
Lecture Notes in Electrical Engineering 1041

Suryanarayana Doolla
Zakir Hussain Rather
Venkatasailanathan Ramadesigan   Editors

Advances in 
Renewable 
Energy and Its 
Grid Integration
Proceedings of ICAER 2022



Lecture Notes in Electrical Engineering

Volume 1041

Series Editors

Leopoldo Angrisani, Department of Electrical and Information Technologies Engineering, University of Napoli
Federico II, Napoli, Italy
Marco Arteaga, Departament de Control y Robótica, Universidad Nacional Autónoma de México, Coyoacán,
Mexico
Samarjit Chakraborty, Fakultät für Elektrotechnik und Informationstechnik, TU München, München, Germany
Jiming Chen, Zhejiang University, Hangzhou, Zhejiang, China
Shanben Chen, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
Tan Kay Chen, Department of Electrical and Computer Engineering, National University of Singapore,
Singapore, Singapore
Rüdiger Dillmann, University of Karlsruhe (TH) IAIM, Karlsruhe, Baden-Württemberg, Germany
Haibin Duan, Beijing University of Aeronautics and Astronautics, Beijing, China
Gianluigi Ferrari, Dipartimento di Ingegneria dell’Informazione, Sede Scientifica Università degli Studi di
Parma, Parma, Italy
Manuel Ferre, Centre for Automation and Robotics CAR (UPM-CSIC), Universidad Politécnica de Madrid,
Madrid, Spain
Faryar Jabbari, Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA,
USA
Limin Jia, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
Janusz Kacprzyk, Intelligent Systems Laboratory, Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland
Alaa Khamis, Department of Mechatronics Engineering, German University in Egypt El Tagamoa El Khames,
New Cairo City, Egypt
Torsten Kroeger, Intrinsic Innovation, Mountain View, CA, USA
Yong Li, College of Electrical and Information Engineering, Hunan University, Changsha, Hunan, China
Qilian Liang, Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, USA
Ferran Martín, Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra,
Barcelona, Spain
Tan Cher Ming, College of Engineering, Nanyang Technological University, Singapore, Singapore
Wolfgang Minker, Institute of Information Technology, University of Ulm, Ulm, Germany
Pradeep Misra, Department of Electrical Engineering, Wright State University, Dayton, OH, USA
Subhas Mukhopadhyay, School of Engineering, Macquarie University, NSW, Australia
Cun-Zheng Ning, Department of Electrical Engineering, Arizona State University, Tempe, AZ, USA
Toyoaki Nishida, Department of Intelligence Science and Technology, Kyoto University, Kyoto, Japan
Luca Oneto, Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of
Genova, Genova, Genova, Italy
Bijaya Ketan Panigrahi, Department of Electrical Engineering, Indian Institute of Technology Delhi,
New Delhi, Delhi, India
Federica Pascucci, Department di Ingegneria, Università degli Studi Roma Tre, Roma, Italy
Yong Qin, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
Gan Woon Seng, School of Electrical and Electronic Engineering, Nanyang Technological University,
Singapore, Singapore
Joachim Speidel, Institute of Telecommunications, University of Stuttgart, Stuttgart, Germany
Germano Veiga, FEUP Campus, INESC Porto, Porto, Portugal
Haitao Wu, Academy of Opto-electronics, Chinese Academy of Sciences, Haidian District Beijing, China
Walter Zamboni, Department of Computer Engineering, Electrical Engineering and Applied Mathematics,
DIEM—Università degli studi di Salerno, Fisciano, Salerno, Italy
Junjie James Zhang, Charlotte, NC, USA



The book series Lecture Notes in Electrical Engineering (LNEE) publishes the
latest developments in Electrical Engineering—quickly, informally and in high
quality. While original research reported in proceedings and monographs has
traditionally formed the core of LNEE, we also encourage authors to submit books
devoted to supporting student education and professional training in the various
fields and applications areas of electrical engineering. The series cover classical and
emerging topics concerning:

• Communication Engineering, Information Theory and Networks
• Electronics Engineering and Microelectronics
• Signal, Image and Speech Processing
• Wireless and Mobile Communication
• Circuits and Systems
• Energy Systems, Power Electronics and Electrical Machines
• Electro-optical Engineering
• Instrumentation Engineering
• Avionics Engineering
• Control Systems
• Internet-of-Things and Cybersecurity
• Biomedical Devices, MEMS and NEMS

For general information about this book series, comments or suggestions, please
contact leontina.dicecco@springer.com.

To submit a proposal or request further information, please contact the Publishing
Editor in your country:

China

Jasmine Dou, Editor (jasmine.dou@springer.com)

India, Japan, Rest of Asia

Swati Meherishi, Editorial Director (Swati.Meherishi@springer.com)

Southeast Asia, Australia, New Zealand

Ramesh Nath Premnath, Editor (ramesh.premnath@springernature.com)

USA, Canada

Michael Luby, Senior Editor (michael.luby@springer.com)

All other Countries

Leontina Di Cecco, Senior Editor (leontina.dicecco@springer.com)

** This series is indexed by EI Compendex and Scopus databases. **

mailto:leontina.dicecco@springer.com
mailto:jasmine.dou@springer.com
mailto:Swati.Meherishi@springer.com
mailto:ramesh.premnath@springernature.com
mailto:michael.luby@springer.com
mailto:leontina.dicecco@springer.com


Suryanarayana Doolla · Zakir Hussain Rather ·
Venkatasailanathan Ramadesigan
Editors

Advances in Renewable
Energy and Its Grid
Integration
Proceedings of ICAER 2022



Editors
Suryanarayana Doolla
Department of Energy Science
and Engineering
Indian Institute of Technology Bombay
Mumbai, Maharashtra, India

Venkatasailanathan Ramadesigan
Department of Energy Science
and Engineering
Indian Institute of Technology Bombay
Mumbai, Maharashtra, India

Zakir Hussain Rather
Department of Energy Science
and Engineering
Indian Institute of Technology Bombay
Mumbai, Maharashtra, India

ISSN 1876-1100 ISSN 1876-1119 (electronic)
Lecture Notes in Electrical Engineering
ISBN 978-981-99-2282-6 ISBN 978-981-99-2283-3 (eBook)
https://doi.org/10.1007/978-981-99-2283-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-99-2283-3


Preface I

The Department of Energy Science and Engineering (DESE) at IIT Bombay is a
leading interdisciplinary energy education and research center. DESE has developed
several novel education programs focusing on the application of science and engi-
neering to problems in energy. Keeping the vision of the department “To develop
sustainable energy systems and solution for the future” inmind, there is a strong need
of providing a common platform to the researchers in the field of energy and allied
domains. DESE has been organizing the biennial conference International Confer-
ence on Advances in Energy Research since 2007 which serves as an excellent forum
to present new findings, exchange novel ideas, discuss new developments, and reflect
on the challenges that lie ahead.

This book is a compendium of all the papers of the submissions accepted at the 8th
International Conference onAdvances in EnergyResearch (ICAER2022), organized
from July 7 to 9, 2022. After a rigorous peer-review process, about 97 papers have
been accepted for the proceedings of the conference.

Various aspects of energy research including, but not limited to, conventional
energy, renewable energy, grid integration of renewables, electric mobility, energy
storage, energy policy and economics, and energy education were covered in the
conference. This conference threw light on various recent accomplishments by
researchers worldwide in the areas of solar thermal, thermal storage, solar PV with
newmaterials, novel batteries, biofuels-based transportation, and rural energy needs,
to name a few. The conference also included a special session on “Industry inno-
vations in energy” where leading experts from industry were invited to present
innovative case studies from their respective industries.

Mumbai, India Prof. Suryanarayana Doolla
Prof. Zakir Hussain Rather

Prof. Venkatasailanathan Ramadesigan
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Preface II

The 8th International Conference on Advances in Energy Research (ICAER 2022)
was organized by theDepartment of EnergyScience andEngineering, Indian Institute
of Technology Bombay, between July 7 and 9, 2022, virtually in Mumbai, India. The
conference received around 250 submissions. Of these, around 120 submissions
were accepted for oral presentation after a rigorous peer-review. The conference was
attended by over 300 participants. This book is a compendium of selected papers
presented at the conference. The Springer Nature Publications sponsored three best
paper awards and seven consolation prizes. The conference hosted 10 invited lectures
and presentations by academics and industry personnel from all over the world. Two
special sessions on “Industry innovations in energy” and “Energy education” were
also organized.

Mumbai, India Prof. Zakir Hussain Rather
Prof. Suryanarayana Doolla

Prof. Venkatasailanathan Ramadesigan
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Smart Algorithm for Optimal Energy
Utilization in EV Charging Stations

Yashodhan Jaltare, Sakshi Kulkarni, Sumeet Gawande, and Meera Murali

1 Introduction

The growing number of electric vehicles poses a challenge to existing infrastructure.
Undersized connection lines and a lack of charging stations raise the concern of
satisfying EV charging demands which leads to the approach of coordinated or
“smart” charging. In other words, our aim is to introduce an algorithm that helps
us decide which electric vehicle can charge at which charging station and at which
current during which time periods. Flexibility in planning arises from the length
of stay, the available electrical supply cost of the units, and the mode of charging
(conventional or fast).

Wepresent a smart charging algorithm that schedules electric vehicles tomaximize
revenue and coordinates electric vehicle charging to reduce load peaks andmaximize
infrastructure usage. The algorithm uses input parameters of the desired SoC, the
duration of charging, and the mode of charging. With this information the model
calculates and allocates the charging load for each time interval, with the primary
objective of reducing cost per EV charge.We compare the smart charging scenario to
a naive charging scenario to evaluate the potential of smart charging. The algorithm
we present has the following benefits: Maximum use of existing infrastructure, Fair
share maximization, Profit maximization, Integrated mode of charging.

2 Literature Survey

Grid-orientated smart charging involves scheduling the power supplied to electric
vehicles based on the state of charge (SoC) in that instance and the time left to charge.

Y. Jaltare (B) · S. Kulkarni · S. Gawande · M. Murali
College of Engineering, Pune, Wellesley Road, Shivajinagar, Pune, Maharashtra 411005, India
e-mail: jaltareyr18.elec@coep.ac.in
URL: https://www.coep.org.in/

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
S. Doolla et al. (eds.), Advances in Renewable Energy and Its Grid Integration,
Lecture Notes in Electrical Engineering 1041,
https://doi.org/10.1007/978-981-99-2283-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-2283-3_1&domain=pdf
mailto:jaltareyr18.elec@coep.ac.in
https://www.coep.org.in/
https://doi.org/10.1007/978-981-99-2283-3_1


2 Y. Jaltare et al.

It ensures that the parametric constraints of the power capacity of the EVCS and the
individual EV are not violated and allows for an efficacious distribution of charging
capacity amongst the EV. This is particularly beneficial whenmultiple heterogeneous
electric vehicles that have different charging times are connected to the EVCS.

Research on the vehicle-grid interaction has been conducted in the year of 2016 [1,
2] to ensuremaintaining a demand and supply balance.Many chargingmethodologies
have been developed with consumer-centered applications. These smart charging
methodologies are divided into two types: time-based scheduling and power based
scheduling. Vehicles can be charged according to a predefined priority criterion [3]
by Kumar et al. For example, vehicles that require fast charging will be charged with
a higher kWh capacity.

Frendo et al. [4] present an algorithm for smart charging that uses machine learn-
ing to determine the demand for electric vehicles. The algorithm depends on the
prediction of the SoC of the vehicles. Since it is bound to vary in practice, an online
algorithm that minimizes energy cost without knowing future information [5] is an
efficient alternative to regular offline or day-to-day planning algorithms.

Research [6] done in the year of 2021 introduces an algorithm which schedules
heterogeneous fleets of vehicles for charging with fair share maximization as the
top priority. Cao et al. [7] present an algorithm that schedules loads while reducing
charging costs and managing load peaks. The above examples are an example of
time-based scheduling.

An approach by Frendo et al. [8] for heterogeneous charging of vehicles in a
parking lot demonstrates the real-time feasibility of smart charging. This has been
achieved by generating charge profiles of electric vehicles based on the carmodel and
its SoC. This approach has been demonstrated for slow charging and uses machine
learning to determine the future requirement. Charging vehicles with a pre-computed
user-defined schedule will help an EVCS prioritize consumers according to their wait
time.

