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Abstract. This paper considers employing Intelligent reflecting Surface
(IRS) in unmanned aerial vehicle (UAV) assisted wireless communica-
tions to ensure the freshness of the collected data in Internet of Things
(IoT). We aim to minimize the average Age of Information (AoI) of
the sensor nodes (SNs) by jointly optimizing the UAV flight trajectory,
the SNs’ scheduling and the IRS phase shift matrix. It is modeled as
a Markovian Decision Process (MDP) problem. A deep reinforcement
learning algorithm based on a Twin Delayed Deep Deterministic Policy
Gradient (TD3) is proposed to learn and find the optimal UAV trajectory
and scheduling of the SNs. For a scheduled transmission, the IRS is used
based on the channel information to align the signal phase shifts. Simula-
tion results show that IRS-assisted UAV data collection can significantly
reduce the AoI of the SNs.

Keywords: Unmanned aerial vehicle · intelligent reflecting surface ·
deep reinforcement learning · age of information

1 Introduction

Reliable and timely sensory information by ground sensor nodes (SNs) is critical
to applications in Internet of Things (IoT). It is generally challenging for the
SNs with limited battery capacity to communicate reliably over long distances.
In recent years, unmanned aerial vehicles (UAVs) are routinely used as mobile
data collectors in IoT due to their high mobility and easy deployment. The age
of information (AoI) is a measure to SNs’ information freshness. In [1], AoI was
defined as the time elapsed from the generation of the latest packet by a source
node to its reception by a target node. For AoI-oriented UAV data collection, [2]
designed an online flight trajectories of the UAV based on deep reinforcement
learning (DRL) method to minimize the SNs’ weighted sum of AoIs, and [3]
studied the influence of SNs’ sampling and the queueing process on the SNs’
average AoI. The above works only account for the Line of Sight (LoS) channel
between the UAV and the SN.

In the urban environment, however, the LoS link between the UAV and the
SN is likely to be blocked by obstructions like tall buildings. Intelligent reflect-
ing Surfaces (IRS) is one of the technologies that have great potential in future
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wireless networks. It is is a plane composed of a large number of low-cost pas-
sive reflective elements, each of which can independently adjust the phase of an
incoming signal. This allows for intelligently reconstructing the wireless propa-
gation environment and improving the channel quality [4]. IRS is also amenable
to installation. As a result, IRS can be used to overcome the channel block-
age between the UAV and the SNs. Moreover, with IRS, other aspects of the
communication systems, e.g., the UAV energy consumption [5] and the network
throughput [6], can be improved.

In contrast to the above works, we consider the deployment of an IRS for
UAV-assisted data collection in the IoT. We assume the energy of the UAV is
limited and there is no charging station. For either periodic or random sampling
of the SNs, we aim to minimize the SNs’ average AoI by jointly optimizing the
UAV flight trajectory, the SNs’ scheduling and IRS phase shift matrix. This is
modeled as a finite Markov decision process (MDP). To solve this problem, the
Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm [7] in DRL
is proposed to learn and find the optimal policy for the flight trajectory and
node scheduling. For a scheduled transmission from a SN to the UAV, the IRS,
based on the channel information, is operated in such a way that the phase shifts
of the signals are aligned. Simulation results demonstrate that with IRS and the
learned optimal policy, both the average AOI and the transmission power of the
SNs can be significantly reduced.

2 System Model

As shown in Fig. 1, we consider an IoT, where I SNs are distributed in the
rectangular area with side lengths xU

max and yU
max to sample the environment

and a rotary-wing UAV acts as a mobile base station to collect status-update
information. The horizontal location of the i-th SN is expressed as qi = [xi, yi] ∈
R

2 (i ∈ I = {1, ..., I}). However, obstructions such as tall buildings and trees in
congested cities cause severe path loss and high attenuation to the air-to-ground
channels between the UAV and SNs. In this case, we deploy an IRS on a high-
rise building with height HR to improve channel quality by reflecting signals
controllably. The horizontal location of the IRS is defined as qR = [xR, yR] ∈ R

2.
For simplicity, we assume a time-slotted system where the length of each time
slot is Tts seconds. The UAV flies at height HU over the rectangular target
area. The horizontal location of the UAV at the time slot t can be defined by
qU
t =

[
xU

t , yU
t

]
∈ R

2 (t ∈ T = {1, . . . , T}). Furthermore, T ∈ N depends on the
UAV’s maximum carried energy emax and the service process.

