (8.9d) 

For applying Céa’s method (of computing the shape derivative), the above must 
be converted to its weak form. Multiplying the above by a smooth test function v, 
integrating it by parts, and using the boundary conditions prescribed in (8.9), we get 
the weak form

{

Ω

Cε(u) : ε(v) dx =
{

Ω

f · v dx +
{

[N 

g · v ds (8.10) 

In the context of shape optimization for linear elasticity, the above weak form is 
called as the state equation and the solution u to it, the state solution. In order to find 
the state solution, we define the displacement space 

V = {u ∈ H 1 (Ω)d such that u = 0 on [D}. (8.11) 

This space is complete with a norm ||·||V defined as

||u||2 V =
{

Ω

u · u dx +
{

Ω

∇u : ∇u dx . 

Let a : V × V → R be a bilinear form, defined as 

a(u, ϕ) =
{

Ω

Cε(u) : ε(ϕ)dx . (8.12)
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and l : V → R be a linear form given by 

l(ϕ) =
{

Ω

f · ϕ dx +
{

[N 

g · ϕ ds. 

Then using the bilinear form a(·, ·) and the linear form l(·), and choosing the test 
function v ∈ V , the weak form (8.10) can be written in a compact manner as: find 
u ∈ V such that 

a(u, v) = l(v) ∀v ∈ V . (8.13) 

Given the coercivity of the Hooke’s tensor and the Korn’s inequality, one can show 
that 

∃α >  0 such that α ||v||2 H 1(Ω) ≤ a(v, v). 

Thus, the bilinear form a(·, ·) is coercive, or stable. If f , g ∈ V ' (the dual space of 
V ), one can show that the linear form l(·) is continuous. The coercivity of a(·, ·) and 
the continuity of l(·) allows us to apply Lax-Milgram’s Lemma to (8.13) leading to 
the existence of a unique solution u ∈ V . 

We now consider the objective function (8.2) [where u(Ω) is the solution to 
(8.13)]. The shape derivative for this objective is determined using Céa’s method. 
Explained in one line, this method is a Lagrange multiplier method where the objec-
tive (8.2) is minimized with the differential equation (8.9) viewed as a constraint. In 
this method, one constructs a Lagrangian by assuming the variable u to be indepen-
dent of Ω, and by introducing a Lagrange multiplier v (a variable defined in Rd ). 
One then proceeds to apply the optimality condition on the Lagrangian with respect 
to its variables, u, v,Ω. The optimality condition on the resulting Lagrangian results 
in an adjoint equation (a partial differential equation to determine v). For this opti-
mality condition to hold, the adjoint equation must be well-posed. Furthermore, to 
determine the shape derivative, one must differentiate the Lagrangian with respect 
to Ω at u(Ω). This differentiation is justified if u(Ω) is differentiable with respect 
to the shape Ω. This is a strong requirement and often taken for granted. Hence, 
Céa’s method can be used to determine the shape derivative if the adjoint equation 
is well-posed and u(Ω) is differentiable respect to Ω. 

We now demonstrate the computation of shape derivative for linear elasticity using 
Céa’s method. 

Theorem 1 Let Ω ⊂ Rd be a smooth bounded open set. Let f ∈ H 1(Rd )d , g ∈ 
H 2(Rd )d and u(Ω) ∈ V the solution to (8.13). Then the shape derivative of J (Ω) 
along θ ∈ W 1,∞ 

0 (Rd , Rd ), J '(Ω)(θ ) is given by 

J '(Ω)(θ ) =
{

[

θ · n
(
m(u) + Cε(u) : ε(v) − f · v

)
ds (8.14) 

where v(Ω) ∈ V is the solution to the adjoint problem,
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a(v, ϕ) = −
{

Ω

m '(u) · ϕ dx −
{

[N 

p'(u) · ϕ ds ∀ϕ ∈ V , (8.15) 

which can be easily shown to be well-posed. 

Proof Define space Ṽ (analog of the space V given in (8.11)) 

Ṽ = {u ∈ H 1 (Rd )d such that u = 0 on [D}. (8.16) 

As per Céa’s technique (J. Céa 1986), for ũ, ṽ ∈ Ṽ , a Lagrangian is constructed 

L(Ω, ũ, ṽ) =
{

Ω

m( ̃u) dx +
{

[N 

p(ũ) ds + a(ũ, ṽ) −
{

Ω

f · ṽ dx −
{

[N 

g · ṽ ds. 

(8.17) 
The variables ũ, ṽ are defined on the full space Rd and are thus independent of Ω. 
Although ũ and ṽ are chosen such that they vanish on [D , they do not depend on Ω

since [D is a fixed boundary. 
Given the construction of L (8.17), applying the optimality condition on L with 

respect to the independent variables u, v and Ω yields the state equation, the adjoint 
equation and the shape derivative, respectively. 

The optimality condition on L with respect to ṽ amounts to differentiating it with 
respect to the adjoint variable ṽ along ϕ ∈ Ṽ , equating it to zero, followed by the 
substitution ũ = u, resulting in 

∂L 
∂v 

(ϕ) = a(u, ϕ) −
{

Ω

f · ϕ dx −
{

[N 

g · ϕ ds  = 0 ∀ϕ ∈ Ṽ . 

The bilinear form a(·, ·) in the above being defined only on Ω, we can replace Ṽ by 
V . We thus recover the state equation (8.13). In a similar way, we apply the optimality 
condition on L with respect to ũ at ũ = u, ṽ = v, 

∂L 
∂u 

(ϕ) =
{

Ω

m '(u) · ϕ dx +
{

[N 

p'(u) · ϕ ds + a(ϕ, v) = 0 ∀ϕ ∈ Ṽ . 

Since all integrals in the above are defined only on Ω, we can replace Ṽ by V . We  
thus obtain the following adjoint equation: 

a(v, ϕ) = −
{

Ω

m '(u) · ϕ dx −
{

[N 

p'(u) · ϕ ds ∀ϕ ∈ V . 

Finally, using the relation J (Ω) = L(Ω, u, ṽ), we determine the shape derivative 
J '(Ω)(θ ) for any θ ∈ W 1,∞ 

0 (Rd , Rd ) by chain differentiation rule
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J '(Ω)(θ ) = 
∂L 
∂Ω

(θ ) + 
∂L 
∂ u

)
∂u 
∂Ω

(θ )
)

. 

Now, using the adjoint equation, the last term annihilates in the above and we get 

J '(Ω)(θ ) = 
∂L 
∂Ω

(θ ). 

Formula (8.14) is deduced by straightforward application of Lemma 1. ⬜

As mentioned earlier, the Céa’s method in the above was applied assuming the 
adjoint equation to be well-posed. Fortunately, the adjoint equation (8.15) turned 
out to be well-posed. This is because the constraint in the method was the elasticity 
equation (8.9), which is linear and well-posed. However, if instead we had a nonlinear 
equation or an inequation as constraint, nothing would guarantee that the adjoint 
equation shall be well-posed. In such a case, we apply the Céa’s method assuming 
the adjoint equation to be well-posed. And after deriving the shape derivative, we 
check if the adjoint equation is well-posed or not. This shall be our approach in 
plasticity and fracture (Sects. 8.6.4 and 8.8.3). 

8.4 Level-Set Method 

Any topology optimization method necessitates a way to define and alter a topology 
of the shape. The method must ensure that topology changes are captured. One 
obvious possibility is to parametrize the boundary [ of the shape Ω and move the 
boundary along its normal n by the magnitude of the shape derivative. This approach 
cannot capture topology changes. 

The level-set method was introduced by Osher and Sethian (2006) to capture the 
flame front in combustion. They proposed to use the zero isovalue of a continuous 
function to define the boundary ∂Ω of a shape Ω. The function defining a shape 
is such a manner is called a level-set function as each level or value represents a 
boundary and thus a shape. The mathematical formulation being, for Ω ∈ Rd , the 
level-set function φ : D → R is defined as 

⎧⎨ 

⎩ 

φ(x) <  0 if  x ∈ Ω, 
φ(x) = 0 if  x ∈ [, 
φ(x) >  0 if  x ∈ Ω

c 
(8.18) 

where [ is the movable part of the boundary ∂Ω and D is the design space as shown 
in Fig. 8.4. This level-set method was adapted to the shape optimization framework 
in Allaire et al. (2002), Sethian and Wiegmann (2000) and Wang et al. (2003). The 
crux of the method lies in letting the shape deform along a velocity field θ : D → Rd . 
The evolution of the shape is governed by the transport equation
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∂φ 
∂t 

+ θ · ∇φ = 0. (8.19) 

Very often, the velocity field is oriented along the normal, namely θ = θn where 
n = ∇φ/|∇φ| and the scalar function θ is the normal velocity. In such a case, (8.19) 
can be re-written as a Hamilton–Jacobi equation 

∂φ 
∂t 

+ θ |∇φ| =  0. (8.20) 

In the framework of shape optimization, the normal velocity θ is chosen to be j (Ω) 
[the integrand in (8.14)]. In the Hamilton–Jacobi equation above, if the initial level-
set φ is such that |∇φ(x)| =  1, every point x ∈ [ shall move along the normal 
n by a value that is exactly equal to the magnitude of the shape derivative. Thus, 
it is preferable to construct a level-set such that |∇φ(x)| =  1 on [. One possible 
construction is the signed distance function (Osher and Fedkiw 2003), dΩ is defined 
such that 

∀x ∈ D, dΩ(x) = 

⎧⎪⎨ 

⎪⎩ 

min |P[(x) − x| if x ∈ Ω, 
0 if  x ∈ [, 
− min |P[(x) − x| if x ∈ Ω

c 
, 

(8.21) 

where P[ is the orthogonal projection of x on [. Since Ω is not necessarily convex, 
the orthogonal projection P[(x) is not necessarily unique. In order to define dΩ(x) 
uniquely, we take the min of all possible projections P[(x) in the definition (8.21). 

As an example, we plot the signed distance level-set function dΩ in Fig. 8.5, 
where Ω is the statue of liberty. When one solves the transport equation (8.19), the 

Fig. 8.5 Signed distance level-set function φ representing statue of liberty (in black)
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level-set function φ evolves and its corresponding shape. Since the shape evolves, the 
shape derivative evolves as well. The descent direction θ , that depends on the shape 
derivative must evolve, but is assumed to be constant. Since the transport equation 
(8.19) is solved for a very small time step (8.30), this assumption on θ turns out to 
be fairly robust. 

Moreover, descent direction θ is defined using the shape derivative and not the 
topological derivative. Yet resolution of the transport equation results in topological 
changes in the shape. When the topological changes occur, there is no guarantee that 
the objective function shall diminish. Nevertheless, we use the shape derivative to 
perform topology optimization. 

In our numerical setting, we work with the linear transport equation (8.19) because 
we use non-cartesian meshes. The level-set function is a P1 function on a simplicial 
mesh. The initial level-set function that is given as input to Eq. (8.19) is chosen as 
φ = dΩ (8.21). We rely on the library advect (Bui et al. 2012) which solves (8.19) 
by the method of characteristics, known to be unconditionally stable. The equation 
(8.19) is solved for a small time interval δt (specified in Algorithm 1). The result is 
a new level-set function representing the updated shape. However, the new level-set 
function is no longer a signed distance function. Hence, the level-set function ought 
to be re-initialized. This is brought about by using a library mshdist (Dapogny and 
Frey 2012). The library mshdist re-initialize by solving the Eikonal equation. 

8.4.1 Ersatz Material Approach 

In the original level-set method (Allaire et al. 2002; Sethian and Wiegmann 2000; 
Wang et al. 2003), the mesh for the design space D (see Fig. 8.4) is kept fixed for all 
the shape optimization iterations. The computation of the state equation (8.13) and 
the adjoint equation (8.15), is brought about in the entire design space D (instead 
of Ω). This is done by assuming that the “void” space D\Ω has an ersatz material 
(having a very small stiffness). The Hooke’s tensor C is modified to C∈(Ω), using a 
density function ρ∈(Ω) 

ρ∈(Ω) = (χΩ + (1 − χΩ)∈) , C∈(Ω) = ρ∈(Ω)C, (8.22) 

where χΩ is the characteristic function of the domainΩ and ∈ is the residual stiffness. 
The displacement solution now becomes a function of the ersatz material stiffness, 
denoted by u∈(Ω) and is slightly different from the solution obtained without ersatz, 
u(Ω). This is difference is proportional to ∈ and is given by the estimate (Dambrine 
and Kateb 2010)

||u − u∈||H 1(Ω) ≤ C(Ω, D, f , g)∈

where C is a constant. In practice, ∈ is typically taken to be 10−3. The characteristic 
function χΩ is P1 on a simplicial mesh. Using this stiffness the variational formulation 
(8.13) is defined on the entire design space D. The advantage of the ersatz approach



8 Topology Optimization in Linear Elasticity, Plasticity … 137

Fig. 8.6 Ersatz material density ρ∈(Ω) 

is the fact that no remeshing is needed, and all the calculations can be performed 
on the same mesh. The topological changes are easily captured on the same mesh. 
However, there are two drawbacks: 

1. The computation time of state and adjoint equations on D is higher compared 
to the same computation on Ω only 

2. There are intermediate densities in the mesh elements containing ∂Ω as seen in 
Fig. 8.6a 

In order to deal with the first drawback, one may consider eliminating the entries in 
the stiffness matrix corresponding to the ersatz material, to end up with a stiffness 
matrix that is relatively smaller. However, in this approach, the intermediate densities 
still remain. To deal with the second drawback, there are two solutions: 

1. XFEM (Villanueva and Maute 2014) 
This involves eliminating mesh elements consisting of ersatz and cutting the 
mesh elements on boundary[, so as to capture the shapeΩ as shown in Fig. 8.6b. 
The issue with this approach being, one might end up with heavily distorted 
boundary elements. This leads to an ill-conditioned stiffness matrix having a 
very small coercivity constant. 

2. CutFEM (Burman et al. 2015) 
This involves eliminating mesh elements consisting of ersatz and enriching the 
finite element basis function of the interface zone (the elements containing the 
boundary [). This along with a ghost penalty term on the interface zone can 
ensure that the coercivity constant is controlled and the stiffness matrix remains 
well-conditioned. 

An alternative to the XFEM and the CutFEM approach is remeshing the whole 
domain D, explained in the next subsection and considered in the rest of the chapter.
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8.4.2 Remeshing 

One method to avoid intermediate densities on the boundary[ (as seen in Fig. 8.6a) is 
remeshing. By remeshing, we mean construction of a body-fitted mesh that captures 
the boundary of the shape Ω. In this remeshing approach, the mesh quality can be 
controlled, resulting in stiffness matrix, that is well-conditioned compared to the 
XFEM approach. Moreover, no additional penalty terms are needed as in CutFEM 
approach. The remeshing approach (using the level-set method) was first adapted to 
topology optimization by Dapogny (2013), Dapogny et al. (2014),  Bui et al. (2012) 
and Allaire et al. (2014)). Later, several applications were developed, for instance, 
for fluid-structure interaction (Feppon et al. 2019), heat exchangers (Feppon et al. 
2020), etc. The only downside of this approach is the remeshing computing time. 

The application of remeshing in the context of shape optimization is explained 
with the following example. As shown in Fig. 8.7a, consider an initial shape and its 
corresponding mesh (in green). For this shape, the velocity for advection is computed 
using the formula (8.32), resulting in θ as shown in Fig. 8.7b. Using this velocity 
field, the transport equation (8.19) is solved for a time step τ [given in (8.30)] using 
advect (Bui et al. 2012), resulting in the new shape in Fig. 8.7c (marked with red 
lines). This new shape is then remeshed (using a tool MMG, explained below) to obtain 
the body-fitted mesh (8.7d). Finally, for the new shape, the signed distance level-set 
function is computed using mshdist (Dapogny and Frey 2012). 

Body-fitted remeshing can be carried out using an open-source library MMG 
5.5.2 (Dapogny et al. 2014). MMG is a remeshing tool that can not only remesh 
to capture a shape (defined by a level-set function) but also to improve the quality 

Fig. 8.7 Shape capturing using advection and remeshing
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of the mesh. The documentation of MMG can be found online 1. The program has to 
be launched via command line. In order to launch it, the user has to give several 
parameters (a few optional ones) as input. The parameters that ought to be defined 
for our application are 

1. hmax: the prescribed maximal mesh size 
2. hmin: the prescribed minimal mesh size 
3. hausd: the Hausdorff metric (to refine mesh according to the curvature of ∂Ω) 
4. rmc: the volume fraction of small floating island inside or outside the domainΩ

to be removed, as islands outside the domain Ω may make the stiffness matrix 
non-invertible 

5. nr: a flag to avert MMG about detecting edges and corners of Ω

6. sol: a flag to give the level-set function as input 

hmin is the prescribed lower bound on the minimal mesh size and not the actual 
minimal mesh size. Hence, the minimal mesh size of the mesh generated by MMG can 
be very well bigger than hmin. In the  same  way  hmax is the prescribed upper bound 
on the maximal mesh size and not the actual maximal mesh size. The parameter that 
takes precedence over hmin and hmax is hausd. This parameter is a measure of 
mesh refinement, lesser the value, more the refinement. The mesh refinement is by 
default according to the curvature of the boundary ∂Ω,, but it can also be according 
to a predefined metric function. If hausd is too small, the minimal mesh size may 
be lesser than hmin as hausd is given preference. The parameters hmin and hmax 
are thus not always respected in order to create a good quality mesh. 

For any test case in this entire thesis, we first choose hmin in a heuristic manner. 
Using this, we define the above parameters as for 2D geometries as 

hmax = 2 hmin, hausd = 0.1 hmin, rmc = 20 hmin2 , (8.23) 

and for 3D geometries as 

hmax = 2 hmin, hausd = 0.5hmin, rmc = 10 hmin3 . (8.24) 

This choice of these parameters is very much based out of heuristics. 
The mesh file given as input to MMG to construct a body-fitted mesh must contain 

the list of corners and edge vertices of the design space D. If the mesh file does not 
contain this list, while MMG remeshes, the corners and edges might be smoothened, 
leading to a filet. In order to avert MMG about the corners and edges, one needs to 
remesh the first mesh of the shape optimization using MMG without the flag nr. An  
example of the command that ought to be given in the command line is 

mmg2d_03 −rmc 0.0005 −hmax 0.01 −hmin 0.005 −hausd 0.0005 
levelsetmesh .mesh −sol levelsetmesh . sol 

1 https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options. 

https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options
https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options
https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options
https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options
https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options
https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options
https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options
https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options
https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options
https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options
https://www.mmgtools.org/mmg-remesher-try-mmg/mmg-remesher-options
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This creates a list of corner and edge vertices in the output file. For the succeeding 
iterations, the flag nr need to be given and the command to remesh reads 

mmg2d_03 −rmc 0.0005 −hmax 0.01 −hmin 0.005 −nr −hausd 0.0001 
levelsetmesh .mesh −sol levelsetmesh . sol 

for the remaining iterations. 

8.4.3 Regularization and Extension of the Shape Derivative 
(8.14) 

In a typical topology optimization algorithm, the shape derivative (also known as 
sensitivity) must be smoothed. This is typically done by solving a partial differential 
equation. In the density-based methods, such a smoothing algorithm is known as 
a sensitivity filter (Bendsoe and Sigmund 2004; Lazarov and Sigmund 2011) and 
plays a pivotal role in avoiding numerical instabilities. In level-set-based methods, 
smoothing (or regularization) plays a crucial role in ensuring the smooth evolution of 
the topology (Allaire et al. 2002; Burger 2003; De Gournay 2006). Such a smoothing 
is very classical and well-known in geometric optimization for a long time (Moham-
madi and Pironneau 2001). 

The shape derivative computed numerically using the expression (8.14) is typi-
cally not very smooth. There are two factors that contribute to this lack of smoothness. 
First, during the shape optimization process, the intermediate shapes may have sharp 
boundaries. So the shape derivative may not be rigorously defined on the optimizible 
boundary [. Second, when u is P1 smooth, the shape derivative (8.14) is  P0 smooth 
(an example plotted in Fig. 8.8a). Given the lack of smoothness, it is imperative to 
regularize the shape derivative (Burger 2003; De Gournay 2006) in such a way that 
it is still a descent direction. One possibility is to consider the H 1 scalar product 
instead of the L2 scalar product by finding a function d jα(Ω) ∈ H 1(D). We intro-
duce a regularization parameter 0 < α << 1 and solve the variational problem: find 
d jα(Ω) ∈ H 1(Ω) such that 

Fig. 8.8 Shape derivative plot



8 Topology Optimization in Linear Elasticity, Plasticity … 141

{

D 

(α2∇d jα(Ω) · ∇ϕ + d jα(Ω)ϕ)dx =
{

[

j (Ω)ϕ ds ∀ϕ ∈ H 1 (Ω). (8.25) 

Typically, α is taken to be hmin or hmax (the minimal or maximal mesh size, respec-
tively). Larger the parameter, greater the regularization. One can quite easily demon-
strate that the above problem (8.25) is well-posed and admits a unique solution 
d jα(Ω) ∈ H 1(Ω). 

8.4.4 Imposing a Non-optimizable Domain 

Having regularized the shape derivative in the previous subsection, we can easily 
perform the advection by solving (8.19) [using  advect library (Bui et al. 2012)]. 
After advection, we might wish to impose a non-optimizable domain Ωnon. Typical 
non-optimizable domains are around the zone of application of force [N , or around 
the Dirichlet boundary, an example is given in Fig. 8.9. To do this, assume that after 
the advection and the volume correction at optimization iteration i (the 8-th step of the 
Algorithm 1), we determine the level-set φi+1 and a shape Ωi+1, which must contain 
a non-optimizable domain. Let φnon be the signed distance function corresponding 
to Ωnon. Then in order to impose this domain, we simply modify φi+1 using 

φnon 
i+1 = min(φi+1, φ

non ), (8.26) 

just before remeshing at the end of optimization iteration i. The level-set function 
φnon 
i+1 is later re-initialized using mshdist. As an example, we show Fig. 8.9, where 

a non-optimizable domain has been imposed. Another possibility of imposing a non-
optimizable domain is via solving (8.25) with a homogeneous Dirichlet boundary 
condition imposed on d j  (Ω) inΩnon. This possibility is not explored here as it might 
result in artificial changes in the shape derivative around Ωnon. 

