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Abstract 

Tuberculosis (TB) is among the top ten killer diseases and remains the number 
one cause of death due to infection. A major bottleneck in TB research remains 
the availability of suitable animal models to understand the disease pathogenesis 
and progression, immune responses elicited by the pathogen, new molecule and 
vaccine testing, development and validation of diagnostics, and genetics of the 
pathogen about these myriad aspects of the infection. Although a broad range of 
organisms has been employed in TB research, most of the studies have been 
performed in mice due to cost-effectiveness, ease of handling, availability of 
immune reagents, and genetically-modified strains as well as ease of availability 
of strains with a relatively uniform genetic background. The commonly used 
mouse strains do not mimic human disease progression characteristics. More 
relevant models like guinea pig and macaque are not frequently employed due 
to high costs and/or lack of availability of immune reagents. Several models 
involving alternate, non-pathogenic mycobacteria have been evaluated in 
mammals and non-mammalian species like fish, frogs, nematodes, and protists. 
In vitro models such as macrophage infection and co-culture systems provide 
insights into drug activity and host cell-mycobacterial interactions. An even more 
straightforward approach relies on using mycobacterial cultures to evaluate drug 
sensitivity and drug activity. However, the in vitro models suffer from a
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shortcoming that compounds which require metabolic activation by enzymes, 
such as prodrugs and drug conjugates, could be falsely rejected as being inactive. 
This is because the cells/tissues employed for in vitro assays may not express the 
activating enzymes.
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28.1 Introduction 

Tuberculosis (TB) continues to inflict mankind since time immemorial and has 
assumed even more significance in recent decades. TB is the number one killer in 
the world due to a bacterial infection. TB is a deadly disease that has killed more 
people than any other infectious disease. According to the World Health Organiza-
tion (WHO), nearly 10 million people were infected and 1.5 million died in the year 
2018 alone making TB one of the top 10 causes of death globally. Clinically, 
pulmonary TB caused by Mycobacterium tuberculosis is the most prevalent 
among non-HIV-positive patients, while M. tuberculosis and M. avium complex 
infection occurs in HIV-positive patients (Iacobino et al. 2020). 

Despite efforts from various resources, the dream of TB elimination remains a 
distant reality. To accomplish it, sustainable and affordable programs are needed 
with anti-TB measures. To accomplish this task, three areas, vaccination, diagnosis, 
and treatment, need to be explored. Advancing these areas requires a deeper knowl-
edge of host-pathogen interactions and better experimental models are needed. 
Animal models of TB are important tools for the assessment of the efficacy of 
vaccines and potential drug candidates as well as the identification and validation 
of disease biomarkers (Cardona and Williams 2017; Zhan et al. 2017; Bucsan et al. 
2019; Gong et al. 2020). 

Treatment of TB is compounded by the long duration of treatment (6 months to 
2 years) and the side effects of anti-TB drugs. Both factors contribute to low patient 
compliance resulting in the re-emergence of infection after an initial recession as 
well as the emergence of multidrug-resistant strains. Therefore, the focus of new 
drug development has been to develop drugs that reduce treatment duration, have 
lesser side effects, and are active against multidrug-resistant strains. The long 
treatment duration is considered largely due to the continuous backflow of latent 
TB bacilli; hence, drugs active against latent TB bacilli are desirable (Defraine et al. 
2018; Cohen et al. 2019). After a lull of over half a century, two new anti-TB drugs 
were approved—bedaquiline (2012) and delamanid (2013) followed by proteomanid 
(2019). Additionally, investigational molecules like diarylquinolines, 
fluoroquinolones, nitroimidazoles, and oxazolidinone are in clinical development 
with a large proportion being that of oxazolidinone (AZD5847, contezolid/MRX-1, 
sutezolid, delpazolid). Drug repurposing is yet another approach that has resulted in 
the identification of linezolid and auranofin as treatments for TB. Pretomanid is a 
novel compound developed by TB Alliance which has been granted authorization



(Khare et al. 2019). The activity of anti-TB drugs has been shown to depend on the 
immune status of the host which results in lower drug efficacy in immune-
compromised patients. Hence, another approach for treatment has been to stimulate 
the host immune system for bacterial clearance, either as a standalone therapy or in 
combination with anti-mycobacterial agents (Ahmad et al. 2010, 2011; Gupta et al. 
2012; Zhang et al. 2020). These approaches include immunotherapy with small 
molecules (Mourik et al. 2017; Bryk et al. 2020; Rao Muvva et al. 2021) or microbes 
and microbial products (Chaturvedi et al. 1999; Hernandez-Pando et al. 2008; 
Rodrigues et al. 2015). Drug repurposing of existing drugs is yet another viable 
alternative for the discovery of immune modulator compounds for TB (Mishra et al. 
2018). We have found that low doses of morphine can protect infected mice from 
TB, the protection being comparable to standard anti-TB drugs (Singh et al. 2008). 
Bacillus Calmette-Guerin (BCG), the only approved TB vaccine, can prevent child-
hood TB but is ineffective in adults. Over a dozen vaccine candidates are in various 
stages of clinical trials but are years away from commercialization (Kaur et al. 2019; 
Li et al. 2020). Other targets of anti-TB drugs have focused on inducing autophagy 
in macrophages (Pelaez Coyotl et al. 2020; Rao Muvva et al. 2021), disruption of 
mycobacterial biofilms (Wang et al. 2019), and use of efflux pump inhibitors to 
overcome drug resistance (Grossman et al. 2015; Pieterman et al. 2018; Xu et al. 
2018). 
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The mouse has been predominantly used as an experimental model of active and 
latent TB following intravenous inoculation or inhalation exposure to the mycobac-
terium. Guinea pig is considered a better model for pulmonary TB but is not 
frequently used due to the risk of aerosol transmission to persons handling these 
animals. Monkeys remain the most relevant models as they mimic several aspects of 
pulmonary and extrapulmonary TB which are not observed in other models. How-
ever, their high cost of maintenance, high inter-group variability, and limited 
availability of immune reagents are major obstacles to their application (Cardona 
and Williams 2017; Bucsan et al. 2019; Gong et al. 2020). 