Paper published in 2019 [9] presents power-based scheduling algorithms for solv-
ing mixed integer problems modeled by an EVCS whereas Alonso et al. [10] present
a Genetic Algorithm for the same. We present an algorithm that combines the advan-
tages offered by online and offline algorithms.

3 Necessity of Smart Charging

When a battery is connected to a charging system, charging occurs in constant current,
constant voltage (CC-CV)mode.DuringCCmode, the battery draws constant current
from the power supply until the voltage at the battery terminals reaches the rated
voltage. When the rated voltage is reached, the battery runs in CV mode. In CV
mode, the voltage across the battery remains constant and whereas the current drawn
by the battery reduces drastically. Figure 1 shows a typical battery behavior inCC-CV
mode.
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Fig. 1 EV battery charging profile

Therefore, there is great potential for a smart charging algorithm that controls the
amount of power that goes out of a charging point and the remaining power can be
channelled through other charging points without the risk of system overloading.

4 Overview of the Smart Charging Algorithm

The algorithm commences with the arrival of an Electric Vehicle. The system checks
if the EV was scheduled for the time-slot in the EVCS. The scheduled EV is directed
to its assigned charging point via a communication system. The pre-scheduling of
the EVs will take place before the day commences. The system schedules the EVs
accordingly based on markers: cumulative profits for the station, sum of planned
powers, EV load during the period (Fig. 2).

IF the EV is not scheduled, users will fill in the required SoC, their car model,
their arrival time, and their tentative desired charging duration as well as the mode
of charging (fast or conventional).

The power distribution is calculated and reallocated to the electric vehicles based
on the new addition. For better control over power slots and allocation, our goal is
to calculate the allocation after every 15 min based on the following priority marks:
item mode of charging, expected departure time, current SoC of the EV, desired SoC
of the EV.

Charging is stopped once the desired power is supplied. The algorithm can be split
into 2 parts, namely the schedule guided heuristic (day-ahead scheduling and real
time) and power scheduling. The parts have been discussed in detail in the following
sections.
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Fig. 2 Smart charging algorithm

4.1 Day Ahead Scheduling

Day ahead or offline scheduling of EVs on a daily basis is beneficial for the EVCS
operator, as an optimized schedule can be created to maximize profits. The aim of
a scheduling algorithm for the next day is to achieve an economically rewarding
operation while adjusting for the load on the power network. We get the details from
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a user for pre-scheduling a vehicle. The user can only schedule the vehicle for the
next day.

The user selects a time slot from a total of 8 time slots. Each of the time slots
is 3 h long, starting from 12 am to 11:59 pm. Suppose the user selects the time
slot from 6 am to 9 am. After selecting the slot, the algorithm assigns the vehicle
to the available charging station present in the slot from 6 am to 9 am. Whenever a
different user enters his details for pre-scheduling in the same time slot, the algorithm
first checks if the user can be accommodated in the particular time slot; else asks
the user to choose a different time slot. In case the user can be accommodated, the
algorithm creates an optimized schedule for the time slot with the new addition and
previous users present in the database. The schedule is filled by selecting time-slots
for charging which can fit in optimum number of EVs with the constrained power
requirement and first come-first serve basis. For the day-ahead scheduling, creating
and optimizing schedules is done via a greedy filling techniquewhich is based on a set
of mathematically calculated priorities. The order of the cars is determine according
to the desired duration of charging the vehicle, the priority given to each vehicle and
in a way that maximum cars can be fit in the schedule. The schedule is optimized
after every entry.

4.2 Real Time Algorithm

Real time algorithms usually focus on power allocation and management based on
profit maximization. When an unscheduled EV arrives at the station, the user enters
his details and requirements, the algorithm checks if there is any station available
for the desired duration of charging given by the user, with an acceptable difference
of 15 min. If a charging station is available, the car is assigned to the station and the
schedule is updated.

4.3 Power Scheduling of EVs

AEVbattery’s charging profile is shown in Fig. 1. Normally, a fixed amount of power
is allocated to all electric vehicles, but this leads to thewaste of infrastructure capacity
during CV mode. We calculate the power required by the vehicle, by calculating the
magnitude of the current that is to be supplied to the vehicle. This helps us estimate
the power requirement, and we can allocate unused power to other stations. The
power scheduling algorithm works as follows:

The system collects the data of all cars connected to the charging station, which
are represented as (xk) every 15 min. The power (wk) to be provided is calculated
based on the current and voltage at the time. For real time application, the voltage
will be measured at the charging station, in our application we predict the voltage
using the battery charge profile prediction discussed in the section above.



6 Y. Jaltare et al.

Data: Car Details, Schedule
Calculate SoC f inal
while Schedule �= None do

for All Cars in current TimeSlot do
Calculate Priority for Car Calculate Power required for Car

end
Define Constraints Maximize : ∑

kε I pk ∗ xk
Subject To (f):

∑
kε I wk ∗ xk ≤ c where, Iε{0, 1} ∀ k ε I

Create a tree of possible subproblems S

Solution
�
x ε {x ε S| f (x) <= f (

�
x )}

if S cannot be pruned then
Partition S into S1, S2 . . . Sn Check Solution for Subproblem

end

Return
�
x

end
Algorithm 1: Power scheduling

We estimate the charging current on the basis of the current and final SoC. This
method is known as the Coulomb counting method. Mathematically, it is calculated
as follows, where (i) is the magnitude of the current:

SoC f inal = SoCcurrent +
end time∫

current time

i ∗ dt (1)

Priority pk for each car is calculated based on various factors that will be discussed
below the scenario ismodeled as a linear integer problem (LIP), where the constraints
are defined as follows:

Maximize :
∑

kε I

pk ∗ xk (2)

Subject T o :
∑

kε I

wk ∗ xk ≤ c where, Iε{0, 1} ∀ k ε I (3)

This LIP is modeled as a fractional knapsack problem. Suppose that we have k
number of cars items, each one with a required power magnitude ofwk and estimated
priority pk , wewant to select a subsetwithmaximumpriority such that the summation
of the current magnitudes of the selected cars is less or equal to the EVCS maximum
power capacity c. We consider a set of continuous variables (xk |kεN ) that receive
the value 1 if the kth item is selected and 0 if it is not, and a fraction if it is partially
selected. This is solved as a feasibility problem and is NP-complete. Now, we try
all possible combinations of xk to solve this problem. This is a tedious task which
is time consuming and a naive approach to the problem. Instead, we use the branch-
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and-bound technique, a greedy algorithm that tries to find a limit number of solution
sets.

In this technique, a tree of solutions is created. Each node in the rooted tree is
considered as a new problem. Also, a bounding function is used to limit the search
space. On the basis of the solution of the optimal solution, each branch is checked.
The branch is discarded if it does not produce a better solution than that found by the
algorithm in the previous step. For the optimization step we have used the COIN-OR
Linear Programming Solver (CLP) as our primary solver. We create a mathematical
model of the fractional knapsack with the bounds and constraints and use the MIP
solver to find the optimal solution.

Priorities for Power Scheduling For the LIP modeled below,

Maximize :
∑

kε I

pk ∗ xk

we calculate priorities of EVs using a priority function. We have a dynamic priority
function that has four weighted components, where zi is the component and wi is
the weight of each component.

p = z1 ∗ w1 + z2 ∗ w2 + z3 ∗ w3 + z4 ∗ w4

– Component 1: This objective component is calculated for the fair share maxi-
mization. Its goal is to minimize the number of EVs that are below a minimum
predetermined SOC threshold.

z1 = SOCmin − SOCcurrent

t ∗ imax of CS
i f SOCmin > SOCcurrent

– Component 2: The component is calculated with respect to the desired departure
time of the user. The goal of the component is to prioritise the charging of EVs that
are due for departure over the ones that are due later on. We get the final value as a
percentage of the time that is left before the user wants to depart. This component
helps us differentiate between fast and slow charging, while giving preference to
users whose departure time is near.

z3 = desired_departure_time − present_t ime)

desired_departure_duration
∗ 100

– Component 3: This subjective component is calculated based on the current SOC
of the vehicle and the desired final SOC of the vehicle, where ε is a constant factor
used to adjust the units of output

z3 = (SOC f inal − SOCcurrent ) ∗ ε
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– Component 4: This component is based on the mode of charging of the vehicle. Its
goal is to prioritize electric vehicles that have opted for fast charging. The compo-
nent serves two purposes: maximization of profits by encouraging fast charging
and timely delivery of the charged vehicle

z4 = SOCdesired − SOCcurrent

t ∗ ε
,

where ε is a constant factor used to adjust the units of output.

The weights of each priorities are determined by the order of preference and and
impact on the scheduling as well as the magnitude of the output.

5 Test Problem and Results

The smart charging algorithm is tested based on a specific situation mentioned as
follows—Acharging station available can chargemaximum of 5 electric vehicles at a
timewithmaximumcharging power of 7.5 kW.A sixth charging point has been added
to the existing charging station having no dedicated power supply, which creates
an unstable system and hence is susceptible to overloading. The smart charging
algorithm is active on this station hence it is called as Smart charging station.

Fig. 3 The smart charging algorithm makes use of available power more effectively than normal
charging. For one day, 15 min of time intervals are plotted on x axis
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A different charging station is considered calledNaive charging station in which
6 charging points with a dedicated power supply exist. All charging points can charge
an EV with maximum power of 7.5 kW.

EV users can plugin their vehicle to any charging point provided the point is not
busy. EV charging slot booking can be done through a graphic user interface. Results
are obtained with same set of electric vehicles fed to both the systems. A simulation
was carried out to test both the algorithms with same sets of inputs.

Input data to the algorithm consists a schedule of electric vehicles requesting
parameters—arrival time, departure time, requested kilometers.

Figure 3 shows that the smart charging algorithm can optimize the use of the
infrastructure and its capacity to a greater extent. The smart algorithm was allo-
cated a maximum capacity of 37.5 kW while the normal charging facility runs at
a maximum charging capacity of 45 kW. It is observed that smart charging algo-
rithm delivered 26.64 kW power to the vehicles, whereas naive charging algorithm
delivered 21.48 kW power for same time duration.

6 Conclusions

Power utilization is increased by application of smart charging algorithm, when the
smart charging algorithm was compared with the normal mode of charging with
specific sets of electric vehicles available in the market.

The smart algorithm shows that the installation of an additional 7.5 kW charging
point can be eliminated without the risk of overloading of the charging station.

Fig. 4 Power output at each station, controlled by the smart algorithm. For one day, 15 min of time
intervals are plotted on x axis
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The smart charging algorithm presented in this paper is a general approach and
hence can further be extended to any types of electric vehicles by simple improve-
ments to the data set. It can be concluded that the proposed smart charging algorithm
uses the EVCS infrastructuremore efficiently than under normal charging conditions.
The additional charging point can be added to the station capacity by integrating a
smart charging algorithm to extend the charging capacity of any EVCS service with-
out overloading the network.The algorithm reduces the power output to themaximum
capacity of the charging station, eliminating the risk of completely overloading the
grid. The smart algorithm enables for a quick increase in the charging capacity of any
EVCS. Therefore, a smart algorithm can be a key to meeting the growing demand for
charging electric vehicles in the future without an immediate additional investment
in infrastructure and electrical power.When the increase in daily power usage is 23%
assuming that the same set of electric vehicles is charged at a charging station, the
profits earned by the charging station increase dramatically.