Fig. 8.9 The shape Ωi+1 after the application of the non-optimizable domain using (8.26)
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8.4.5 Shape Optimization Algorithm 

Assume that the design space D contains a non-optimizable domain Ωnon and its 
complementary set, the optimizable domain, D\Ωnon. By volume of the domain, we 
mean the volume of the optimizable domain. The space of admissible spaces is thus 
redefined as 

Uad = 

⎧⎪⎨ 

⎪⎩Ω ⊂ D : VΩ =
{

Ω\Ωnon 

dx = Vt 

⎫⎪⎬ 

⎪⎭ 
, (8.27) 

We consider the shape optimization problem 

min
Ω∈Uad 

J (Ω). 

In order to ensure that the optimized shape satisfies the volume constraint in (8.27), 
we follow the following strategy (which is different from the strategy in Allaire et al. 
(2002)) by constructing the following Lagrangian 

L(Ω, λ) = J (Ω) + 
λ 
CV 

(VΩ − Vt ) , (8.28) 

where λ is the Lagrange multiplier for the volume constraint, VΩh is the volume of the 
optimizable domain, and CV is a normalization constant. The optimizable domain is 
D unless otherwise mentioned. Denoting by Ω0 the initial shape, the constant CV is 
defined by 

CV =
||VΩ0 − V f

|| . (8.29) 

We apply a standard gradient-based Uzawa-type algorithm to the Lagrangian (8.28). 
Let Imax = 200 be the maximal number of shape optimization iterations. The itera-
tion number is denoted by i with 1 ≤ i ≤ Imax. At each iteration i , once the shape 
derivative d jα(Ωi ) is evaluated by (8.25), a pseudo-time step (or descent step) τ is 
defined by 

τ = 
hmin 

2Ci 
, (8.30) 

where hmin is the minimal mesh size of the first iteration and Ci is a normalization 
constant, given by 

Ci =
{

∂Ωi 

|d jα(Ωi )| dx . 

Updating the constant Ci at every iteration of the optimization process ensures a 
control of the descent step τ . 

For every optimization iteration, the simplest choice of the multiplier λ is the one 
that ensures that the volume constraint is satisfied. If the initial volume is much larger
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than the target volume, we might deflate the holes too much and break the structure
Ω. We thus prefer not to satisfy the volume constraint at all iterations, instead update 
the multiplier λ at each iteration by 

λi+1 = λi + 
Ci τ 
CV

(
VΩi − V f

)
, (8.31) 

ensuring that the volume will converge (slowly) to the target volume. Then, for the 
descent step τ , the transport equation (8.19) is solved with a velocity θi , given by 

θ i =
)
d jα(Ωi ) + 

λi+1 

CV

)
n, (8.32) 

where n = ∇φi is the normal to the level-set function associated to the shape Ωi . 
To improve the satisfaction of the volume constraint, we apply the following trick. 

As soon as the volume is close to the volume target, namely |Vi+1 − V f | ≤  10−1V f , 
we apply a projection algorithm to satisfy the target volume exactly. More precisely, 
the level-set φi+1 is iteratively updated by 

φi+1 = φi+1 + 
VΩi+1 − V f{

∂Ωi+1 
ds 

, (8.33) 

until |VΩi+1 − V f | ≤  10−4V f . The newly obtained shape VΩi+1 is remeshed with MMG 
(Dapogny et al. 2014). Eventually, the objective function J (Ωi+1) is evaluated but is 
not compared to the previous value J (Ωi ). Summing up this subsection, we basically 
implement Algorithm 1. The shape optimization algorithm used in the succeeding 
sections is very similar to the Algorithm 1, modulo a few differences. 

Algorithm 1 Repeat over i = 1, . . . ,  Imax 

1. Solve (8.13) for the state solution u on the mesh of Ωi 
2. Solve (8.15) for the adjoint solution v on the mesh of Ωi 
3. Compute the shape derivative J '(Ωi ) using (8.14) and regularize it by solving (8.25) for  

d jα(Ωi ) 
4. Update the multiplier λi+1 using (8.31) 
5. Solve the transport equation (8.19) with the velocity given by (8.32) for the pseudo-time step 

τ given by (8.30) to obtain the new level-set function φ̃i+1 
6. Re-initialize φ̃i+1 to the signed distance function φi+1 (defining a new shape Ωi+1) 
7. Compute the volume VΩi+1 . If it is close to the volume target, apply the projection algorithm 

(8.33) to satisfy exactly the volume constraint. 
8. Impose non-optimizable domain using (8.26) 
9. Remesh the box D using MMG (Dapogny et al. 2014) to obtain the body-fitted mesh of the new 

shape Ωi+1 
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8.5 Numerical Results: Linear Elasticity 

In this section, we shall study briefly, a few well-known test cases (cantilever, L-
beam, etc.). The material properties are taken to be E = 210 GPa and ν = 0.3. The 
finite element computations are brought about on an open-source software FreeFEM 
(Hecht 2012). In all the test cases in this section, only surface forces are applied and 
body forces are not applied. The finite element mesh consists of tetrahedral elements 
and the displacement solution u ∈ P1(Ω)3. 

8.5.1 3D Cantilever 

We consider a cantilever beam of dimensions 5m  × 2.4m  × 3m, as shown in 
the Fig. 8.10. The cantilever beam is fixed on its leftmost plane, forced down-
wards on a circular region of radius 0.1 m on its rightmost plane (in chrome) 
with g = (0, 0, −1000) MN/m. The compliance (8.3) is minimized. A target volume 
Vt = 6m3 is imposed. We show the initial shape and the final shape in Fig. 8.11. The  
corresponding convergence histories are plotted in Fig. 8.12. The optimal shape we 
have obtained in Fig. 8.11 seems to have a fairly simple topology, with a plate-like 
structure at the center. The shape resembles an I-beam with varying length. This is 
quite expected from an engineering perspective as I-beams are known to be extremely 
stiff structures. The same 3D cantilever beam optimized using the ersatz material 
approach might result in an optimal shape with several bars (see Fig. 8.11c) instead of 
plate-like structures. Moreover, in the ersatz material approach, if the target volume 
fraction is decreased, the chances of seeing bar-like structures is higher rather than 
seeing plate-like structures, like in the remeshing approach. This is because remesh-
ing can capture thin structures precisely, leading to a more accurate shape derivative 
and a higher tendency of creating plates rather than bars. 

In Fig. 8.12, we observe that the compliance grows initially. This is because the 
optimization Algorithm 1 seems to favor the minimization of volume at the start. 

Fig. 8.10 Boundary 
condition applied on the 3D 
cantilever beam
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Fig. 8.11 Cantilever beam, minimization of compliance (8.3) 

Fig. 8.12 Convergence history for the shape in Fig. 8.11
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Then at iteration 44, the level-set is projected [as explained in (1] so as to satisfy the 
target volume Vt exactly. This results in a spike in the compliance. After this iteration, 
the volume remains constant (because of the projection of the level-set), whereas the 
compliance effectively decreases. Also, we note that there are small oscillations in the 
compliance in Fig. 8.12. This is because of the fact that we compute the continuous 
shape derivative and use it for the discretized problem, rather than finding the shape 
derivative for the discretized problem. While remeshing helps to capture the shapeΩ

very well, resulting in a better calculation of the solution u and the shape derivative 
(compared to ersatz material approach in 8.4.1), it adds to a slight fluctuation in the 
objective function. This is because the change in mesh is not taken into account in 
the continuous shape derivative. 

8.5.2 3D L-beam 

We study an L-beam as shown in Fig. 8.13. The L-beam is fixed on the topmost 
surface (in red) and forced on a small circular part on the left (in gold). The circular 
region has a radius of 0.1m. The surface force reads g = (0, −1, 0) MN/m. Here again 
the compliance (8.3) is minimized. We show the initial meshed shape and the final 
meshed shape for linear elasticity in Fig. 8.14 and the corresponding convergence 
histories are plotted in Fig. 8.15. Like in the cantilever test case, the optimal shape 
consists of a plate-like structure at the center. As seen in Fig. 8.15, the compliance 
decreases well after the volume constraint is satisfied at the 15-th  iteration. In the 
convergence for compliance seems to be smoother than the same convergence for 
the cantilever beam in the previous section. This is because the mesh considered for 
the L-beam optimization is more refined than the one used for cantilever beam. A 
refined mesh results in a better computation of the shape derivative. 

Fig. 8.13 3D L-beam 
boundary conditions
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Fig. 8.14 Meshed L-beam, minimization of compliance (8.3) 

Fig. 8.15 Convergence history for the shape in Fig. 8.14 

8.6 TO in Plasticity with Linear Kinematic and Linear 
Isotropic Hardening 

We now discuss and adaptation of topology optimization to plasticity model. Most 
of the content in this section can be found in a recent publication (Desai et al. 2021). 
In design of structures involving steel, a plasticity model is often used in order 
to determine the plastic strain, or the permanent deformation, which occurs in the 
structure when it undergoes a stress that exceeds a value known as the yield strength 
(Han and Reddy 2013). As the time-dependent force evolves, if the yield strength 
remains constant everywhere in the structure, the resulting phenomenon is called 
perfect plasticity; otherwise, it is called plasticity with hardening. Using a hardening 
law, one can determine the shift in the yield strength and measure how ductile the 
material is. Plasticity modeling has been developed significantly since the 1960s. At 
the heart of the model lies the Hill’s principle and its equivalent Drucker–Illyushin 
principle (Marigo 2000).
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Very often, the plasticity model is simplified by assuming that the evolution of 
the force is slow. This assumption results in a quasi-static plasticity model, which 
has been largely studied theoretically. The model, when written in its variational 
formulation, is an inequality, which can be expressed either in a dual form or in 
a primal form. The primal form is relevant as it can be shown to be a well-posed 
problem (Han et al. 1997). While the primal formulation illuminates the theoretical 
properties of the solution to the plasticity problem, it is very hard to resolve numeri-
cally. Therefore, one instead resorts to the radial return algorithm (Simo and Hughes 
2006; Simo and Taylor 1986) which involves discretizing the governing equations 
of (hardening-based) plasticity using an implicit Euler scheme. 

Most of the shape and topology optimization algorithms are developed for lin-
earized elasticity problems while less focus is given to the nonlinear ones. Non-
linearities can arise due to material properties (plasticity, damage), contact bound-
ary conditions, hyper-elasticity (Klarbring and Strömberg 2013), large displacement 
(large strain Buhl et al. 2000; Wallin et al. 2015, finite strain Wallin et al. 2016) and 
structural buckling (Lindgaard and Dahl 2013). Topology optimization using den-
sity approaches or solid isotropic material with penalization (SIMP) was applied to 
elasto-plastic problems (Bogomolny and Amir 2012; Kato et al. 2015; Li et al. 2017; 
Maute et al. 1998; Wallin et al. 2016), visco-elastic problems (James and Waisman 
2015b) and visco-elasto-plastic problems (Nakshatrala and Tortorelli 2016). 

A common feature in all the works involving density-based approach is the 
determination of a design gradient by differentiating the space and time discretized 
schemes of the plasticity models, which are approximated using a fictitious mate-
rial density. The material properties like the Young’s modulus and the hardening 
coefficients are modified using this material density raised to a certain exponent. 
This exponent is different for every mechanical property and ought to be chosen in 
an ad hoc manner, ensuring numerical stability. The optimized shape obtained has 
intermediate densities undergoing a plastic flow, which might actually be artificial. 
In the level-set framework, since the material properties are not approximated using 
material densities, such artificial plastic zones are avoided. 

The level-set method for topology optimization has been applied to a simplified 
version of perfect plasticity in Maury et al. (2018). There, the first time step of time 
discretized perfect plasticity (also known as the Hencky’s model) was approximated 
using Perzyna penalization, and the resulting approximation was shown to be well-
posed. The model did not take into account hardening laws, the time dependence 
or the irreversibility of the plasticity problem. As soon as one incorporates the irre-
versibility of the plastic flow and hardening laws, one ends up with a variational 
inequation with a complex theoretical and numerical treatment. 

In this section, we present the level-set method applied to quasi-static plasticity 
with linear kinematic and linear isotropic hardening. Unlike the previous works, 
the quasi-static plasticity is considered in its primal form and the shape derivative 
is determined for the continuous problem. The primal form being non-smooth is 
not differentiable. Nevertheless, we construct an approximate problem that is differ-
entiable using a penalization and regularization technique. The approximate prob-
lem is well-posed, and the corresponding solution converges to the actual solution.
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Fig. 8.16 Boundary 
conditions on the structure Ω

Then, we compute the shape derivative for minimizing an objective function with 
the approximate problem as a constraint. As usual, this shape derivative involves an 
adjoint problem. Thanks to the proposed penalization and regularization, the time 
discretized version of this adjoint problem is proved to be well-posed. It is well known 
that the original primal problem is not differentiable in the usual sense but admits 
only a so-called conical derivative (see Maury et al. 2018; Mignot 1976; Sokolowski 
and Zolésio 1992). The efficiency of the proposed shape derivative (obtained with 
penalization and regularization process) is assessed by optimizing some numerical 
examples in 2D and 3D. The plasticity problem is numerically solved using the radial 
return algorithm. 

We first present the laws governing plasticity with linear kinematic and isotropic 
hardening in Sect. 8.6.1. Using these laws, we derive the primal variational for-
mulation in Sect. 8.6.2. This formulation is further subjected to penalization and 
regularization in order to make it differentiable in Sect. 8.6.3. This section closes 
with some statements about the well-posedness and the convergence of the solution 
of the penalized-regularized plasticity model toward the actual solution. 

8.6.1 Governing Equations 

We consider a structure represented by a smooth bounded open set Ω ⊂ Rd , d = 
2 or 3 and a bounded time interval [0, T ]. Let  Md 

s denote the set of symmetric 
d × d matrices and I represent the fourth-order identity tensor of dimension d. The 
structure, having a boundary ∂Ω = [N ∪ [D ∪ [, is fixed on [D and loaded on
[N as shown in Fig. 8.16. Plasticity is a quasi-static process as we now describe 
(see Han and Reddy (2013) for more details). Let u : Ω × [0, T ] →  Rd denote the 
displacement field, σ : Ω × [0, T ] →  Md 

s denote the stress tensor, n denote the 
outward normal to ∂Ω. The structure when subjected to a time-dependent body 
force f : Ω × [0, T ] →  Rd and a surface force g : [N × [0, T ] →  Rd , satisfies the 
equilibrium equation:
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div(σ ) + f = 0 in Ω × (0, T ], (8.34a) 

σ · n = g on [N × (0, T ], (8.34b) 

σ · n = 0 on [ × (0, T ], (8.34c) 

u = 0 on [D × (0, T ]. (8.34d) 

The total strain tensor of the structure ε : Ω × [0, T ] →  Md 
s , expressed in terms of 

u, ε = ε(u) = (∇u + (∇u)T )/2 can be decomposed as 

ε = εe + ε p, 

where εe denotes the elastic strain and ε p, the plastic strain. Plasticity occurs when 
the magnitude of σ exceeds the yield strength, a material parameter determined 
experimentally. Hardening occurs when the plastic flow is followed by a change in 
yield strength. The hardening is modeled by a stress-like hardening tensor q : Ω × 
[0, T ] →  Md 

s , a scalar force g : Ω × [0, T ] →  R, and the corresponding internal 
variable, r : Ω × [0, T ] →  Md 

s , γ : Ω × [0, T ] →  R,, respectively. To define the 
structure’s elastic limit, we consider the von Mises yield criterion (Simo and Hughes 
2006) 

f (σ , q, g) = |σ D − qD| +  
/
2 

3 
(g − σY ) ≤ 0, (8.35) 

where the superscript D denotes the deviatoric part of a tensor and σY ∈ R+ is the 
yield strength. This criterion defines the elastic domain 

E = {(σ , q, g) : f (σ , q, g) ≤ 0}, 

which, by definition, is convex. The structure is made of an isotropic material, with 
Hooke’s tensor given by 

C = λ1 ⊗ 1 + 2μI, 

where λ, μ are Lamé constants. We place ourselves in the framework of associated 
plasticity, namely the plastic flow rate is proportional to the normal of the elastic 
domain. We first state the second law of thermodynamics 

σ : ε̇ − ψ̇ ≥ 0, (8.36) 

where the overdot denotes differentiation with respect to time and ψ is the Helmholtz 
free energy, given by the sum 

ψ = ψ(εe, r, γ  )  = ψ̂e(εe) + ψ̂ p(r, γ  ),
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where the elastic and plastic energies are, respectively, defined as 

ψ̂e(εe) = 
1 

2 
Cεe : εe and ψ̂ p(r, γ  )  = 

1 

2 
Hr : r + 

1 

2 
Eisoγ 2 , 

where H is the hardening tensor and Eiso ≥ 0 is a material parameter. On the other 
hand, the stress is assumed to be σ = σ (εe). Using these definitions, the second law 
(8.36) is re-written as

(
σ − 

∂ ψ̂e 

∂εe

)
: ε̇ + σ : ε̇ p − 

∂ ψ̂ p 
∂ε p 

: ε̇ p − 
∂ ψ̂ p 
∂ r 

: ṙ − 
∂ ψ̂ p 
∂γ 

γ̇ ≥ 0. (8.37) 

Using Coleman–Noll arguments (Coleman and Gurtin 1967), we deduce 

σ = 
∂ ψ̂e 

∂εe 
= Cεe = C(ε(u) − ε p). (8.38) 

Now, the power dissipation function D is introduced as the difference between the 
external power and the rate of change of Helmholtz free energy 

D = σ : ε̇ p + q : ṙ + g γ̇ 

where 

q = −  
∂ ψ̂ p 
∂ r 

= −Hr and g = −  
∂ ψ̂ p 
∂γ 

= −Eisoγ. (8.39) 

Substituting D in (8.37), we get 
D ≥ 0. 

This is exactly Hill’s principle (or second law of thermodynamics) and is equivalent 
to the Drucker–Illyushin’s principle of maximum work which states that for any 
stress state (σ , q, g) in E, the plastic flow variables (ε̇ p, ṙ, γ̇ )  must satisfy 

σ : ε̇ p + q : ṙ + g γ̇ ≥ τ : ε̇ p + p : ṙ + k γ̇ ∀(τ , p, k) ∈ E. (8.40) 

Since the set E is invariant by addition of a multiple of the identity tensor to σ and 
q, (8.40) implies that necessarily the trace of ε̇ p + ṙ vanishes. Furthermore, (8.40) 
yields the following characterization of D 

D(ε̇ p, ṙ, γ̇ )  = sup 
(τ , p,k)∈E

(
τ : ε̇ p + p : ṙ + k γ̇

)
, (8.41) 

where the supremum is attained at (σ , q, g). This maximization ensures that the 
normality law is satisfied (Han and Reddy 2013)
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f (σ , q, g) <  0 =⇒ ε̇ p = 0, ṙ = 0, γ̇ = 0 
f (σ, q, g) = 0 =⇒ ε̇ p = ζ∂σ f , ṙ = ζ∂q f, γ̇ = ζ∂g f , (8.42) 

where ζ is a Lagrange multiplier satisfying 

ζ ≥ 0 and ζ f (σ , q, g) = 0. 

The derivatives of f (normal to the elastic domain) are given by 

∂σ f = 
σ D − qD 

|σ D − qD| , ∂q f = −  
σ D − qD 

|σ D − qD| and ∂g f = 
/
2 

3 
. 

The multiplier ζ is determined by imposing the consistency condition ḟ = 0 (Simo 
and Hughes 2006) and in our case (of linear isotropic and kinematic hardening) an 
analytic formula is available in the plastic zone (where f = 0) 

ζ = ∂σ f : σ̇ /
2 
3 Eiso + H∂σ f : ∂σ f 

. 

From (8.42), we get ε̇ p = −ṙ . Assuming that the plastic variables ε p and r are zero 
at the initial time instant, we deduce ε p = −r for all time t. The internal variable r 
has thus been characterized and D(ε̇ p, ṙ, γ̇ )  = D(ε̇ p, γ̇ ). Using the definition of a 
sub-differential, the maximization (8.41) can then be written as 

D(εq , μ)  ≥ D(ε̇ p, γ̇ )  + (σ − q) : (εq − ε̇ p) + g(μ − γ̇ )  ∀εq ∈ Md 
s , μ  ∈ R. 

(8.43) 
The primal variables are (u, ε p, γ  ).  We wish to work with a primal formulation, 
and hence, we need an expression of D(ε̇ p, γ̇ )  in terms of the primal variables. The 
dissipation function D satisfies (Reddy and Martin 1994) 

D( ̇ε p, γ̇ )  = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

/
2 

3 
σY |ε̇ p| if 

/
2 

3 
|ε̇ p| ≤  ̇γ ,  

∞ if 

/
2 

3 
|ε̇ p| > γ̇ .  

(8.44) 

The above expression is obtained by substituting f = 0 in (8.41) and performing 
simple algebra to determine the variables (σ , q, g), which maximize D. The first 
expression in (8.44) also follows from a simple substitution of (8.42) in (8.41). As a 
consequence, the domain of D is defined by 

domD =
(

(ε̇ p, γ̇ ),  
/
2 

3 
|ε̇ p| ≤  ̇γ a.e. in Ω

)
. (8.45)
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Fig. 8.17 2D Cantilever 
boundary conditions 

Eventually, the plasticity model used in this chapter is: 

σ = C(ε(u) − ε p) in Ω × (0, T ], (8.46) 

div(σ ) + f = 0 in Ω × (0, T ], 
σ · n = g on [N × (0, T ], 
σ · n = 0 on [ × (0, T ], 

u = 0 on [D × (0, T ], /
2 

3 
σY |εq | ≥

/
2 

3 
σY |ε̇ p| +  (σ − Hε p) : (εq − ε̇ p) 

− Eisoγ (μ  − γ̇ )  ∀(εq , μ)  ∈ domD on Ω × (0, T ]. (8.47) 

The inequality (8.47) is obtained by injecting (8.39) and (8.44) in (8.43). 
Very often, the partial differential equations (8.46) are solved in conjunction with 

the ordinary differential equations (8.42). But here, we solve (8.46) coupled to the 
inequation (8.47). This coupling, which is purely in terms of the variables (u, ε p, γ  )  
results in the so-called primal formulation. 