Despite the health impact of TB, research in TB has remained slow. This sluggish 
pace can be attributed to two factors: the pathogenicity of the organism and the slow 
growth rate of the organism. Mycobacterium tuberculosis (Mtb) infects 
macrophages (primarily alveolar macrophages) and adapts to the hostile intracellular 
milieu due to a variety of defense mechanisms. TB is primarily a disease of the 
respiratory system and the cycle of TB infection commences with the release of 
Mtb-carrying aerosols. A dose of 1–10 Mtb dispersed in the air is likely to cause a 
risk of transmission. Following their entry into the lung, Mtb are phagocytized by 
alveolar macrophage cells where they may either be completely cleared by the 
immune reactions or may reside and proliferate in macrophages. Under suitable 
conditions, Mtb may divide and invade the epithelial cells as well. Experimental 
studies in TB require biosafety level 3 laboratories, which are costly to develop and 
maintain making these unaffordable to most microbiology laboratories (Bucsan et al. 
2019; Gong et al. 2020). The slow growth of M. tuberculosis makes it extremely 
difficult to perform studies since chances of microbial contamination are increased 
during the 1–2 months long incubation period required to observe colonies on agar
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plates. In recent years, models using non-pathogenic and/or fast-growing alternates 
such as M. smegmatis (Jhamb and Singh 2009; Singh et al. 2009; Altaf et al. 2010; 
Costa et al. 2016; Arthur et al. 2019), M. fortuitum (Alim et al. 2017), M. bovis BCG 
(Altaf et al. 2010), M. aurum (Gupta et al. 2009; Gupta and Bhakta 2012), and 
M. marinum (Lienard and Carlsson 2017) have been developed to circumvent these 
issues. The models commonly employed in the laboratory are summarized in 
Fig. 28.1. Additionally, luminescence- and fluorescence-based methods employing 
genetically-engineered bacteria expressing luciferase (Zhang et al. 2012; Andreu 
et al. 2013) or  fluorescent proteins (Zelmer et al. 2012; MacGilvary et al. 2019), as 
well as the use of fluorescent dyes (Amin et al. 2009), have hastened the screening 
process not only in experimental studies (Durkee et al. 2019) but also antimicrobial 
sensitivity of clinical isolates for drug therapy decisions (Amin et al. 2009; Cui et al. 
2013). Additionally, polymerase chain reaction-based methods have also been 
evaluated as faster alternates compared to traditional methods based on the 
colony-forming unit (CFU) counts (Pathak et al. 2012; da Silva et al. 2017; d  
Knegt et al. 2017). 
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Fig. 28.1 Schematic diagram showing the different experimental models used currently in tuber-
culosis research
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28.2 In Vivo Models of TB 

28.2.1 Mouse Model 

The mouse has remained a model of choice to study disseminated and pulmonary 
TB. Nearly a century ago, murine TB was experimentally induced in mice using 
bovine strains or BCG (Lewis and Margot 1914; Murphy and Ellis 1914; Grumbach 
et al. 1967; Collins et al. 1975; Forget et al. 1981), whereas Mtb infection models in 
mice appeared much later (Youmans and Mc 1945; Martin 1946; Mc et al. 1946; 
Youmans and Williston 1946). Several inbred strains of mice have been investigated 
resulting in their classification as susceptible (Balb/c, C57BL/6, B10.A, I/St, SWR) 
and resistant (C3H/HeCr, A/J, DBA/2, A/Sn) (Pierce et al. 1947; Kelley and Collins 
1999; Nikonenko et al. 2000; Turner et al. 2003b); nevertheless, contrasting classifi-
cation of mouse strains (C3H/HeJ as sensitive and C57BL/6 as resistant) has also 
appeared in the literature (Chackerian et al. 2001) highlighting the importance of 
Mtb strain, inoculum size, and route of administration on susceptibility to infection 
(Actor et al. 1999; Chackerian and Behar 2003). Apart from the inbred strains, 
outbred strains such as Swiss (Lynch et al. 1965; Lecoeur et al. 1989) and ICR mice 
(Shkurupy et al. 2020) have also been used which have not been equivocally 
classified as being susceptible or resistant. The dissemination model requires intra-
venous injection of millions of CFUs which results in a significant bacterial load in 
the lungs, liver, and spleen with a small number of bacilli also detectable in other 
organs and blood. The treatment with test compounds is typically initiated either on 
the day of inoculation or 24 h post-inoculation and CFU counts in target organs are 
determined after 1 month of treatment/inoculation (Singh et al. 2008). This model, 
although convenient for experimental screening of compounds, does not represent 
the actual pathology of the disease in humans since pulmonary TB is the major 
manifestation in humans (Cardona et al. 1999). Alternatively, a low-dose aerosol 
model has been employed which requires exposure of mice to a relatively lower 
number of bacteria (typically, 50 CFUs) via the inhalation route. The aerosol 
droplets, owing to their small size, deliver the bacilli in alveoli. After treatment 
with test compounds, lung CFU counts are determined after 3 or 4 weeks (Kelly et al. 
1996; De Groote et al. 2011). A similar approach relies on intratracheal instillation of 
about a million CFUs in mice which results in the development of aspirating 
pneumonia but the pathology does not mimic pulmonary TB (Dormans et al. 
2004; Eruslanov et al. 2004). Mouse model of pulmonary M. tuberculosis infection 
exhibits immune responses similar to that observed in humans but the disease 
characteristics differ significantly. Several pathological hallmarks of TB infection 
in humans such as caseous necrosis, granulomas, and lung cavitations are not 
observed in mouse strains (Bucsan et al. 2019). The pathogens traffic intracellularly 
in murine lungs of commonly used BALB/c and C57BL/6 strains in contrast to 
observations in DBA/2 and 129/Sv mice. This difference translates into differences 
in pathological outcomes whereby inflammation ensues in murine models but 
without development of necrotic lesions (Medina and North 1998; Guirado et al. 
2006). On the other hand, the disease is progressive in nature in humans and other