Figure 4 demonstrates the power allocation to each charging point in a Smart
charging station based on priority markers.
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Real Power Loss Minimisation
and Energy Cost Saving with DG
and Capacitor Using JAYA Algorithm
in Radial Distribution System

Atul Kumar Dev and Ashwani Kumar

1 Introduction

Optimizing network configuration is a trending topic in research because power loss
is amajor concern for the network.However, there is a shift in old distribution network
to active network from passive and low-carbon distribution systems which creates
opportunities with shift of planning issues and the regulatory framework, having the
integration of renewable energy sources and distributed generations (DGs). Distri-
bution network operators (DNO) is facing new challenges due to addition of DG
as to create sustainability of DG by lowering loss for operational profit and making
financial benefit [1]. The unbundling rules in restructured electricity markets with
proper planning of DGs and their location and sizes to promote third-party invest-
ment in DGs which can lead to economical, technical as well as favorable locations
[2]. From last decade researchers are trying to optimally place the DG of suitable
size to get minimal losses. Thus, the sizing and siting of DGs along with reactive
power management is an optimization problem that needs to be solved for proper
planning of the distribution systems. Many authors have applied different heuris-
tics techniques to solve the minimization problem of power loss and reactive power
management.

The interconnected system’s important components are generation, transmission
and distribution system. In distribution network due to higher R/X ratio it has higher
loss, also because of its complex network power loss, system reliability, voltage
profile drop etc. are somebasic issues [3]. For proper utilization of distribution system
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and its expansion optimally planning of distribution system is essential. Shunt capac-
itor are equipped to inject reactive power in radial network to address the issues of
power saving, cost reduction, power quality, increased reliability [4]. In recent years,
Distributed Generation (DG) positioning is becoming trending area of research.With
addition of DG it offers advantages i.e. good voltage profile, increased stability and
lower power loss [5]. Using capacitor and DG at same time can reduce power losses
and increase voltage level, if these are positioned correctly with optimum size [6].

Several optimization techniques have been introduced for dealingwith problem of
correctly placing the DGs and capacitor in RDS. Genetic Algorithms (GA), Particle
Swarm Optimization (PSO), and multi objective algorithms are the most widely
used for solving the optimization problem [7]. In recent years, researchers have
proposed different meta-heuristic-based intelligent techniques to address the DG
and shunt capacitor placement problems. TheArtificial BeeColony (ABC) algorithm
has been used in [8] for optimizing installation of DGs in distribution system. GA
is used in [9] to identify the optimum position and sizing under load uncertainty for
fixed and switched capacitors. In [10] simultaneous placement is done by GA for
minimizing the total cost of system considering several practical constraints. Plant
Growth Simulation Algorithm (PGSA) is used in [11] for reducing power loss and
improvement in voltage profile using capacitor only. For minimizing power losses
using Adaptive Quantum Inspired Evolutionary Algorithm (AQIEA) is illustrated
in [12]. The drawback of previous algorithms is that these algorithms have specific
algorithm based parameters which should be tuned properly because it results in slow
convergence rate and non optimal solution and it should be mentioned at the initial
stage of optimization algorithms.

In 2016 a new population-based JAYA algorithm is introduced, is used in this
study [17]. For obtaining global solution or near to global solution JAYA algorithm
does not require tuning of any parameter which is an advantage for it. The simple
working of JAYA can be understood as every member in population tries to improve
themselves by following the best member and trying to escape worst member and
JAYA is easy to implement also [18]. So, in this work active power loss is minimized
using JAYA algorithm as it does not require tuning of parameter.

In this work, location of DGs and capacitors are obtained using two different
techniques, the first one by using JAYA itself another one by using voltage stability
index (VSI) whereas the sizes are determined using JAYA algorithm for both cases.
The load growth factor, essential for the planning issues and impact on the losses is
considered. The results have been obtained on standard test system 34-bus RDS.

The paper summary after this section is as follows: Sect. 2 outlines the problem
formulation in which objective function, operating constraints, load flow and other
important terms are discussed. In Sect. 3 JAYA algorithm and in Sect. 4 results and
discussion are presented and in Sect. 5 conclusion is mentioned.
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2 Problem Formulation

2.1 Objective Function

Objective is to minimize active power loss by addition of DG and capacitor in
distribution system. Mathematical representation is given in (1):

Ploss =
n∑

i=1

Ri |Ii |2 (1)

2.2 Operating Constraints

Bus voltage constraint

Each bus’s voltage must be varied in its acceptable limits between
minimum and maximum.

Vmin ≤ Vi ≤ Vmax (2)

For i = 1, 2…n, for total n nodes.

Capacitor size constraint

Qmin ≤ QCap, j ≤ Qmax (3)

where QCap, j is reactive power compensation at j.
Capacitor size should be in the minimum and maximum allowed range.

Total Reactive Power constraint

The sum of injected reactive power by capacitor should be less than total load of
reactive power.

QT
Cap ≤ QT

load (4)

where QT
Cap is total capacitor reactive power, QT

load is total sum of load’s reactive
power

DG capacity limit

The total active power generation of integrated DG unit must be lower than the total
active power load of network.
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Ptotal
DG ≤ Ptotal

Load (5)

2.3 Load Flow

For analysis of distribution network traditional methods are not providing good
results but for analysis of transmission network traditional methods of load flow i.e.
Newton Raphson and its modifications, FDLF methods are good. BIBC load flow
and Backward forward sweep load flow (BFSLF) are used generally for distribution
network. In this paper direct load flow (DLF) using BIBC is utilized. In comparison
to traditional methods, this technique is more robust and efficient [13].

2.4 Voltage Stability Index

A quadratic equation is developed for bus voltage using active and reactive power
demand. Equating roots for real value a voltage stability index (VSI) is developed
for that specific node [14]. VSI is mathematically represented in (6);

V SI = 4X

V i

(
P2
e f f,i + Q2

e f f,i

Q2
e f f,i

)
≤ 1 (6)

Pef f,i is effective real power demand for node i, Qef f,i is effective reactive power
demand for ith node.

VSI value approaches to zero then system is more stable and if VSI value is high,
the system is likely to be instable. For placement of capacitor/DG bus having high
VSI value is selected.

2.5 Voltage Stability Margin

When the system cannot provide the desired power to loads then condition of voltage
instability arises. The nodes that have probability to collapse can be identified using
voltage stability margin (VSM). For each bus VSM is evaluated using (7), weak node
is treated which have minimum VSM [15].

V SM(rri ) =V (ssi )
4 − 4(Pi × xi − Qi × ri )

2

− 4V (ssi )
2(Pi × ri + Qi × xi ) (7)

where rri is receiving end and ssi is sending end, for bus i.
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2.6 Various Costs

Energy loss cost [16]
It is the annual energy loss cost is represented in (8)

CEL = T PL ∗ Ec ∗ T (8)

where Ec is energy rate and T is duration in hour having value 0.06 $/kWh and
8760 h respectively.

Capacitor cost for Reactive Power [17]

Ccap = Kci + Kc ∗ QTotal
Cap (9)

where Kci = 1000 $ is installation cost in $ for capacitor, Kc = 3 $/kVAr: is purchase
cost for capacitor

Cost of active power of DG [18]

Cost PDGt = a.P2
DGt + b.PDGt + c $/MWh (10)

where the coefficient of cost is taken as, a = 0, b = 20, c = 0.25.

2.7 Model of Load Growth [19]

The load growth modelling is important for distribution system planning and its
expansion in future. In this work, load growth’s effect on losses, its voltage profile,
and system’s requirement of reactive power as well as the VSI has also been studied.
Mathematically LG is modelled as;

loadi = load(1 + gr)pp (11)

where gr is growth rate while pp is span of planning period.
Statistical data is typically used to select the rate of load growth for distribution

system. In this work, the load growth rate is estimated to be 8.48% over a five-year
planning period. The value is taken from [22].

3 JAYA Algorithm

Venkata Rao et al. firstly presents the JAYA optimization algorithm [20]. The thing
which stands apart JAYA is that it does not require any parameter tuning apart from



16 A. K. Dev and A. Kumar

common controlling such as the population size and iterations. JAYA solves problems
by moving through the best solution and escaping the worst solution. JAYA derives
its name from a Sanskrit word that means “victory”. By initialising population size,
design variable and iteration the algorithm is set to begin. In this algorithm generally
termination criteria is number of iterations.

Steps involved in solution of optimal allocation of DG and capacitor problem
using JAYA algorithm

Step 1: Set the population size, design variables, termination criteria i.e.maximum
iteration and lower and upper bounds.
Step 2: Call the DLF.
Step 3: Initial population is generated and objective function is evaluated.

JAYA Algorithm starts.
Step 4: Value of objective function is sorted as best and worst solution and their
positions also.
Step 5: Modify the solution using

Z ′
j,k,i =Z j,k,i + rand1, j,i × (

Z j,best,i − ∣∣Z j,k,i

∣∣)

− rand2, j,i × (
Z j,worst,i − ∣∣Z j,k,i

∣∣)

Step 6: Run the DLF, accept the modified solution if it’s better than old one
otherwise retains the old solution.
Step 7: If stopping criteria is satisfied then give the output results otherwise repeat
step 4 to step 6.

4 Results and Discussion

In this work, results are determined for standard 34-bus RDS for minimizing the real
power loss. Voltage profile, voltage stability margin (VSM), total real power loss
(TPL), total reactive power loss (TQL), energy loss cost and feeder capacity reduction
are calculated. The results are obtained by two methods, (i) using JAYA algorithm
both location and size is determined. (ii) hybrid method that comprises using VSI
as a parameter for location, and sizes are determined by JAYA. Furthermore, two
conditions are considered, first is the base case without considering the load growth,
second one by considering the load growth model. In this work, unity power factor
DG i.e. type 1 DG have been considered. Furthermore, various capacitor and DG
combinations are tested, and the best combination is used.
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4.1 IEEE 34-Bus Test System

Line and load data for 34 bus system is taken from [4]. The result is calculated for
standard 34 bus RDS. In this it has been assumed that base MVA is 100 and base kV
is 11 [4]. The results for 34-bus system is summarized in Table 1.

Using JAYA method without Load Growth

With addition of DG and capacitor of optimal sizes of 2985 kW, 1090 kVAr and
1185 kVAr are positioned at optimal buses 21.8 and 23 respectively, the percentage
reduction in TPL is 81.94% and saving in energy loss cost is 95506.77 $/year. Voltage
profile and loss curve is plotted in Fig. 1.

Using VSI method without Load Growth

By adding DG and capacitor of optimal size of 2301 kW, 799 kVAr and 1598 kVAr
are positioned at optimal buses 24.9 and 19 respectively, the percentage reduction in
TPL is 76.56%and saving in cost of energy loss is 89231.11 $/year. The improvement
in VSM is shown in Fig. 2.

Using JAYA Method with Load Growth

By using LG model losses increased and severe drop in voltage profile. By addition
of DG and capacitor of optimal size of 4477 kW, 1481 kVAr and 1867 kVAr at
optimal buses 21.9 and 23 respectively, the percentage reduction in TPL is 82.63%
and saving in cost of energy loss is 228935.60 $/year. The results considering LG is
presented in Table 1.

Using VSI Method with Load Growth

With addition of DG and capacitor of optimal size of 3490 kW, 1201 and 2411 kVAr
at optimal buses 24.9 and 19 respectively, the percentage reduction in TPL is 77.39%
and saving in cost of energy loss is 214439.54 $/year. The voltage profile and VSM
is plotted in Fig. 3 and convergence curve is shown in Fig. 4.

