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Abstract. The transformer is one of the most important units in the
power grid. Due to the potential failures and costs of the power system,
it is necessary to pay attention to the fault diagnosis of power transform-
ers. This paper proposes a fault diagnosis method based on Canonical
Variate Analysis and Support Vector Machine (CVA-SVM). As a system
identification method, CVA is widely used for fault detection because of
its ability to identify multivariate state space models using experimental
data. The support vector machine is a new machine learning method and
is a powerful tool for solving problems with nonlinear and non-Gaussian
distributed data. Dissolved gas analysis (DGA) has shown great poten-
tial for detecting faults in power transformers. For fault diagnosis based
on DGA, a CVA model is first constructed for the process variables to
generate a series of feature vectors, and then the fault types are classified
using SVM. A real power transformer process is employed to verify the
effectiveness of the proposed method.

Keywords: Canonical Variate Analysis · Support Vector Machine ·
Power transformer · fault diagnosis

1 Introduction

As an important piece of equipment in a power system, an interruption of power
supply can be caused by any failure in the power transformer. Therefore, it is
vital to detect transformer faults [1–3]. Dissolved gas analysis (DGA) has been
widely recognized as an effective diagnostic technique for fault detection in power
transformers. The analysis of specific dissolved gas concentrations in transformer
insulating oil yields knowledge about the condition of the transformer and allows
necessary preventive measures to be taken based on the results of the process
[4–6]. However, due to the variability of gas data and the nature of the operation,
fault detection by conventional methods is not always an easy task.
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To develop more accurate diagnostic tools based on DGA data, scholars have
developed a number of artificial intelligence methods [7,8]. With the develop-
ment of machine learning, the fault diagnosis of power transformers has also
been enhanced. To cope with the uncertainty in fault diagnosis, Huang et al.
proposed a fuzzy logic-based fault diagnosis method for power transformers,
where the technique can diagnose multiple faults in a transformer and quantita-
tively indicate the severity of each fault [9]. To reduce the redundant information
of the data, Kari et al. proposed to reduce the dimensionality of the data with
principal component analysis and detect power transformer faults using fuzzy
C-means method [10].

To develop more accurate diagnostic tools based on DGA data, scholars
have developed many artificial intelligence methods [7,8]. With the development
of machine learning, the fault diagnosis of power transformers has also been
enhanced. To cope with the uncertainty in fault diagnosis, Huang et al. pro-
posed a fuzzy logic-based fault diagnosis method for power transformers, where
the technique can diagnose multiple faults in a transformer and quantitatively
indicate the severity of each fault [9]. To reduce the redundant information of
the data, Kari et al. proposed to reduce the dimensionality of the data with prin-
cipal component analysis and detect power transformer faults using the fuzzy
C-means method [10].

However, the above methods do not take into account the dynamic nature
of power transformer data, and for continuously operating systems, may fail to
explore valuable dynamic information for the process and lead to some mis-
leading monitoring results [11]. CVA is widely used in a dynamic process to
generate a state-space model from data by maximizing the correlation between
the constructed “past” and “future” matrices [12]. To the best of the authors’
knowledge, the CVA method has not been used in the data processing of power
transformers for fault diagnosis.

Motivated by the above discussion, considering the characteristics of CVA
and SVM, a new fault diagnosis method is proposed by combining CVA and SVM
for the power transformer process. First, CVA extracts the dynamic features of
the process data. Based on the extracted features. And then SVM is employed
to classify the fault types to address the issues of no-Gaussian assumption and
nonlinearity. For the parameter optimization problem in SVM, this paper uses
the random grid search cross-validation method to improve the accuracy of the
model.

This paper is organized as follows. Section 2 briefly reviews the CVA and
SVM. Section 3 is devoted to describing the proposed CVA-SVM method.
Section 4 presents the application of the proposed method in the real power
transformer data. Finally, conclusions are given in Sect. 5.
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2 Review of CVA and SVM

2.1 CVA

CVA is based on the so-called subspace identification, where process measure-
ments are stacked to form the past and future spaces [13]. Denote xk ∈ R

m

(k = 1, 2, . . . , N) as the normalized stacked vector at time instant k. For each k,
the past data vector xp,k and future data vector xf,k are collected as

xp,k =

⎡
⎢⎢⎢⎣

xk−1

xk−2

...
xk−l

⎤
⎥⎥⎥⎦ ∈ R

ml,xf,k =

⎡
⎢⎢⎢⎣

xk

xk+1

...
xk+l−1

⎤
⎥⎥⎥⎦ ∈ R

ml (1)

where l is the number of time lag. For a finite sequence with N samples, the
past and future Hankel matrices Xp and Xf are constructed,