experimental models along with development of necrotic lesions with extracellular 
bacteria. The susceptibility of mice to infection is also impacted by the strain 
implying a role of genotype. For example, C57BL/6 mice are resistant compared 
to BALB/c mice, while C3HeB/FeJ mice exhibit development of necrotic 
granulomas similar to those observed in humans (Driver et al. 2012; Harper et al. 
2012; Lee et al. 2018; Moreira-Teixeira et al. 2020). B6.C3Hsst1 mice exhibit 
hypoxic lesions (Kramnik 2008), while CBA/J IL-10 knockout mice develop mature 
fibrotic granulomas (Cyktor et al. 2013; Bucsan et al. 2019). In recent years, 
humanized mice have been developed which not only mimic human pathology but 
also enable study of HIV/TB co-infection as well as anti-mycobacterial drug screen-
ing in mice (Calderon et al. 2013; Heuts et al. 2013; Nusbaum et al. 2016; Grover 
et al. 2017; Arrey et al. 2019; Corleis et al. 2019; Gong et al. 2020; Huante et al. 
2020). Mouse strains also differ in their response to BCG and consequent protection 
from TB. Balb/C mice exhibit higher degree of immune response compared to 
C57BL/6 mice but afforded comparable protection from Mtb infection (Garcia-
Pelayo et al. 2015). In another study, the effect of prior BCG vaccination on 
protection from Mtb aerosol infection has also been compared in susceptible 
(C3Heb/FeJ) and resistant (C3H/HeOuJ) mouse strains (Henao-Tamayo et al. 2015). 
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The commonly used mouse strains have been criticized in recent years as an 
oversimplification of human pathology since the effects of allelic variations on 
disease pathology as well as treatment and vaccination effects could not be studied. 
Recently, collaborative cross (CC) and diversity outbred (DO) models have been 
developed which could be used to study the effects of allelic variations on TB. CC 
model is a panel of recombinant inbred mouse strains derived from an eight-way 
cross. Five parental strains included two used in mouse genetics (C57BL/6J and 
129S1/SvImJ) and three models of common diseases (A/J, NOD/ShiLtJ, and 
NZO/HiLtJ), while three founder strains included wild-inbred strains (CAST/EiJ, 
PWK/PhJand WSB/EiJ) (Churchill et al. 2004; Noll et al. 2019). CC mice have been 
shown to be susceptible to Mtb infection (Smith et al. 2016, 2019). The diversity 
outbred (DO) model was obtained from the same eight strains used to obtain the CC 
model. However, in contrast to the funnel breeding used in the CC model, the DO 
model was obtained by extensive inbreeding in these strains resulting in outbred DO 
strains (Churchill et al. 2012). DO model developed at Jackson Laboratories was 
obtained by using 160 CC mice as founder strains. Pulmonary infection of DO mice 
with Mtb resulted in super-susceptible, susceptible, and resistant phenotypes (Niazi 
et al. 2015; Tavolara et al. 2020). BCG vaccination of DO mice followed by aerosol 
exposure to Mtb also exhibited different intensities of TB infection (Kurtz et al. 
2020). 

Models of extrapulmonary TB have also been developed in mice representing 
brain infection. These models typically employ intravenous injection or intratracheal 
delivery of Mtb strains in Balb/C mice which disseminate to the brain and other 
organs (van Well et al. 2007; Be et al. 2008; Hernandez Pando et al. 2010; Gupta 
et al. 2016; Husain et al. 2017). These studies have revealed that Mtb dissemination 
to the brain is Mtb strain/genotype-dependent. Another model of TB meningitis 
relies on the intracerebral injection of Mtb which offers two advantages over other



models of central nervous system (CNS) infection. First, the infection is localized to 
the brain unlike in other models where the infection is disseminated to other organs. 
Second, the Mtb strains which do not cause meningitis in other models can cause 
brain infection; thus, a very broad range of Mtb strains could be evaluated (van Well 
et al. 2007). The dissemination model has also been employed to model intraocular 
(Abhishek et al. 2019; Basu et al. 2020) and musculoskeletal TB in mice (Kager et al. 
2014). Another model employs NOS2-/- mice where intradermal injection of one 
thousand CFUs in the ear dermis resulted in hypoxia and granuloma formation in the 
lungs along with significant bacillary load in the spleen (Reece et al. 2010; Kupz 
et al. 2016). 
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Latent TB is yet another challenging area that suffers from a lack of suitable 
models. A mouse model of latent TB called the Cornell mouse model is the most 
commonly employed model. The original model required infection of mice with Mtb 
(by intravenous administration) followed by antimicrobial chemotherapy with two 
drugs for 12 weeks and a rest period of 90 days to obtain detectable CFUs in organs. 
Several modifications of this model have appeared in literature which vary in the 
inoculum size of infection, duration between inoculation of mice and commence-
ment of treatment, dose of anti-TB drugs, duration of treatment, and duration of rest 
period (Scanga et al. 1999). Another model of latent TB requires low-dose aerosol 
infection in mice followed by a rest period of up to 3 months (Scanga et al. 1999). 
More recently, a model based on NOS2-/-mice has also been reported (Kupz et al. 
2016). Studies in mice have revealed important insights into the persistence of TB 
suggesting that the microbe can persist in adipose tissue even after clearance from 
the lungs (Agarwal et al. 2014, 2016; Ayyappan et al. 2019) which is also 
corroborated by findings in humans (Neyrolles et al. 2006) and rabbits (Ayyappan 
et al. 2018). Mesenchymal stem cells have also been identified as a home to dormant 
Mtb in mice (Das et al. 2013; Beamer et al. 2014; Garhyan et al. 2015; Tornack et al. 
2017; Fatima et al. 2020; Jain et al. 2020) as well as in humans (Garhyan et al. 2015; 
Tornack et al. 2017). 

Apart from Mtb, several other species of mycobacteria have been used for 
infection in mice. These studies aimed at either developing short-term models of 
human TB to decrease the time required for screening of anti-TB compounds or 
using non-pathogenic strains/species for adoption in non-BSL3 facilities. 
M. smegmatis has been proposed for the screening of antimycobacterial agents in 
a mouse model (Jhamb and Singh 2009; Singh et al. 2009). M. smegmatis has also 
been employed to understand molecular mechanisms of Mtb pathogenesis (Sha et al. 
2017, 2021; Sun et al. 2017; Yang et al. 2017; Li et al. 2019; Guo et al. 2021) as well 
as expression of proteins for vaccination purposes (Junqueira-Kipnis et al. 2013; Liu 
et al. 2015a; Kannan et al. 2020; Safar et al. 2020). 

Mouse infection models have also been developed to mimic avian (Fujita et al. 
2010; Haug et al. 2013; Andrejak et al. 2015; Cha et al. 2015; Bruffaerts et al. 2017; 
Dong et al. 2017; Babrak and Bermudez 2018) and bovine TB (Logan et al. 2008; 
Waters et al. 2014; Garcia-Pelayo et al. 2016; Garcia et al. 2020). Mouse models 
have also provided insights into the role of co-morbidities such as diabetes (Martens 
et al. 2007;  Alim  et  al.  2017, 2019, 2020) and co-infections such as malaria (Mueller



et al. 2012, 2014; Blank et al. 2016a, b), influenza (Florido et al. 2013; Redford et al. 
2014; Ring et al. 2019), herpes (Miller et al. 2019), HIV (Nusbaum et al. 2016), and 
helminth infections (Monin et al. 2015; Rafi et al. 2015; McFarlane et al. 2017) on  
the progression of TB. 