5 Conclusions

In this paperminimization of power loss and energy loss cost is obtainedwith optimal
DG and Capacitor placement using JAYA algorithm and in the secondmethod hybrid
technique is used with stability index as a sensitivity approach for optimal location
and size is obtained with JAYA. The results have been tested on standard test system
IEEE-34 bus RDS. So, JAYA produces better results i.e., reduction of power loss,
improvement of voltage profile and enhancement of stability margin with capacitor
and DG placement in comparison to hybrid technique. The cost of capacitor, cost of
DG, feeder released capacity is also evaluated.
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Fig. 1 Voltage profile and loss curve for 34 bus without LG

Fig. 2 VSM and VSI for 34 bus without LG

Fig. 3 Voltage profile and VSM for 34 bus with LG

Fig. 4 Convergence curve for 34 bus
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Design and Analysis of Grid-Connected
10 kW Solar Photovoltaic (SPV) Power
Plant

Divanshi Gupta, Sudhir Kumar Pathak, Sanjeev Anand, V. V. Tyagi,
Amit Verma, and Sharan Gupta

1 Introduction

For the development of any country, requires increased industrial production and
this in turn requires increased energy consumption [1]. India is among the countries
with fastest growing economies in the world and in order to maintain economic
growth, India needs to ensure security of energy. Energy sector in India is facing
unpredictable challenges. The main reasons for these challenges are the dependence
upon imported fuel and its rapidly growing prices [2]. The consumption of various
conventional energy resources like fossil fuels has lead to an increase in the amount
of environmental pollutants [3]. Most of our daily range of energy requirements
can be met by the various renewable energy sources. Renewable energy is most
important substitute of energy produced by combusting fuels to meet the increased
rate of consumption of energy without harming the environment. Sun is the only
form of renewable energy that is clean and abundantly available [4]. India is the
tropical country and lies within the latitude of 8 °N to 37 °N. It has approximately
300 clear, sunny days annually which offers good potential for application of solar
energy [5]. One of the most promoting ways of utilizing solar energy is through the
application of photovoltaic technology [6]. Photovoltaic technology uses sunlight
to generate electricity without emitting pollutants [7]. Solar photovoltaic modules
are built up of many photovoltaic cells joined in series. When appreciable numbers
of SPV modules are connected together, the resultant installation is known as solar
photovoltaic power plant [2]. The various advantages of SPV system are reliability,
good performance, noiseless and clean energy production, low maintenance and a
long-life span of around 25 years. The performance of photovoltaic power plant can
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be analyzed through parameters like capacity utilization factor (CUF), performance
ratio (PR), specific production etc. [8]. To efficiently capture the sunlight and change
it into electrical energy is the main problem of solar photovoltaic system.When SPV
module is made to operate in actual environment, its output characteristic differs as
compared to that at STC [9].

There are many factors that have great impact on performance of SPV plant
such as geographical factors, environmental factors and type of technology used.
When orientation of module is made to vary continuously with respect to change
in position of sun is known as sun tracking or solar tracking. This tracking system
brings prominent increase in performance of plant as compared to single axis tracking
that brings about small gain in output over fixed tilt system. Installation of tracking
system can be complex and expensive. Tracking system also requires maintenance.
Thus, fixed systems are preferred for large scale photovoltaic plant [10]. In most of
the cases, it is optimum to set the tilt angle approximately equal to the site latitude
to get the maximum output [11]. Technical design and environmental analysis for
100 kW photovoltaic plant situated at north-western Iran was given by Ghadim et al.
Different factors like tilt angle, azimuth angle and technical specifications of inverter
have been taken into consideration [12]. Performance of solar photovoltaic plant is
also dependent on ambient conditions i.e. solar radiation, temperature and humidity.
Chattopadhyay and Rajavel performed a comparative study on 10 kW photovoltaic
plant in three regions i.e. coastal, urban and rural area with almost similar radiation.
This study was performed in India using PVsyst software. It was observed that
Solar panels perform well in rural areas because of low humidity and temperature
conditions as compared to urban and coastal areas [13]. Sohaib andHakan designed at
1MWsolar photovoltaic power plant for Sudan using PVsyst software. The designed
photovoltaic power would reduce carbon emissions up to 18 million tons per year.
Many losses like array loss, efficiency loss due to temperature, ohmic wiring loss
were also taken into consideration [14]. However, there is no comprehensive study
accounting design of cables for right sizing of solar photovoltaic power plant. Cables
act as medium to transfer electrical energy from one module to another module or
modules to inverter. Selection and sizing of cable is very important aspect for the
design of solar photovoltaic plant [15]. Two main types of conductors which can be
used in solar photovoltaic system i.e. copper (Cu) and aluminium (Al). Aluminium
has lower conductivity as compared to copper. Therefore, current carrying capacity
of copper is greater than aluminium at same cross-sectional area and length. If solar
cables are too small sized, they may lead to overheating and loss of energy. On other
hand, if solar cables are too large sized, this leads towastage ofmoney.Determination
of correct size of cable is the essential aspect of designing solar photovoltaic plant.
The aim of this study is to discusses the sizing of PV array and effect of different
parameters like tilt angle, cable sizing and type of cable material on solar PV system
of 10 kWsituated at ShriMataVaishnoDeviUniversity, Jammu. Firstly, geographical
specification of the selected region has been specified.Next, photovoltaic power plant
design parameters are discussed thoroughly. After that, simulation results have been
analyzed and compared with each other. Finally, specified conclusions and future
recommendations for the design and development of solar PV plant are discussed.
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Table 1 GHI, GDI and
average temp data from
meteo file Meteonorm 7.2

Month Global horizontal
(kWh/m2)

Diffused
horizontal
(kWh/m2)

Temp. (°C)

January 89.2 33.6 9.8

February 89.8 43.1 13.5

March 142.9 61.0 19.0

April 164.2 74.0 24.1

May 201.8 81.5 29.8

June 195.7 93.5 30.8

July 174.6 91.2 30.0

August 154.7 85.0 28.9

September 165.4 58.1 26.8

October 148.1 43.3 22.7

November 111.0 30.5 16.0

December 85.5 35.3 11.7

2 Site Details

Geographical site of Shri Mata Vaishno Devi (Katra), J&K for 10 MW solar power
plant, having the latitude of 32.94 °N, the longitude of 74.95 °E and altitude of 676m
is considered to study different design aspects for the design optimization. It receives
ample amount of solar radiation and do not suffer extreme of temperature. Amount
of solar radiation varies monthly for a particular site and hence ambient temperature
also varies. The Table 1 shows different amount of solar insolation received monthly
and monthly temperature for site of SMVDU.

3 Performance Indices

The solar PV plant characteristic parameters comprises of energy efficiency, perfor-
mance ratio (PR), PV system yield (Yf) and capacity utilization factor. Performances
of solar photovoltaic plants varywith regard to different locations and configurations.
Performance of different SPVplants can be easily compared by assessing their perfor-
mance indices. It tells about the performance of a solar photovoltaic power plant and
helps us to make comparative study among different parameters of design for a solar
photovoltaic plant.
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3.1 PV System Yield (Yf)

Photovoltaic system yield (yf) is the result obtained by dividing total output of energy
(Eo) to nameplate DC power (Pdc) of SPV array installed. In other words, it is the
time that solar photovoltaic plant takes to operate at name plate power to generate
Eo. The unit of PV system yield is hours.

Yf = Eo

Pdc
(1)

3.2 Reference Yield (Yr)

Reference Yield (Yr) defined as the result determined by dividing total in plane solar
irradiance (HT) and reference irradiance (G).

Yr = HT

G
(2)

If the value of G is equal to 1 kW/m2, then value of Yr will represent the number
of peak sunshine hours. The units of reference yield is hours per day.

3.3 Performance Ratio (PR)

Performance ratio (PR) ismost important parameter in order to evaluate the efficiency
of solar Photovoltaic plant. It is defined as the result obtained by dividing energy
produced by solar photovoltaic power plant in terms of kWh during the time of
evaluation and estimated nominal SPVplant output in terms of kWh for that particular
time of evaluation.

Value of performance ratio helps us to find out whether the PV system is oper-
ating as estimated or not. The smaller value of performance ratio (PR) indicates the
presence of some problem in SPV plant.

PR = Energy produced by Plant for partiular time of evaluation (kWh)

Determined nominal plant output for paticular time of evaluation (kWh)
(3)
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3.4 Capacity Utilization Factor

Capacity Utilization Factor is the way for representing energy that is delivered by
the generation system. It is known as the result obtained by dividing actual AC
energy output (Eac) by the amount of energy that would be produced by PV system
if operated at nominal power (Pnom). Unity value of CUF denotes that the system is
capable of delivering full rated power continuously.

CUF = Eac

Pnom ∗ 8760
(4)

3.5 Energy Loss

Energy generated by solar PV plant is always less when compared to rated energy.
This is due to many losses occurs during conversion of energy delivered by sun into
electricity through PV modules. There are many losses that add up to the system
during its operation such as losses due to elevation in cell temperature, optical
reflective losses, Losses due to effect of shadow, losses that occur as a result of
non-continuous operation of inverter or due to its failure etc.

4 Methodology

4.1 Simulation Software

Toefficiently employ the solar resource, it is required to simulate and size SPVsystem
parameters properly. The size of SPV system required and quantum of energy yield
can be determined accurately by using simulation software. There are number of
softwares like HOMER, RETScreen, Helioscope, PVsyst etc. are available for the
design of SPV power plant (Fig. 1).

PVSyst is perceived as the most extensively used software for designing and
simulation of solar photo-voltaic power plant. Numbers of simulation software have
been developed. One of the user friendly and convenient tools is PVSYST for design
of solar photovoltaic power plant. PVSyst is simulation and solar photovoltaic design
software. PVSyst is one of the modeling tools, used to estimate the energy yield of
a potential project site. It is used for data analysis, sizing and study of absolute
SPV power plant. It is used for designing various sorts of solar application systems
such as stand-alone, grid connected, DC pumping systems and DC grid system. It
includes meteorological data of numerous sites all around. Data of sites which is not
covered by software can also be manually inserted in PVsyst. It provides results in
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Fig. 1 Methodology for PVSyst. software

the form of report that includes graphs and tables in it. Sharma et al., [16] analyzed
the performance of 190 kW connected SPV plant in India using PVsyst and need
for optimizing tilt angle for solar modules was also emphasized to maximize the
energy output. Okello et al. simulated and estimated performance of grid-tied SPV
system. Actual measured parameters and parameters analyzed through PVsyst were
compared by him [17]. Ashwini et al. analyzed the architecture of photovoltaic plant
and scrutinized its design using PVsyst [18].

4.2 Description of Solar PV Power Plant

Total of 76 Si-poly modules are used having 19 modules in series and 4 strings in
parallel. Each unit of module has 160 W of nominal power rating. Total of 4 units
of solar inverters are used, each having nominal power rating of 2.5 kW. No 3D
scenes are defined and effect of shading is not considered in the project. The detailed
specification of PV plant and inverter are presented in Tables 2 and 3.

Table 2 PV array
characteristics

Type of module Si-poly

Manufacturer of module Trina solar

Modules in series 19

Modules in parallel 04

Module area 125 m2

Cell area 74 m2
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Table 3 Inverter
specifications

Model Solar inverter Solivia

Manufacturer Delta energy

Unit nominal power 2.50 kWac

No. of inverters 4

Total power 10 Wac

4.3 Procedure

For performance analysis of 10 kWp grid-connect solar photovoltaic plant situated
SMVDU, katra, simulationswere performed using software PVsyst. Different design
parameters like tilt angle, azimuth angle, cable cross-sectional area and type of
conductor material used in DC cables are analysed using PVSyst software. Perfor-
mance indices such as performance ratio and annual system production are used to
study the effect of variation of different design parameters on the system perfor-
mance. Simulations were done and results were given in the form of reports by
PVsyst (Fig. 2).

Design Parameters: Different design parameters like tilt angle, cable cross-sectional
area, and type of conductor material used in DC cables are considered.

Tilt Angle and Orientation-Tilt angle is represented as the angle formed between
surface of inclined plane and the horizontal. Tilt analysis for the 10 kW solar power
plant in SMVDU, Katra is done in order to select an optimum tilt for the project.
Tilting of SPV plant plays a crucial role for having maximum generation and a
good performance ratio of solar power plant. A system is designed in the PVsyst by
selecting geographical location of SMVDU,Katra. In orientation section of software,
there is the option of selecting tilt, azimuth etc.

Cable sizing and type of cable conductor-Using PVsyst software, effect of different
cable sizing on performance of 10 kW solar photovoltaic plant at SMVDU is studied.

Fig. 2 Layout of grid connected photovoltaic system
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Different cross-sectional areas i.e. 2.5 mm2, 4mm2 and 6mm2 were selected for both
CuandAl conductors.Different cross-sectional areas of cables lead to different global
array resistance and thus ohmic wiring loss changes accordingly. In this simulation
software, type of conductor materials and cross- sectional area of conductor wire is
chosen easily under the category of detailed losses.

Global Array Resistance and Ohmic Wiring Loss-The ohmic wiring resistance (Rw)
results in loss of powerwhich is produced from themodules and reaches the terminals
of array. The parameter that is responsible for these losses is Rw which is defined as
the global array resistance. The value of Rw is dependent on structure of array. Array
resistance (Rw) depends on three factors:

• Resistivity of material used i.e., Al or Cu
• Length of cable wire
• Cross sectional area of cable.