Xp = [xp,l+1,xp,l+2, . . . ,xp,l+M ] ∈ R
ml×M

Xf = [xf,l+1,xf,l+2, . . . ,xf,l+M ] ∈ R
ml×M (2)

where M = N − 2l + 1. The estimates of the sample covariance and cross-
covariance of the past and future vector are expressed below,

[
Σpp Σpf

Σfp Σff

]
=

1
M − 1

[
XpX�

p XpX�
f

XfX�
p XfX�

f

]
(3)

In CVA, the projection matrices J and L can be computed through perform-
ing singular value decomposition (SVD) on the Hankel matrix H,

H = Σ
−1/2
ff ΣfpΣ

−1/2
pp = UΛV� (4)

Here, U and V are the left and right singular matrices of the matrix H, respec-
tively. Λ = diag[σ1, σ2, . . . , σq] is the diagonal matrix containing all singular
values, and q is the rank of H.

From the result of SVD, the projection matrices J and L can be calculated.
The first r columns of V can be considered to have the highest pairwise cor-
relation with the first r columns of U [14]. It produces a pair of new matrices
Ur ∈ R

ml×r and Vr ∈ R
ml×r with smaller dimensionality.

J = V�
r Σ

−1/2
pp ∈ R

r×ml

L = (I − VrV�
r )Σ−1/2

pp ∈ R
ml×ml

(5)

Finally, two matrices contain the state and residual vectors are derived below,

Z = JXp ∈ R
r×M

E = LXp ∈ R
ml×M (6)
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2.2 SVM

As illustrated in Fig. 1, a Support Vector Machine aims to find an optimal hyper-
plane by maximally separating the margins between the hyperplane and the data
[15,16].

Fig. 1. Separation of two classes by SVM.

Given a data set F = {xi, yi}mi=1, where m is the sample number, xi ∈ Rn

stands for the input vectors, yi ∈ +1,−1 denotes two classes. The hyperplane
f(x) = 0 that separates the given data can be determined when the two classes
are linearly differentiable.

f(x) = w · x + b =
m∑
i=1

wk · xk + b = 0 (7)

where w denotes the weight vector and b denotes the bias term. The separation
hyperplane should satisfy the following constraints,

yif(xi) = yi(w · xi + b) ≥ 1, i = 1, 2, . . . m (8)

For solving the linear indivisibility problem, the relaxation variable ζi is intro-
duced, and thus the constraint becomes as,

Min 1
2 ‖w‖2 + C

∑m
i=1 ζi, i = 1, . . . , m

S.t.

{
yi(w · xi + b) ≥ 1 − ζi)
ζ ≥ 0

(9)

where C is the error penalty.
The above optimization problem is transformed into a pairwise quadratic

optimization problem by introducing the Lagrange multiplier αi , i.e.

Max L(α) =
∑m

i=1 αi − 1
2

∑m
i,j=1 αiαjyiyj(xi, xj)

S.t.
∑m

i=1 αiyi = 0, αi ≥ 0, i = 1, · · · ,m
(10)
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The linear decision function is therefore created by solving a pairwise opti-
mization problem defined as,

f(x) = sign(
m∑

i,j=1

αiyi(xi, xj) + b) (11)

SVM can be used for nonlinear classification. By using a nonlinear mapping
function, the original data x is mapped to a high-dimensional feature space
in which linear classification can be performed. Then the decision function is
transformed into,

f(x) = sign(
m∑

i,j=1

αiyiK(xi, xj) + b) (12)

In this paper, the Gaussian Kernel is selected as kernel function,

K(xi,xj) = (φ(xi) · φ(xj)) = exp(− ‖ xi − xj ‖2 /h) (13)

where φ is a nonlinear mapping that maps data points to the high-dimensional
feature space. To obtain a tighter boundary, an appropriate width parameter h
of the Gaussian kernel function is selected.

3 CVA-SVM Based Fault Diagnosis

In the proposed CVA-SVM method, the space of canonical variables can be
divided into the state space and the residual space. The state space is then used
as target objects for developing SVM hypersphere layers. Finally, The SVM
faults classification is performed. The procedure of the CVA-SVM based fault
detection method is depicted (Table 1).