676 S. S. Jhamb et al.

28.2.2 Guinea Pig Model 

Guinea pigs were the preferred model for understanding TB pathogenesis and 
diagnosis as well as drug and vaccine screening (Negre and Bretey 1945; Steenken 
Jr. and Wagley 1945; Dessau et al. 1949; Steenken Jr. and Pratt 1949; Soltys and 
Jennings 1950; Wasz-Hockert and Backman 1954; Lithander 1957; Collymore et al. 
2018; Williams et al. 2020). Their use in diagnosis has ceased since the introduction 
of culture medium and other diagnostic tests (Mitchison et al. 1973; Saxena and 
Sharma 1982; Martin et al. 1989; Smith et al. 1991). Nevertheless, guinea pigs are 
the second most employed model after mice for drug and vaccine efficacy studies 
and in understanding disease pathology (Morton 1916; Goyal 1938; Gharpure 1945; 
Kerr 1946). Guinea pigs exhibit several characteristic features of human TB pathol-
ogy as observed in humans such as the development of granulomas, caseous 
necrosis, and secondary lesions after systemic dissemination (Wilkinson and 
White 1966; Narayanan et al. 1981; Shakila et al. 1999; McMurray 2003; Turner 
et al. 2003a; Basaraba et al. 2006; Ordway et al. 2007; Via et al. 2008). Although 
guinea pigs have been addressed as being highly susceptible to TB infection, high 
CFU counts need to be administered compared to mice. Guinea pigs also do not 
show any significant observable signs and symptoms of the disease even weeks after 
the Mtb challenge making this species unsuitable for studies where the death of the 
animal is a study parameter (Smith et al. 1991; Shakila et al. 1999; Williams et al. 
2005). BCG vaccine has been shown to be more protective in guinea pigs compared 
to mice thereby raising concern that guinea pigs may not be a suitable model to 
screen vaccines better than BCG (Sugawara et al. 2007; Ly et al. 2008; Cardona and 
Williams 2017; Gong et al. 2020). Further, the lack of immunological reagents is 
also an impediment to employing guinea pigs in vaccine screening. Guinea pigs have 
also been employed to study non-pulmonary TB such as pleuritis (Phalen and 
McMurray 1993), ocular TB (Rao et al. 2009; Thayil et al. 2011), and central 
nervous system dissemination (Be et al. 2011) as well as TB in co-morbid conditions 
(Podell et al. 2014). Although highly virulent strains of Mtb such as H37Rv and 
Erdman strains (Palanisamy et al. 2008; Li et al. 2010) as well as clinical isolates 
(Shanley et al. 2013; Aiyaz et al. 2014; Pardieu et al. 2015) have been used, 
experimental models of M. bovis and BCG infection have also been reported in 
guinea pigs (Aygun et al. 2000; Chambers et al. 2001). Guinea pig model of latent 
TB has also been reported (Kashino et al. 2008; Klinkenberg et al. 2008; Rifat et al. 
2009; Sugawara et al. 2009; Patel et al. 2011) and found to be suitable for study of 
latent TB.
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28.2.3 Non-human Primates 

Non-human primates are known to be susceptible to TB and reports have emerged 
showing the spontaneous spread of infection in wild and captive animals (Schroeder 
1938). These include rhesus macaques (Lindsey and Melby Jr. 1966), stump-tailed 
macaques (Wolf et al. 1967; Indzhiia et al. 1977), squirrel monkeys (Chrisp et al. 
1968; Hessler and Moreland 1968; da Silva et al. 2017), spider monkeys (Rocha 
et al. 2011), cebus monkeys or capuchins (Leathers and Hamm Jr. 1976; Broncyk 
and Kalter 1980; Ehlers et al. 2020), owl monkeys (Bone and Soave 1970; Snyder 
et al. 1970), pig-tailed monkeys (Sedgwick et al. 1970; Lau et al. 1972; Stockinger 
et al. 2011; Engel et al. 2012), lemur (Knezevic and McNulty 1967), langurs (Plesker 
et al. 2010), baboons (Heywood et al. 1970; Broncyk and Kalter 1980; Fourie and 
Odendaal 1983; Martino et al. 2007; Wolf et al. 2016), chimpanzees (Chaparas et al. 
1970; Broncyk and Kalter 1980; Coscolla et al. 2013; Wolf et al. 2016), mandrills 
(Amado et al. 2006), grivet (Broncyk and Kalter 1980), marmosets (Broncyk and 
Kalter 1980; Via et al. 2013), and several species of New World monkeys (Alfonso 
et al. 2004; Rosenbaum et al. 2015). Non-human primates genetically resemble 
humans due to evolutionary proximity and hence, exhibit characteristic hallmarks 
of human TB. These characteristics include the development of caseous necrosis, 
granulomas, and dissemination of pulmonary TB to other organs (Via et al. 2008; 
Mattila et al. 2013, 2017; Pacheco et al. 2013; Dutta et al. 2014b; Marino et al. 2015; 
Esaulova et al. 2020; Wessler et al. 2020). Apart from the characteristic pulmonary 
pathology, several non-human primates have also been found to exhibit 
non-pulmonary manifestations of TB such as hepatic (Stockinger et al. 2011), spinal 
(Martin et al. 1968; Fox et al. 1974), cerebral (Machotka et al. 1975), cutaneous 
(Bellinger and Bullock 1988) and ocular (West et al. 1981) as well as infection by 
other species of mycobacteria, including non-tuberculous mycobacteria (Smith et al. 
1973; Renner and Bartholomew 1974; Latt 1975; Sesline et al. 1975; Sapolsky and 
Else 1987; Brammer et al. 1995; Alfonso et al. 2004; Henrich et al. 2007; Chege 
et al. 2008; Parsons et al. 2010; Wachtman et al. 2011; Via et al. 2013; Rahim et al. 
2017; Min et al. 2018). Further, immunological reagents targeted towards human 
proteins show reactivity with NHP proteins, and vice versa, due to the high degree of 
sequence and structural homology. Additionally, co-infection with simian immuno-
deficiency virus also mimics HIV/TB co-infection (Kuroda et al. 2018) and has been 
employed to study the effect of antiretroviral therapy on active and latent TB 
progression (Ganatra et al. 2020; Sterling and Lin 2020). However, the high cost 
of procurement and maintenance along with stringent ethical protocols restrict the 
use of NHPs to very few laboratories (Gong et al. 2020). Several species of NHP 
have been investigated as models for screening of anti-TB compounds as well as 
vaccines but the major species include cynomolgus macaques (Macaca fascicularis) 
(Marino et al. 2004; Dutta et al. 2014b; Tsujimura et al. 2020; Winchell et al. 2020) 
and rhesus macaques (Macaca mulatta) (Fremming et al. 1957; Pacheco et al. 2013; 
Rayner et al. 2013; Gong et al. 2020; Sterling and Lin 2020). Significant differences 
between the two species have been reported with regard to TB susceptibility and 
response to vaccination. Rhesus macaques have been found to be more susceptible to