If the dissipation function D is expressed in terms of the stress variables, the plas-
ticity problem is formulated in terms of (u, σ , q, g) resulting in the dual formulation. 
The analytical treatment of the primal formulation being much easier than that of the 
dual formulation, we have chosen the former. 

8.6.2 Variational (Primal) Formulation 

The material tensors C and H are assumed to be coercive, i.e., ∃ c0 > 0, ∃ h0 > 0 
such that, ∀ξ ∈ Md 

s , 

Cξ : ξ ≥ c0|ξ |2 and Hξ : ξ ≥ h0|ξ |2 . 

We define the displacement space 

V = {u ∈ H 1 (Ω)d , u = 0 on [D}
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and the space of plastic strain Q as 

Q = {εq ∈ L2 (Ω)d×d , εq = εT 
q , tr(εq ) = 0 a.e. in Ω}. 

We then define the product space 

Z = V × Q × L2 (Ω), (8.48) 

where we seek the solution w = (u, ε p, γ  ). The space Z is a Hilbert space equipped 
with the scalar product, for w = (u, ε p, γ  )  and z = (v, εq , μ),

⟨w, z⟩ =
{

Ω

u · v dx +
{

Ω

ε p : εq dx +
{

Ω

γμ  dx . (8.49) 

Let Z∗ be the dual space of Z . The forces are assumed to be smooth as 

f ∈ H 1 ([0, T ], L2 (Ω)d ) and g ∈ H 1 ([0, T ], L2 ([N )
d ). 

Indeed, since H 1([0, T ], H) ⊂ C0([0, T ], H ) for any Hilbert space H , at any time t 
the forces f (t) and g(t) are well defined. We introduce a bilinear form a : Z × Z → 
R, 

a(w, z) =
{

Ω

(
C(ε(u) − ε p) : (ε(v) − εq ) + εq : Hε p + Eisoγμ

)
dx, (8.50) 

and a linear form lt : Z → R such that 

lt (z) =
{

Ω

f (t) · v dx +
{

[N 

g(t) · v ds, (8.51) 

with the forces f (t) ∈ L2(Ω)d , g(t) ∈ L2([N )
d and a nonlinear convex functional 

j : Z → R such that 
j (z) =

{

Ω

D(εq , μ)  dx, (8.52) 

where D(εq , μ)  is defined by (8.44). This functional j (·) is convex and lower semi-
continuous on Z and it is Lipschitz continuous on the convex set K ⊂ Z defined 
as 

K = V × domD, 

where domD is defined by (8.45). The admissible plastic flow rates ε̇ p, γ̇ belong to 
the convex set domD.
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In order to obtain the primal formulation of (8.46) and (8.47), we multiply (8.34) 
by v − u̇, use (8.38) and integrate the product over Ω by parts to obtain

{

Ω

C(ε(u) − ε p) : (ε(v) − ε(u̇)) dx =
{

Ω

f (t) · (v − u̇) dx +
{

[N 

g(t) · (v − u̇)ds ∀v ∈ V , 

(8.53) 
We then integrate (8.47) overΩ, add (8.53) to it and obtain the variational inequality, 
for any z ∈ K ,

{

Ω

/
2 

3 
σY |εq | dx ≥

{

Ω

/
2 

3 
σY |ε̇ p| dx +

{

Ω

f (t) · (v − u̇) dx +
{

[N 

g(t) · (v − u̇) ds 

−
{

Ω

(
C(ε(u) − ε p) : (ε(v) − εq − ε(u̇) + ε̇ p) + Hε p : (εq − ε̇ p) + Eisoγ (μ  − γ̇ )

)
dx . 

We complement this variational inequality with the following initial conditions 

u(0) = 0, ε p(0) = 0, γ  (0) = 0 in Ω. 

To prove existence and uniqueness of a solution, we rely on Theorem 4.3 in (Han et al. 
1997) which requires some additional regularity in time for the solution. Therefore, 
hence the forces are assumed to satisfy 

f (0) = 0 in Ω and g(0) = 0 on [N . 

Using the linear forms and the nonlinear functional defined earlier, the primal form of 
the plasticity problem (8.46) and (8.47) is obtained: find w(t) = (u, ε p, γ  )(t) with 
w(0) = 0 such that ẇ(t) ∈ K (for almost all t ∈ (0, T )) and 

a(w, z − ẇ) + j (z) − j ( ̇w) ≥ lt (z − ẇ) ∀z ∈ K . (8.54) 

As a result of Theorem 4.3 in (Han et al. 1997), the variational inequality (8.54) is  
well-posed. 

Theorem 2 (Han et al. 1997) Let Z be a Hilbert space; K ⊂ Z be a nonempty, 
closed, convex cone; a : Z × Z → R a continuous bilinear form that is symmetric 
and coercive; j : K → R non-negative, convex, positively homogeneous, Lipschitz 
continuous form; lt ∈ H 1([0, T ], Z∗) with l0(·) = 0. Then there exists a unique w ∈ 
H 1([0, T ], Z) satisfying (8.54). 

Remark 1 In the absence of kinematic hardening or h0 = 0, one cannot show the 
coercivity of a(·, ·) and thus the well-posedness of the problem (8.54). 

Equation (8.54) is not shape-differentiable (Mignot 1976; Sokolowski and Zolésio 
1992) in the classical sense and it ought to be approximated it by a smooth variational 
equation. The non-differentiability of (8.54) is due to D, which is discontinuous
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exactly where
/

2 
3 |ε̇ p| =  ̇γ (or equivalently, where f = 0). Thus, the function D 

admits only directional derivatives where the yield limit f is attained. 

8.6.3 Penalization and Regularization 

We approximate the problem (8.54) posed on the convex set K by a problem posed on 
the full vector space Z by penalizing the constraint z(t) ∈ K . The nonlinearity j (z) 
being unbounded for z /∈ K , (8.54) is not differentiable with respect to parameters like 
the shape of the domain (Mignot 1976; Sokolowski and Zolésio 1992). Moreover, 
j (z) is non-smooth because of the norm of the plastic tensor. We therefore the 
nonlinearity j (·) must be regularized. 

Let 0 << ∈ <  1 be the penalization parameter and 0 < η << 1 be the regularization 
parameter. Then dissipation function is approximation as 

D∈,η( ̇w) =
/
2 

3 
σY

(
Nη

(
ε̇ p
)+ 

1

∈
Mη

(/
2 

3 
Nη( ̇ε p) − γ̇

))
, (8.55) 

and we define j∈,η : Z → R as, 

j∈,η( ̇w) =
{

Ω

D∈,η( ̇w) dx . 

We consider a new problem: find w∈,η(t) ∈ Z such that w∈,η(0) = 0, ẇ∈,η(t) ∈ Z 
and 

a(w∈,η, z − ẇ∈,η) + j∈,η(z) − j∈,η( ̇w∈,η) ≥ lt (z − ẇ∈,η) ∀z ∈ Z . (8.56) 

The above variational inequality can be shown to be well-posed (Desai et al. 2021). 

Theorem 3 The variational inequality (8.56) admits a unique solution w∈,η ∈ 
H 1([0, T ], Z ). 
One cannot apply directly Theorem 2 because the functional j∈,η is not positively 
homogeneous. The variational inequation (8.56) can be converted into an equation. 
Since the function D∈,η is smooth, we can define its gradient 

∇ZD∈,η(w) =
)

∂D∈,η(w) 
∂ u 

, 
∂D∈,η(w) 

∂ε p 
, 
∂D∈,η(w) 

∂γ

)
. 

Lemma 2 The variational inequality (8.56) is equivalent to the variational formu-
lation: find w∈,η(t) ∈ Z such that w∈,η(0) = 0, ẇ∈,η(t) ∈ Z and
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a(w∈,η, z) + ⟨∇ZD∈,η( ̇w∈,η), z⟩ =  lt (z) ∀z ∈ Z , (8.57) 

where ⟨, ⟩ is the scalar product defined by (8.49). 
Proof By definition of the convexity of j∈,η we get 

j∈,η(z) − j∈,η( ̇w∈,η) ≥ ⟨∇ZD∈,η( ̇w∈,η), z − ẇ∈,η⟩ ∀z ∈ Z . 

The right hand side in the above is the tangent hyperplane to j∈,η at z = ẇ∈,η. On the  
other hand, (8.56) can be written as 

j∈,η(z) − j∈,η( ̇w) ≥ a(w∈,η, ẇ∈,η − z) + lt (z − ẇ∈,η) ∀z ∈ Z . 

Again, the right hand side in the above is affine in z and it vanishes at z = ẇ∈,η, 
implying that it is also tangent at z = ẇ∈,η. Since j∈,η is smooth, the two tangent 
hyperplanes must be equal 

a(w∈,η, ẇ∈,η − z) + lt (z − ẇ∈,η) = ⟨∇ZD∈,η( ̇w∈,η), z − ẇ∈,η⟩ ∀z ∈ Z . 

Replacing z in the above by ẇ∈,η + z ∈ Z , we deduce (8.57). ⬜

Equation (8.57) is our approximation of the plasticity problem (8.54) we treat for 
the computation of the shape derivative. In the context of plasticity, we call it the 
state equation and its solution, the state solution. As expected, for a fixed ∈, one can 
prove the convergence of the sequence w∈,η of solutions to (8.56) to the solution w∈

to (8.93) as  η −→ 0, at least in the weak sense (Desai et al. 2021). 

Theorem 4 The sequence of solutions w∈,η to (8.56) satisfies 

η −→ 0, w∈,η 
∗

⇀ w∈ in L∞([0, T ], Z ) and ẇ∈,η ⇀ ẇ∈ in L2 ([0, T ], Z ), 

where w∈ is the solution to (8.93). 

8.6.4 Shape Derivative Computation 

In this section, to simplify the notations, we drop the indices ∈ and η, and simply 
write w instead of w∈,η. We minimize an objective function J (Ω) defined as 

J (Ω) = 
T{

0 

⎛ 

⎝
{

Ω

m(w(Ω)) dx +
{

[N 

p(w(Ω))ds 

⎞ 

⎠ dt, (8.58) 

where w(Ω) is solution to the state equation (8.57) and the integrands m(·) and 
p(·) are assumed to be smooth functions at least of class C1. In addition we assume a



158 J. Desai

growth condition on m(·) and p(·) such that the objective function is well-defined and 
the adjoint equation (8.61) is well-posed. This objective can represent a mechanical 
property such as the total compliance, total power, elastic energy, plastic energy as 
well as a geometric property such as the volume. An industrially relevant objective 
is the total compliance, given by 

J (Ω) = 
T{

0

{

[N 

g · u(Ω) ds dt. (8.59) 

In practice, the shape Ω is designed inside a pre-fixed design space D ⊂ Rd . As 
shown in Fig. 8.4, the blue region represents the shape Ω, and the blue and gray area 
represent the design space D. The space of admissible shapes Uad is given by the 
definition 8.4. The optimization problem then reads 

min
Ω∈Uad 

J (Ω). 

Like in the case of linear elasticity (Sect. 8.3.3), we content ourselves with computing 
numerical minimizers, using a gradient-descent method. Again, the structure of the 
clamped and the forced boundaries is assumed to be non-optimizable. Hence in our 
optimization, we allow only [ to move along θ as shown in Fig. 8.29 and the space 
W 1,∞ 

0 (Rd , Rd ) (Def.8.5) is considered for the admissible directions θ . Since the 
regularized nonlinearity j∈,η(·) is C∞, it is possible to compute the shape derivative 
of the objective function J (Ω) defined by (8.58). 

Theorem 5 Let Ω ⊂ Rd be a smooth bounded open set. Let f ∈ C0([0, T ], H 1 

(Rd )d ), g ∈ C0([0, T ], H 2(Rd )d ) and w(Ω) ∈ H 1([0, T ], Z ) the solution to (8.57). 
Then the shape derivative of J (Ω) along θ ∈ W 1,∞ 

0 (Rd , Rd ), J '(Ω)(θ ) is given by 

J '(Ω)(θ ) = 
T{

0

{

[

θ · n
(
m(w) + C(ε(u) − ε p ) : (ε(v) − εq ) + εq : Hε p + Eisoγμ  + ∇ZD∈,η( ̇w) · z − lt (z)

)
ds dt, 

(8.60) 
where z(Ω) ∈ H 1([0, T ], Z ) is the solution to the adjoint problem, with the final 
condition z(T ) = 0, 

a(z, ϕ) −
/
d 

dt

(
∇2 
ZD∈,η( ̇w)z

)
, ϕ
\

= −⟨∇Zm(w), ϕ⟩ −
{

[N 

∇Z p(w)ϕ ds ∀t ∈ [0, T ), ∀ϕ ∈ Z , 

(8.61) 
which is assumed to be well-posed (recall that ⟨, ⟩ is the scalar product defined by 
(8.49) in  Z). 

Proof The idea of the proof is classical and, assuming that the adjoint equation 
is well-posed, it relies on Céa’s technique (1986). Define three spaces Ṽ , Q̃ and 
Z̃ = Ṽ × Q̃ × L2(Rd ) (which are similar to those in (8.48) except thatΩ is replaced 
by Rd ) by
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Ṽ = {u ∈ H1(Rd )d , u = 0 on [D} and Q̃ = {εq ∈ L2(Rd )d×d , tr(εq ) = 0 a.e. in  Rd }. 
(8.62) 

For w̃ = (ũ, ε̃ p, γ̃ )  ∈ H 1([0, T ], Z̃ ), z̃ = ( ̃v, ε̃q , μ̃) ∈ H 1([0, T ], Z̃ ) [the Lagrange 
multiplier for the state equation (8.57)] and λ̃ ∈ L2(Rd )d (the Lagrange multiplier 
for the initial condition w̃(0) = 0), define a Lagrangian by 

L(Ω, w̃, z̃, λ̃) = 
T{

0 

⎛ 

⎝
{

Ω

m( ̃w) dx +
{

[N 

p( ̃w)ds 

⎞ 

⎠ dt 

+ 
T{

0

(
a( ̃w, z̃) − lt ( z̃) + ⟨∇ZD∈,η( ̇̃w), z̃⟩

)
dt +
{

Ω

λ̃ · w̃(0) dx . (8.63) 

We remark that here the variables w̃(t), z̃(t) and λ̃ are defined on the full space 
R

d and are thus independent of Ω. Although ũ(t) and ṽ(t) are required to vanish 
on [D , they do not depend on Ω since [D is a fixed boundary. Therefore, writing 
the optimality conditions applied to the Lagrangian (8.63), namely that its partial 
derivatives with respect to the independent variables (Ω, w, z, λ) vanishes, yields 
the state equation, the adjoint equation and the shape derivative. 

When the Lagrangian (8.63) is differentiated with respect to the adjoint variable z̃, 
along ϕ ∈ H 1([0, T ], Z̃ ), and equated to zero, followed by the substitution w̃ = w, 
we get 

∂L 
∂ z 

(ϕ) = 
T{

0

(
a(w, ϕ) + ⟨∇ZD∈,η( ̇w), ϕ⟩ −  lt (ϕ)

)
dt = 0 ∀ϕ ∈ H 1 ([0, T ], Z̃ ). 

Since the bilinear form a(·, ·) and the linear forms in the above are defined only onΩ, 
we can replace Z̃ by Z . Differentiating (8.63) with respect to λ̃ at w̃ = w, equating 
it to zero, we deduce the initial condition w(0) = 0 a.e. on Ω. We thus recover the 
state equation (8.57). Next, we differentiate the Lagrangian (8.63) with respect to w̃ 
along ϕ ∈ H 1([0, T ], Z̃ ) and equate it to zero at w̃ = w, z̃ = z, λ̃ = λ, to get 

∂L 
∂w 

(ϕ) = 
T{

0

{

Ω

∇Zm(w)ϕ dx dt + 
T{

0

{

[N 

∇Z p(w)ϕ ds dt 

+ 
T{

0 

a(ϕ, z)dt + 
T{

0

⟨∇2 
ZD∈,η( ̇w) ̇ϕ, z⟩dt +

{

Ω

λ · ϕ(0) dx = 0 ∀ϕ ∈ H1([0, T ], Z̃ ). 

Using the symmetry of the second derivative ∇2 
ZD∈,η( ̇w), and integrating by parts in 

time, we deduce
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T{

0

{

Ω

∇Zm(w)ϕ dx dt + 
T{

0

{

[N 

∇Z p(w)ϕ ds dt + 
T{

0 

a(ϕ, z)dt + ⟨ϕ, ∇2 
ZD∈,η( ̇w)z⟩||t=T 

− ⟨ϕ, ∇2 
ZD∈,η( ̇w)z⟩||t=0 − 

T{

0

/
ϕ, 

d 

dt 
(∇2 

ZD∈,η( ̇w)z)
\
dt +
{

Ω

λ · ϕ(0) dx = 0 ∀ϕ ∈ H1([0, T ], Z̃ ). 

Since all integrals in the above are defined only onΩ, we can replace Z̃ by Z . Varying 
the test function ϕ, we derive the following adjoint equation: 

λ = ∇2 
ZD∈,η( ̇w)z

||
t=0 , z(T ) = 0 and 

a(z, ϕ) −
/
d 

dt

(
∇2 
ZD∈,η( ̇w)z

)
, ϕ
\

= −⟨∇Zm(w), ϕ⟩ −
{

[N 

∇Z p(w)ϕ ds t  ∈ [0, T ), ∀ ϕ ∈ Z . 

Finally, using the relation J (Ω) = L(Ω, w, z̃, λ̃), we determine the shape derivative 
J '(Ω)(θ ) for any θ ∈ W 1,∞ 

0 (Rd , Rd ) by 

J '(Ω)(θ ) = 
∂L 
∂Ω

(θ ) + 
∂L 
∂w

)
∂w 
∂Ω

(θ )
)

, 

because z̃ and λ̃ do not depend on Ω. Now, replacing them by their precise values z 
and λ, given by the adjoint problem, the last term cancels to get 

J '(Ω)(θ ) = 
∂L 
∂Ω

(θ ) 

and formula (8.60) is deduced by application of Lemma 1. ⬜

The time discretized version of the adjoint equation (8.61) can be shown to be well-
posed (Desai et al. 2021). 

8.6.5 Numerical Implementation 

We first discuss the numerical resolution of the state equation (8.57), then that of the 
adjoint equation (8.61), and finally, we describe the shape optimization algorithm. 
The domain Ω is discretized using a simplicial unstructured mesh and the space Z , 
defined by (8.48), is discretized as Zh , using the finite element framework 

Zh = P1 (Ω)d × P0 (Ω)d×d × P0 (Ω). (8.64)
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The space K is discretized as K h, defined by 

K h =
(

(u, ε p, γ  )  ∈ Zh , 
/
2 

3
|ε p| ≤  γ a.e. in Ω

)
. (8.65) 

The maximal mesh size is denoted by hmax, the minimal mesh size by hmin and the 
number of mesh vertices is Nv . We assume the mesh to be regular, or hmax and hmin 

to be of the same order. The space-time discretized state solution is w̃(t) ∈ Zh and 
the space-time discretized adjoint solution is z̃(t) ∈ Zh . The time interval [0, T ] is 
discretized in N intervals of length δt . We label the time at the end of n-th  time 
interval as tn, n = 1, 2, . . . ,  N . All our numerical experiments are performed with 
the open-source software FreeFEM++ (Hecht 2012). 

8.6.5.1 Resolution of the Plasticity Formulation 

The space discretized version of the problem (8.54) reads: find wh(t) ∈ K h such that 

a(wh , zh − ẇh ) + j (zh ) − j ( ̇wh ) ≥ lt (zh − ẇh ) ∀zh ∈ K h . (8.66) 

The solution of the time discretized version of (8.66) is denoted by w̃(t) ∈ Zh . 
More precisely, it is defined by its values w̃n = w̃(tn) at each time step and 
extended by affine interpolation as w̃(t) = w̃n + δ w̃n(t − tn) for t ∈ [tn, tn+1], where 
δ w̃n = ( ̃wn+1 − w̃n)/δt is the increment. Equation (8.66) could be regularized and 
penalized as before but we refrain ourselves from doing so and instead solve its time 
discretization via the radial return algorithm (Simo and Hughes 2006). 