Ohmic resistance can be calculated according to the formula

Rw = ρl

a
(5)

where, ρ = resistivity of material, l = length of cable, a = cross sectional area of
cable.

Global array resistance is calculated by PVsyst and is shown in figure. Ohmic
resistance induces losses in the photovoltaic system known as ohmic loss. Ohmic
wiring loss can be calculated by using formula given below:

Ploss = Rw I
2
arr (6)

where, Iarr = current flowing through the array of modules
The ohmic wiring loss is usually about 60% of the total loss fraction of PV system

at STC. From Eq. (5) it is understood that global array resistance and thus ohmic
wiring loss are different at different cross-sectional areas, length of cables and cable
material used.

5 Results and Discussion

This section focuses on the results of the simulations carried to study the impact
of various design parameters on the performance of 10 kW solar photovoltaic plant
situated at SMVDU, Katra and hence, obtain an optimal design of SPV plant.
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5.1 Effect of Different Types of Conductor Material Used
in Cables on Performance of 10 kW SPV Plant

Two types of conductor material i.e., copper (Cu) and aluminium (Al) are considered
for the analysis using PVsyst. Copper and aluminium produce different values of
global array resistance at particular value of tilt angle and cross-sectional area. Tilt
angle is taken equal to 30° and cross-sectional area of 2.5 mm2 is considered.

It was observed that when types of conductor material changes, global array
resistance of SPV plant also changes. Thus, causes change in percent of ohmic
wiring loss. Figures 3 and 4 represents the variation in array resistance and ohmic
wiring loss with respect to different conductor materials graphically. From the graph
above, it is observed that plant using aluminium as conductor material has more
array resistance than plant using copper as conductor material. Plant with copper has
array resistance equal to 21 mohm and plant using aluminium conductor material
has array resistance equal to 35 mohm. This is due to the fact that copper has more
conductivity than aluminium.

Similarly, ohmic wiring loss also changes with regard to change in type of
conductor material. Value of ohmic wiring loss for 10 kw plant considering copper as
cable conductor material is 0.39% and for aluminium conductor material is 0.49%.
These changes in value of losses causes change in annual system production and thus
causing performance ratio of plant to change. Figures 5 and 6 illustrates the changes
in annual system generation and performance ratio with respect to change in type of
conductor material graphically.

Fig. 3 Variation in global array resistance with respect to change in conductor material
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Fig. 4 Variation in ohmic wiring loss with respect to change in conductor material

Fig. 5 Variation in system energy production with respect to change in conductor material

5.2 Effect of Variation in Cross-Sectional Area of Cable
on Performance of 10 kW SPV Plant

Three cable sizes that are 2.5 mm2, 4 mm2 and 6 mm2 are considered in this analysis.
Simulations were performed considering different cable sizes for both aluminium
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Fig. 6 Variation in performance ratio with respect to change in conductor material

and copper as conductor material. For 10 kW SPV plant, considering tilt of 30°
and azimuth of 0° analysis was made by varying the cross- sectional area of cable.
Figure 7a represents the variation in array resistance with respect to variation in
cross-sectional area of cable graphically for both copper and aluminium conductor
materials. Maximum array resistance i.e. 35 mohm is obtained when plant uses cable
of aluminium material and cross-section of 2.5 mm2. Minimum array resistance i.e.
8.6 mohm is obtained when plant uses cable of copper material and cross-section of
6 mm2.

Similarly, variation in ohmic wire losses is studied for different cross-sectional
areas for both aluminium and copper conductor material. The Fig. 7b graphically
represents the variation in ohmic wiring loss for 10 kW SPV plant. Maximum ohmic
wiring loss i.e. 0.49% is obtained when plant uses cable of aluminium material and
cross-section of 2.5 mm2. Minimum ohmic wiring loss i.e. 0.31% is obtained when
plant uses cable of copper material and cross-section of 6 mm2.

The variation in cross-sectional area of cable wire also causes variation in perfor-
mance of a SPV plant. The variation in performance of SPV plant can be analyzed
by Fig. 8a, b.
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Fig.7 a Variation in array resistance material with variation in size of cable for both type of
conductor material b Variation in ohmic wiring loss with variation in size of cable for both type of
conductor material
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Fig. 8 a Variation in system energy production with change in cross-section area of cable for both
copper and aluminium b performance ratio with change in cross-section area of cable for both
copper and aluminium
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Fig. 9 Impact of tilt angle variation on IAM losses

5.3 Effect of Variation in Tilt Angle on Performance
of 10 kW SPV Plant

Tilt analysis for the 10 kW solar PV plant is done in order to select an optimum tilt
for the plant. For this power plant, three tilts are considered for tilt analysis. The tilts
selected are 25°, 30° and 35°. Different values of tilt were chosen around the site
latitude i.e. 32.94° N. From results obtained in PVsyst, it is observed that as angle of
tilt changes, Iam (Incidence Angle Modifier) losses or array incidence loss changes.
These losses increase when value tilt angle moves far from site latitude. Figure 9
graphically represents the variation in array incidence loss with regard to change in
tilt angle.

Figure 10a, b represents the effect of variation in tilt angle on output and
performance of SPV plant respectively. From the graph above, it observed that
system performs best at tilt angle of 35° and using copper as cable conductor with
cross-sectional area of 6 mm2.

6 Conclusion

Performance of solar PVplant depends upon different factors and their effect has been
analyzed. The effect of variation in different parameters of design on performance
of SPV plant is discussed in detail in this paper and following conclusions are made:
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Fig. 10 a Effect of variation in tilt angle on output of SPV plant b effect of variation in tilt angle
on performance ratio
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Two types of conductors that are aluminium and copper were selected for the
design of 10 kW SPV plant. Due to lower conductivity of aluminium than copper,
aluminium produces high array resistance and ohmic wiring loss in SPV plant which
results in poor performance of plant. Therefore, the plant which uses copper as
conductormaterial for cable has better performance than plant which uses aluminium
as conductor material for cable. Three cross-sectional areas of cables that are 2 mm2,
4 mm2 and 6 mm2 were selected using PVsyst and it was found that higher the cross-
sectional area lower is the ohmic wire loss. Therefore, higher is the performance
of SPV plant. Effect of different tilt angles on the performance of SPV plant was
studied. It was concluded that tilt angle near site latitude generates maximum output.
Output decreases as move far from optimum value of tilt angle. For 10 kW power
plant at SMVDU with site latitude 32.94°, three angles were taken for study that is
25°, 30° and 35°. Maximum output yielded by plant was at 35° tilt.

From the results, it is clearly observed that maximum energy produced by system
i.e. 19,324 kWh/year is at tilt angle of 35°, when cross-sectional area of cable used in
plant is 6 mm2 and copper is used as conductor material in cables. It is also observed
that minimum energy is produced when aluminium is used conductor material for
cable with cross-sectional area is 2.5 mm2 and system is at tilt angle of 25°. Also,
it observed that system performs best at tilt angle of 35° and using copper as cable
conductor with cross-sectional area of 6 mm2. Therefore, maximum performance
ratio of 10 kW SPV plant is 81.35%. Minimum performance ratio i.e., 81.11% is
observed at tilt of 25° and by using aluminiumas cable conductorwith cross-sectional
area of 2.5 mm2.

7 Future Recommendations

Moreover, elaborated study can be done to analyze photovoltaic system using various
technologies such as mono-crystalline, amorphous, etc. that can help to identify
suitable solar PV technology for the design of SPV plant. Shading analysis could
also be done to study the design aspect of SPV plant in detail. Lastly, economic
analysis could also be done to achieve such a design of SPV plant that is both
technically and economically viable.
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Fault Classification of Dry Type
Transformer Using Pattern Recognition
Neural Network

Pankaj Kumar and Piush Verma

1 Introduction

Dry type transformer has benefits of fireproof, convenient maintenance, burning
isolation and dustproofing. The temperature has a significant impact on the dry trans-
former’s failure. The winding insulations breaks down whenever there is surpassing
of insulation bearing temperature, which is the main cause of the transformer failure.
Therefore, real time monitoring will help in maintaining the windings temperature
within the permissible limits, which improves its reliability and working service life.

The process of manufacturing cast resin transformer involves complex pouring
process of the winding insulation which can be avoided by designing and manu-
facturing of the transformer using silicone insulated rubber [1]. The designers of
transformer generally use some design curve patterns or thermal analysis method to
predict the temperature rise in the windings of the transformer.

To understand the thermal stress effectively different temperature locations and
distribution need to be analyzed in different operating conditions. The temperature
distribution of windings is not uniformly distributed, the temperature at the lower
surface is cooler than the upper [2]. The inside part average temperature rise is higher
than the outside part and its good for depicting the hot spot of the temperature rise
of LV winding. The internal temperature variable is the one of the most important
design parameters of the dry transformer which directly affects its working life [3].

To identify the effect of temperature in the DTT previously partial discharge
localization with multiple sensors technique was popular [4]. Then mathematically
modelled were used to analyze the temperature distribution in DTT proposed by
Rahimpour [5]. Eslamian [6] presented a thermal model of the non-uniform power
losses temperature distribution using foil windings for ventilated DTT.
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For the analysis of the temperature of the LV and HV windings using simulation
software’s Finite Element Method (FEM) [7, 8], SOLIDWORKS using COSMOL
[9], LabVIEW [10] were used. Aksu [11] presented new optimization methods Inva-
sive Weed Optimization (IWO) and the Firefly Algorithm (FA) for the reduction in
weight and losses.Wang [12] presented themodel to analyze the hotspot temperature
rise and insulation life loss of the transformer. Ebenezer [13] determine the winding
temperature and thermal stress points using soft computing techniques.

For conditioning monitoring several literatures have investigated their results and
some are discussed further. Srinivasan [14] presented low-cost digital measurement
system for measuring temperature rise in 3 phase transformers. Khandait [15] used
IoT with embedded system to remotely control management of the temperature of
dry transformer. Finocchio [16] applied the neural network to the data collected for
the 300 dry transformers of the same manufacturer to identify the which internal
variables directly affects the lifetime of the dry transformer. Kumar [17] reviewed
condition monitoring of oil filled distribution transformers and dry transformers. IoT
has gained the lot of attention of the researchers to analyze the real time data more
of oil filled transformers then dry type transformers [18–21]. Due to oil transformers
extensive usage in the distribution its research is gaining more attraction. Different
sensor in combination of microcontrollers like NodeMCU, Arduino, Arduino nano
etc. has been used to gather real time data [22]. ANN used for the fault diagnosis
of the power transformer using MATLAB software and health index described in
[23, 24].

The implementation of a Feed-forward Back Propagation Neural Network
(FFBPNN) for identifying and diagnosing various DTT failures scenarios is
explained in this research article. For classification of DTT faults, Pattern-
Recognition Neural Network (PatternNet), which is a form of FFBPNN is used
to recognize patterns. The Pattern-Recognition Neural Network (PatternNet), a form
of ANN, is designed to detect input data that corresponds to distinct classes. In
FFBPNN supervised learning method is used to train, where the dataset consists of
binary values of 1’s symbolizes the inherit class and 0’s for other class. The different
tests time domain parameters of the DTT were extracted and used as input for the
neural network.

The two training functions ‘trainlm’ and ‘trainscg’ of ANNwere used to train the
network with different layers of neurons. Their results, comparison and performance
for each case is presented.

2 Artificial Neural Network (ANN)

ANN is clone of the human brain which consists of group of nodes called neurons.
In ANN there are 3 layers- Input layer, Multiple layers (Hidden layers) and Output
layer. The fundamental construction of an ANN is shown in Fig. 1, which comprises
of neurons, linking weights, and biases. The three layers are connected through
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Fig. 1 Basic structure of
artificial neural network

connection weights shown by arrows, the circular nodes represent the Artificial
neurons.