the development of active TB but BCG vaccination showed poor protection in this 
species compared to cynomolgus macaques (Langermans et al. 2001). The higher 
susceptibility of rhesus macaques to develop active TB, compared to cynomolgus 
macaques, has been attributed to differences in innate immune responses (Maiello 
et al. 2018; Dijkman et al. 2019) and monocyte: lymphocyte ratios in the two species 
(Sibley et al. 2019). Further, mutations in the natural resistance-associated macro-
phage protein 1 (NRAMP1) gene have been linked to differences in intraspecies 
susceptibility to TB in rhesus macaques (Deinard et al. 2002). The role of the route of 
administration on disease pathology has also been demonstrated: a uniform disease 
was obtained following aerosol exposure, while bronchoscopic instillation resulted 
in disease localized at the instillation site (Sibley et al. 2016). In contrast to rhesus 
macaques which develop active TB, cynomolgus macaques have been found to 
develop latent TB following low-dose pulmonary delivery of Mtb. These macaques 
remain asymptomatic, with no clinical manifestations in chest radiography, but show 
positive tuberculin tests after at least 6 months of Mtb administration (Walsh et al. 
1996; Capuano et al. 2003; Lin et al. 2006; Flynn et al. 2015; Gideon et al. 2015; 
Sharpe et al. 2016). Nevertheless, a model of asymptomatic TB has also been 
described in rhesus macaques (Gormus et al. 2004; Lin et al. 2009). The macaque 
model has also been used to study the reactivation of latent TB in SIV-TB co-infec-
tion models (Diedrich et al. 2020; Ganatra et al. 2020) as well as identify biochemi-
cal and cellular markers in latent TB (Esaulova et al. 2020). More recent studies 
using PET-CT (Coleman et al. 2014a, b; Lin et al. 2016; Stammes et al. 2021), serial 
intravascular staining (Potter et al. 2021), in silico/mathematical models (Marino 
et al. 2016; Marino and Kirschner 2016; Pienaar et al. 2016; Sershen et al. 2016; 
Evans et al. 2020), omics studies (Mehra et al. 2010; Kunnath-Velayudhan et al. 
2012; Luo et al. 2014; Gideon et al. 2016; Javed et al. 2016; Pienaar et al. 2016; 
Hudock et al. 2017; Martin et al. 2017; Thompson et al. 2018; Duffy et al. 2019; Ault 
et al. 2020), and other methods have been found to be useful in the study of TB 
pathogenesis in macaques (Lewinsohn et al. 2006; Lerche et al. 2008; Sharpe et al. 
2009; Hudock et al. 2014; Pena and Ho 2016). 
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28.2.4 Other Mammalian Models 

Rabbits have been employed in TB for a long time. The severity and nature of the 
infection have been attributed to the strain of the infecting organism as well as the 
rabbit strain employed (Dorman et al. 2004; Subbian et al. 2013a; Tsenova et al. 
2020). Following aerosol challenge with M. bovis, rabbits exhibit several 
characteristics of human disease such as cavitation and granuloma formation (Via 
et al. 2008; Subbian et al. 2013b; Gong et al. 2020) as well as extrapulmonary 
dissemination (Nedeltchev et al. 2009). Notably, most of the rabbit strains are not 
susceptible to common human virulent strains (Gong et al. 2020); however, these 
strains could produce pulmonary lesions (Bishai et al. 1999; Manabe et al. 2003). 
The rabbit model has also been modified to study extrapulmonary TB such as 
meningitis (Tsenova et al. 2005, 2007; Tucker et al. 2016;  O’Brien et al. 2020),



spinal TB (Geng et al. 2015; Liu et al. 2015b) and bladder TB (Liu et al. 2015b). 
Imaging studies have demonstrated localization of administered drugs in pulmonary 
necrotic lesions thus providing a pharmacokinetic basis for the comparison of drug 
activity (Kjellsson et al. 2012; Via et al. 2012; Pienaar et al. 2017; Blanc et al. 
2018a, b; Rifat et al. 2018; Tucker et al. 2018; Sarathy et al. 2019). A skin infection 
model has recently been reported in rabbits to assess the virulence of mycobacterial 
strains and liquefaction potential (Zhang et al. 2010; Sun et al. 2012). The rabbit 
model has also been investigated for the study of latent TB but the model has not 
been extensively studied (Manabe et al. 2008; Kesavan et al. 2009; Subbian et al. 
2012, 2013b). 
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The earliest report on a study of TB in rats is over a century old (Bodkin 1918); 
however, their use in the assessment of drug effects on the course of TB was studied 
several years later (Smith et al. 1946a, b; Scheid and Mendheim 1949; Michael 
Jr. et al. 1950; Cummings et al. 1952; Grumbach 1960). Despite their early 
applications, rats were not extensively investigated as a model of TB. In recent 
years, several strains and species of rat have been employed such as Fischer 
rats (Sugawara et al. 2004a), Lewis rats (Sugawara et al. 2004b), Sprague-Dawley 
rats (Li et al. 1998), Wistar rats (Gaonkar et al. 2010; Singhal et al. 2011a, b), cotton 
rats (Daigeler 1952; Elwood et al. 2007; McFarland et al. 2010), vole rats (Jespersen 
1974) and others (Sugawara et al. 2004c, 2006; Clarke et al. 2007; Sugawara and 
Mizuno 2008). Nevertheless, preliminary studies have demonstrated the formation 
of granulomas and pulmonary lesions in rats (McFarland et al. 2010; Heng et al. 
2011). The application of rats in studying the effects of vaccines has been a recent 
development with preliminary studies indicating their utility in screening vaccines 
(McFarland et al. 2010; Singhal et al. 2011b; Cardona and Williams 2017; Gong 
et al. 2020). Rats offer additional advantages compared to mice such as the ability to 
collect multiple blood samples which makes them an attractive alternative to mice 
for pharmacokinetic studies (Kumar et al. 2014). 

Apart from studying the effect of drugs and vaccines, rats have also been 
investigated for understanding the role of co-morbidities in TB such as diabetes 
(Sugawara and Mizuno 2008) and silicosis (Dong et al. 2014). Rats have also been 
investigated in the diagnosis of TB such as cotton rats (Sigmodon hispidus hispidus) 
(Daigeler 1952). African pouched rats have been studied for the olfactory detection 
of TB in clinical samples. Pouched rats were found to be more sensitive than smear 
microscopy in the detection of Mtb (Mahoney et al. 2012; Mgode et al. 2012; Ellis 
et al. 2017; Mulder et al. 2017; Webb et al. 2020). 

Hamsters have also been investigated as a model for the study of human and 
bovine TB pathology (Steenken Jr. and Wagley 1945; Glover 1946; Dennis and 
Gaboe 1949; Rozenberg and Pisarenko 1965). Pulmonary infection of hamsters has 
been shown to exhibit tubercle formation and the pathological outcome was depen-
dent on a diet (Ratcliffe and Palladino 1953; Merrick and Ratcliffe 1957). The cheek 
pouch has also been used as an inoculation site that exhibits granulomatous lesions 
(de Arruda and Montenegro 1995). Hamsters have also been used to study the 
antimycobacterial effects of compounds (Rozenberg and Pisarenko 1965; Gupta 
and Mathur 1969; Righi et al. 1999; Ugaz et al. 1999; Domingues-Junior et al.