As shown in Fig. 2, two phases are included, offline training and online diagno-
sis. Specifically, the procedure of the CVA-SVM based fault diagnosis is described
in detail as follows,

Offline training:

– Step 1. Standardize the collected faulty measurements.
– Step 2. Construct the Hankel matrices Xf and Xp with the determined time-

lag l.
– Step 3. Obtain the projection matrices J and L according to Eq.(5)
– Step 4. Determine the state and residual matrices Z and E using Eq.(6).
– Step 5. Build SVM model for Z with the determined C and h.
– Step 6. The SVM classifier is trained using the appropriate values of param-

eters.

Online diagnosis:

– Step 1. Obtain and Standardize the test sample xt
k.
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Fig. 2. Main steps of the CVA-SVM based fault diagnosis.

– Step 2. Construct stacked vectors and calculate the state and residual vectors
from J and L,

zk = Jxt
p,k

ek = Lxt
p,k

(14)

– Step 3.Input the state space zk into the SVM classifier.
– Step 4. Obtain the diagnostic results.

4 Case Study

To verify the effectiveness of the CVA-SVM method proposed in this paper, 188
power transformer oil dissolved gas content faulty data were collected for the
experiment. This data has 6 types of fault states and 5 components of dissolved
gas content in oil, some of which are shown in Table 2. For computational conve-
nience, we coded and labeled the fault types of the dataset, as shown in Table 3.
After that, the data were divided into a training set and a test set, and the data
in the test set and the training set each accounted for 50% of the original data.

By subjecting the gas data to the CVA algorithm analysis, the five data vari-
ables of transformer faults can be dimensionally reduced to four data variables.
This will facilitate the linear partitioning of the data by the SVM classifier and
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can also improve the computational speed of the fault diagnosis system. In addi-
tion, to compare the superior performance of the proposed methods, we compare
the traditional SVM method, PCA and SVM combined algorithms. The classi-
fication result plots of the three methods are shown in Fig. 3.

The final classification accuracy of each model is summarized in Table 4. From
Fig. 3, it is obtained that the SVM algorithm is less effective in identifying normal
samples and has a lower detection rate for the medium to low temperature
overheating and the high temperature overheating faults. The SVM method also
has some false detection. The detection effectiveness of the PCA-SVM method
is improved. Table 3 quantifies the detection effect of each model, and from the
Table, we get that CVA-SVM has the highest accuracy for both the test set and
the training set, and achieves the best classification effect.

Table 1. Comparison of fault diagnosis results.

Method Training accuracy (%) Test accuracy(%)

SVM 90.43 74.19

PCA-SVM 92.64 81.72

CVA-SVM 94.68 82.80

Table 2. Description of power transformer fault data.

No H2 CH4 C2H6 C2H4 C2H2 Fault type

1 568 26.5 6.9 2.1 0 Partial discharge

2 3433 180 34.4 3.6 0.4 Partial discharge

3 2083 85.6 18.4 2.6 0 Partial discharge

4 568 26.5 6.9 2.1 0.1 Partial discharge

· · · · · · · · · · · · · · · · · · · · ·
93 32 41.6 10 120 2.6 High Temperature Overheating

· · · · · · · · · · · · · · · · · · · · ·

Table 3. Codes for power transformer fault type.

Fault type Partial
discharge

Low energy
discharge

High energy
discharge

Normal
state

Medium to low
temperature
overheating

High
temperature
overheating

Fault code 0 1 2 3 4 5
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Fig. 3. Diagnostic results of power transformer faults based on three methods (a).
SVM, (b) PCA-SVM, (c) CVA-SVM.

5 Conclusion

This paper proposes a design of a power transformer fault diagnosis system
based on the optimized SVM kernel function model algorithm and optimizes the
SVM model by collecting the data of five gases generated by oil fission when a
transformer fault occurs. Compared with the traditional SVM and PCA-SVM
methods, it can be seen that the CVA-SVM method can significantly improve
the accuracy of transformer fault diagnosis. CVA can extract dynamic informa-
tion from the data, so the optimized SVM model algorithm is more suitable
for transformer fault diagnosis systems with high practicality. Further investiga-
tion is strongly recommended to extend power transformer fault identification
methods.
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