2.1 Channel Model

The ground-to-air communication channel between each SN and the UAV
includes two links: the direct link from the SN to the UAV, and the indirect
link reflected by the IRS. The distance between the UAV and SN i at slot t is

given by di,U
t =

√
||qU

t − qi||2 + (HU )2. Similarly, the distances between the SN



Intelligent Reflecting Surface-Assisted Fresh Data Collection 191

Fig. 1. IRS-assisted UAV data collection

i and IRS and between the IRS and UAV are denoted as di,R and dR,U
t , respec-

tively. Assume that the IRS is composed of an M × M uniform planar array
(UPA) with M2 reflective elements. The set of reflective elements is defined as
M =

{
1, ...,M2

}
.

1) Direct link: According to the channel model in [8], the features of LoS
and non-line-of-sight (NLoS) links are preserved and appear with a certain prob-
ability, respectively. Then, the channel gain between the UAV and SN i at slot
t is given by

hi,U
t =

⎧
⎪⎪⎨

⎪⎪⎩

√
β0

(di,U
t )α1 h̃i,t, LoS link

√
ν β0

(di,U
t )α1 h̃i,t, NLoS link

, (1)

where β0 is the pathloss at the reference distance of 1 m, α1 is the path loss
exponent for the direct link, ν < 1 denotes the attenuation factor due to NLoS,
and h̃i,t is the small-scale fading that follows the complex Gaussian distribution
with mean 0 and variance 1.

2) Indirect link: The channel gain between the IRS and SN i obeys the
Rician fading at slot t, hi,R

t ∈ C
M 2×1 , which can be expressed as hi,R

t =√
β0

(di,R)α2

(√
k

1+kh
i,R
LoS +

√
1

1+kh
i,R
t,NLoS

)
, where k is the Rician factor, α2 is the

path loss exponent between the SN and the IRS, hi,R
LoS is the LOS component,

and hi,R
t,NLoS is the NLOS component modeled as a complex Gaussian variable

with mean 0 and variance 1. Here, hi,R
LoS = [1, · · · , e−j 2πd

λ (M−1) sin θi,R cos ζi,R ]H ⊗
[1, · · · , e−j 2πd

λ (M−1) sin θi,R sin ζi,R ]H ∈ C
M 2×1 , where d is the distance between

the IRS elements, λ is the carrier length, θi,R and ζi,R represent the verti-
cal and horizontal angle-of-departures (AoDs) from the SN i to IRS at slot
t, respectively. In addition, the geographical relationships are sin θi,R = HR

‖qR−qi‖ ,

sin ζi,R = |xi−xR|
‖qR−qi‖ and cos ζi,R = |yi−yR|

‖qR−qi‖ .



192 H. Huang et al.

The channel between the UAV and the IRS is dominated by the LoS link.

Similarly, the channel gain at slot t is expressed as hR,U
t =

√
β0

(dR,U
t )2

hR,U
t,LoS ∈

C
M 2×1 , where hR,U

t,LoS is the LOS component from the IRS to the UAV. The

IRS phase shift matrix at slot t is defined as Θt = diag
(
ejθ1

t , . . . , ejθM2
t

)
, where

θm
t ∈ [0, 2π) is the phase shift of the m-th element. Therefore, the signal-to-noise

ratio (SNR) can be computed as ηi,U
t =

P
∣
∣
∣(hR,U

t )H
Θth

i,R
t +hi,U

t

∣
∣
∣

2

σ2 , where P is the
SN’s transmit power and σ2 is the noise power. If the SNR is less than a threshold
ηth, i.e., ηi,U

t < ηth, the UAV cannot decode the received signal successfully.