2000; Palermo-Neto et al. 2001) as well as the effect of BCG on TB progression 
(Viallier and Cayre 1955; Rozenberg and Pisarenko 1965). Hamsters, like guinea 
pigs, have also been investigated in the diagnosis of TB but are not extensively used 
(Hussel 1951; Eskuchen 1952; Starck and Viehmann 1955). Minipigs have also been 
investigated as a model of pulmonary Mtb infection which exhibits characteristics of 
human pulmonary lesions such as granuloma formation (Gil et al. 2010; Ramos et al. 
2017). 
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Several other mammalian models have been developed to model TB in wild 
animals and cattle (Palmer et al. 2012; Reis et al. 2020). These models typically rely 
on the induction of M. bovis infection in animals such as badgers, boars, deer, and 
possums (Palmer et al. 2012; Reis et al. 2020). These animals act as reservoirs of TB 
in the wild and play a key role in the spread of TB in wild animals and domesticated 
cattle (Fulford et al. 2002; Corner et al. 2003; Green et al. 2008; Fenwick 2012; 
Donnelly and Nouvellet 2013; Nugent et al. 2015; Sichewo et al. 2020). Experimen-
tal models of M. bovis infections have been developed in badger (Lesellier et al. 
2008; Gormley and Corner 2017; Queiros and Vicente 2018), boar (Naranjo et al. 
2006; Ballesteros et al. 2009; Gasso et al. 2016; Lopez et al. 2016), deer (Palmer 
et al. 1999; Mackintosh et al. 2000; Waters et al. 2003; Stringer et al. 2011) and 
possum (Dennis and Gaboe 1949; Skinner et al. 2002; Cooke et al. 2003; Nugent 
et al. 2013a, b; Rouco et al. 2016) which have provided insights into disease 
pathology progression, transmission as well as effects of vaccination on disease 
control. A model of aerosol infection has also been described in ferrets as a 
replacement for the badger model (McCallan et al. 2011). Apart from these 
reservoirs of infection, models of M. bovis infection have also been reported in 
goats (Schinkothe et al. 2016a, b), buffalo (De Klerk et al. 2006) and cattle (Kao 
et al. 1997, 2007; Joardar et al. 2002; Palmer et al. 2002; Griffin et al. 2006; Rodgers 
et al. 2007). Additionally, the M. caprae infection model has also been reported in 
goats (Bezos et al. 2010; de Val Perez et al. 2011). Cattle have been reported to be 
resistant to Mtb (Whelan et al. 2010) but M. bovis infection in cattle has been 
proposed as an alternate model for human TB for evaluating the effect of drugs 
and vaccines (Dean et al. 2008; Van Rhijn et al. 2008; Waters et al. 2014). 

28.2.5 Fish and Other Models 

Zebrafish infection with M. marinum has been a subject of considerable interest in 
recent years. M. marinum induces granuloma formation in zebrafish which 
resembles lung granulomas in humans (Prouty et al. 2003; Swaim et al. 2006; 
Davis and Ramakrishnan 2009; Carvalho et al. 2011; Cheng et al. 2020). The 
investigation of mechanisms of granuloma formation in zebrafish has provided 
important insights into the mechanisms operable in humans, including mechanisms 
operable in presence of co-morbidities (Benard et al. 2016; Kenyon et al. 2017; Bouz 
and Al Hasawi 2018; Johansen et al. 2018; Luukinen et al. 2018; Harjula et al. 2020; 
Oehlers et al. 2020; Hosseini et al. 2021). The optically transparent adult zebrafish 
and embryos allow easy visualization of disease progression while also allowing



studies with large sample sizes due to the low cost of maintenance as well as the 
ability to conduct studies in BSL2 facilities (Myllymaki et al. 2016; Sommer and 
Cole 2019; Cheng et al. 2020; Gong et al. 2020; Hogset et al. 2020). The zebrafish 
model has been employed for the screening of anti-TB compounds and candidate 
vaccines (Oksanen et al. 2013; Lopez et al. 2018; Risalde et al. 2018; Sommer and 
Cole 2019; Commandeur et al. 2020; Nie et al. 2020; Saralahti et al. 2020; van Wijk 
et al. 2020). Genetically engineered zebrafish, expressing drug-metabolizing 
enzymes, has also been employed for studying the activity of anti-TB prodrugs 
(Ho et al. 2021). The zebrafish model has also been extended to study ocular (Takaki 
et al. 2018) and latent TB (Parikka et al. 2012) as well as tuberculous meningitis (van 
Leeuwen et al. 2014; Chen et al. 2018). In vivo models of M. marinum infection 
have also been described in goldfish (Ruley et al. 2002; Hodgkinson et al. 2012) and 
medaka (Broussard and Ennis 2007; Broussard et al. 2009) as well as in vitro models 
employing a carp cell line (El-Etr et al. 2001). 
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M. marinum infection model has also been proposed in frogs which results in 
granuloma formation (Ramakrishnan and Falkow 1994; Ramakrishnan et al. 1997; 
Cosma et al. 2006; Rhoo et al. 2019). Frog tadpoles are resistant to infection 
compared with adults (Rhoo et al. 2019) but tadpoles exhibit immune responses 
against mycobacteria similar to those observed in mammals (Hyoe and Robert 
2019). In vitro studies using frog macrophages have demonstrated contrasting 
roles of cytokines in susceptibility to M. marinum infection (Popovic et al. 2019). 
Additionally, M. marinum infection model has also been described in the fruit fly 
(Dionne et al. 2003; Oh et al. 2013; Pushkaran et al. 2019), silkworm (Yagi et al. 
2017, 2021), nematodes (Lopez Hernandez et al. 2015; Galbadage et al. 2016), and 
protists (Solomon et al. 2003; Andersson et al. 2006; Hagedorn and Soldati 2007; 
Arafah et al. 2013; Kolonko et al. 2014; Sanchez-Hidalgo et al. 2017; Trofimov et al. 
2018). Galleria mellonella larvae have also been reported to be susceptible to a wide 
range of mycobacteria, including Mtb, (Asai et al. 2019b, 2020; Budell et al. 2020) 
and have been employed for screening antimycobacterial compounds (Entwistle and 
Coote 2018; Asai et al. 2019a). Models of avian TB have also been described in 
chick and quail (Chaudhuri et al. 1980; Tell et al. 2003). 