Themostwidely usedANN ismulti-layered feed forward back propagation neural
network (FFBPNN) which uses the backpropagation technique for training. With
backpropagation (BP), the ANN performance comes out to be best after determining
the appropriate number of hidden layer of neurons. Basically, if the network is small
then it is not able to learn and if the network is large then it will have poor generaliza-
tion.With a large training dataset, the ANN’s performance increases but this required
more training time. As a result, a variety of BP training algorithms are utilized to
increase performance with less training time.

While training the BP algorithm, it adjusts the weights to the steepest descent
(i.e., adverse gradient). This path does not guarantee the quickest convergence due to
the degradation of the performance function very fast. For faster convergence, conju-
gate gradient (CG) based training method is used. When using CG based training
methods, the search is done in conjugate directions, which usually results in a faster
convergence than the steepest descent path. In CG algorithm, the step size is changed
for each iteration. In CG direction search is performed to find the step size for which
the performance function is least for a specific search path.

Trainscg is a backpropagation training technique that uses the Scaled Conju-
gate Gradient (SCG) algorithm to update network weights and biases. The trainlm
method is the fastest for training networks of medium size network. Trainlm is the
most generally suggested and utilized training technique for achieving greater clas-
sification accuracies, but using more memory than other training methods. It is based
on the Levenberg–Marquardt (LM) backpropagation algorithm, which is one of the
most efficient backpropagation algorithms for neural network training.
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3 Experimental Setup and Data Collection

The experimental setup consists of a 1-F 1 KVA, 50 Hz 220/110 step down dry
transformer connected with Single Phase Variable Transformer (1-F Variac). The
DTT primary terminal connected to the 1-F Varic and it is connected to the single-
phase ac supply of 240 V. In the Fig. 2 shows the experimental setup of the online
monitoring of DTT, data acquisition using sensors, acquiring data on IoT cloud plat-
form. To acquire the real-time values of temperature measurement two temperature
sensors (MAX6675) one for core and other for winding temperature measurement,
for current measurement current sensor (ACS712), for voltage measurement voltage
sensor (ZMPT101B) is used. All the sensors were interfaced with Arduino Uno
board through jumper wires and board connected to the personal computer via USB
interface.

ESP8266 Wi-Fi module is used to send the data obtained by Arduino’s flash
memory to the IoT cloud platform ThingSpeak. The personal computer used the
serial monitor software of the Arduino IDE. ThingSpeak platform shows the real
time data of the different parameters of DTT. Tables 1 and 2 provide the technical
specs of the DTT and other hardware materials employed.

Fig. 2 Lab setup of dry type
transformer fault detection

Table 1 Specifications of dry
type transformer

Parameters Value

Transformer type 1-phase, dry type transformer

Power rating 1 KVA

Frequency 50 Hz ± 3%

Current 4.20 A

Cooling type Dry type/air cooled

Voltage ratio 220/110 V

Winding material Copper
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Table 2 Hardware
components specifications

Materials Specifications

Current sensor ACS712 current sensor

Supply voltage—5 V

Sensitivity—100 mV/A

Range—20 A AC/DC

Arduino Uno Microcontroller: ATmega328P

Digital I/O pins: 14 (with 6 PWM
output)

Operating voltage: 5 V

Analog input pins: 6

Voltage (input)—7 to 12 V

Memory: 32 KB flash memory, 2 KB
SRAM, 1 KB EEPROM

Personal computer Processor—Intel(R) Core (TM) i3-7th
Gen

Processor speed—2.40 GHz

RAM—8 GB

Hard disk—512 SSD

Windows—windows 7 home

Voltage sensor ZMPT101B digital voltage sensor

Range—0–1000 V

Sampling resistor-100 �

Rated input/output current—2 mA

Turn ratio-1000:1000

Operating temp—40 °C ~+ 60 °C

Isolation voltage—4000 V

Temperature sensor Max6675-Digital K-type thermocouple

Temperature measuring
range—0–1024 °C

Operating temperature
range—20–85 °C

Resolution—0.25 °C

Supply voltage—3–5 V

Online data was collected through sensors on the IoT cloud platform software
ThingSpeak for 60 runs for each test was acquired. The TX and RX pins of the
Arduino used for transferring the data from the board to personal computer via USB
serial port having 9600 baud rate.
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4 Proposed Work

In this proposed work real time data of the DTT parameters of fault conditions were
recorded from the sensors are collected over the IoT cloud platform Thingspeak as
shown in Fig. 3a-c.

In Fig. 4. Warning alert message for winding temperature limit exceeding above
32 °C is shown as per the DTT datasheet. The cast resin DTT was operated under
different test conditions and its parameters like temperature, voltage and current has
acquired using the IoT based data acquisition system.

Artificially different fault conditions are induced in the DTT and the real time
data is collected for each fault one by one. Below are the various DTT conditions
that are taken into account:

1. Healthy DTT (HEALTHY)
2. Open Circuit Fault (OCF)
3. Overload Fault (OLF)
4. Short Circuit Fault (SCF).

Pre-processing and feature extraction steps followed by data acquisition, when
the data obtained from IoT cloud platform. The real time data is checked for the time
domain features and meaningful values are retrieved, respectively.

Fig. 3 aOpen circuit fault data on IoT platform b short circuit fault data on IoT platform c overload
fault data on IoT platform
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Fig. 4 Waring alert message for temperature limit exceeding

Before feeding the real time data to ANN as an input for training and testing, its
features were scaled (normalized) within boundaries of [0 1]. This stage assures that
all the features (ANN inputs) were assigned equivalent weights. The above process
is followed to enhance classification results and remove any unnecessary bias toward
any one trait. The input feature matrix has 432 rows which are feature vectors and 4
columns of features, equivalent to 27 runs for 4DTTconditions,whichwere collected
by measuring winding temperature, core temperature, voltage and current, resulting
in a total of 432 feature vectors. The pattern recognition neural network’s output
feature matrix was chosen in the manner mentioned below:

HEALTHY : [
1 0 0 0

]T

OCF : [
0 1 0 0

]T

SCF : [
0 0 1 0

]T

OLF : [
0 0 0 1

]T

The input featurematrix was divided into two datasets: Training (302) and Testing
(130), with 65 validation samples and 65 testing samples for DTT condition. Using
two different algorithms (trainlm and trainscg) PatternNetwas trained. By changing
the different numbers of hidden layers of neurons the performance of the PattenNet
was checked to see how well it performed and whether it was suitable for the given
classification challenge. The best result (classification accuracy) is achieved after
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training and testing of each network eight times with the same dataset. To obtain best
validation overall performance for different network configurations, Mean Square
Error (MSE), total number of epochs, and classification accuracy of testing dataset
were selected.

5 Results and Discussion

Tables 3 demonstrate the results achieved for multiple hidden layers of neurons
using scaled conjugate gradient and Table 4 demonstrate the results achieved for
multiple hidden layers of neurons using Levenberg–Marquardt training algorithms.
Also, using the trainscg and trainlm training algorithms, the network with 8 hidden
layer neurons achieves the maximum testing accuracy, 76.6% and 92.2%, respec-
tively. As a result, it is evident that both training algorithms work best for the 8
hidden layers of neurons, for the classification of the faults conditions of DTT in the
given task.

According to the obtained results for trainlm function, the trainingvalidation error
and testing performance (MSE) for different number of hidden layers of neuron is

Table 3 Results with trainscg training function

No. of hidden layers
of neurons

Training Testing

Validation
performance (MSE)

Epochs Testing performance
(MSE)

Classification
accuracy (%)

2 0.0909 32 0.1017 56.2

4 0.1201 25 0.1074 59.4

6 0.1136 16 0.1073 67.2

8 0.0968 28 0.0975 76.6

10 0.0676 39 0.0853 67.2

12 0.0891 36 0.0933 71.9

Table 4 Results with trainlm training function

No. of hidden layers
of neurons

Training Testing

Validation
performance (MSE)

Epochs Testing performance
(MSE)

Classification
accuracy (%)

2 0.0787 33 0.0875 73.4

4 0.0753 18 0.0726 70.3

6 0.0590 15 0.0543 86.9

8 0.0521 14 0.0483 92.2

10 0.0920 21 0.0691 85.2

12 0.0687 18 0.0597 78.1
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least than for trainscg function. The number of epochs is less (14 epochs) for trainlm
than for trainscg (28 epochs). This demonstrates that, when compared both training
functions trainscg (PatternNet’s default training function) and trainlm, the trainlm
completes training fast and provides more accurate outcomes for pattern recognition
neural networks.

For trainscg function the validation performance (MSE) and epochs of the
training reduces as the number of hidden layers are increasing to a point (28 for
8 hidden layer neurons). As the number of hidden layers are increasing testing
performance (MSE) is decreases and classification accuracy increases. On the other
hand, the obtained results for trainlm function achieved best for eight hidden layers
of neurons for validation performance (MSE), testing performance (MSE), and
classification accuracy.

The plot of classification outputs and target output of trainscg function and
trainlm function of PatternNet for 8 hidden layer neurons for different DTT condi-
tions are shown in Fig. 5a, b. The target output and output points overlap each other
are accurately identified testing samples. Therefor it is evident that trainlm provides
the less number of incorrect classifications.

The confusion matrix was shown in the Fig. 6a for the trainscg function for 8
hidden layers of neuron in which out of 31 training samples 6 samples of HEALTHY
class were misclassified as OLF, SCF, OCF (i.e. 19.4% inter-class misclassification).
In OCF out 12 training samples 2 were misclassified as Healthy (i.e. 16.7% inter-
class misclassification). In SCF misclassification is 21.4% and for OLF its 25.0%.
Overall, using the trainscg function 76.6% samples were accurately classified and
23.4% were misclassified. In the case of trainlm, however, no such occurrence was
found. The confusion matrix for trainlm function accurately recognized OCF, SCF,
and HEALTHY situations with a 100% classification rate for 8 hidden layers of
neurons as shown in Fig. 6b. Overall Trainlm function accurately classify 92.2%
samples and 7.8% samples were misclassified. Trainlm function achieves higher
classification accuracy overall (both inter-class and intra-class) than trainscg.

6 Conclusion and Future Scope

The experimental work in this research is done for the categorization of various DTT
faults. The PatternNet NN was built with a customizable number of hidden layers
of neurons using two different training algorithms for categorization of DTT errors.
Trainlm’s overall classification results are substantially better than trainscg’s. The
trainlmmethod’s analysis outputs efficiently classify DTT states with high accuracy
(92.2%). This demonstrates that the proposed approach is effective in detecting DTT
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Fig. 5 a Plot of PatternNet target and actual outputs using trainscg function b plot of PatternNet
target and actual outputs using trainlm function

defects. This work might be expanded by approaching new algorithms machine
learning classification techniques, regression, clustering and others can be explored
to improve the efficiency of the current work’s classification performance.

For categorization purposes, a larger number of DTT defects, such as magnetizing
inrush current, operating noises, and so on, can be considered.
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a b

Fig. 6 aConfusionmatrix for trainscg functionwith 8 hidden layers of neuronsb confusionmatrix
for trainlm function with 8 hidden layers of neurons
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Design and Development of Emulated
Fuel Cell Based Hierarchical Controlled
DC Microgrid System

Ameya Thale, Udayraj Tawde, Avinash Saruk, Shreyas Sarnaik,
and Sushil Thale

1 Introduction

With a critical need to reduce dependency on fossil fuels, significant research has
been carried out in electricity generation using renewable energy sources (RES) such
as solar, wind, tidal energy and many more. However, due to the intermittent nature
of RES, the grid stability gets challenged. Hence, integration of various RES along
with energy storage system (ESS) interfaced to a AC or a DC microgrid can be a
solution to the above-mentioned problem which can control power sharing during
unpredictable load demands using a communication interface. Use of aDCmicrogrid
is preferred over AC microgrid because of its several advantages such as reduced
cost and size of microgrid along with higher efficiency. Since the ratio of DC loads
to AC loads is increasing, the requirement of number of power electronics convertor
is reduced which eventually increases the efficiency.

Use of CAN communication in the system facilitates a better control for power
sharing among the microgrid sources and to have better bus voltage regulation. To
have a balanced and stable DC microgrid system, it is required to control the power
flow of the microgrid under various scenarios to which the system may be subjected
to during the course of its operation.