8.6.5.2 Resolution of Adjoint System 

We denote by z̃n = z̃(tn) the discrete values of the adjoint, which is linearly inter-
polated in time on each sub-interval. The space-time discretized adjoint problem is 
defined by: z̃N = 0 and, for n = N − 1, . . . ,  1, 0, find the solution z̃n ∈ Zh of 

δt⟨∇Zm ( ̃wn+1), ϕ⟩ +  δt
{

[N 

∇Z p( ̃wn+1)ϕ ds + δta(ϕ, z̃n) 

+ ⟨∇2 
ZD∈,η(δ w̃n) z̃n − ∇2 

ZD∈,η(δ w̃n+1) z̃n+1, ϕ
⟩ = 0 ∀ϕ ∈ Zh . (8.67) 

This system is going backward in time. One ought to solve the state equation (8.66) 
until the last time step, store the solutions w̃n for every time step and retrieve the 
solutions one by one starting from the last time step. This is thus quite heavy in terms 
of memory requirement for numerical simulations. Finally, the time discretized shape 
derivative reads
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J '(Ω) (θ ) = 
N−1∑
n=0 

δt
{

[

θ 

·n(m( ̃wn) + C(ε(ũn+1) − ε̃ p,n+1) : (ε( ̃vn) − ε̃q,n) + Hε̃ p,n+1 : ε̃q,n 

+Eiso γ̃n+1 μ̃n + ∇ZD∈,η

)
w̃n+1 − w̃n 

δt

)
z̃n − f (tn) · ṽn

)
ds, (8.68) 

where (ũn, ε̃ p,n, γ̃n) = w̃n and (ṽn, ε̃q,n, μ̃n) = z̃n . 
In numerical practice, denoting by L a characteristic length of the domain D, 

we choose the values of ∈, η for penalization and regularization according to the 
following rule (see (Desai 2021) for more details)

∈ =
)
hmin 

L

)1+d/2 

and η = ∈2 . (8.69) 

Remark 2 For all of our numerical experiments, we replace w̃n in the adjoint equa-
tion (8.67) and in the shape derivative (8.68) by the solution obtained via radial return, 
wr (tn) ∈ K h , which does not take into account the penalization and regularization. 
In formula (8.68) of the shape derivative, and more precisely in the term ∇ZD∈,η, 
we neglect the contribution 1

∈
M '

η(·). The reason for this is because we replace the 
penalized solution w̃(t) by the non-penalized one wr (t). For the penalized solution, 

the contribution 1
∈
M '

η

(
w̃n+1− ̃wn 

δt

)
is of order O(1) since it satisfies the problem (8.57). 

However, the same term is of orderO(1/∈) for the non-penalized solution because the 
regularization Mη(s) of max(0, s) is not exactly zero for negative values of s. To avoid 
this numerical artifact we found it more efficient to just cancel this term in (8.68). 

8.6.6 Regularization and Extension of the Shape Derivative 

During optimization the produced shapes may not have a smooth boundary so the 
shape derivative may have no rigorous meaning on the boundary [. In such a case, it 
is imperative to regularize the shape derivative (Allaire et al. 2021; Burger 2003; De  
Gournay 2006) in such a way that it is still a descent direction. One possibility is to 
consider the H 1 scalar product instead of the L2 scalar product by finding a function 
d j  (Ω) ∈ H 1(D) such that
{

D

(
h2 min∇d j (Ω) · ∇ϕ + d j (Ω)ϕ

)
dx =
{

[

j '(Ω) ϕ dx ∀ϕ ∈ H 1 (D), (8.70) 

where hmin is the fixed minimal mesh size, and the function j '(Ω) is defined by 
formula (8.68) with 

J '(Ω)(θ ) =
{

[

θ · n j '(Ω) ds. (8.71)
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Since we have chosen P1 basis elements for the displacement vector and the plastic 
strain, the shape derivative in (8.68) is  P0 smooth and so j '(Ω) ∈ P0(Ω). Thus, it is  
enough to discretize (8.70) with P1 finite elements, so that d j  (Ω) ∈ P1(D). 

8.6.6.1 Shape Optimization Algorithm 

We consider the shape optimization problem 

min
Ω∈Uad 

J (Ω), 

where we remind the reader that Uad is the space of admissible spaces inside the 
design space D (see Fig. 8.29). The optimization strategy is devised in the same 
manner in as in Sect. 8.4.5, resulting in the following algorithm. We thus perform 
the Algorithm 2. 

Algorithm 2 Repeat over i = 0, . . . ,  Imax 

1. Solve for w̃ using the radial return algorithm on the mesh of Ωi starting from t1 until the last 
time tN . 

2. Solve for the adjoint z̃ using (8.67) on the mesh of Ωi starting from the last time tN until t1. 
3. Compute the regularized shape derivative d j  (Ωi ) by solving (8.70) with the right hand side 

(8.68). 
4. Apply a gradient ascent algorithm, with step τ = hmin /2, to get 

λi+1 = λi + 
τ 
C2 

⎛ 

⎜⎝
{

Ωi 

dx − V f 

⎞ 

⎟⎠ . 

5. Set n = ∇φi (the level-set function for Ωi ) and  solve (8.19) with the initial data φi and a 
velocity 

θ i =
)
d j  (Ωi ) 
C1 

+ 
λi+1 

C2

)
n 

for a pseudo-time step τ to obtain φ̃i+1. 
6. Re-initialize φ̃i+1 to the signed distance function, using mshdist (Dapogny and Frey 2012), 

to obtain φi+1 corresponding to the new shape Ωi+1. 
7. Compute the volume Vi+1. If  |Vi+1 − V f | ≤  10−5V f , then update the level-set φi+1 by adding 

to it the constant (Vi+1 − V f )/
{
∂Ωi+1 

ds. 
8. Remesh the box D using MMG (Dapogny et al. 2014) to obtain the body-fitted mesh of the new 

shape Ωi+1 
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8.7 Numerical Results: Plasticity 

This section displays 2D and 3D optimization results with three minimization criteria: 
total compliance (8.59), total energy (8.74) and plastic energy (8.75). In each case a 
volume constraint |Ω| =  V f is imposed and the optimization Algorithm 2 is applied. 
The structure is composed of mild steel with the properties: E = 210 GPa, ν = 0.3, 
σY = 279 MPa, Eiso = 712 MPa. For all test cases in this subsection, we consider a 
force g that increases from zero to a final value in one second in a constant direction 
with a time step δt = 0.05. The time discretized adjoint equation (8.67) is solved  
using ∈, η given in (8.69). 

8.7.1 2D Cantilever 

We study a 2 m  × 1m  2D cantilever beam which is partially clamped on the left side 
(there is a small difference between the size of the Dirichlet boundary condition and 
the left edge of the beam), while a vertical concentrated force is applied at the middle 
of the right side of the beam (see Fig. 8.31). The reason to not completely clamp the 
left side of the cantilever beam is to allow the shape to move around [D and to avoid 
potential plastic zone which often appears around the Dirichlet boundary condition. 
A target volume V f = 0.7m2 is imposed. Based on the quasi-static assumption, the 
rate of force increment has no impact on the solution at the final time instant t = 1. 
However, the rate does impact the objective function (8.59). If the force grows faster 
in the beginning and then slowly after the onset of plasticity, the objective function 
is influenced more by the plastic flow. To see a greater impact of the plastic flow on 
the shape derivative (and hence the shape), we choose 

g = (0, 220 min(1.5t, 1))MN/m, t ∈ [0, 1]s. (8.72) 

The parameters of the remeshing tool MMG are fixed to hmin = 0.01 m (minimal 
mesh size), hmax = 0.02 m (maximal mesh size). First, we minimize the total com-
pliance (8.59). The initial shape and the final shapes for the linear elasticity and 
plasticity models are shown in Fig. 8.18. Let us first note that the presence, or not, 
of the hardening tensor H does not change much the resulting optimized shape in 
Figs. 8.18c, d. As can be seen on Fig. 8.18b, d, the optimized shapes for linear elas-
ticity or plasticity are very similar. The only slight difference is near the Dirichlet 
boundary condition, where the bars are thicker for the plasticity case. It turns out that 
the displacement for linear elasticity is numerically very close to the one for plastic-
ity. Although the plastic deformation ε p does contribute to the shape derivative for 
the plasticity case, it does not induce a different topology, compared to the elasticity 
case. The convergence history for the total compliance is depicted in Fig. 8.19. 

To quantitatively compare the two optimized shapes in Fig. 8.18b (elasticity) and 
Fig. 8.18d (plasticity), we perform a plasticity computation for both of them with



8 Topology Optimization in Linear Elasticity, Plasticity … 165

Fig. 8.18 Von Mises stress at t = 1 s corresponding to various shapes for a target volume V f = 
0.7m2 and force (8.72) 

Fig. 8.19 Convergence history corresponding to shapes (8.18b) and (8.18d) 

Fig. 8.20 Plastic zones (γ >  0) at  t = 1s computed for shapes (8.18b) and (8.18d)
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Table 8.1 2D Cantilever shape comparison for force (8.72) 

Shape (8.18b) Shape (8.18d) 

Total compliance (8.59) for  
linear elasticity 

89,131 90,428 

Total compliance (8.59) for  
plasticity (Eiso = 712 MPa, 
H = 105IMPa) 

126,555 123,172 

Eiso = 712 MPa, H = 105IMPa and the force (8.72). The plastic zones (where γ >  
0) at time t = 1s along with the mesh are plotted in Fig. 8.20 and the total compliance 
(8.59) is noted in Table 8.1. In Fig.  8.20, we observe that the plastic zones are slightly 
smaller for (8.18b) compared to (8.18d). As seen in Table 8.1, the total compliance 
for the cantilever beam obtained for plasticity is 2.75% lesser than the one obtained 
for the linear elasticity case. While this improvement is pertinent, it is not very 
impressive. On the other hand, Table 8.1 confirms that Fig. 8.18b is (slightly) better 
than Fig. 8.18d for the linear elasticity. 

Next, we investigate if a few parameters of the previous test case (external force, 
optimization criteria or initialization) result in a drastic change of the plastic zone. 
Specifically, we investigate three variations. 

1. Increase the external force to 

g = (0, 400 min(1.5t, 1))MN/m, t ∈ [0, 1]s (8.73) 

such that the entire shape undergoes a plastic deformation. 
2. Consider two new criteria for minimization: total energy 

J (Ω) = 
T{

0

{

Ω

1 

2

(
Cεe : εe + Hε p : ε p + Eisoγ 2

)
dx (8.74) 

and energy due to kinematic hardening 

J (Ω) = 
T{

0

{

Ω

1 

2 
Hε p : ε pdx, (8.75) 

in addition to the total compliance criterion (8.59). 
3. Consider three different initializations (as shown in Fig. 8.21) for total compli-

ance minimization.
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Fig. 8.21 Von Mises stress at t = 1s for the initial shapes (on the left) and optimized shapes for 
total compliance (8.59) (on the right), with Vt = 0.7m2, Eiso = 712 MPa, H = 105IMPa and force 
(8.73) 

The shapes obtained for the three different initializations are plotted in Fig. 8.21, 
their corresponding compliances (8.59) are presented in Table 8.2, and their conver-
gence histories are depicted in Fig. 8.22. As expected, we obtained three different 
topologies. In Fig. 8.21, we observe that plastic deformation occurs everywhere in 
the optimal shapes. This was not expected as yielding should have resulted in a high 
accumulated plastic deformation and hence a high total compliance. However, what 
actually happens is that, when the shapes reach the yield point, hardening occurs. 
Once the shape hardens, its load bearing capacity increases. Hence, the optimal 
shapes are the ones that struggle a balance between hardening and plastic deforma-
tion. Consequently, it is unrealistic to expect dramatic reduction in the size of plastic 
zones. As seen in Table 8.2, the cantilever beam is best optimized if initialized by 
the solution obtained for the linear elasticity case (Fig. 8.21c). In Fig. 8.22, we see  
almost no decrease in the objective function for the shape of Fig. 8.21f. This means 
that the shape obtained for the linear elasticity case is almost optimal for plasticity.
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Table 8.2 2D Cantilever shape comparison for force (8.73) 

Shape (8.21b) Shape (8.21d) Shape (8.21f) 

Total compliance 
(8.59) for linear 
elasticity 

423,424 410,188 404,180 

Total compliance 
(8.59) for plasticity 
(Eiso = 712 MPa, 
H = 105IMPa) 

608,714 578,630 558,156 

Fig. 8.22 Convergence history for the shapes (8.21b, d and f) 

Fig. 8.23 Von Mises stress at t = 1s for optimized shapes, initialized from (8.21c), with Vt = 
0.7m2, Eiso = 712 MPa, H = 105IMPa and force (8.73) 

The shapes obtained for different objective functions, namely total energy (8.74) 
and plastic energy (8.75), are plotted in Fig. 8.23. The shapes Fig. 8.23a, b are similar 
to the previous shapes of Fig. 8.21d, f, respectively. In both cases, they were initialized 
with Fig. 8.21c. Again, the size of the plastic zone (where γ >  0) has not decreased. 
We believe it is because plastic zones are hardened zones and, as a result, are necessary 
for minimizing the total energy or the plastic energy.
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8.7.2 3D Cantilever 

We now consider the minimization of the total compliance (8.59) for a 3D cantilever 
beam of dimensions 5m  × 2.4m  × 3m, as shown in Fig. 8.10. The cantilever beam 
is fixed on its leftmost side, loaded downwards on a circular region of radius 0.1m 
on its rightmost side with g = (0, 5000t, 0)MN/m where t ∈ [0, 1]s. For this test 
case, we consider combined hardening with Eiso = 712 MPa, H = 105IMPa and a 
target volume V f = 12 m3. The parameters of MMG are set to hmin = 0.04 m, and 
hmax = 0.12 m. We initialize the shape optimization with a perforated shape as in 
Fig. 8.24a. Learning from the previous test cases, we also initialize with the shape 
obtained after minimizing compliance for linear elasticity (see Fig. 8.24c). The opti-
mization from initialization in Fig. 8.24a is run for longer, 250 iterations instead of 
200 iterations as in the other test cases. This is because an initialization with holes is 
far from the optimum and it take longer to converge to a form with plate-like features 
(which is known to be optimal for maximizing rigidity). As seen in Fig. 8.24, the  
two initializations result in the same shape (see Fig. 8.24b–d). Their corresponding 
convergence histories are plotted in Fig. 8.25. The shapes (Fig. 8.24b), (c) and (d) are 
compared quantitatively in Table 8.3. As seen in Fig. 8.25, it takes a long time for the 
shape (Fig. 8.24a) to converge, whereas the shape (Fig. 8.24c) converges in the first 
few iterations. Consequently, we conclude that it is often advantageous to first opti-
mize the shape for linear elasticity and then use the optimized shape as initialization 
to minimize for plasticity. 

8.7.3 3D Wedge 

We now consider a 3D wedge of dimensions 1.2m  × 0.6m  × 0.6m  as shown in 
Fig. 8.26. The geometry is supported on four square surfaces each being 0.05 m × 
0.05 m, three of which can be seen in the Fig. 8.26. The wedge is clamped along 
all the three axes on one surface and only along y-direction on the remaining 
three surfaces. The wedge is forced on a square surface on the topmost plane 
with g = (0, −500t, 0)MN/m where t ∈ [0, 1]s. The parameters of MMG are set 
to hmin = 0.012 m, and hmax = 0.032 m. We consider combined hardening with 
Eiso = 712 MPa, H = 105IMPa and impose a target volume of V f = 0.07 m3. Opti-
mized shapes for linear elasticity and plasticity are displayed in Fig. 8.27. Again, we  
consider two initializations: one with periodically distributed holes and one obtained 
by minimizing compliance for linear elasticity. It yields two topologically different 
optimized shapes as shown in Fig. 8.27d. As can be seen in Table 8.4, the shape 
(Fig. 8.27d) outperforms the shape (Fig. 8.27b) in terms of (8.59) in plasticity as well 
as in linear elasticity.
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Fig. 8.24 Von Mises stress at t = 1s for the initial shapes (on the left) and the optimized shapes 
for total compliance (8.59) (on the right), with Vt = 12 m3, Eiso = 712 MPa, H = 105IMPa 

Fig. 8.25 Convergence history for shapes (8.24b) and (8.24d) 

Table 8.3 3D Cantilever shape comparison 

Shape (8.24c) Shape (8.24b) Shape (8.24d) 

Total compliance 
(8.59) in linear 
elasticity 

453,774 456,363 451,848 

Total compliance 
(8.59) in plasticity 
(Eiso = 712 MPa, 
H = 105IMPa) 

515,452 515,246 507,319
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Fig. 8.26 3D wedge boundary conditions 

Fig. 8.27 Von Mises stress at t = 1 s for the initial shapes (on the left) and the optimized shapes 
for total compliance (8.59) (on the right), with Vt = 0.07 m3, Eiso = 712 MPa, H = 105IMPa 

Table 8.4 3D wedge shape comparison 

Shape (8.27b) Shape (8.27d) 

Total compliance (8.59) in  
linear elasticity 

4843 4387 

Total compliance (8.59) in  
plasticity (Eiso = 712 MPa, 
H = 105IMPa) 

5092 4547
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8.8 TO in Fracture Mechanics 

This section presents a theory for optimizing structures which are not prone to frac-
ture. The content of this section can be found in a recent publication (Desai et al. 
2022). Structures subjected to a critical external load may undergo high stress, mate-
rial damage, crack and an ultimate collapse. Shape and topology optimization to 
minimize damage can facilitate engineers to conceive robust structures, less suscep-
tible to crack and hence with a longer life. 

To model the fracture phenomena, one needs to choose an appropriate fracture 
model. In the framework of brittle fracture mechanics, we consider the so-called 
Francfort-Marigo model (Francfort and Marigo 1998), in the spirit of the pioneering 
energetic approach of Griffith (1921). This model relies on the quasi-static min-
imization of a total energy which is the sum of a linear elasticity energy and a 
fracture energy, under an irreversibility constraint. The original Francfort-Marigo 
model belongs to the class of free discontinuity problems (the crack is an unknown 
of the problem), which are notoriously difficult to solve numerically. Therefore, 
the same authors propose to approximate their original model with a regularized 
damage model (Bourdin et al. 2008), following a Gamma-convergence process, first 
suggested by Ambrosio and Tortorelli for the Mumford–Shah functional (Ambro-
sio and Tortorelli 1990). This Ambrosio-Tortorelli regularization features a small 
regularizing parameter l >  0. 

In the regularization of this free discontinuity problem, the parameter l can be 
viewed as a purely mathematical artifact, used to approach the exact minimization 
problem. However, this regularization has also a very clear physical interpretation 
as damage model with an internal length scale which is precisely the regularization 
parameter l. Recall that a damage model features a damage variable α, measuring 
the extent of degradation of the material and varying continuously between 0 (no 
damage) and 1 (fully damage), and an elastic Hooke’s tensor which is a decreasing 
function of α. Additional ingredients are, like in the fracture case, an irreversibility 
constraint and an energy criterion which determines the onset of damage. How the 
original fracture or free discontinuity problem is recast as a damage problem is 
precisely explained in Bourdin et al. (2008) and Pham et al. (2011). This approach 
is also called sometimes a smeared interface approach or a phase-field approach. Its 
main advantage is its simplicity of numerical implementation using the finite element 
method. Furthermore, it can easily detect initiation, branching and coalescence of 
cracks without the need of meshing the crack path. In the sequel we shall indifferently 
call this model a damage or a fracture model. 

Combining the Francfort-Marigo fracture model with the level-set method, we 
propose a shape and topology optimization algorithm for preventing crack initiation 
and propagation in solid structures. 

Topology optimization to minimize fracture has already been the topic of some 
works. In the level-set framework, the configuration of composite materials in a 
phase-field-based fracture model was optimized (Wu et al. 2020). There are more 
works on topology optimization using SIMP applied to various fracture models.



8 Topology Optimization in Linear Elasticity, Plasticity … 173

Topology optimization using SIMP was performed for a fracture model in Kang 
et al. (2017) or for a damage model to reinforce concrete in Amir (2013). Path 
dependency of the damage model was taken into account in SIMP (James and Wais-
man 2015a). Phase-field model of fracture was considered for topology optimization 
using extended BESO (Bi-directional Evolutionary Structural Optimization) (Da and 
Yvonnet 2020). Fracture governed by the phase-field model is considered for maxi-
mizing the fracture resistance of periodic composite (Da and Yvonnet 2020). 

A common feature in all the previous works using SIMP is that several material 
properties must be approximated for the mixture of material and void, corresponding 
to the density variable. This is classical for the Young’s modulus (Bendsoe and 
Sigmund 2013) but more delicate for other properties like, for example, the fracture 
toughness. Usually, these material properties are approximated by multiplying their 
values by the density raised to a certain exponent. This exponent is different for every 
property and ought to be chosen in an ad hoc manner, ensuring numerical stability. 
If the optimized shape has intermediate densities, the interpretation of damage is 
quite artificial and may cause numerical difficulties. On the contrary, in the level-
set framework, since the material properties are never approximated, such artificial 
damaged zones are avoided. 

Section 8.8.1 is devoted to the presentation of the Francfort-Marigo damage 
model. Although this model has nice properties, it features an irreversibility con-
straint (a damage region cannot heal and be again undamaged) which makes it a 
variational inequality, instead of a more standard variational equality. Unfortunately, 
the adjoint method for computing sensitivities or derivatives of an objective function 
is extremely involved and not practical for variational inequalities since it involves 
the notion of conical derivative (Mignot and Puel 1984; Sokolowski and Zolésio 
1992). Therefore, we penalize the irreversibility constraint to transform the varia-
tional inequality into a more convenient variational equality which is amenable to 
the adjoint method. 

Section 8.8.2 states the optimization problem and delivers its shape derivative 
(see Proposition 1), relying on the adjoint method and the well-known Hadamard 
and Céa’s methods. Section 8.6.5 presents the discretization of the damage model and 
of the adjoint problem in space and time and the level-set algorithm. A key ingredient 
for the sequel is that, the damage model being non-convex, it is solved with a so-
called backtracking algorithm, due to Bourdin et al. (2008), which is able to escape 
from local minima in the total energy minimization. Our finite element analyses are 
performed within the FreeFEM software (Hecht 2012). For the finer 3D meshes 
we use the parallel computational capacities of FreeFEM which rely on domain 
decomposition and the PETSc package (Balay et al. 2019). The level-set transport 
equation is solved with the advect library (Bui et al. 2012). Having a body-fitted 
mesh of the structure is crucial for an accurate evaluation of the damage. Indeed, 
there is no ersatz or weak material, so damage does not interact with this fictitious 
phase. Furthermore, since damage typically occurs in region of high stresses, those 
are more precisely computed with a body-fitted mesh. We also outline the details of 
our gradient-based algorithm for shape and topology optimization.



174 J. Desai

Finally, Sect. 8.7 is concerned with 2D and 3D numerical test cases. The objective 
function is the so-called total compliance (integrated in time), which is minimized 
under a volume constraint. These examples illustrate the efficiency of our proposed 
shape and topology optimization algorithm to obtain crack-free optimal structures. 
One specific difficulty in optimization of damage of fracture models is that these 
phenomena may be discontinuous: a small increase in the loadings, a small change 
in the structure’s geometry may cause the sudden occurrence of a not-so-small crack 
and thus a large increase of the objective function (see the discussion in Remark 8). 
Nevertheless, our algorithm is able to sustain these large oscillations and, in the end, 
converge smoothly to optimal undamaged structures. 