2.2 Queuing Model

Each SN samples periodically or randomly the environmental information,
referred to as fixed sampling and random sampling. The sensed information
is packaged into an update packet of ω bits with a timestamp [3]. Then, the
packet is stored in the buffer of the SN and waits for collection by the UAV.
Let gi

t ∈ {0, 1} denotes the sampling action of SN i at slot t. Specifically, gi
t = 1

denotes that SN i generates an update packet at slot t, and otherwise gi
t = 0.

Once an update packet arrives at SN i in the beginning of each slot t, its lifetime
is recorded and updated as

U i
t =

{
0, gi

t = 1
U i

t−1 + 1, otherwise
. (2)

Let ci
t ∈ {0, 1} be the binary user scheduling variable. ci

t = 1 indicates that
the SN i is associated and ready to send one update packet to the UAV at slot
t, and otherwise ci

t = 0. To fully exploit the IRS, it is assumed that the UAV
is associated with at most one SN in each time slot. If the update packet is
successfully delivered to the UAV with the aid of IRS, we say that SN i is served
at slot t. Accordingly, the service state of SN i is set zi

t = 1. If the transmission
is failed or no transmission takes place, the service state is set as zi

t = 0. After a
successful transmission, the AoI of this SN is updated according to the lifetime
of the delivered update packet, and otherwise the AoI increases by one after a
time slot. At the beginning of each slot t, the AoI is updated as

Ai
t =

{
U i

t−1 + 1, zi
t−1 = 1

Ai
t−1 + 1, otherwise

. (3)

The average AoI of all SNs at time slot t is given by At = 1
I

∑I
i=1 Ai

t.

2.3 Problem Description

The UAV consumes energy on flight and hovering. The energy consumption for
receiving and decoding the update packets is relatively small and can be omitted.
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The UAV hovers and collects data during the transmission interval Ts and then
flies to the next location during the remaining time Tts − Ts. If no data needs
to be collected, the UAV flies across the entire time slot. Therefore, the energy
consumption at slot t can be expressed as

eco
t =

{
P f

t Tts,
∑I

i=1 ci
t = 0

PhoTs + P f
t (Tts − Ts) , otherwise

, (4)

where P f
t is the UAV flight power as a function of flight speed vU

t and Pho is the
hovering power, which can be obtained from Eq. (11) in [5]. Then, the remaining
energy of the UAV at slot t can be computed as ere

t = ere
t−1 − eco

t .
The objective is to minimize the weighted sum of the average AoI of all SNs

and the UAV’s energy consumption by jointly optimizing the UAV flight trajec-
tory Q =

[
qU
t ,∀t ∈ T

]
, SN scheduling C =

[
ci
t,∀i ∈ I,∀t ∈ T

]
, and IRS’s phase

shift matrix Φ = [Θt,∀t ∈ T ]. The optimization problem can be formulated as

min
Q ,C ,Φ

1
T

T∑

t=1

(
At + δeco

t

)
(5)

s.t. C1 :
I∑

i=1

ci
t ≤ 1, ci

t ∈ {0, 1} , ∀t ∈ T ,

C2 : 0 ≤ θm
t < 2π, ∀m ∈ M,

C3 : 0 ≤ xU
t ≤ xU

max, 0 ≤ yU
t ≤ yU

max, ∀t ∈ T ,

C4 : 0 <
∥
∥qU

t − qU
t−1

∥
∥ < vU

maxTts, ∀t ∈ T ,

where vU
max is the maximum flying speed of the UAV and δ is the relative impor-

tance factor. It is quite difficult to solve the above mixed integer non-convex
problem. Hence, we propose the TD3-based algorithm for UAV-enabled data
collection which is able to make the best decision quickly and accurately even
when the scale of the problem is very large.

3 TD3-Based UAV Data Collection Method

Then, a TD3 algorithm is proposed for the UAV-enabled data collection to find
the optimal UAV trajectory and SN scheduling policy efficinetly. During each
packet transmission, the IRS’s phase shift matrix is optimized based on the
perfectly estimated channel state to maximize the received SNR at the UAV.