28.3 In Vitro Models 

Mycobacteria reside in macrophages and dendritic cells; hence, Mtb-infected 
macrophages have been frequently used as in vitro models to study drug activity 
and molecular aspects of pathology (Chingwaru et al. 2016; Keiser and Purdy 2017; 
Pi et al. 2019). Alveolar macrophages are the primary target for pulmonary TB 
(Cardona et al. 2003; Cohen et al. 2018) while hepatic and splenic macrophages are 
targets for systemic infection (Ozeki et al. 2006; Sivangala Thandi et al. 2020). 
Although primary macrophages obtained from the lungs, liver, and spleen appear to 
be obvious choices for in vitro studies, their application (particularly, alveolar and 
hepatic macrophages) is thwarted by low abundance and difficulty in the isolation of 
pure cell types. Splenic macrophages can be obtained in large quantities but exhibit



much lower phagocytic activity compared to alveolar or hepatic macrophages 
(Guirado et al. 2013). These problems have resulted in a search for more convenient 
and representative sources of macrophages. Bone-marrow-derived macrophages 
have found particular interest in this regard as the precursor cells can be obtained 
in large amounts and can be differentiated into desired cell types using cytokines or 
conditioned culture media (Keiser and Purdy 2017). However, the high cost of 
cytokines could be a limiting factor. Peritoneal macrophages are yet another model 
which has been frequently employed for decades. The naïve/unelicited macrophages 
are obtained in relatively lower amounts but their numbers can be increased by 
eliciting the mice with chemicals. The yield of elicited macrophages is several folds 
higher compared to unelicited macrophages thereby reducing the number of animals 
required for experimentation. In recent years, several cell lines of murine alveolar 
macrophage origin have been developed. The cell lines offer several advantages over 
primary cells such as a virtually unlimited supply of cells with uniformity in genetic, 
biochemical, and physiological characteristics. Primary macrophages, as well as cell 
lines derived from a variety of cell lineages from mice (Chingwaru et al. 2016; 
Andreu et al. 2017), rat (Weikert et al. 2000; Hino et al. 2005; Markova et al. 2005; 
Hirota et al. 2010) and other animals, have been investigated as in vitro models for 
the study of Mtb-cell interactions (El-Etr et al. 2001; Hino et al. 2005; Keiser and 
Purdy 2017). 

682 S. S. Jhamb et al.

Human alveolar, hepatic and splenic macrophages are difficult to obtain due to 
ethical reasons; however, in recent years, these have become commercially available 
but their cost remains a major stumbling block (Henao et al. 2007). Human periph-
eral blood mononuclear cells (PBMCs) are relatively much easier to obtain, techni-
cally as well as ethically, and have also been widely used. These cells are 
differentiated into macrophages using cytokines or human serum and can then be 
used for infection with mycobacteria (Duque et al. 2014; Zhang et al. 2018). Several 
cell lines of human origin have also been used—the THP-1 monocytic cell line is the 
most frequently used. This cell line can be differentiated into macrophages by 
treatment with phorbol myristate acetate and then used for Mtb infection (Bai 
et al. 2010; Mendoza-Coronel and Castanon-Arreola 2016). 

Under physiological conditions, macrophages phagocytose the mycobacteria 
while cytokines released by macrophages and T-cells contribute to macrophage 
activation and subsequent killing of the intracellular bacteria. The macrophage 
infection model is considered relevant for in vitro screening of anti-TB activity of 
test compounds since the ability of the test compound to cross biological membranes 
(plasma and phagosomal membranes of host and mycobacterial cell membrane) and 
exert activity in a biological relevant milieu can be determined (Clemens et al. 2019). 
However, this model is an oversimplification of the immune response and 
macrophage-T-cell co-cultures have been used to decipher the molecular basis of 
crosstalk between these cell types (Skinner et al. 1997; Lyadova et al. 1998; Gautam 
et al. 2018). As an alternative, Mtb has been incubated in whole blood to determine 
immune responses as well as study drug effects (Al-Attiyah et al. 2006; Newton et al. 
2011; Raposo-Garcia et al. 2017; Cross et al. 2019; Kwan et al. 2020).
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Three-dimensional culture and organoids have attracted immense interest in 
recent years since these methods are more closely related to in vivo conditions and 
have been successfully employed for drug and vaccine screening. A 3D model 
employing human PBMCs in an extracellular matrix has been shown to mimic 
human granulomas and found relevant as a model of latent TB (Crouser et al. 
2017). Similar 3D models have been employed which either contain a single cell 
type or co-culture of macrophages with other cell types to mimic lung tissue or 
granuloma (Braian et al. 2015; Benmerzoug and Quesniaux 2017; Tezera et al. 
2017a, b; Palucci et al. 2019; Thacker et al. 2020; Walter et al. 2020). Additionally, 
precision-cut lung slices and other models have also been reported to study disease 
pathology and drug effects (Carranza-Rosales et al. 2017; Carius et al. 2020). The 
hollow fiber system was developed over a decade ago and approved by European 
Medicines Agency to study as an in vitro model for pharmacokinetic/pharmacody-
namic studies (Cavaleri and Manolis 2015). This method has been successfully 
employed for pharmacokinetic/pharmacodynamic studies involving single-drug or 
multi-drug regimens (Gumbo et al. 2015a, b; Pasipanodya et al. 2015; Srivastava 
et al. 2016; Kloprogge et al. 2019; Pieterman et al. 2021) including the ability to 
extend the results to children (Srivastava et al. 2020). Additionally, microfluidic 
systems have also been developed to study environmental milieu and signaling in 
granulomas as well as a study of drug resistance (Bielecka et al. 2017; Berry et al. 
2020). 

28.4 Mycobacterial Cultures 

The field of mycobacterial culture has witnessed a steady improvement in terms of 
the development of culture media and detection methods. These methods are useful 
in detecting direct-acing anti-TB compounds but are irrelevant for indirect-acting 
compounds (such as immunomodulators) or those requiring metabolic activation 
(such as prodrugs) as well as vaccines. 