8.8.1 Governing Laws and Variational Formulation 

Let Ω ⊂ Rd be a smooth bounded open set representing the structure in Fig. 8.28 
(with d = 2, 3 the space dimension). For T > 0, [0, T ] is the bounded time interval 
of interest. The imposed displacement is denoted by ū : Ω × [0, T ] |→ Rd and is 
assumed to be smooth, typically ū ∈ C0([0, T ], H 2(Rd )d ). Let  ∂Ω = [D ∪ [ ∪ [ū, 
be the union of disjoint boundaries and n denote the outward normal to ∂Ω: [ is 
the free boundary (no traction), [D is the Dirichlet boundary and [ū is the boundary 
where the displacement ū is imposed. 

The elastic displacement vector field is u : Ω × [0, T ] |→ Rd and ε(u) = 1 
2

(∇u + 
(∇u)T
)
denotes the second order strain tensor. The fourth-order Hooke’s tensor 

C0 is assumed to be coercive on the set Md 
s of symmetric d × d matrices, i.e., 

∃ cmin > 0, cmax > 0 such that, ∀ξ ∈ Md 
s , 

cmin|ξ |2 ≤ C0ξ : ξ ≤ cmax|ξ |2 . 

The rate of evolution of the imposed displacement ū is assumed to be small, resulting 
in a quasi-static evolution of the structure and hence a negligible acceleration ü = 0. 
As the loading increases with time t and the elastic energy in the structure exceeds 
a critical elastic energy density, the structure undergoes damage, which is measured 
with the damage variable α : Ω × [0, T ] |→ [0, 1]. The  value  α = 0 corresponds to 

Fig. 8.28 Boundary 
conditions and the unknown 
crack [α
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no damage and α = 1 to a complete damage. Damage is characterized by deterio-
ration of the stiffness and is modeled by assuming the Hooke’s tensor C(α) to be a 
convex function of the damage variable α, such that 

C(0) = C0, C(1) = 0 and C'(α)ξ : ξ < 0 ∀ξ ∈ Md 
s . (8.76) 

The second expression in the above states that when the damage variable α attains 
unity, the stiffness becomes zero and structure undergoes a crack. The third expression 
in the above states that, when α increases, the stiffness must decrease. 

The study of the damage model requires the introduction of some functional 
spaces. The space of admissible displacements is given by 

V = {u ∈ H 1 (Ω)d : u = 0 on [D}. (8.77) 

For v = ˙̄u , the affine space of admissible velocities is defined as 

Cv = {v ∈ V : v = v, on [ū}. (8.78) 

The subspace of functions in H 1(Ω) which vanish on [D and [ū, is denoted by 

H 1 
D(Ω) = {β ∈ H 1 (Ω) : β = 0 on [D ∪ [ū}. (8.79) 

The convex set of admissible damage is 

D1 = {α ∈ H 1 
D(Ω) : 0 ≤ α(x) ≤ 1 a.e. x ∈ Ω} (8.80) 

and the convex set of admissible damage evolution rate (γ = α̇) is  

D = {γ ∈ H 1 
D(Ω) : γ (x) ≥ 0 a.e. x ∈ Ω̄}, (8.81) 

To simplify notations, we define the product space 

Z = V × H 1 
D(Ω). 

The initial condition of the model is 

(u(0), α(0)) = (0, α0) ∈ V × D1. (8.82) 

Remark 3 Typically, the set D1 of admissible damage variable and the set D of 
admissible damage evolution rate are defined for functions in H 1(Ω). In (8.80) and 
(8.81) we rather choose H 1 

D(Ω) because we wish to forbid crack formation on [D 

and [ū. Without this, the creation of cracks on these boundaries would require only 
half the energy needed for cracks occurring inside the structure Ω and thus would be 
artificial.
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Following Ambati et al. (2015) and Pham et al. (2011) we introduce the elastic 
energy and the damage energy, respectively, as 

E(u, α)  = 
1 

2

{

Ω

C(α)ε(u) : ε(u) dx, (8.83) 

H(α) = 
Gc 

4cw 

⎛ 

⎝
{

Ω

l|∇α|2 dx +
{

Ω

w(α)

l
dx 

⎞ 

⎠ , where cw = 
1{

0 

√
w(ξ ) dξ,  

(8.84) 

where Gc is the fracture toughness of the material, l >  0 is the characteristic length, 
measuring the thickness of the damaged zone around the fracture, and w(α) is the 
fracture energy density (Comi and Perego 2001), assumed to satisfy 

w(0) = 0, w(1) = 1, and w'(α) ≥ 0 for  0  ≤ α ≤ 1. 

The sum of the integrands in the above two energies defines the energy density Wl

Wl(u, α)  = 
1 

2 
C(α)ε(u) : ε(u) + 

Gc 

4cw

)
l|∇α|2 + 

w(α)

l

)
. (8.85) 

The total energy of the structure is then given by 

P(u, α)  =
{

Ω

Wl(u, α)  dx . (8.86) 

The Francfort-Marigo regularized fracture model amounts to minimize the total 
energy P(u, α)  among all fields (u(t), α(t)) ∈ V × D1, for  t ∈ (0, T ], such that 
( ̇u(t), α̇(t)) ∈ Cv × D and with the initial condition (8.82). In particular, the defini-
tion of the space D contains the irreversibility condition α̇ ≥ 0 and that of the space 
Cv implies that the boundary condition u(t) = ū(t) on [ū is satisfied at all times. 

No body or surface forces are applied. Indeed, it is well-known (Francfort and 
Marigo 1998) that, in the case of complete damage (C(1) = 0), applying a force 
leads to the breakdown of the structure, which is not physical. 

The solution (u(t), α(t)) satisfies the energy balance
{

Ω

Ẇl(u, α)  dx =
{

[ū 

(C(α)ε(u) · n) · ˙̄u ds, (8.87)
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where overdot represents derivative with respect to time and ds  denotes the surface 
measure over [ū. The optimality conditions for the minimization of (8.86), written 
in a compact form, are Marigo (1989) and Nguyen (1987): for all t ∈ (0, T ], find 
(u(t), α(t)) ∈ V × D1 , satisfying the initial condition (8.82), such that ( ̇u(t), α̇(t)) ∈ 
Cv × D, u(t) = ū (t) on [ū and 

dP(u, α)(v − u̇, β  − α̇) ≥ 0 ∀(v, β)  ∈ Cv × D. (8.88) 

From (8.88), one can derive the strong form of the quasi-static damage model: find 
(u(t), α(t)), satisfying the initial condition (8.82), such that 

α̇ ≥ 0 in Ω × (0, T ], (8.89a) 

1 

2 
C

'(α)ε(u) : ε(u) − Gc 

2cw 
lΔα + Gc 

4cw 

w'(α)

l
≥ 0 in Ω × (0, T ], (8.89b) 

α̇

)
1 

2 
C

'(α)ε(u) : ε(u) − Gc 

2cw 
lΔα + Gc 

4cw 

w'(α)

l

)
= 0 in Ω × (0, T ], (8.89c) 

∇α · n ≥ 0, α̇∇α · n = 0 on  ∂Ω × (0, T ],(8.89d) 
α = 0 on  ([D ∪ [ū ) × (0, T ], 

(8.89e) 

div(C(α)ε(u)) = 0 in Ω × (0, T ], (8.89f) 

u = ū on [ū × (0, T ], (8.89g) 
u = 0 on [D × (0, T ]. (8.89h) 

Inequality (8.89b) is known as the damage criterion. Equation (8.89c) is the comple-
mentary relation which essentially states that the damage criterion is an equality only 
if the damage evolution rate is positive. The variational formulation (or weak form) 
of the system of equations (8.89) reads: for all t ∈ (0, T ] find (u(t), α(t)) ∈ V × D1 

such that u(t) = ū(t) on [ū, α̇ ∈ D
{

Ω

C(α)ε(u) : ε(v) dx = 0 ∀v ∈ V , 

(8.90a){

Ω

Gc 

2cw 

)
l∇α · ∇β + w'(α) 

2l
β

)
dx +
{

Ω

1 

2 
C

'(α)βε(u) : ε(u) dx ≥ 0 ∀β ∈ D. 

(8.90b)
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When the characteristic length l is small enough, and since C(1) = 0, the above 
gradient damage model (8.54) is known to approximate brittle fracture. In Fig. 8.28,
[α represents a crack which is a priori unknown. The model (8.54) is able to capture 
a crack [α which is typically a line in 2D and a surface in 3D, where α takes a unit 
value, which is surrounded by a band of thickness 2l where α is strictly positive. 
Thus, the length l characterizes the thickness of the region that shall undergo damage. 

Two choices of dissipation function w(α) are usually considered and the second 
one is chosen for the numerical test cases: 

• DQ model [proposed in a different context by Ambrosio and Tortorelli (1992)] 

w(α) = α2 , cw = 
1 

2 
. (8.91) 

In this case, the damage onsets as soon as the external loading increments from 
zero. 

• DL model [proposed in Pham et al. (2011)] 

w(α) = α, cw = 
2 

3 
. (8.92) 

In this case, the damage onsets only when a critical elastic energy density is 
exceeded. 

The two choices of w(α), (8.92) and (8.91), make w(α) convex. Therefore, the func-
tional α |→ Wl(u, α)  is convex. Similarly, for a fixed α, u |→ Wl(u, α)  is convex. 
This implies that fixing one variable at a time, one can alternately solve the min-
imization problem (8.54) (Bourdin 2007). However, Wl(u, α)  is not convex with 
respect to the two variables (u, α)  together. 

8.8.1.1 Penalization 

The damage criterion (8.90b) is a variational inequality and is not shape-differentiable 
in the classical sense. For a class of inequalities, called of the first kind and of the 
second kind, one can determine the so-called conical derivative (Mignot and Puel 
1984; Sokolowski and Zolésio 1992). Well-known examples of inequality of the first 
kind include the obstacle-problem and the frictionless contact mechanics problem. 
The damage inequality (8.90b) without the irreversibility constraint (only the box 
constraint α ∈ [0, 1]) and for a convex C(α) classifies as an inequality of the second 
kind, hence easy to analyze. But with the irreversibility constraint, inequality (8.90b) 
classifies neither as the first kind nor as the second kind. The analytical treatment 
of (8.90b) is thus complex and out of the scope of this chapter. Instead, we prefer 
to convert the inequality (8.90b) into an equation, using penalization. Let ∈ be a 
penalization factor such that 0 < ∈ << 1 and let M be the max function, defined as
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M(β) = max(β, 0). 

From now on, we replace the original model (8.54) by the following penalized prob-
lem: for all t ∈ (0, T ], find (u∈(t), α∈(t)) ∈ Z such that α∈(0) = α0, u∈(t) = ū(t) 
on [ū, and
{

Ω

Gc 

2cw

)
l∇α∈ · ∇β + 

w'(α∈)β 
2l

)
dx +
{

Ω

1 

2 
C

'(α∈)βε(u∈) : ε(u∈) dx 

+
{

Ω

Gc

∈
(M(α∈ − 1) − M(−α̇∈)) β dx = 0 ∀β ∈ H 1 

D(Ω), (8.93a)

{

Ω

C(α∈)ε(u∈) : ε(v) dx = 0 ∀v ∈ V . (8.93b) 

We call (8.93), the state problem, and the solution to it (u∈, α∈), the state solution. 
Note that we implicitly assume in writing (8.93a) that α∈ admits a time derivative. In 
the sequel it is assumed that there exists a unique state solution. As is clear in (8.93a), 
only the bound constraints α̇∈ ≥ 0 and α∈ ≤ 1 are penalized. The constraint α∈ ≥ 0 
is not penalized explicitly, rather implicitly by penalizing α̇∈ ≥ 0 and defining an 
initial condition α0 ≥ 0. A similar penalization approach was studied numerically 
(Miehe et al. 2010), where authors penalize only the irreversibility criterion. Our 
work defers as we penalize the upper bound α∈ ≤ 1 as well. 

In the sequel, to simplify notations, we shall drop all ∈ indices and simply denote 
by (u, α)  the solution (u∈, α∈) of problem (8.93). 

8.8.2 Optimization Problem 

We minimize an objective functional J (Ω) given by 

J (Ω) = 
T{

0

{

Ω

m(u(Ω), α(Ω)) dx dt, (8.94) 

where (u(Ω), α(Ω)) is the solution of (8.93) and the function m(·, ·) is assumed to 
be C1 smooth with quadratic growth and linear growth for its derivative, so as to 
ensure that the objective function (8.94) is well-defined and the adjoint equation is 
well-posed. This objective functional represents a mechanical property such as total 
power, total elastic energy or total fracture energy. In Sect. 8.7, we shall maximize 
the total elastic energy and thus choose
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Fig. 8.29 Design domain D 
and shape Ω

m(u, α)  = −C(α)ε(u) : ε(u). 

The justification for the above choice shall be given at the beginning of Sect. 8.7. 
In practice, the shape Ω must be found inside a pre-fixed design space D ⊂ Rd . 

Figure 8.29 shows the shape Ω (in gold) and the design space D (in gold and gray). 
The crack [α is an unknown of the problem (8.93) that shall be determined for 
every shape Ω. This crack [α might appear anywhere in the shape Ω and there is no 
postulated initial crack. The space of admissible shapes Uad is given by Def.8.4. The  
minimization problem then reads 

min
Ω∈Uad 

J (Ω). (8.95) 

As is well known, very often there exists an optimal shape only if additional uni-
form smoothness conditions are imposed to the admissible shapes, that we shall not 
consider in the sequel. As usual, we content ourselves with computing numerical 
minimizers, using a gradient-descent method. 

8.8.3 Shape Derivative Computation 

To define the adjoint problem for the shape derivative, we introduce the subspace V0 

of V 
V0 = {u ∈ H 1 (Ω)d : u = 0 on [D ∪ [ū}. (8.96) 

The adjoint variational formulation is defined as: find (v, β)  ∈ H 1([0, T ], Z ), satis-
fying the final condition β(T ) = 0, such that, for all t ∈ [0, T ),
{

Ω

(
∂um(u, α)ψ + C(α)ε(v) : ε(ψ) + C'(α)βε(u) : ε(ψ)

)
dx = 0 ∀ψ ∈ V0, 

(8.97a)
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{

Ω

)
∂αm(u, α)ϕ  + C'(α)ϕ ε(u) : ε(v) + 

Gcl

2cw 
∇β · ∇ϕ 

+
)
1 

2 
C

''(α)ε(u) : ε(u) + 
Gc 

4cw 

w''(α)

l
+ 

Gc

∈
M'(α − 1)

)
βϕ

)
dx 

−
{

Ω

Gc

∈

)
d 

dt 
(M'(−α̇)β)

)
ϕ dx = 0 ∀ϕ ∈ H 1 

D(Ω). (8.97b) 

In the sequel, we assume that there exists a unique solution of the adjoint equation. 
Note that (8.97b) features the time derivative of the derivative M' of the maximum 
function M(β) = max(β, 0). Since M' is the Heaviside function, its time derivative 
is a Dirac mass, and the precise meaning of the last integral in (8.97b) is unclear. 
However, if M(β) was a regularization of max(β, 0), then everything makes sense, 
including the following proposition. In other words, our computation of the shape 
derivative below is fine for a smooth function M(β) and merely formal for the 
maximum function. Further time discretization will make clear in which sense the 
time derivative of the Heaviside function is computed (see Sect. 8.8.4). 

Proposition 1 Let Ω be a smooth bounded open set. Assume that there exists a 
unique solution (u, α)  to (8.93), which belongs to H 1([0, T ], Z ), and that there 
exists a unique solution (v, β)  ∈ H 1([0, T ], Z ) of the adjoint equation (8.61). If 
the state solution (u, α)  ≡ (u(Ω), α(Ω)) is shape-differentiable, then the objective 
function (8.94) admits a shape derivative, given, for any θ ∈ W 1,∞ 

0 (D, Rd ), by  

J '(Ω)(θ ) = 
T{

0

{

[

θ · n(m(u, α)  + C(α)ε(u) : ε(v) + 
1 

2 
C

'(α)βε(u) : ε(u) 

+ 
Gc 

2cw

(
l∇α · ∇β + 

w'(α)β 
2l

)+ 
Gc

∈

)
M(α − 1) − M(−α̇)

)
β
)
ds dt. (8.98) 

Remark 4 The uniqueness of the solution of the damage model (8.93) is far  from  
being obvious since this model is the optimality condition for the minimization of a 
non-convex energy, which thus may have multiple minima. For the same reason, the 
existence of a solution for the adjoint equation (8.61) is not obvious either because 
the corresponding operator is not coercive (nevertheless, see Sect. 8.8.4 for a positive 
result in this direction). Note that we also assume that the solutions are smooth with 
respect to time since they belong to H 1([0, T ], Z ) and, in particular, are continuous 
with respect to time. We use this assumption in the variational formulations (8.93a) 
and (8.97b), which involve the time derivative of the damage variable α. Unfortu-
nately, as discussed further in Remark 8, it is likely that, in some cases, the solution 
(u(Ω), α(Ω)) is discontinuous in time and thus the shape derivative (8.98) is not 
rigorously justified. 

Proof The idea of the proof is well-known, based on Céa’s method (J. Céa 1986). 
Introduce a few spaces on the full space Rd and thus independent of Ω:



182 J. Desai

Ṽ = {v ∈ H 1 (Rd )d : v = 0 on [D}, C̃t = {v ∈ Ṽ : v = ū(t) on [ū}, 
H̃ 1 

D(Rd ) = {β ∈ H 1 (Rd ) : β = 0 on [D ∪ [ū}, Z̃t = C̃t × H̃ 1 
D(Rd ), 

Ṽ0 = {v ∈ Ṽ : v = 0 on [ū}, Z̃0 = Ṽ0 × H̃ 1 
D(Rd ). 

For independent variables ũ(t), ṽ(t), α̃(t), β̃(t) and λ̃, belonging to the spaces 

• (ũ, α̃) ∈ H 1([0, T ], Z̃t ), 
• (ṽ, β̃) ∈ H 1([0, T ], Z̃0) (the Lagrange multiplier for the state equation (8.93)), 
• λ̃ ∈ L2(Rd ) (the Lagrange multiplier for the initial condition α̃(0) = α0), 

define a Lagrangian as 

L( ̃u, ṽ, α̃, β̃,  ̃λ,Ω) = 
T{

0

{

Ω

m( ̃u, α̃)dxdt 

+ 
T{

0

( {

Ω

C( ̃α)ε(ũ) : ε(ṽ) dx
)
dt + 

T{

0

{

Ω

(1 
2 
C

'( ̃α) ̃βε( ̃u) : ε( ̃u) 

+ 
Gc 

2cw

(
l∇α̃ · ∇  ̃β + 

w'( ̃α) ̃β 
2l

)+ 
Gc

∈

)
M( ̃α − 1) 

−M(−˙̃α)

)
β̃
)
dx dt +

{

Ω

λ̃( ̃α(0) − α0) dx . (8.99) 

Since the boundaries [D ∪ [ū are non-optimizable, the variables ũ(t), ṽ(t), α̃(t), 
β̃(t), and λ̃ are independent of Ω. When the optimality condition are applied to 
the Lagrangian (8.99) (that is, its partial derivatives with respect to its independent 
variables are set to zero), we obtain the state equation (8.93), the adjoint equation 
(8.61) and the shape derivative (8.98). 

At first, differentiating the Lagrangian (8.99) with respect to the adjoint variable 
(ṽ, β̃) in the direction (ψ, ϕ)  ∈ H 1([0, T ], Z̃0) and equating it to zero at (ũ, α̃) = 
(u, α), we obtain 

∂L 
∂ β̃ 

(ϕ) = 
T{

0

( {

Ω

Gc 

2cw

(
l∇α · ∇ϕ + 

w'(α)ϕ 
2l

)
dx +
{

Ω

1 

2 
C

'(α)ϕε(u) : ε(u) dx 

+
{

Ω

Gc

∈

(M(α − 1) − M(−α̇)
)
ϕ dx
)
dt = 0 ∀ϕ ∈ H1([0, T ], H̃1 

D(Rd ))), 

∂L 
∂ ̃v 

(ψ) = 
T{

0 

⎛ 

⎝
{

Ω

C(α)ε(u) : ε(ψ) dx 

⎞ 

⎠ dt = 0 ∀ψ ∈ H 1 ([0, T ], Ṽ0). 