This research work essentially involves up-gradation of existing DC microgrid
in the lab. The existing microgrid has two Solar Photovoltaic sources (SPV—each
1 kW) interfaced with DC-DC boost convertors and a Distributed Battery Energy
Storage (DBES) system connected to theMicrogrid DCBus of 48V. DBES system is
interfaced with a bi-directional converter to maintain charge and discharge of DBES.
An emulated Fuel Cell source is interfaced with the existing DC microgrid to study
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and verify the system performance improvement. Various simulations of voltage and
current controlled loops were carried out. DSP control board TMS320F28379D was
programmed and interfaced with the power converters in order to control their opera-
tion and allow proper load sharing during unpredictable load demands. CANcommu-
nication protocol was implemented in order to establish communication between the
DSP controllers to ensure load sharing and regulation of MG bus voltage.

The paper presents some insights into the design, development and testing of low
power low voltage autonomous DC microgrid with hierarchical control. Each power
converter is interfaced with a local controller, and these local controllers are linked
with a supervisory controller which eventually controls the operation of each local
controller. Thus, two-level hierarchical control strategy was implemented.

2 Literature Review

2.1 DC Microgrid

In a DC microgrid, ESS plays a significant role in storing the excess energy gener-
ated and supplying it to the loads to bridge the demand supply gap. The batteries
are preferred for ESS due to their high energy density and low cost. The Ultra-
capacitors are preferred for fulfilling the transient load requirements due its fast
dynamic response and high power density [1, 2].

The hierarchical control is adopted for reliable and optimize operation of a stand-
alone dc microgrid. The hierarchical control is typically composed of multi-layers or
multi-level control. The primary control formulates as first layer directly acting on the
power converters to provide high speed controls. The higher-layer controls provide
functionalities like bus voltage control ensuring optimizedmicrogrid operations. This
control strategy is a combined form of Decentralized (Only Local controllers) and
Centralized control (Master–Slave configuration) [1].

The different types of power converters used for controlling the power delivered or
absorbed by the DC microgrid resources. Typically, buck converter, boost converter
and bidirectional converter (BDC) are used [3].

2.2 Microgrid Power Management

The power management in a microgrid is the optimal administration of total power
generated and demanded. This involves source optimization, ESS management,
power import/export and stability of microgrid bus voltage. The dispatchable sources
like battery or fuel cell operate typically as voltage sources whereas the non-
dispatchable sources like SPVorwind operate as current sources [4]. In decentralized
control strategy, the droop control is used for the microgrid sources [5]. The main
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disadvantage of droop control is its poor dynamic response. As reported in [6], the
proposed hybrid control scheme, with average current and voltage controllers are
employed in each converter to enhance current sharing accuracy and retain the bus
voltage simultaneously.

2.3 Fuel Cell as Microgrid Source

A Fuel Cell (FC) produces current based on chemical reaction facilitated by the
mixture of reactants, electrolyte and catalyst. Thus, it’s dynamic response is slow
compared to that of a battery. Additionally, there is a huge voltage drop from no
load to full load condition for a fuel cell. But still FC is very useful DC microgrid
source being dispatchable and long-term availability point of view. In this research
work, the fuel cell (FC) characteristic as shown in Fig. 1 that is similar to the Ballard
‘Nexa’ PEMFC model is emulated. The Nexa PEMFC has a capacity of 1.2 kW,
output voltage of 24 V. The FC output is then boosted to 48 V with the help of a
boost converter. The boost converter provides 48 V and 21 A which is equivalent
to 1KW of power drawn from the Fuel Cell. As load changes the output voltage
changes exponentially, while the rise in temperature and humidity also affects the
curve. Increasing stack temperature generally causes an increase in output voltage,
i.e., it shifts the I-V curve upward.

3 System Description

The existing microgrid lab setup had two Solar Photovoltaic sources (SPV) each
interfaced with DC-DC boost converters and one Battery based source all of which
were interfaced to the DC microgrid bus of 48 V. The battery source is interfaced

Fig. 1 Characteristics to be
emulated fuel cell



56 A. Thale et al.

with a bi-directional converter to facilitate the charge and discharge operation. The
microgrid was built for total capacity of 3 kW with 840 Whr battery ESS. The local
controllers select appropriate mode of operation viz. Current Mode control (CMC),
Voltage Mode control (VMC) or Maximum power extraction mode based on the
communication received from the supervisory control. The SPV power converters
are designed to operate in all 3 modes. While BDC for ESS are designed to operate
in VMC and CMC mode.

3.1 Boost Converter and Fuel Cell Emulation

The primary physical modification in the DC microgrid is that of an emulated
Fuel Cell stack (FCS), proposed to be interfaced with the DC bus through a Boost
converter. Following section will highlight the design considerations for the boost
converter and steps taken to emulate the FCS source.

Boost Converter Calculations

1. The input voltage range of Boost converter is considered as,

Input voltage at No Load (V in(max) at NL) = 48 V
Input voltage at Full Load (V in(min) at FL) = 24 V

2. The maximum output voltage of boost converter (Vo) = 48 V
3. The maximum output current

Iout = Pout
Vo

= 21A

4. The Duty cycle(D) of converter is calculated from the following formula

D = Vo

Vin(min)
= 0.5 (1)

5. Selection of Inductor-

Often data sheets give a range of recommended inductor values. If this is the case,
it is recommended to choose an inductor from this range. The higher the inductor
value, the higher is themaximumoutput current because of the reduced ripple current.
The lower the inductor value, smaller is the solution size. Note that the inductor must
always have a higher current rating than the maximum current because the current
increases with decreasing inductance.

First, a minimum value of Inductor is calculated which also requires calculation
of minimum input current I in(min). In a Boost Converter, this taken as 5–10% of
maximum load current (drawn by the dummy load).
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Iin(min) = 10% × 21 = 2.1 A

Input voltage V in or the nominal input voltage is taken as 36 V (between 24 V
and 48 V).

Lmin = Dmin × Vin

2 ∗ Iin(min) × f s
= 0.143mH (2)

While the calculated Lmin value is 143 uH, the actual inductor Lact to be used is 5
to 10 times this value.

Lact = 5 × Lmin = 715 uH (3)

We had a readily available 500 uH/50 A inductor available in the lab, so it was
selected for the physical implementation of the converter.

6. Selection of Capacitor-

The following formula was used for calculation of output capacitor, taking 1% ripple
in the output voltage

Cout(min) = Io(min) × D

fs × �Vout
= 1500 uF (4)

We had a readily available 2000 uF/450 V capacitor available in the lab, so it was
selected for the physical implementation of the converter.

FC Emulation. The FC emulation was done using the LabVIEW platform, with
a Programmable DC source (PDCS). The voltage output of the PDCS modified to
track the set FC VI characteristics for a given load condition. Figure 2 shows boost
converter setup and FC emulation screenshot.

By using the LabVIEW, the voltage of the DC source was set according to the Fuel
Cell characteristics forwhich the data pointswere collected from theVI characteristic
graph plot. The LabView VI developed was able to mimic the characteristics of

Fig. 2 a Boost converter setup b FC emulation using LabVIEW and electronic load
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Fig. 3 FC emulation graphs-load variation a Vout versus Pout; b efficiency versus Pout

Emulated Fuel Cell source, while tracking the input side voltage, current and actual
load connected to the microgrid. Figure 3 shows the FC emulation graphs obtained
with hardware setup. Also, a provision was made to add a delay to the response
of the emulated FC which could be arbitrarily control using some variables. The
PI controller was implemented in digital form using the DSP board in TI’s Code
Composer Studio.

For giving the analog voltage to the DSP, a simple voltage divider attenuator was
made. The pulses generated by the DSP were given to the gate driver (SKYPER32R)
for the IGBT (SKM145GB066D) after appropriate voltage level shifting.

3.2 Hierarchical Control Strategy

The Fig. 3 shows the schematic block diagram representation of the DC micro-
grid under study. The hierarchical control is implemented through TI DSP TMS
320F28379D controller boards interfaced with each other on CAN communication.

LocalControl: This level of control is basically required for generating the switching
pulses for the converters used for all the sources. Each of the sources will be
configured in various modes as per their expected function in the control strategy.

1. SPV—MPPT mode
2. FCS—Current control mode, Voltage control mode
3. Battery—Current control mode, Charging mode.

Supervisory Control: By using CAN communication, coordination for the power
sharing between each source is achieved. Supervisory control makes decisions as
per the situation demands [7]. Both of the control layers above will be implemented
in the form of code using Texas Instruments’ TMS320F28379D DSP development
board.

Testing Scenarios: The microgrid is bound to encounter various different scenarios
with respect to variable parameters like solar insolation, Hydrogen availability (fuel
for FC), SOCof battery and load demand at that particular instant. Operation has to be
carried out while keeping the DC bus voltage within permitted limits and at the same
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time ensuring power is taken from the appropriate source. For instance, management
of battery SOC is important, as it has a limited number of charge discharge cycles
which have to be effectively utilized in order to prolong battery life. Thus, following
scenarios/setups will be considered while building up an effective overall control
strategy.

Scenario 1—Solar Insolation abundant, Fuel available, SOC full. SPV produces
enough power to supply majority of the load demand and FCS can supply remaining
load demand. As the Battery is fully charged, it will operate in voltage mode control,
acting as a voltage source to keep the bus voltage constant while supplying bare
minimum amount of current.

Scenario 2—Solar Insolation reduced, Fuel available, SOC low. Here, as insolation
is reduced, SPV is not able to fulfill entire load demand and FCS has to supply more
portion of the load. At the same time, as battery SOC is low, it will not supply any
power and instead look for an opportunity to charge. Therefore, FCS has to maintain
the bus voltage and also supply a significant portion of the load.

Scenario 3—Solar Insolation unavailable, Fuel available, SOC full. Considering
operation during night time,where output of SPVwill be zero, entire load demand has
to bemanaged by the FCS andBattery. The battery is assumed to be charged by excess
SPV generation throughout the day. In this case, the higher demand from evening
to night (for illumination) has to be supplied primarily by FCS and additionally by
the battery. Battery SOC should not fall below a minimum value, slightly above the
absolute minimum in order to keep backup for the next morning.

4 Simulation of System

PSIM platform was used for the simulation and troubleshooting of the local level
control of Boost Converter for the FC. In addition, power sharing models were also
built to investigate the parallel operation of microgrid sources. Figure 4 shows Inner
Current—Outer Voltage Control Loop implementation for FC boost converter.

4.1 Local Control of FC Boost Converter

The FC Source is represented by a current controlled voltage source using a simple
line equation that approximates the input voltage of Fuel Cell based on the input
current drawn. The boost converter design parameters are summarized in Table 1.

For an output voltage of 48 V, full load of approximately 1 kW is drawn by load
resistor of 2.3 �—based on this fact, a variable load is designed with switches to
trigger various loading conditions during simulation time. The two PI loops were
tuned by trial and error process to obtain the following results shown in Fig. 5.
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Fig. 4 System block diagram of the proposed DC microgrid setup

Table 1 Local control of FC
boost converter—simulation
details

S. No Parameter Values

Converter details

1 FC input 48 V (no load) to 24 V (full
load)

2 Bus voltage (output) 48 V

3 Switching frequency 15 kHz

4 L and rL 500e−6 L, 30e−3 �

6 C and rECR 2200e−6 F, 0.5e−3 �

Inner PI loop

7 Gain 7

8 Time constant 0.5e−3

Outer PI loop

9 Gain 3.5

10 Time constant 15e−3

Load variation

11 Time—0 to 0.25 s 2.33 � (full load)

12 0.25 to 0.5 s 4.63 � (half load)

4.2 Power Sharing

In this model, using two units of the same source and converter developed in the
previous section, power sharing among the two parallel sources is observed by setting
various reference values. One of the sources is under voltage control mode, whose
job is to maintain the bus voltage and the other source is under current control mode,
which will allow control over the current pumped into the load and thus the power.
which should draw a total current of around 10.5 A from the sources. As shown in
Fig. 6, the bus voltage is maintained at 48 V and the current share of source 1 and 2
can be varied depending on the current reference given to source 2.