In the case of compounds that act both directly and indirectly, the anti-TB activity 
determined by these methods is expected to be much lower compared to that 
observed under in vivo conditions. Currently, Middlebrook 7H9 broth is the liquid 
medium of choice while Middlebrook 7H10 medium and Middlebrook 7H11 
medium are commonly employed solid media for experimental purposes. On the 
other hand, the Lowenstein-Jensen medium is the preferred solid medium for 
isolating Mtb from clinical samples. Mtb is a slow-growing bacterium with a 
doubling time of approximately 20 h which requires 1–2 months of incubation for 
CFU determination. Therefore, broth media are commonly employed to study the 
anti-TB activity of test compounds whereby mycobacterial growth is determined 
using turbidimetry or optical absorbance (Franzblau et al. 2012; Parish 2020). These 
methods, although widely used traditionally, suffer from low reliability in 
quantifying live bacteria due to possible interference by cell debris and have hence 
been superseded by dye-based methods. Colorimetric dyes such as Alamar blue or 
MTT are converted to fluorescent or colored products by viable bacteria. The



metabolic conversion of dye, and resulting fluorescence/color intensity, is propor-
tional to the number of viable bacteria (Amin et al. 2009; Cui et al. 2013). This 
provides the advantage that these methods could be adopted to high throughput 
formats, requires extremely small amounts of test compounds, and decreases opera-
tor exposure to pathogenic strains due to automation. 
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Commercially available radiometric systems such as BACTEC were employed 
which provided results relatively faster but have been replaced with fluorescence 
detection systems like MGIT in recent years due to concerns arising out of the use of 
radioactive media components (Franzblau et al. 2012; Jhamb et al. 2014). Addition-
ally, luminescent methods based on the assay of ATP or luciferase-expressing Mtb 
have also been employed (Idh et al. 2017; Parish 2020). 

A total of 80 amide derivatives had been tested for their anti-TB activity against 
metabolically active M. tuberculosis H37Rv. Out of this 34 compounds were found 
active at 6.25 μg/mL concentration and 11 of them were further tested for MIC 
determination. MIC values of these compounds ranged between ≤0.39 μg/mL and 
6.25 μg/mL (unpublished data). Daily percent growth inhibitions values of all the 
compounds were evaluated in comparison to standard anti-TB drugs INH and 
rifampin. Further, 19 more compounds for MIC determination against Mycobacte-
rium tuberculosis H37Rv were tested. All of these were tested at five different 
concentrations (0.39, 0.78, 1.56, 3.125, and 6.25 μg/mL) for MIC determination. 
Out of these, six compounds showed MIC values of ≤0.39 μg/mL (unpublished 
data). The rest of the compounds exhibited MIC values between 0.39 and 6.25 μg/ 
mL. Day-wise percent growth inhibition by compounds was also studied to know the 
possible mode of action. MGIT 960 TB system was also established in our lab for 
anti-TB drug susceptibility testing. A total of 15 active compounds were tested at a 
concentration of 6.25 μg/mL by the MGIT- 960 method (unpublished data). All the 
15 compounds were found to be active by MGIT as well as BACTEC 460 methods 
at a concentration of 6.25 μg/ml and the results correlated well with both the 
methods. A total of 16 Indian isolates were collected from different institutions in 
India. The isolates were tested by the BACTEC method against standard anti-TB 
drugs INH, rifampin, streptomycin, and ethambutol at critical drug concentrations of 
0.1, 2.0, 2.0, and 2.5 μg/mL, respectively. All the isolates were sensitive to rifampin 
whereas some isolates were resistant to INH which is one of the two critical first-line 
anti-TB drugs. A total of 15 compounds were tested at 6.25 μg/mL concentration 
against one of the isolates which were resistant to INH. Interestingly three 
compounds were found to be inactive against this isolate whereas 12 compounds 
were active against this isolate which was resistant to INH. Intra-macrophage anti-
TB activity determination against M. tuberculosis (in mouse non-activated perito-
neal macrophages) was also established and MIC of standard anti-TB drugs was 
determined using this assay (our unpublished data). 

In vitro mycobacterial cultures have also been investigated for the study of latent 
TB phenotypes. These models aim at mimicking the conditions observed in 
granulomas such as hypoxia (Aly et al. 2006; Harper et al. 2012; Dutta et al. 
2014a) and nutrient starvation (Sarathy et al. 2018; Yuan and Sampson 2018)  to  
induce a latent phenotype in Mtb (Via et al. 2008). The Wayne model was one of the



earliest models described whereby bacteria are cultured in sealed containers. Cessa-
tion of aeration in the culture results in a decrease in dissolved oxygen concentration 
resulting in a shift towards hypoxia. After an extended duration of growth arrest, the 
bacteria could re-enter logarithmic growth if the cultures are aerated. The dormant 
stage under hypoxic conditions has been termed non-replicating persistence (NRP) 
and two distinct stages of NRP have been identified. NRP stage I, also described as 
microaerophilic, is reached when oxygen saturation decreases to 1% and is 
characterized by growth arrest, steady ATP levels, and increased glycine dehydro-
genase production. As oxygen falls below 0.06% saturation, the bacteria enter 
anaerobic conditions, termed NRP stage II, which is characterized by a decrease in 
glycine dehydrogenase (Wayne and Hayes 1996; Wayne 2001). NRP stage II 
exhibits a reversal in the antimicrobial activity of metronidazole whereby the drug 
shows bactericidal activity in NRP stage II bacilli but is ineffective in aerobically 
growing bacilli. Based on the Wayne model, hypoxic resazurin reduction assay, as 
well as MTT assay, has been developed which enables high throughput screening of 
drugs against latent TB (Martin et al. 2006; Meinzen et al. 2016). A luciferase 
reporter has also been used to monitor bacterial growth using a protocol similar to 
the Wayne model. In this method, termed low oxygen recovery assay, the lumines-
cence readout has been used to study the activity of drugs. A red fluorescent protein-
expressing Mtb has also been used whereby the reporter protein expression could be 
monitored to determine the stage of bacterial growth (Sohaskey and Voskuil 2015; 
Gibson et al. 2018). In order to hasten and improve readout, the BACTEC method 
has also been employed to determine persisters (Kharatmal et al. 2009). Models 
based on hypoxia-induced dormancy have been most frequently employed; how-
ever, others in vitro models such as nutrient deprivation and selective carbon sources 
have also attracted attention in recent years (Patel et al. 2011; Gibson et al. 2018; 
Parish 2020). Additionally, nitric oxide and streptomycin have also been used as 
stressors to induce NRP-like conditions under in vitro conditions. A multi-stress 
model employing low oxygen and low pH has also been reported (Patel et al. 2011; 
Gibson et al. 2018; Parish 2020). 
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We evaluated the in vitro efficacy of satranidazole, a novel nitroimidazole-based 
bioreductive prodrug, against non-replicating persistent latent M. tuberculosis under 
oxygen depletion and nutrient starvation models/conditions. It exhibited a 
concentration-dependent effect (2–50 μg/mL) in both models; however, the maxi-
mum effect was observed at 50 μg/mL. Moreover, it showed statistically significant 
activity as compared to metronidazole. However, at lower concentrations (<10μg/ 
mL), no significant difference was observed between satranidazole and metronida-
zole. In conclusion, the noteworthy activity of satranidazole against latent 
M. tuberculosis makes it an attractive drug candidate to target latent tuberculosis. 
Nevertheless, further detailed investigations, along these lines, using suitable animal 
models of latent tuberculosis are warranted. 
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