To obtain the initial condition α(0) = α0, it suffices to differentiate (8.99) with 
respect to λ̃ at α̃ = α. We thus recover the state equation (8.93).
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Second, we differentiate the Lagrangian (8.99) with respect to ( ̃u, α̃) to recover 
the adjoint equation. By definition, ũ ∈ C̃t , which is an affine space. The admissible 
perturbations ψ with respect to ũ, must be such that ũ + ψ ∈ C̃t , hence ψ ∈ Ṽ0. 
Equating to zero the partial derivative in the direction (ψ, ϕ)  ∈ H 1([0, T ], Z̃0), and 
denoting by (v, β)  its solution for ( ̃u, α̃) = (u, α)  and λ̃ = λ, we arrive at  

∂L 
∂u 

(ψ) = 
T{

0

( {

Ω

(
∂um(u, α)ψ + C(α)ε(v) : ε(ψ) 

+C
'(α)βε(u) : ε(ψ)

)
dx
)
dt = 0 ∀ψ ∈ H 1([0, T ], Ṽ0), (8.101a) 

∂L 
∂α 

(ϕ) = 
T{

0

( {

Ω

(
∂αm(u, α)ϕ  + C'(α)ϕε(u) : ε(v) + 

Gcl

2cw 
∇β · ∇ϕ 

+(1 
2 
C

''(α)ε(u) : ε(u) + 
Gc 

4cw 

w''(α)

l

+ 
Gc

∈
M'(α − 1)

)
βϕ + 

Gc

∈
M'(−α̇) ̇ϕβ

)
dx
)
dt +
{

Ω

λϕ(0)dx = 0 

∀ϕ ∈ H 1 ([0, T ], H̃ 1 
D(Rd )). (8.101b) 

Varying the test function ψ in (8.101a), we get the boundary condition v(t) = 0 on
[ū and for all t ∈ [0, T )
{

Ω

(
∂um(u, α)ψ + C(α)ε(v) : ε(ψ) + C'(α)βε(v) : ε(ψ)

)
dx = 0 ∀ψ ∈ V0, 

where we used definition (8.96) of  V0. We have thus derived the adjoint equation 
(8.97a). Now, to get rid of the time derivative ϕ̇ in Eq. (8.101b), we integrate the 
term M'(−α̇) ̇ϕβ by parts with respect to t and obtain 

T{

0

( {

Ω

(
∂αm(u, α)ϕ  + C'(α)ϕε(u) : ε(v) + 

Gcl

2cw 
∇β · ∇ϕ 

+(1 
2 
C

''(α)ε(u) : ε(u) + 
Gc 

4cw 

w''(α)

l
+ 

Gc

∈
M'(α − 1)

)
βϕ
)
dx 

−
{

Ω

Gc

∈

( d 
dt 

(M'(−α̇)β)
)
ϕ dx
)
dt 

+
{

Ω

λ ϕ|t=0 dx +
{

Ω

Gc

∈

(M'(−α̇)βϕ
||
t=T − M'(−α̇)βϕ

||
t=0

)
dx = 0 

∀ϕ ∈ H 1([0, T ], H̃ 1 
D(Rd )). (8.102)
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This integration by part is legitimate if M is a smooth function but is purely formal 
if M is the maximum function since in such a case M' is a Heaviside function and 
its time derivative involves a Dirac function. Varying ϕ in (8.102), we find that the 
Lagrange multiplier λ is given by 

λ = 
Gc

∈
M'(−α̇)β

||
t=0 , 

and that the adjoint problem (8.97b) for  β holds true. Finally, since J (Ω) = 
L(u, α,  ̃v, β̃,  ̃λ, μ̃,Ω), the shape derivative J '(Ω)(θ ) satisfies, for any 
θ ∈ W 1,∞ 

0 (D, Rd ), 

J '(Ω)(θ ) = 
∂L 
∂Ω

(θ ) + 
∂L 
∂u

)
∂ u 
∂Ω

(θ )
)

+ 
∂L 
∂α

)
∂α 
∂Ω

(θ )
)

as the variables ṽ, β̃,  ̃λ and μ̃ are independent of Ω. Substituting these variables by 
the optimal ones v, β, λ,  μ and using the adjoint equation (8.61), the two last terms 
in the above formula vanish, resulting in 

J '(Ω)(θ ) = 
∂L 
∂Ω

(θ ). 

Consequently, formula (8.98) is deduced by a straightforward application of Lemma 1.
⬜

8.8.4 Time Discretized State and Adjoint Equations 

The adjoint equation (8.61) is a linear backward parabolic equation with a final 
condition at t = T . This equation was assumed to be well-posed in the statement of 
Theorem 1. A time discretized version of the adjoint equation can be shown to be 
well-posed (Desai et al. 2022). 

To construct a time discretized version of the adjoint problem (8.61), we first 
time discretize the state equation (8.93) along with the objective function (8.94). The 
time interval [0, T ] is split in N sub-intervals of length δt = T /N . Let  (un, αn) and 
(vn, βn) denote the discrete state and adjoint solutions, respectively, at the end of 
every n-th time interval. The discrete state is determined using an implicit scheme: 
initialize (u0, α0) = (0, α0) and, for 0 < n ≤ N , find (un, αn) ∈ Z such that un = 
ū(tn) on [ū and

{

Ω

C(αn)ε(un) : ε(v) dx = 0 ds ∀v ∈ V , (8.103a)
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{

Ω

Gc 

2cw

)
l∇αn · ∇β + 

w'(αn) 
2l

)
dx +
{

Ω

1 

2 
C

'(αn)ε(un) : ε(un) dx 

+
{

Ω

Gc

∈

⎛ 

⎝M(αn − 1)β dx −
{

Ω

M
)

αn−1 − αn 

δt

)
β 

⎞ 

⎠ dx = 0 ∀β ∈ H 1 
D(Ω). 

(8.103b) 

The above problem can be shown to admit at least one solution (Desai 2021), while 
uniqueness of the solution is not guaranteed [like its continuous counterpart (8.93)]. 
Nevertheless, we assume that the solution (un, αn) ∈ Z is unique. The discretization 
of the objective function (8.94) reads: 

JN (Ω) = 
N∑

n=0 

δt
{

Ω

m(un, αn) dx . (8.104) 

Introducing a Lagrangian, as in the proof of Proposition 1, adapted to the above dis-
cretization, we obtain the following discrete adjoint problem: initialize (vN , βN ) = 
(0, 0) and, for N − 1 ≥ n ≥ 0, find (vn, βn) ∈ Z such that
{

Ω

(
∂un m(un, αn)ψ + C(αn)ε(vn) : ε(ψ) + C'(αn)βnε(un) : ε(ψ)

)
dx = 0 

∀ψ ∈ V0, (8.105a)
{

Ω

Gcl

2cw 
∇ϕ · ∇βn dx 

+
{

Ω

(
C

'(αn)ϕε(un) : ε(vn) + 
1 

2 
C

''(αn)ε(un) : ε(un) + 
Gc 

4cw 

w''(αn)

l

)

ϕβn dx +
{

Ω

Gc

∈

)
M'(αn − 1) + 

1 

δt 
M'(αn−1 − αn)

)
ϕβn dx 

+
{

Ω

∂αn m(un, αn)ϕ dx = 
Gc

∈δt

{

Ω

M'(αn − αn+1)βn+1ϕ dx ∀ϕ ∈ H 1 
D(Ω). 

(8.105b) 

Remark 5 When M is the maximum function, its derivative is the Heaviside func-
tion, M' = H. The  value  H(0) is not precisely defined since the Heaviside function 
is discontinuous at zero. Numerically, we tested the adjoint equation (8.105b) (along 
with the corresponding shape derivative) for valuesH(0) = 0 andH(0) = 1, and both 
choices yield the same optimized shape (at least, for the 2D cantilever in Sect. 8.7).
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8.8.5 Numerical Implementation 

In this section, we expound the numerical aspects of the resolution of the state 
equation (8.93) and adjoint equation (8.61) and the proposed shape optimization 
algorithm. For all the numerical test cases presented in Sect. 8.7, the material is 
chosen to be concrete having the following properties (Bažant and Pijaudier-Cabot 
1989): Young modulus E = 29 GPa, Poisson ratio ν = 0.3, ultimate tensile strength 
σM = 4.5MPa and fracture toughness Gc = 70 J/m2. For the damage model, the 
characteristic length l is calculated using the formula (Tanné et al. 2018)

l = 
3Gc E 

8σ 2 M 

. (8.106) 

The domain Ω is discretized by a simplicial unstructured mesh Ωh . The  mesh  is  
produced by the MMG software (Dapogny et al. 2014) which features two important 
input parameters: the minimal and maximal mesh size, denoted by hmin and hmax, 
respectively. The mesh Ωh is assumed to be uniform in the sense that hmax and hmin 

are of the same order of magnitude. The mesh size ought to be chosen such that 
the details smaller than the characteristic length l are captured. Due to numerical 
experiments in Miehe et al. (2010), it was found that a uniform mesh size h chosen 
such that 2h < l suffices. Typically, in the mesh produced byMMG, the actual minimal 
mesh size is lesser than hmin. Hence hmin in all our numerical experiments is not a 
precise lower bound on the mesh size, rather a parameter given toMMG. We performed 
numerical experiments and found that it suffices to choose 

2hmin < l. (8.107) 

We have to make one exception with the rule (8.107) in the test case of Sect. 8.9.3 (a 
realistic column of height 4 m) where we just enforce hmin < l in order to have a not 
too fine mesh which can be treated without resorting to high performance computing. 
The penalization parameter is chosen to be small, ∈ = O(h2 max) (its precise value is 
given in the beginning of Sect. 8.7). 

Remark 6 Despite the fact that the damage model (8.93) is non-local, the crack 
initiation is mesh-dependent. For instance, mesh refinement at corners of the shape
Ωmakes the crack initiation easier at these corners. For this reason we rely on uniform 
meshes (hmax and hmin of the same order), so that the crack initiation is unbiased. 

The spaces V , Cv, H 1 
D(Ω), Z , defined by (8.77), (8.78), and (8.79) are discretized 

by piecewise affine continuous (linear) finite elements and their discrete counterparts 
are denoted by V h, Ch 

v , H 1 
D(Ωh), Zh , respectively. 

The time interval [0, T ] is discretized in N intervals of length δt = T /N . The  
time at the end of the n-th time interval is denoted tn, n = 1, 2, . . . ,  N .
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8.8.5.1 Solving the Fracture Model 

We still denote by (un, αn) ∈ Zh the time-space discretized solution at time inter-
val tn (we do not write its dependence to h). The space discretized version of 
(8.103) is simply the same variational formulation with the finite dimensional spaces 
V h, H 1 

D(Ωh), Zh replacing their continuous counterparts V , H 1 
D(Ω), Z . Following 

(Bourdin et al. 2008), the nonlinear variational formulation (8.103) is solved by a  
sequentially alternate algorithm: fixing αn , solve  (8.103a) for  un ; fixing un , solve  
(8.103b) for  αn . This algorithm exploits the fact that the total energy (8.86) is sepa-
rately convex in u and α, but not with respect to the couple (u, α), which may hinder 
the convergence of a standard Newton algorithm. This algorithm of Bourdin et al. 
(2008) is precisely recalled in Algorithm 3. 

Algorithm 3 Numerical resolution of (8.103) 
Initialization: (u0 n, α

0 
n ) = (0, 0) for n = 0 and  (u0 n, α

0 
n ) = (u0 n−1, α

0 
n−1) for n > 0. 

For i = 0, 1, . . . ,  do 

1. Substitute αn = αi 
n in (8.103a), and solve it for un = ui+1 

n 
2. Substitute un = ui+1 

n in (8.103b), and solve it for αn = αi+1 
n using a Newton–Raphson or a 

fixed point algorithm 
3. If
||||αi+1 

n − αi 
n

||||
L2(Ωh ) < tol ||1||L2(Ωh ) , then exit the loop, 

else repeat 

The tolerance tol  in Algorithm 3 is chosen to be 10−6. The resolution for αn 

(step 2 in the Algorithm 3) using Newton algorithm is easy given that there are 
no constraints on αn, because of penalization. Without penalization, one needs to 
apply a constrained Newton algorithm, the numerical implementation of which is not 
straightforward. Algorithm 3 builds a sequence (ui 

n, α
i 
n) −→ (un, αn) as i −→ ∞. 

Typically, its convergence is very fast when αn is close to zero everywhere in Ωh . 
Whereas the convergence is very slow when αn approaches unity and there is crack 
formation in Ωh . 

Of course, the solution (un, αn) depends on the mesh size hmax and on the time step 
δt . Furthermore, each solution at time tn depends on the whole time history before tn . 
In practice, the solution depends on the initialization (u0 

n, α
0 
n ) which is usually taken 

as the solution at the previous time step (un−1, αn−1). Therefore, it is not clear that 
Algorithm 3 delivers an approximation of the global minimizer of the total energy 
(8.86) (Chambolle 2004). Rather, we may end up in local minima. Following again 
(Bourdin et al. 2008), we rather use the backtracking Algorithm 4 which escapes 
from local minima in practice. The idea of Algorithm 4 is that, if the solution found 
at time step n using Algorithm 3 features a strong increase of damage, the solution 
at the previous time step n − 1 is re-computed using the solution at time step n as 
initial guess. In doing so, we expect to find a new solution (un−1, αn−1) which is 
a better minimizer of the total energy (8.86). For example, consider the shape in 
Fig. 8.32a. This shape is subjected to boundary conditions shown in Fig. 8.31 and to 
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Algorithm 4 Numerical resolution of (8.103) with backtracking 
Set n = 1 and  (ũ, α̃) = (0, 0) 
While n ≤ N (time steps), do 

1. Solve (8.103) for  (un, αn ) using Algorithm 3 using an initial guess (u0 n, α
0 
n ) = (ũ, α̃) 

2. If ||αn − α̃||L∞(Ωh ) > 0.5 and  n > 1 

then ( ̃u, α̃) = (un, αn), and set n = n − 1, 
else ( ̃u, α̃) = (un, αn), and set n = n + 1. 

Fig. 8.30 Evolution of elastic energy for the shape in Fig. 8.32a with and without the backtracking 
Algorithm 4 

an applied displacement given in (8.114). The equation (8.103) is resolved with and 
without Algorithm 4 and the evolution of the elastic energy E(u, α)  (8.83) is plotted 
in Fig. 8.30. The spike in elastic energy indicates the time instant after which cracks 
are formed. As seen in Fig. 8.30, the solution obtained via backtracking exhibits 
crack earlier than the solution obtained without backtracking. The elastic energy 
after t = 0.8 is the same with and without backtracking algorithm and the final crack 
configuration is the same for the two cases. From a physical standpoint, the better 
minimizer of the total energy (8.86) (obtained via backtracking) consumes lesser 
amount of energy to exhibit cracks (as can be seen in Fig. 8.30). The cracks which 
consume lesser amount of energy are more likely to appear physically. Considering 
such minimizers (obtained via backtracking) in a gradient-based shape optimization 
ensures the minimization of the higher likelihood of cracks. 

8.8.5.2 Solving the Adjoint Problem 

We still denote by (vn, βn) ∈ Zh the time-space discretized adjoint solution at time 
interval tn . As for the state solution in the previous subsection, the space dis-
cretized version of (8.105) is simply the same variational formulation with the
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Fig. 8.31 2D Cantilever 
boundary conditions 

finite dimensional spaces V h, H 1 
D(Ωh), Zh replacing their continuous counterparts 

V , H 1 
D(Ω), Z . As usual the adjoint problem is solved backward in time, i.e., for 

decreasing indices n = N − 1, . . . ,  1, 0. One ought to solve the state equation 
(8.103) (using Algorithm 4) until the last time step, store the solutions (un, αn) 
for every time step and retrieve the solutions starting from the last time step. As 
explained in Sect. 8.8.4, the bilinear form in the variational formulation (8.105) is  
not coercive. Hence, for numerical implementations, one ought to use a direct solver 
or an iterative technique like GMRES, that is capable of resolving indefinite matrices. 

Remark 7 The numerical resolution of (8.105) using a direct solver or GMRES is 
slow. If the damage variable is small ||αn||L∞(Ωh ) << 1, the adjoint problem is close 
to a simple linear elasticity problem and one can rather use an iterative solver meant 
for positive definite matrices, for instance, CG, to save computational effort. 

Finally, the space-time discretized version of the shape derivative of (8.104) is  

J '
N (Ω

h )(θ ) =
{

[

θ · n 
N∑

n=0 

δt
(
m(un, αn) + C'(αn)βnε(un) : ε(un) 

+ 
Gcl

2cw 
∇αn · ∇βn + 

Gc 

4cw 

w'(αn)

l
βn + C(αn)ε(un) : ε(vn) 

+ 
Gc

∈

)
M(αn − 1) − M(αn−1 − αn 

δt

))
βn
)
ds. (8.108) 

8.8.5.3 Regularization and Extension of the Shape Derivative 

The shape derivative (8.108) is defined only on the boundary [, while it is needed 
in the full computational domain D for solving the transport equation (8.19). Fur-
thermore, both the derivative and the shape may be not smooth enough, which may 
result in poor numerical efficiency. Therefore, it is convenient to regularize the shape 
derivative (8.108) (Allaire et al. 2021; Burger 2003), still ensuring that it is a descent 
direction. A classical possibility is to consider the H 1(D) scalar product (instead of 
the L2([) scalar product) for identifying the gradient. In other words, introducing a 
mesh Dh of D and denoting by H 1(Dh) the linear finite element subspace of H 1(D), 
we seek a function d j  (Ωh) ∈ H 1(Dh) such that
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{

D

(
4h2 min∇d j (Ωh ) · ∇ϕ + d j (Ωh )ϕ

)
dx =
{

[

j '(Ωh ) ϕ  dx ∀ϕ ∈ H 1 (Dh ), 

(8.109) 
where hmin is the fixed minimal mesh size and j '(Ωh) is the function defined by 
formula (8.108) with 

J '
N (Ω

h )(θ ) =
{

[

θ · n j '(Ωh ) ds. 

For the implementation details of the above, an interested reader can refer to Desai 
(2021). 

8.8.5.4 Shape Optimization Algorithm 

We consider the shape optimization problem (8.95) where the admissible shapes 
must satisfy a constraint on the target volume V f . Hence, we introduce a Lagrangian 
in the same manner as before 

L(u, α,  v, β,Ωh , λ)  = J (Ωh ) + 
λ 
CV 

⎛ 

⎝
{

Ωh 

dx − V f 

⎞ 

⎠ , (8.110) 

where λ is the Lagrange multiplier for the volume constraint and CV is a normalization 
constant. Denoting by Ωh 

0 the initial shape, the constant CV is defined by 

CV =

|||||||
{

Ωh 
0 

dx − V f

|||||||
. (8.111) 

The optimization strategy is implemented in the same as before, resulting in Algo-
rithm 2. 

8.8.5.5 Parallel Implementation 

All our numerical experiments are performed with the open-source softwareFreeFEM 
4.8 (Hecht 2012), installed on a workstation featuring an Intel(R) Xeon(R) Gold 
6230 CPU and 40 processors. In the next section we shall present a large scale topol-
ogy optimization test case, consisting of approximately 1.3 million tetrahedra. It 
would be impossible to perform this test case on a single processor, because its CPU 
time would be at least a few weeks. Indeed, 90% of the total computation time is 
spent on the first three steps of Algorithm 5, namely on the finite element analyses. 



8 Topology Optimization in Linear Elasticity, Plasticity … 191 

Algorithm 5 Shape optimization for the damage model 

Initialize with a shape Ωh 
0 and repeat over i = 1, . . . ,  N 

1. Solve for  the state  (u, α)  in Ωh 
i marching in time from t1 until tN using Algorithm 4 

2. Solve for the adjoint (v, β)  in Ωh 
i backward in time from tN up to t1 

3. Compute the shape derivative using (8.108) and regularize it with (8.109) to deduce d j  (Ωh 
i ) 

4. Update the Lagrange multiplier λi+1 with (8.31) 
5. Solve the transport equation (8.19) with the velocity given by (8.32) for the pseudo-time step 

τ given by (8.30) to obtain the new level-set function φ̃i+1 
6. Re-initialize φ̃i+1 to the signed distance function φi+1 (defining a new shape Ωh 

i+1) 
7. Compute the volume Vi+1. If it is close to the volume target, apply the projection algorithm 

(8.33) to satisfy exactly the volume constraint. 
8. Remesh the box D using MMG (Dapogny et al. 2014) to obtain the body-fitted mesh of the new 

shape Ωh 
i+1 

Therefore, in order to minimize the total computation time, we must perform 
parallel computation for the finite element analysis. Fortunately, FreeFEM comes 
with built-in OpenMPI and the open-source package PETSc (Balay et al. 2019). 
The resolution of the state equation (8.103) (using Algorithm 4), the adjoint equation 
(8.105) and the regularization of the shape derivative (8.109) are performed using the 
parallel-solver of PETSc. The mesh is partitioned in sub-domains using the open-
source package METIS (Karypis and Kumar 1997). The finite element rigidity matrix 
is thus partitioned accordingly, and the linear systems are solved in parallel with the 
GAMG (geometric algebraic multigrid) preconditioner. The state equation and the 
regularization problem are solved by the conjugated gradient algorithm, while the 
adjoint equation is solved by GMRES. For details of implementation we refer to the 
tutorial on the parallel version of FreeFEM (Jolivet 2020). Some examples of total 
computational times are given in Remark 9. 

8.9 Numerical Results: Fracture 

We now present 2D and 3D shape optimization results for the damage model (8.93), 
which prove the effectiveness of our algorithm to produce crack-free structures. 

We choose to maximize rigidity, namely to minimize an objective function which 
is the total compliance. As already explained in Sect. 8.8.1, no body or surface 
forces can be considered in the Francfort-Marigo damage model and, rather, one 
has to impose given displacements to the structure. In such a case, there is a subtle 
definition of compliance, see, e.g., Barbarosie and Lopes (2011), which takes into 
account the reaction force on the surface where the displacement is imposed. Since 
the work done by this reaction force is equal to the elastic energy, the total compliance 
is defined as
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J (Ω) = −  
T{

0

{

Ω

C(α)ε(u) : ε(u)dx dt. (8.112) 

The objective function (8.112) is minimized in all test cases, except otherwise men-
tioned. 

The final time is T = 1s and the time step is δt = 0.15s. The solution (u, α)  
is computed by solving the penalized formulation (8.103) using Algorithm 4. The  
penalization parameter is chosen equal to ∈ = 10−5. 

An isotropic degradation function, with a small residual stiffness Cres, is consid-
ered 

C(α) = (1 − α)2 C0 + Cres. (8.113) 

In practice the residual stiffness is Cres = 10−6
C0 but it could even be taken to be 

zero if the finite element solver is robust enough (which is the case with FreeFEM). 
For all test cases, only the dissipation function (8.92) of the  DL model is considered. 

Since we are in a quasi-static evolution framework, the rate of increment of the 
imposed displacement has no effect on the solution (u, α)  at the final time T = 1s. 
But the rate does have a strong influence on the objective function (8.112) (since it 
contains a time-integral). In order to see a greater influence of the damage variable α 
on the optimized shape, we consider an imposed displacement ū(t) that grows from 
zero to a certain value and then remains constant for some period. 