3.1 Optimization of IRS Phase Shift Matrix

Given the SN scheduling and UAV’s location, the received SNR is maximized by
optimizing the phase shifts of IRS, which is equivalent to the following problem:

min
Θt

∣
∣
∣
∣
(
hR,U

t

)H

Θth
i,R
t + hi,U

t

∣
∣
∣
∣

2

(6)
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s.t. 0 ≤ θm
t < 2π,∀m∈M,

From [9], the optimal phase shifts of IRS can be obtained by aligning the phases
of the direct and indirect links between the UAV and the associated SN. In
particular, when scheduling SN i, the optimal phase shift of the m-th element
of IRS can be expressed as θm,∗

t = φi,U
t −

(
ωi,R

t,m + ωR,U
t,m

)
,∀m ∈ M, where φi,U

t ,

ωi,R
t,m and ωR,U

t,m are the phases of the direct SN-UAV link, and the SN-IRS and
IRS-UAV links via element m, respectively.

3.2 TD3 Algorithm Design

MDP Problem Formulation: The optimization problem can be modeled as
a finite MDP. In the sequel, we define the state space, action space and reward
function, respectively.

1) State space: The system state at slot t is defined as st =
[
qU
t , eco

t ,At,U t

]
,

where At =
[
Ai

t,∀i ∈ I
]

and U t =
[
U i

t ,∀i ∈ I
]
.

2) Action space: The system action at slot t is defined as at =
[
μU

t , dU
t ,Ct

]
,

which includes the UAV’s flight angle μU
t ∈ (0, 2π] and distance dU

t ∈ [0, di,max].
Therefore, the horizontal position of the UAV at slot t + 1 is updated as qU

t+1 =[
xU

t + dU
t cos μU

t , yU
t + dU

t sin μU
t

]
.

3) Reward function: Given the state st and action at, the reward function
at time slot t can be defined as rt(st, at) = −

(
At + δeco

t

)
+ pt, where pt is the

penalty at slot t that gives punishment for an invalid action. For example, if the
current action at causes the UAV to fly out of the target area, we set pt < 0 and
otherwise pt = 0.

The objective is to find the optimal policy π∗ to minimize the long-term
return function Cπ = Eπ

[∑T
t=1 (γ)t−1

rt(st, at)|s1

]
, where Eπ is the expectation

under policy π, γ ∈ [0, 1] is the discount factor, and s1 is the initial state.

TD3 Algorithm: The TD3 algorithm is based on an Actor-Critic framework
consisting of deep neural networks (DNN) [7] to find the optimal policy, which
has one Actor network that obtains the deterministic policy πϑ (s) , and two
Critic networks that obtains the value function Qϕ (a, s). In addition, there are
two target Critic networks with function Qϕ′ (a, s) and one target Actor network
with function πϑ′ (s). The Actor network can randomly extract mini-batches of
samples from the replay buffer to train the network parameters. The policy
gradient is ∇ϑJ (ϑ) = N−1

∑
∇aQϕ1 (s, a) |a=πϑ(s)∇ϑπϑ (s), where N is the

mini-batch size. The target Actor network copys the Actor network parameters
periodically to stabilize the training process, and the target Critic network is the
same. The smaller Q value in the two target Critic networks is selected as the
target value: y = r+γ min

l=1,2
Qϕ

′
l

(
s

′
, πϑ′

(
s

′
)

+ ε
)
, where ε ∼ clip (N (0, σ) ,−c, c)

denotes the noise trimmed according to the normal distribution,which can avoid
the overestimation problem. Then, the loss function is used to train the two
Critic networks, which is expressed as L (ϕi) = N−1

∑
(y − Qϕl

(s, a))2. The
details of TD3-based UAV Data Collection are shown in Algorithm 1.
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Algorithm 1. TD3-based UAV Data Collection
1: Initialize Critic and actor networks Qϕ1 , Qϕ2 , πϑ with random ϕ1, ϕ2 and ϑ;