8.9.1 2D Cantilever 

We study a 2D cantilever beam represented by a rectangle of dimensions 1m × 0.5m  
as shown in Fig. 8.31. The cantilever beam is clamped all along its leftmost edge and 
subjected to an applied vertical displacement, 

ū(t) = (0, 4min(1.2t, 1)) × 10−4 m, t ∈ [0, 1], (8.114) 

on a centered part of its rightmost edge [ū of length 0.1m. The above displacement 
(8.114) is chosen in such a way that the initial shape of Fig. 8.32a suffers from a crack 
as seen in Fig. 8.34a. This displacement is kept constant near the end of the loading 
process so that the weight of the largest loading is increased in the objective function 
and the optimization algorithm works harder to get rid of the possible cracks. A 
target volume V f = 0.25 m2 is imposed for all the test cases in this subsection. The 
parameters of the remeshing tool MMG are: hmin = 0.0064m, hmax = 0.0128 m. 

The initial shape is displayed in Fig. 8.32a. The shape obtained by minimizing 
(8.112) for linear elasticity (without any damage) is plotted in Fig. 8.32b. The shape 
obtained by minimizing (8.112) for the damage model is plotted in Fig. 8.32c. The 
convergence history is plotted in Fig. 8.33.
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Fig. 8.32 Initial and final meshes for the cantilever shapes of Sect. 8.9.1 

Fig. 8.33 Convergence history for the optimized shape of Fig. 8.32c 

As can be seen in Fig. 8.32, the optimized shapes, with or without damage in the 
mechanical model, are slightly different, but share the same topology. The shape in 
Fig. 8.32c do not undergo a crack, unlike the shape in Fig. 8.32b that does undergo 
a crack (see Fig. 8.35a). For the shape in Fig. 8.32c, the damaged region in the inter-
mediate shapes is plotted in Fig. 8.34. The optimization algorithm indeed tries hard 
to remove every damaged or cracked region that appears. We observe that the crack 
appears in the cantilever at several locations, taking different configurations at each 
iteration and disappears finally after the 45-th iteration.
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Remark 8 One can see in Fig. 8.33 that the objective function (8.112) features very 
strong oscillations during the first 50 iterations although the volume constraint is 
nicely satisfied after 20 iterations. These peaks in the convergence history occur 
whenever there is a transition from a shape without any crack to a shape with a 
crack, or when the crack changes from one position to a completely different one 
(see Fig. 8.34). In other words, small perturbations in the shape Ω can result in the 
appearance or disappearance of cracks, leading to abrupt changes in the objective 
function (8.112). Reducing the descent step τ would not help here because the onset 
of fracture is a discontinuous process with respect to load or geometry variations. 
Typically, the growth in time of a fracture can be discontinuous. Therefore, it is 
plausible that a small change in the geometry of the shape can induce a large change 
in the crack profile and thus in the value of the objective function (8.112). This non-
smooth character of fracture or damage is well documented not only in the theoretical 
literature (Benallal and Marigo 2006; Chambolle et al. 2009, 2010, 2008; Pham 
et al. 2011) but also in the numerical literature (Bourdin et al. 2008). Note that our 
derivation of the shape derivative in Sect. 8.8.3 was performed under the assumption 
of a smooth solution of the damage model (8.93). 

The regularization of the damage field α with the characteristic length l or the 
penalization process of the damage irreversibility do not help at all on this matter. Our 
numerical experiments confirm this non-smoothness of the damage problem and the 
discontinuity of the objective function with respect to shape variations. Therefore, it 
is questionable to use a gradient-descent method to minimize the objective function 
(8.112). Nevertheless, the presented test cases show that, after some early oscillations, 
our gradient algorithm does converge to a crack-free optimal shape. 

This is merely a numerical evidence for a finite family of examples and it may 
well be different for other geometries and sets of loading and material parameters. 

There are two key ingredients for this relative success. First, although the descent 
step τ is adapted at each iteration by formula (8.30), we do not test if the objective 
function decreases at each iteration and we never step back with a smaller descent 
step. Second, we rely on the backtracking Algorithm 4 [following Bourdin et al. 
(2008)] which plays a pivotal role in ensuring a stable damage evolution. As a con-
sequence, the shapes obtained in the final iterations are more stable in the sense 
that small geometric perturbations do not cause the appearance of a crack. Hence, 
oscillations in the objective function are avoided and a smooth convergence of the 
objective function is attained. This is confirmed by our attempt to replace the back-
tracking Algorithm 4 by the simpler Algorithm 3 (without backtracking) in our shape 
optimization Algorithm 5. We noticed that the fluctuations in the objective function 
were more violent than the ones obtained with backtracking, which was hindering 
convergence. 

One could think that changing the initialization could improve the convergence of 
the shape optimization for the damage model. For example, instead of starting from 
the periodically perforated initial shape in Fig. 8.32a, it is possible to initialize the 
damage model optimization with the optimal shape for linear elasticity in Fig. 8.32b. 
We perform this new test case and the result in Fig. 8.35b is quite deceiving. Indeed,
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Fig. 8.34 Damage variable α at the final time T plotted for several optimization iterations for the 
shape in Fig. 8.32c (black regions indicate cracks) 

Fig. 8.35 Damage variable α at the final time T for the initial shape, as in Fig. 8.32b, and for the 
resulting optimal shape 

it takes 600 iterations (3 times more, see Fig. 8.36) to converge to the shape of 
Fig. 8.35b, which is different from that previously obtained in Fig. 8.32c, slightly 
less optimal since the objective function for Fig. 8.32c is  0.7% better than for the 
shape of Fig. 8.35b. Note that both shapes of Fig. 8.35b and 8.32c feature no crack.



196 J. Desai

Fig. 8.36 Objective function 
(8.112) versus iterations for 
the shapes (8.32b) and 
(8.35b) 

8.9.1.1 Traction-Only Degradation 

Only for once, we replace the isotropic degradation function (8.113) by the following 
traction-only degradation function (Miehe et al. 2010) 

C(u, α)  =
(
H(di vu)(−1 + (1 − α)2 ) + 1

)
C0 + Cres, (8.115) 

where H denotes the Heaviside function. If di vu ≥ 0 thematerial is said to be in trac-
tion, otherwise it is in compression. The degradation function (8.115) is constructed 
in such a way that damage occurs only under tension. In other words, when di vu < 0, 
whatever the value of α, one has C(u, α)  = C0. Such a traction-only degradation 
function is more realistic since it can make a difference between an opening and a 
closing crack (this idea was introduced in Amor et al. (2009) with a slightly different 
degradation function). The Hooke’s tensor C(u, α)  obviously depends on u, and fur-
thermore is not even differentiable with respect to u. Nevertheless, for the numerical 
test here, we ignore this dependence and do not take it into account in the adjoint 
equation. 

The same 2D cantilever beam, as in Sect. 8.9.1, is considered for the new degra-
dation function (8.115). Starting from the initialization in Fig. 8.32a, the algorithm 
converges to the shape of Fig. 8.37. The convergence history, in Fig. 8.38, is slightly 
smoother than in Fig. 8.33. The optimized shape in Fig. 8.37 is somehow intermediate 
between those in Fig. 8.32 for linear elasticity and the original isotropic degradation 
function (8.113).
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Fig. 8.37 Final mesh for the anisotropic degradation function (8.115) 

Fig. 8.38 Convergence history for the shape of Fig. 8.37 

Fig. 8.39 2D L-beam 
boundary conditions
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Fig. 8.40 Initial and final meshes for the 2D L-beam 

8.9.2 2D L-Beam 

The last 2D example is an L-beam which is a meaningful test case because of its re-
entrant right-angled corner, which is prone to crack initiation. As shown in Fig. 8.39, 
the L-beam is fixed on its topmost edge, subjected to an imposed displacement, 

ū(t) = (0, 1min(1.2t, 1)) × 10−3 m, t ∈ [0, 1], (8.116) 

on a small part of its rightmost edge with a vertical force as shown in Fig. 8.39. A target 
volume V f = 2m2 is considered. The input parameters for MMG are hmin = 0.01 m 
and hmax = 0.02 m. From the initial shape in Fig. 8.40a, the minimization of the 
objective function (8.112) for linear elasticity leads to the final shape in Fig. 8.40b. 
Contrary to the previous test cases, we now initialize the optimization for the damage 
model with this shape of Fig. 8.40b, instead of the periodically perforated initializa-
tion of Fig. 8.40a. It yields the final shape of Fig. 8.40c. In order to compare the 
shapes in Fig. 8.40b and in Fig. 8.40c, we perform a damage computation for both 
shapes with ū(t), given by (8.116), and plot the damage variable α at the final time 
in Fig. 8.41: obviously, the shape in Fig. 8.40c does not undergo a crack, unlike the 
shape in Fig. 8.40b. 

8.9.3 Coarse 3D Column 

This new test case is a 3D column (see Fig. 8.42a) which is 4 m  high, fixed at the 
bottom (in red) and subjected to an imposed displacement ū(t) on the top (in yellow). 
The precise geometrical definition of this column can be found in Gaudillière et al. 
(2019). 

Here again, we investigate the impact of increasing the magnitude of the imposed 
displacement on the optimized shape and hence consider two functions
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Fig. 8.41 Damage variable α at the final time T plotted for the shapes in Fig. 8.40 (black regions 
indicate cracks) 

Fig. 8.42 3D column: boundary conditions (left), initial shape (right) 

ū(t) = (0, 0, 2.88 min(1.2t, 1)) × 10−4 m, t ∈ [0, 1]s, and (8.117) 

ū (t) = (0, 0, 2.97 min(1.2t, 1)) × 10−4 m, t ∈ [0, 1]s. (8.118) 

The input parameters of the remesher MMG are hmin = 0.02 m and hmax = 0.04 m. 
Since the characteristic length (using the formula (8.106)) is l = 0.0375 m, the con-
dition (8.107) is violated. Instead of choosing a smaller hmax, we increase the char-
acteristic length to l = 0.075 m to ensure that the condition (8.107) is satisfied. The 
target volume is 2.5m3. The shape is initialized as shown in Fig. 8.42. The final shape 
obtained for linear elasticity is plotted in Fig. 8.43a. For the damage model, it is plot-
ted in Fig.  8.43b, c for the imposed displacement (8.117) and (8.118), respectively. 
Clearly again, we see that a slight increase in the imposed displacement results in a 
very different optimized shape for the damage model (Figs. 8.44 and 8.45).
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Fig. 8.43 Final shapes obtained from the initialization in Fig. 8.42a for different imposed displace-
ments 

Fig. 8.44 Convergence history for the shapes in Fig. 8.43b (in red) and Fig. 8.43c (in blue) 

We compare the performance of the three shapes in Fig. 8.43 for the same dam-
age model and for the same linear elasticity system with the imposed displacement 
(8.118) and plot the objective function (8.112) values in Table 8.5. As can be expected, 
the shapes optimized for damage have much better performances with the damage 
model. But, surprisingly, the performance of the three shapes for linearized elasticity 
is very similar (the optimal shape for linear elasticity is less than a fraction of per-
cent better than the two other ones). The damage variable α for those three shapes is 
plotted in Fig. 8.46. As one can check in Fig. 8.46, the shapes in Fig. 8.43b, c do not 
undergo a crack whereas the shape in Fig. 8.43a does. 

Remark 9 The damage model-based optimization is significantly more expensive 
than linear elasticity-based optimization. We use parallel computing with 40 proces-
sors (see Sect. 8.8.5.5 for more details) to compare the two methods. The complete
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Fig. 8.45 Damage variable α at the final time T plotted for several optimization iterations for the 
shape in Fig. 8.43b (black regions indicate cracks) 

Table 8.5 Comparison between shapes in Fig. 8.43a–c for the imposed displacement (8.118) 

Fig. 8.43a Fig. 8.43b Fig. 8.43c 

Objective (8.112) for  
linear elasticity 

−183.47 −183.65 −186.83 

Objective (8.112) for  
damage model 

−179.75 −186.49 −186.13
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Fig. 8.46 Damage variable α at the final time T for the optimized shapes in Fig. 8.43 and the 
imposed displacement (8.118) (black regions indicate cracks) 

optimization of the 2D cantilever beam (in Sect. 8.8.5.1) takes about 2 min for linear 
elasticity versus 90 min for the damage model. The complete optimization of the 3D 
coarse column example (in Sect. 5.8) takes 100 min for linear elasticity versus 6 h for 
the damage model. 

8.9.4 Fine 3D Column 

Eventually, we revisit the same column, studied above, but with a highly refined mesh. 
The goal of this example is to show that our optimization approach is amenable to high 
performance computing (HPC). The details on the parallel implementation are given 
in Sect. 8.8.5.5. The column is subjected to the same imposed displacement (8.118). 
The input parameters of the remesher MMG are hmin = 0.015 m and hmax = 0.03 m. 
It implies that the initial mesh has 243,641 vertices (1,359,805 tetrahedra) and the 
final mesh has 241,852 vertices (1,365,125 tetrahedra). The characteristic length, 
given by (8.106), is l = 0.0375 m, satisfying condition (8.107). The target volume 
is again chosen to be 2.5m3. An incremental residual strategy is used, where the 
residual stiffness is defined with Cres = κi C0, and the residual stiffness parameter is 
defined as 

κ = 
1 

2

)
1 − 

i 

N
)8 

,
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Fig. 8.47 Column shapes for a fine mesh and the imposed displacement (8.118)



204 J. Desai

Fig. 8.48 Damage variable α at the final time T plotted for several optimization iterations for the 
shape in Fig. 8.47 (black regions indicate cracks) 

where i is the iteration number and N is the total number of iterations. This incre-
mental approach is preferred in order to ensure that the intermediate shapes do not 
undergo brittle fracture too often. The mesh is so fine that the time or descent step τ , 
given by (8.30), is very small and the convergence is too slow. Therefore, for this test 
case, we multiply it by a factor of 2, namely τ = hmin/Ci . The initial shape (with a 
rich topology) can be seen in Fig. 8.47a. The final shape obtained for linear elasticity 
is plotted in Fig. 8.47b and, for the damage model, is plotted in Fig. 8.47c. The dam-
age variable α is plotted for some intermediate shapes in Fig. 8.48. Actually, there
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were only 3 intermediate shapes, which were cracked. Our incremental approach of 
the residual stiffness was thus not able to eliminate completely the appearance of 
cracks during the optimization process. The final shape obtained is very similar to 
the one obtained for linear elasticity in Fig. 8.47b. The total computational time for 
this optimization was 7 d. 

8.10 Conclusion 

This chapter provides a brief literature review on the existing methods of shape 
optimization, while delineating on the level-set method with body-fitted remeshing. 
The Céa’s method is used for computing the shape derivative for linear elasticity and 
numerical results are presented in 2D and 3D. Compared to the classical level-set 
method on a fixed mesh, the level-set method with body-fitted remeshing renders a 
simpler topology, which is more intuitive and easier to fabricate (see Sect. 8.5). 

Section 8.6 presents topology optimization for plasticity with linear kinematic and 
linear isotropic hardening. The non-differentiable plasticity model is rendered dif-
ferentiable via penalization and regularization and the shape derivative is computed 
using Céa’s method. From the numerical results in 2D and 3D, one can observe that 
the shapes obtained for plasticity are indeed very similar to ones obtained for linear 
elasticity. When one minimizes the compliance of the structure, one naturally expects 
the optimal structure to undergo less plastic deformation. But in reality, the optimal 
shapes are the ones in which the plastic flow occurs everywhere (e.g., see Fig. 8.21). 
This helps the structure as plastic flow is followed by hardening, which causes an 
increase in the yield limit. This increase renders the structure more resistant to an 
increasing external loading. 

Section 8.8 resorts to a gradient damage model to perform topology optimization 
of structures in order to prevent fractures. The important ingredients of the presented 
approach are a backtracking algorithm for solving the damage model, the use of body-
fitted meshes and a parallel implementation to mitigate the high CPU cost in 3D. 
Indeed, the proposed optimization approach is more expensive by approximately one 
order of magnitude than a traditional compliance minimization in linear elasticity. 
Nevertheless, the methodology is able to deliver crack-free optimal structures (for 
reasonable choices of the loading conditions and material parameters). In some cases, 
the crack-free optimal structures resemble the ones obtained by optimizing for linear 
elasticity but the latter ones can undergo a crack in many instances (see, e.g., the 
2D cantilever in Sect. 8.9.1, the 2D L-beam in Sect. 8.9.2, the 3D coarse column in 
Sect. 8.9.3).
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Chapter 9 
Design of Quarter Car Model for Active 
Suspension System and Control 
Optimization 

Vyomkumar P. Patel, Vijaykumar S. Jatti, and Vinaykumar S. Jatti 

Abstract Quarter car model can be used to approximate a response of the suspension 
systems to obtain a behavioral relationship between the suspension and the body. The 
major aim of the quarter is to obtain a stable working control system for achieving 
three major control states. The three states include the passenger’s comfort design, 
the road handling design, and a balanced design. The objective is to obtain the 
three control systems by using the H-infinity synthesis and designing a controller 
based on the defined states and control inputs of the car. The designed controller 
can therefore be optimized for the account of uncertainty. The use of µ-synthesis 
for the optimization of the designed controller and the balanced design is considered 
for the optimization. For the analysis of the control system, initially the system is 
given a disturbance of 7 cm. For the optimization, the input was increased and a 
bump of 10 cm was considered for achieving a greater disturbance and gains in 
the measurements. The bode plots recorded for the calculation would verify the 
performance of the control system which would take the quarter car model as a state 
space and the controller for the feedback module for the control of the suspension 
system. 

Keywords Quarter car · Active suspension system · Bode plots · MATLAB ·
Control optimization
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9.1 Introduction 

Mathematical modeling deals with representing a system or a component of system 
mathematically. The key for representing a system mathematically is behavior study 
of the system and its components. The obtained mathematical model shall behave the 
same as the actual model under the usual circumstances. The behavior of the compo-
nents in the system serves as the building blocks for the response of the system. The 
behavior of each components their connections with other system and their control of 
gains with respect to the system objective lead to a successful mathematical model. 
The mathematical model of a component is usually determined by the behavior of 
the component; i.e., if the components work with the displacement gain (spring), 
it generally works linearly. The dampers on the other hand works with the velocity 
gains, and thus the dampers work in a parabolic response. The components’ perfor-
mance may be different from the desired output since the practical circumstance and 
conditions play a vital role for the actual response. Mathematical models are used 
for representing systems and its corresponding components in mathematical format. 
The models are a great way in determining the system definition and obtain a more 
calculative approach. The system in the simulation system can be edited for a change 
in any of the component, and the simulation results can provide a similar result of 
the actual change of response in the system. 

The mathematical modeling of a system usually starts with components and their 
respective behavior; usually, an equation or a state space is used for the definition 
of the components. The components involved in the suspension system are spring 
which responds linearly, the damper which responds parabolically, and the masses 
which vibrates with the road disturbance. As we solve the mathematical model of the 
system, all the corresponding components shall be tested for achieving the response 
of the suspension system. 

The mathematical model of a spring can be determined as a linear function. 

F = kx 

The mathematical model of a damper can be defined as first-order differential. 

F = c 
∂ x 
∂ t 

The mathematical model of the masses falls under the second-order differential. 

F = m 
∂2x 
∂ t2 

As we sum up all the terms we obtain an equation for the suspension system which 
can be used for the analysis.
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m 
∂2x 
∂ t2 

+ c 
∂ x 
∂ t 

+ kx = F 

The actuator can be represented in the cumulative force in the rhs of the equation. 
Thite et al. (2012) developed a refined model for quarter car analysis. The research 

focused around the discomfort caused due to the vibration. Sharaf et al. (2013) 
presented quarter car analytical model and depicted the effect of vehicle speeds 
on ride comfort. Yu et al. (2019) illustrated experiments on series active variable 
geometry suspension system and modeled using H-infinity control scheme. Ahmed 
et al. (2021) employed linear quadratic regulator and fuzzy PID controllers to get 
optimized active suspension system of a quarter car. Hassaan et al. (2015) developed 
a passive suspension-based quarter model car and analyzed using MATLAB. Had 
et al. (1992) developed a semi-active suspension system based on 2 DoF with actual 
road conditions simulation. Paliwal et al. (2020) presented effect of different road 
profiles on nonlinear quarter car model. Allamraju et al. (2016) depicted the numerical 
modeling of quarter car model suspension system to get modal parameters. Ebrahimi-
Nejad et al. (2020) utilized sports car to develop a modal equations using Lagrange’s 
equations. Alvarez-Sánchez et al. (2013) used linear mathematical model to have a 
robust control scheme. Based on the literature review, it is observed that design of 
car with active suspension system and control optimization is at nascent stage. This 
study aims to obtain the three control systems by using the H-infinity synthesis and 
designing a controller based on the defined states and control inputs of the car. 

9.2 Methodology 

The simulation of the active suspension system in the simulation system requires 
defining all the components in the system and defining the design setup. A quarter 
car model is generally designed by defining the individual components and setting up 
gains from all the components according to their connection to the car and suspension 
system. The normally used suspensions usually have a spring and a damper (Zeng 
2019). These are usually connected to the car body on one end and to the wheel on the 
other end. Under the components, the specific characteristics like the spring constant 
and the damping coefficient of the damper can be changed to achieve the desired 
results. Under the modern suspension system, the same configuration observes an 
increase in the installation of the actuator which is normally hydraulic and it is 
controlled by a feedback controller. The components need to be individually defined 
in the MATLAB for the generation of the state space of the quarter car model, as 
depicted in Fig. 9.1. The mass of the car body is defined in terms of mb (in kg). The 
mass of the wheel assembly is denoted by mw (in kg). The spring and damper are 
defined by ks and bs, respectively. The compressibility of the tire is accounted as 
kt. The linear first-order measurements and the disturbances are defined as xb (body 
travel), xw (wheel travel), and r (road disturbance). All the linear measurements are 
in meters. The hydraulic actuator discussed earlier is denoted as the force that is used
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Fig. 9.1 Mathematical 
model of active suspension 
system 

to control the system as fs (in kN). The actuator serves as the active component of 
the suspension system. 

The values of the components can be referred as given below 

(x1, x2, x3, x4) = (xb, ẋb, xw, ẋw) 

The state-space equations for the quarter car model are defined as listed below 

ẋ1 = x2 

ẋ2 = −
(

1 

mb

)[
ks(x1 − x3) + bs(x2 − x4) − 103 f s

]

ẋ1 = x2 

ẋ4 = −
(

1 

mw

)[
ks(x1 − x3) + bs(x2 − x4) − kt (x3 − r) − 103 f s

]

Further, defining all the elements in a state matrices which would aid in providing 
with the control of the quarter car model. After defining the matrices of the state 
space, we would define the state space of the quarter car model and define the inputs 
and outputs of the system. The transfer function related to actuator and chassis travel 
makes zero with the imaginary axis with natural frequency, i.e., tire-hop frequency. 
Similarly, actuator and the suspension travel give a zero with the imaginary axis at the 
natural frequency known as the rattle space frequency. The road disturbance is one 
of the factors that affect the motion of a vehicle, the suspension primarily targets the 
road disturbance, and the required control is used for achieving the specific design 
target. The road disturbance usually provides an input to the car state space with the 
deflection in the suspension, and the control is achieved by the force applied by the 
actuator. There are zeros of the imaginary axes that affect the feedback control and
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Fig. 9.2 Variations in the actuator with respect to the frequency 

would cause not to improve the response from road disturbance to the acceleration 
of the body that is obtained at the tire-hop frequency. The similar would be the case 
of achieving the control of the suspension travel at the rattle space frequency. There 
is a relation that defines that the wheel position follows the road surface xw = xb−sd. 
Under the conditions of lower frequencies, i.e., less than 5 rad/s, there is observed a 
trade-off between passenger comfort and suspension travel. The actuator is used for 
the force application to the car body, and the wheel is usually a hydraulic actuator. 
The actuator is placed between car body mb and the wheel mw. The hydraulic actuator 
dynamics can be best represented by the first-order transfer function 1/((1 + s)/60) 
with a maximum allowable displacement of 0.05 m. The defined actuator model, 
but the actuator is named as a nominal model of a true actuator. This is due to the 
results that may be obtained would be only an approximation of the true actuator. 
This family of actuators would consist of a nominal model, the uncertainty would 
be frequency dependent. Figure 9.2 shows the result variations in the actuator with 
respect to the frequency. The weighting function Wunc can be used to interpret the 
amount of uncertainty with frequency. 

The two major goals of the suspension system are the passenger’s comfort and 
the vehicle handling. The goals refer to the control of the body acceleration and the 
suspension travel. There are other factors that account for the control design which 
includes the actual surface of the road, data/measurements received from the sensors, 
noise of the sensor, and the actual working constraints of the actuator. The H-infinity 
synthesis algorithms can be used to express the objectives with the help of a single 
cost function and the target would be to minimize the cost function for achieving the 
control of the system. The H∞ controller would use the measurements y1, y2 of the 
travel of suspension sd and chassis acceleration ab this will be used for obtaining 
the signal u, which will then be used to drive the actuator. There are three external 
sources of disturbance:
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Fig. 9.3 Design setup for active suspension system 

• The surface of the road r is returned as a normalized signal d1 which is further 
classified under the weighting function W road . To account for the road bump of 
height 7 cm, the weight is constant W road  = 0.07 

• The sensors used for the measurement of the current disturbance results with the 
noise, and the noise of the sensors is accounted as W d2 and W d3. The weighting 
functions are used, W d2 = 0.01 and W d3 = 0.5 to account for the noise of the 
sensor. The noise intensity is kept constant as 0.01 and 0.5. The constant intensity 
locks the scope of the analysis and a result in a nominal result under the fixed 
intensity of noise. The analysis can be made realistic by adding a frequency-
dependent sensor noise relationship and a weight function that corresponds to the 
noise dependency can be defined. Figure 9.3 depicts the quarter car model design 
setup with active suspension system. 

After the definition, all the components and their respective signal models corre-
sponding to the weight functions. The road surface signal is accounted for as 
d1, d2, d3 on a combined weight function for the control signal u, suspension travel 
sd, and body acceleration ab. The result obtained of the simulation would be in 
terms of H∞ norm, the greater the system the lesser the control authority. Thus, the 
H∞ norm can be represented as the impact of the road surface to the car. The result 
can be summarized as the design of the controller accounting the inputs d1, d2, d3 

to error signals e1, e2, e3. To proceed further, we need to define the weight functions 
of the design and denote the input and output channels for accounting the inter-
connection of the different weights defined. We need to use a high-pass filter for 
the weight of the actuator W act  to account for the high-frequency content of the 
control signal. This would aid in limiting the range of operation of the controller. 
The need arises for specifically defining the closed-loop gain targets for the road 
disturbance r to the suspension deflection sd and the body acceleration ab (Gawad 
2021; Shao 2020; Elattar et al. 2016; Liu  2019). Due to the actuator uncertainty, 
the system shall seek the control only below 10 rad/s. The weights Wsd , Wab can be
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defined as the reciprocals of the comfort and handling goals. To observe the vari-
ation between passenger comfort and road handling, we would develop three sets 
of weights (βWsd , (1 − β)Wab) corresponding to three different variations: comfort 
(β = 0.01), balanced (β = 0.5), and handling (β = 0.99). The use of connect 
function for constructing a model qcaric of the block diagram. qcaric is an 
amalgamation of three models, one for each design point β. qcaric can be inter-
preted as an uncertain model. The reason for the uncertainty is the presence of the 
actuator which we earlier termed as an uncertain model and derived only the nominal 
values for the simulation. The use of hinfsyn for computing an H∞ controller for 
every value of the blending factor β. Now we need to define closed-loop systems 
for observing the different results of the road disturbance impact to xb, sd , ab for the 
passive and active type suspensions. The results obtained reveal that the controllers 
reduce the suspension deflection and the other control variable below the rattle space 
frequency, i.e., 21.52 rad/s. 

9.3 Results 

The frequency of the wheel assembly that is attained due to the road disturbance is 
called tire-hop frequency and the obtained value after the simulation is 56.27 rad/s. 
Similarly, the frequency of the car body that is transferred from the suspension to the 
body is called rattle space frequency. The frequency obtained after the simulation is 
21.52 rad/s. Figure 9.4 shows the bode plots for suspension system for open-loop 
gain from disturbance and actuator force to the acceleration of body and travel of 
suspension.

Figure 9.5 depicts the comparison of actuator response values with nominal values. 
Response of the hydraulic actuator with total 20 samples for its comparison with the 
nominal value.

Figure 9.6 depicts the comparison of open-loop to closed-loop targets obtaining 
results through bode plots for achieving open-loop targets and closed-loop targets.

Figure 9.7 depicts closed-loop model tests according to design points. The closed-
loop target represents the active suspension system, and the reaction of the suspension 
system to various parameters aids in understanding the working of the suspension 
system. Figure 9.8 depicts the results for response of suspension system. Figure 9.9 
depicts the comparison of design objectives with suspension deflection and control 
force.

The controller that has been designed in the earlier stages has been working 
for only three different conditions according to the control required. The major 
three conditions included the control for comfort, handling, and balanced. Under the 
balanced condition, both the comfort and handling were observed to be compromised 
in a considerable manner. The error in this condition is observed due to the actuator 
model used for the analysis. The actuator model used for the quarter car analysis was 
only accounting the nominal values, and it served only as an approximation to the 
true actuator. The model didn’t encounter the model errors and uncertainty that may
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Fig. 9.4 Behavior of passive suspension system with actuator

Fig. 9.5 Actuator model comparison with nominal actuator
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Fig. 9.6 Comparison of active suspension system with passive suspension system

Fig. 9.7 Comparison of parameters with different design objectives
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Fig. 9.8 Comparison of design objectives with body travel and body acceleration 

Fig. 9.9 Comparison of design objectives with suspension deflection and control
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be observed in the true actuator. In the earlier stage of analysis, during the definition 
of the actuator model, we only used the nominal value of the actuator but have defined 
the actuator family including of total 20 sample actuators. The 20 samples generated 
for the actuator models would aid in accounting for the uncertainty. For obtaining the 
desired response of the suspension to a bump, we need to add extra feedback to the 
existing control system which would in turn act as the reduction in the uncertainty in 
the response and would provide a more robust response from the controller. The aim 
is to achieve a robust performance according to the road conditions, and accordingly, 
the control authority can be achieved for the desired system. The µ synthesis is used 
for obtaining the robust performance in reducing the uncertainty. 

The term robust states “the ability of the system to resist change without adapting 
the initial stable configuration.” In terms of control systems, robustness can be defined 
as “Approach for a Controller Design that explicitly deals with Uncertainty.” µ-
synthesis falls under the class of the sliding mode control criterion. The control 
criterion states that “it’s a nonlinear control method that alters the dynamics of a 
nonlinear system by applying a discontinuous control signal that forces a system to 
‘slide’ along a cross section of a system’s normal behavior.” The current suspension 
refers to the system as we have defined the state space of the suspension system. Under 
our analysis, the synthesis can change the feedback control from one continuous 
structure to another based on the current position of the suspension system. Thus, 
our control system can be termed as a hybrid dynamical system which contains a 
continuous state space and discrete control modes. The state space in the synthesis 
can be referred to the state space of the car, and the uncertain and discrete control 
modes can be referred to the family of actuator models which were generated earlier. 
The use of the musyn function of MATLAB is used for the analysis. The balanced 
performance is selected for the analysis, and a robust performance is to be obtained 
for the balanced design point. The output results in a D-K Iteration which provides 
us with the robust performance achievement. 

The results show that the robust performance was achieved best as 1.09 for a bump 
of 10 cm. Further, we need to obtain the performance of the closed-loop control with 
the help of the Krob controller currently obtained. The result of the Krob controller 
performance is shown in Fig. 9.10. The controller performance of the H∞ controller 
is to be calculated for the family of actuators that were generated earlier. The result 
of the H∞ controller with the different discrete actuator models is shown in Fig. 9.11. 
To obtain robust performance, only some of the discrete actuator shall be used and 
the range of the currently obtained H∞ controller needs to be reduced. The results 
with the robust Krob controller are shown in Fig. 9.12.

9.4 Discussion 

The results we have obtained till now are the performance of two controllers, and 
the initially obtained results were from the nominal H∞ controller. The results were 
not optimal since the actuator model used was possessing only the nominal values
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Fig. 9.10 Performance of robust controller 

Fig. 9.11 Performance of initial controller with 20 actuator models
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Fig. 9.12 Performance of robust controller amplitude versus time

of the true actuator. Thus, the results obtained were only an approximation of the 
true response of the actuator, if the controller were to be in actual practice. The 
second major result obtained was from the family of actuators (discrete generated 
actuators). The results obtained have been plotted with respect to the response of the 
suspension to body acceleration, suspension deflection, and body travel. The results 
show the range in which the results may variate according to the situation. The last 
results obtained were the performance of the robust controller which was designed 
for the optimizing the H∞ controller feedback and obtaining a robust performance. 
The results obtained after the µ-synthesis works mainly for reducing the variation 
in the peak MU obtained, i.e., the peak gain in the µ-synthesis. As soon as the vari-
ation stops and a consistent performance is achieved, the said performance is called 
robust performance. Under the use of Krob controller, the results were considerably 
narrowed down and the desired robust control was achieved. Further, the results 
were compared to the passive suspension system. The results clearly depict that the 
robust performance of the controller aided in obtaining a balanced control between 
the passenger comfort and road handling. The same can be achieved for prioritizing 
the other design points, the design would vary accordingly, and the gains and their 
control would change accordingly.
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9.5 Future Scope 

The results obtained were obtained by the optimization of the initially used H∞ 
controller by the µ-synthesis method. The process used for the optimization results 
in the controller with an auto-defined order controller. Thus, the order of the controller 
may be more comparatively and there is a chance that the same or similar performance 
may be achieved by a relatively lower-order controller. The obtained controller can 
further be reduced in terms of the operational order. The fine-tune of the controller 
order can be done to reduce the complexity of the operation and can be optimized 
in that domain. Alternatively, we can use a fixed order controller, obtain results 
for it, and compare it to the robust performance of results. As the desired results are 
obtained, the controller obtaining the nearby performance can be used for application. 
The currently used model was defined and analyzed for only a quarter of a car. The 
same can be done for the half car model which includes two independent quarter car 
models. Their respective dependencies and relations can be defined in a state space 
and the inputs need to change accordingly. The controllers we have been using are the 
nominal H∞ controller, and the optimization can be carried out with the µ-synthesis 
as we carried out in the quarter car model. The entire analysis can be done on a full 
car model, which would be a true analysis for a car since the quarter car only accounts 
for the response to the road disturbance. But under practical circumstances, the car’s 
movements may result under some deflection to the suspension system as well and 
counting only the road disturbance for the analysis would be only an approximation. 
The use of dependency equations for the four wheels and their effects on one another 
need to be studied for the relative response to the road disturbance. The full car 
model analysis would result in a much complex result and achieving the desired 
design points would be more complex since there would be more variables to be 
optimized. 

9.6 Conclusions 

The simulation of the quarter car model has been carried out by defining the system 
and their entire models. The system was defined in terms of the state-space equations 
and further was converted into state-space matrices. The state-space matrices have 
been then used as the main systems. The suspension system is then considered for 
completing the entire system. The suspension system consists of various components 
like spring, damper, tire, the car body, and the actuator. All the components need to 
be individually defined and then all the components are to be connected to form 
a system of suspension. As we defined the system and its components, we now 
have the system ready for simulation and the next step was to define the control 
criteria and the disturbances to be given as input. All the values of the system are 
defined as different weight functions. The weight functions include the control inputs, 
road disturbance, error signals, and the measured output. While defining the weight
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function, we have been keeping the error signal intensity and the road disturbance to 
be constant. Thus, the dependency of variables is reduced. The entire system control 
is defined as the active suspension system. The controller that provides the command 
for maintenance of the design goal is designed using the H- infinity synthesis. The 
controller designed works on the reduction on the H norm achieved at the end of every 
output measured from the system. Thus, a gain reduction principle is followed, and 
for testing the system, a bump was set to 7 cm. The design of the controller was 
initially designed by the H-infinity synthesis, the results obtained achieved the basic 
goals of achieving the control authority. The controller designed only achieved the 
performance with only the nominal actuator in the suspension system. The practical 
conditions would have an uncertain actuator model, and to model the practical/true 
actuator, the family of actuators are considered and 20 different actuator models were 
generated and simultaneously tested. The current controller was also optimized using 
the µ- synthesis approach. The same controller was tested for the 20 different actuator 
models and provided with a range of control with the aid of different actuators. 

References 

Ahmed AA (2021) Quarter car model optimization of active suspension system using fuzzy PID 
and linear quadratic regulator controllers 

Allamraju VK (2016) Modal analysis of quarter car model suspension system 
Alvarez-Sánchez E (2013) A quarter-car suspension system: car body mass estimator and sliding 

mode control 
Ebrahimi-Nejad S (2020) Multi-objective optimization of a sports car suspension system using 

simplified quarter-car models 
Elattar YM (2016) PDF versus PID controller for active vehicle suspension 
Gawad MAA (2021) Mechatronic suspension systems: a survey and directions for future work 
Had A (1992) Optimal semi-active suspension with preview based on a quarter car model 
Hassaan GA (2015) Car dynamics using quarter model and passive suspension, part VI: sprung-mass 

step response 
Liu C (2019) General theory of skyhook control and its application to semi-active suspension control 

strategy design 
Paliwal V (2020) Effect of varying road profile amplitude on the behavior of a nonlinear quarter 

car model 
Shao SJ (2020) Study on the stability and vibration reduction of nonlinear active suspension system 

with time-delayed feedback control 
Sharaf AM (2013) Ride comfort analysis using quarter car model 
Thite AN (2012) Development of a refined quarter car model for the analysis of discomfort due to 

vibration 
Yu M (2019) Quarter-car experimental study for series active variable geometry suspension 
Zeng Q (2019) Adaptive vehicle stability control of half-car


	Preface
	Contents
	Editors and Contributors
	Part I Optimization of Weight, Shape and Size of Structures Using Different Nature-Inspired Metaheuristic Algorithms
	1 Review of Tuning Mass Dampers and Application of Improved Harmony Search
	1.1 Introduction
	1.2 Review of TMD and ATMD
	1.2.1 Tuned Mass Dampers
	1.2.2 Active Tuned Mass Dampers

	1.3 Modified Harmony Search Algorithm
	1.4 The Optimization Problem
	1.5 Numerical Examples
	1.6 Conclusions
	References

	2 Optimal Design of Trusses: The Force Density Perspective
	2.1 Introduction
	2.1.1 Motivation of the Study
	2.1.2 Archgrids, Cable Nets, and Polygonal Chains
	2.1.3 Basic and Optimal Form-Finding Problems. Polygonal Chains of Minimum Weight

	2.2 Force Density Method and Its Applications
	2.2.1 The Concept of Force Density
	2.2.2 Optimal Form-Finding in Terms of Force Densities

	2.3 Numerical Examples
	2.3.1 Single Cable of Minimum Volume
	2.3.2 Cable Nets of Minimum Volume
	2.3.3 Trusses of Minimum Volume

	2.4 Conclusions
	References

	3 CI-SAPF for Structural Optimization Considering Buckling and Natural Frequency Constraints
	3.1 Introduction
	3.2 Cohort Intelligence (CI)
	3.3 Test Problems
	3.4 Result Analysis and Discussion
	3.5 Conclusion
	References

	4 Improved Drosophila Food-Search Algorithm for Structural and Mechanical Optimization Problems
	4.1 Introduction
	4.2 Drosophila Food-Search Algorithm (DFO)
	4.3 Improved Drosophila Food-Search Algorithm (IDFO)
	4.4 Numerical Tests
	4.5 Design of Welded Beam Problem
	4.6 Design of Tubular Column System
	4.6.1 Design of 72-Bar Truss Structure

	4.7 Non-Parametric Statistical Tests
	4.8 Conclusions
	References

	5 Truss Structure Optimization Using Constrained Version of Variations of Cohort Intelligence
	5.1 Introduction
	5.2 Mechanism of Follow-Best and Follow-Better Approach with SAPF
	5.3 Truss Structure Test Problems
	5.4 Results and Discussion
	5.5 Conclusions and Future Directions
	References

	6 Hybridization of Cohort Intelligence and Fuzzy Logic (CIFL) for Truss Structure Problems
	6.1 Introduction
	6.2 Cohort Intelligence (CI) Algorithm
	6.2.1 Self-Adaptive Penalty Function (SAPF)

	6.3 Fuzzy Logic
	6.3.1 Fuzzy Logic Architecture

	6.4 Framework of CIFL
	6.5 Three-Bar Truss Structure Problems
	6.6 Results Analysis and Discussion
	6.7 Conclusions
	References

	7 Optimum Design of BRB Frame Based on Drift Uniformity, Structure Weight, and Seismic Parameters Using Nonlinear Time History Analysis
	7.1 Introduction
	7.2 Multi-objective Optimization
	7.2.1 Structural Geometry
	7.2.2 Nonlinear Structural Modeling
	7.2.3 Time History Analysis
	7.2.4 Ground Motion Records

	7.3 Optimization Process
	7.3.1 Formulation of the Optimization Problem
	7.3.2 Design Variables
	7.3.3 Design Constraints
	7.3.4 Objective Functions
	7.3.5 Evaluation of Optimization Results

	7.4 Results of Optimization Algorithms for 6-Story Structures
	7.5 Results of Optimization Algorithms for 10-Story Structures
	7.6 Comparison of the Results of Optimization Algorithms for 6- and 10-Story Structures
	7.7 Comparison of the Results of All Multi-objective Optimization of 6- and 10-Story Structures with the Results of Static Linear Analysis
	7.8 Conclusion
	References

	Part II Topology Optimization and Design of Structures Under Dynamic Conditions Using Finite Element Methods
	8 Topology Optimization in Linear Elasticity, Plasticity and Fracture Mechanics
	8.1 Introduction
	8.2 Existing Methods
	8.3 Mathematical Framework of Shape Optimization
	8.3.1 Problem Formulation
	8.3.2 Hadamard's Approach
	8.3.3 Shape Derivative Computation for Linear Elasticity

	8.4 Level-Set Method
	8.4.1 Ersatz Material Approach
	8.4.2 Remeshing
	8.4.3 Regularization and Extension of the Shape Derivative (8.14)
	8.4.4 Imposing a Non-optimizable Domain
	8.4.5 Shape Optimization Algorithm

	8.5 Numerical Results: Linear Elasticity
	8.5.1 3D Cantilever
	8.5.2 3D L-beam

	8.6 TO in Plasticity with Linear Kinematic and Linear Isotropic Hardening
	8.6.1 Governing Equations
	8.6.2 Variational (Primal) Formulation
	8.6.3 Penalization and Regularization
	8.6.4 Shape Derivative Computation
	8.6.5 Numerical Implementation
	8.6.6 Regularization  and Extension of the Shape Derivative

	8.7 Numerical Results: Plasticity
	8.7.1 2D Cantilever
	8.7.2 3D Cantilever
	8.7.3 3D Wedge

	8.8 TO in Fracture Mechanics
	8.8.1 Governing Laws and Variational Formulation
	8.8.2 Optimization Problem
	8.8.3 Shape Derivative Computation
	8.8.4 Time Discretized State and Adjoint Equations
	8.8.5 Numerical Implementation

	8.9 Numerical Results: Fracture
	8.9.1 2D Cantilever
	8.9.2 2D L-Beam
	8.9.3 Coarse 3D Column
	8.9.4 Fine 3D Column

	8.10 Conclusion
	References

	9 Design of Quarter Car Model for Active Suspension System and Control Optimization
	9.1 Introduction
	9.2 Methodology
	9.3 Results
	9.4 Discussion
	9.5 Future Scope
	9.6 Conclusions
	References