2: Initialize target networks ϕ
′
1 ← ϕ1 ,ϕ

′
2 ← ϕ2 and ϑ

′ ← ϑ;
3: Initialize replay buffer and learning rate α;
4: for episode = 1 : episodemax do
5: Set t = 1, eco

t = emax, observe the initial state st;
6: repeat
7: Select action with exploration noise at ∼ πϑ (st) + ε, where ε ∼ N (0, σ);
8: Execute the action at, calculate the optimal IRS phase shift matrix Θ∗

t , update
the UAV position qU

t+1, energy ere
t , and AoI Ai

t (i = 1, 2, . . . , I);
9: Obtain the reward rt and the new state st+1, store experience (st, at, rt, st+1)

in replay buffer;
10: Sample a mini-batch of N transitions from replay buffer;
11: Update the Critic networks ϕl = argminL (ϕl)

ϕl

, l = 1, 2;

12: if t modtupdate then
13: Update the Actor network ϑ = ϑ − α∇ϑJ (ϑ);

14: Update target networks: ϕ
′
l ← τϕl + (1 − τ) ϕ

′
l , l = 1, 2, ϑ

′ ← τϑ +

(1 − τ) ϑ
′
;

15: end if
16: until ere

t < eth;
17: end for

4 Simulation Results

We consider a 300m×400m rectangular target area, and set the lower left corner
of the area as the coordinate origin. The coordinate of IRS is set as [0, 150, 30],
and the horizontal coordinate of three SNs are set as [10, 180], [85, 350], [225, 50].
The random sampling process is modeled as a Poisson process. The system
simulation parameters are set as follows: Tts = 1 s, Ts = 0.5 s, HU = 60 m,
β0 = −45 dB ,α1 = 3.1, α2 = 2.3, σ2 = −110 dBm, ω = 110KB, δ = 0.001,
ηth = 0.77, vU

max = 40m/s, emax = 1.2 e5J, eth = 8 e3J. If there is no specific
explanation, the reinforcement learning parameters are shown in Table 1.

Table 1. Learning parameters

Parameter Value Parameter Value

Learning rate for actor 1e-4 Learning rate for critic 1e-3

Exploration noise 0.1 Policy noise 0.15

Software update factor 0.004 Reward discount 0.98

Total number of training episodes 6e4 Batch size 128

Figure 2 shows the convergence curves of the proposed TD3 and PPO algo-
rithms, when fixed sampling with rate 0.2 is applied and the RIS is 15× 15. It is
observed that the TD3 algorithm converges faster and more stably, and is more
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suitable for our studied problem. This is because the PPO algorithm tends to
have insufficient explorations and usually find a suboptimal policy.

Fig. 2. Convergence comparison between TD3 and PPO algorithms.

In Fig. 3(a) and Fig. 3(b), we illustrate the average AoI performance of the
proposed TD3-based method for different random sampling rates and transmis-
sion powers, respectively. As shown in Fig. 3(a), given any IRS phase control
policy, it is observed that a higher sampling rate leads to the smaller aver-
age AoI, since the sensing data can be collected more frequently. By optimal
phase alignment for IRS, our proposed scheme achieves the minimum AoI value
for any sampling rate, which indicates that the IRS-aided UAV data collec-
tion scheme can significantly improve the information freshness. In Fig. 3(b), as
either the number of IRS reflecting elements or the transmission power of the
SN increases, the average AoI can be greatly reduced. In both subfigures, the
transmission scheme without IRS leads to the highest AoI of SNs.

(a) IRS phase control (b) The number of IRS elements

Fig. 3. The average AoI performance of the proposed TD3 method
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5 Conclusion

This paper investigated the efficient IRS-assisted UAV data collection problem
for IoT. The IRS was deployed on a tall building to improve the channel quality
of the UAV and SNs, and the optimal IRS reflection coefficient was obtained by
phase alignment. The problem was modeled as a MDP problem, and we proposed
the TD3 algorithm in DRL to find to find the optimal UAV trajectory and SN
scheduling policy to minimizes the average AoI. Simulation results showed that
integrating IRS into UAV data collection can effectively reduce the average AoI
regardless of whether the SNs periodically or randomly sample environmental
information, and the TD3 algorithm outperforms the PPO algorithm in terms of
convergence speed and stability after convergence for the problems in this paper.
The larger the IRS the lower the transmission power of the SN with guaranteed
average AoI.
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