Design and Development of Emulated Fuel Cell Based Hierarchical … 61

Fig. 5 PSIM simulation model: inner current—outer voltage control loop

Fig. 6 Local control of FC boost converter—simulation results

Power Sharing with Two Sources: VMC and CMC
In the proposed setup as shown in Fig. 7a, Solar PV, Battery and Emulated Fuel
Cell sources are used. The power sharing is decided by considering few important
factors like capacity of each source, the time taken to deliver the power, for how long
the power can be delivered by that source, availability of power in each source etc.
Considering all these factors, scenarios were made where different sources are used
in combination to power the load, such that power sharing is achieved in optimal
manner.

The Solar PV source serves as the main source of power, whereas Fuel Cell
can serve as backup source supply some base load, during fall in SPV output or
periods of increased loads. The local controller helps to decide the amount of power



62 A. Thale et al.

Fig. 7 a Power sharing model b simulation results a source 2 for 50% load current b source 2 with
full load current

transferred from its respective source and the supervisory controller is responsible
for communicating between the local controllers to make each of them aware of the
status of other source and their attributes to optimize power sharingwhilemaintaining
the bus voltage.

The microgrid stability was tested with two sources—Fuel Cell and Battery
assumed to power the load. The system was loaded up to roughly 20% of its capacity
to observe power sharing between the emulated FC and battery source. For this, the
FC was configured with VMC and Battery was configured with CMC. The VMC
reference set to 48 V and the CMC reference was varied to emulate the decision
given by the Hierarchical control. The results obtained are as shown in Fig. 8.

In scenario 1, the batterySOC is assumed to be sufficiently high and therefore it can
share greater amount of load current. This behavior can be achieved by increasing the
current reference for CMC source which will cause the current supplied by battery to
increase and the current share of VMC source will reduce accordingly as per net load
requirement. Conversely, in scenario 2, it is assumed that the battery SOC has fallen

Fig. 8 a MG hardware setup with two sources b CAN communication pulses
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Fig. 9 Control over power share by variation in current reference a scenario 1: increase current
reference, b scenario 2: decrease current reference c scenario 3: no change in current reference

below a certain threshold and the current drawn from battery needs to be reduced.
Decreasing the current reference will relieve the CMC source and the majority of
load current will once again be supplied by theVMCemulated FC source. In scenario
3, there is no change in the current reference and so the CMC source will supply
constant share of power. For this situation, if the load demand increases, additional
power required will be supplied by the VMC source. This behavior is apparent in
the following waveform obtained, as the current supplied by emulated FC source
increases as more load is added. During the test, according to the given load, the
VMC Fuel Cell maintained 48 V and the CMC Battery supplied current according
to the reference set at that time, rest of current being supplied by the other source
(Fig. 9).

5 Conclusion

The paper presents details of design of a Hierarchical Controlled DC Microgrid.
The simulation models in PSIM and Hardware setup validates the results of building
blocks used in DC Microgrid. The emulated FC integrated with the existing DC
Microgrid through the Boost Converter improves the stability of Microgrid as
witnessed in the simulation and hardware results carried out under different operating
scenarios.
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Development of Integrated Test Set
for SoC-SoH Estimation of Lithium-Ion
Battery

U. B. Mujumdar and U. N. Jibhkate

1 Introduction

In recent times lithium-ion batteries (LiB) are being widely used as an energy storage
solution in electric vehicles, consumer equipment, power backup inverters, drones,
computers, phones, etc. This is due to the higher energy density, better cycle life capa-
bility, lower self-discharge rate, and higher current discharge capabilities offered by
lithiumbatteries. The development of LiB technology has improved the performance,
reduced the cost, and made the applications safer. This has resulted in an increased
market size of the LiB. Lead–acid and nickel–metal hydride is the most prevalent
battery chemistries utilized to date, and are increasingly being replaced by batteries
containing lithium [1]. With the increased proliferation of LiB in various application
segments, it has become essential to accurately estimate the two important battery
parameters i.e., State of Charge (SoC) and state of health (SoH) for the safe operation
and longer life cycles [2]. Most of the methods discussed in the available literature
require the database of battery parameters like voltage, current, and temperature
during the charge–discharge cycles.

Various types of battery test sets have been used in the literature for the gener-
ation of the LiB charge/discharge cycle database [2–8]. A test bench with a fully
programmable power supply, programmable load, and data acquisition system has
been used in ref [2]. Setup at Stanford energy control laboratory for collecting the
data includes (i) host computer used to program test profiles and real-time data moni-
toring through the MITS Pro- and Data Watcher software, (ii) Arbin measurement
system, (iii) Arbin LBT21024 with a programmable power supply, (iv) the IncuMax
IC-500R thermal chamber and (v) a battery cell positioned in a cylindrical cell holder
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[3]. Use of a battery testbed along with a set of sensors and temperature controller
is referred to in ref [4]. Set up similar to [3] has been used in [6, 7]. Battery set with
the facility to perform Cycling, HPPC, ICA, and GITT tests has been referred to in
[5]. A Dual H bridge converter based system with zero voltage discharge capability
has been discussed in [8].

This work is an attempt to develop an integrated hardware setup for the accurate
estimation of SoC and SoH of LiB using low-cost generic hardware. As shown in
Fig. 1, the proposed battery test setup comprises a bidirectional DC–DC converter,
electronic load, DC power supply, various sensors, and a data acquisition system.
USB Serial communication interface is provided to transfer the real-time parameters
to a PC or a flash drive. The charge–discharge profile can be programmed using the
PC interface. The control is implemented using a general-purpose microcontroller
and generic hardware for easy implementation. The system is designed to have low
complexity hardware, and relatively low-cost components, while offering several
high-end battery management options like flexible data storage, communication,
automatic state of charge (SOC) detection, and capacity. Though the data generated
by the test set can be used for SoC and SoH estimation, the scope of analysis of
this work is restricted to SoC estimation only. This paper is organized as follows:
Section 2 details the fundamentals and common terms of the LIB, the configuration
of the set-up is discussed in Sect. 3, design of the circuit is given in Sect. 4, the
control structure is given in Sect. 5, experimentation and results are discussed in
Sect. 6. Conclusion is done in Sect. 7.

Fig. 1 Block diagram of proposed battery test-set
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2 Fundamentals of SoC Estimation

The SoC of LiB is defined as the rate of available capacity to its maximum capacity
when the battery is completely charged and describes the remaining percentage of
battery capacity [1]. SoC is an important parameter used for the estimation of the
state of health (SoH) of a battery, which is a measure of the battery’s ability to store
and deliver electrical energy, compared with a new battery. Various methods used for
the SoC estimation are based on three main approaches; coulomb counting method,
voltage method, and Kalman filter method [9].

2.1 Coulomb Counting (CC) Method

This most commonly used SoC estimation method is based on the measurement and
time integration of charging and discharging currents.Mathematically, it is expressed
in Eq. (1) as:

SOC(t) = SOC(t0) + 1

Crated

t0+τ∫

t0

(Ib − Iloss)dt (1)

where SoC(t0) is the initial SoC, Crated is the rated capacity, Ib is the battery current,
and I loss is the current consumed by the loss reactions. The coulomb countingmethod
then calculates the remaining capacity simply by accumulating the charge transferred
in or out of the battery. Accuracy of this method is decided by the preciseness of
battery current measurement and information of accurate initial SoC.

2.2 Open Circuit Voltage (OCV) Method

This method uses OCV-SoC mapping curve for the estimation of SoC for a given
value ofOCV. This approach is comparatively simple to implement as it requires only
voltage sensor for the estimation. The accuracy of estimation is better as compared
to CC method as this method does not require the noisy current sensors. Since the
battery OCV has strong relationship with temperature and load, estimations based
on only OCV method has relatively lower accuracy during the online estimation.
Another drawback of OCVmethod is that it takes long rest time to reach equilibrium
condition.
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2.3 Kalman Filter (KF) Method

The Kalman filter is an algorithm to estimate the inner states of any dynamic system,
it can also be used to estimate the SOC of a battery [3]. As the estimation result
is independent of any initial value, KF method has better accuracy than CC and
OCV method. The KF gives the sets of mathematical equations, which predicts and
corrects a new state repeatedly as the charging/discharging progresses. The method
compares the measured input data and output data to calculate the minimum mean
squared deviation of the true state as expressed by Eqs. (2) and (3).

State Equation : xk+1 = Akxk + Bkuk + wk (2)

Measurement Equation : yk = Ckxk + Dkuk + vk (3)

where x presents the system state, u is the control input, w is process noise, y is
measurement input, v is measurement noise, A, B, C and D are the covariance
matrixes which are time varying and describe the dynamics of the system. As the
static and dynamic characteristics of LiB are nonlinear one, extended Kalman filter
(EKF) has been used to address the issue.

3 Configuration of Battery Test Set-Up

The arrangement of the proposed battery charger test set is shown in Fig. 2. It is
divided into three blocks, (i)BidirectionalDC–DCconverter (BDC) (ii) Power supply
and electronic load, (iii) LiB and sensors. BDC has two power switches S1 and
S2, inductor L1, and the filter capacitors C1, and C2. Both the power switches
are composed of MOSFET with a body diode, which also work as a freewheeling
diode. A fixed voltage DC power source is used for charging the battery. PWM-
controlled electronic load (EL) is used to obtain the load variation to achieve different
discharge rates. Depending on the mode of operation i.e., charging or discharging,
Electromechanical Relay (Relay-1) connects the BDC to the power source or EL.
To completely isolate the LiB from the remaining part of the circuit during the rest
period, Relay-2 is provided in the arrangement. Charging mode is facilitated by
connecting the BDC input to the power supply and operating it as a buck converter.
During the discharge mode, BDC is operated in boost mode with LiB as input and
the EL to the output terminals. To facilitate the arrangement, Relay-2 is energized
making the connection of the BDC terminal to EL. In conventional BDC, duty ratio
of S1 and S2 controls the direction of power flow. In this work, the switches S1
and S2 are independently operated. During the charging, the PWM signal is given
to S1 only, keeping S2 off all the time. This makes the BDC operate as a normal
buck controller and the duty ratio can be varied from 0 to 100%. In a buck converter,
the battery load is connected to the power source through a switch. During the off
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Fig. 2 Configuration of battery test-set

period of the switch, the input current becomes discontinuous and energy stored in
the inductor and capacitor is supplied to the load. Ripple in output current can be
minimized by selection of C and L. On the contrary, in boost mode, the input current
is continuous and the inductor acts as an input filter keeping the input current ripple
at a small value. Also on the output side, the control is smooth, especially at a lower
duty ratio.

For these reasons, buck mode of BDC is used for charging the battery while boost
mode is used for the discharge. To optimize the performance of BDC during charging
and discharging mode, inductor is designed as per the boost circuit requirement and
capacitor as per the buck. The component design considering two cell battery charger
specifications is discussed below.

4 Design of Test-Set System

4.1 Design of BDC

The inductor is one of the crucial components in the BDC circuit since in boost
mode it works as an energy storage element and in buck mode, it is a part of the filter
circuit. In this setup, the value of the inductor is calculated considering it as a boost
converter component given in Eq. (4) as,

L = Vin(Vo − Vin)

fs ∗ �I ∗ Vo
(4)

where Vin and Vo represent the boost converter input and output voltage, fs is
the switching frequency, �I is the current ripple. Considering voltage and current
requirements as per the rapid discharge cycle, the value of the inductor isL= 560µH.
The filter capacitor is calculated using the expression in Eq. (5) as:
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C = Io(Vo − Vin)

fs ∗ Vo ∗ �Vc
(5)

Substituting the value gives C = 1000 µF.

4.2 Electronic Load

In practice, LiB loading varies over a wide range from no-load to a few times the full
load capacity. To get a higher load current, the boost output required is excessively
high as the load resistance is fixed. A parallel combination of fixed resistance (Rl2)
andMOSFET controlled resistance (Rl1) referred to as electronic load (EL) is used as
the load to address the issue. Fixed resistance (Rl2) avoids the open circuit condition
on the output of the boost converter that occurs during the off-time of MOSFET
connected in series with resistance Rl1.

Figure 3 shows the simplified arrangement of the boost converter and the EL. Let
D3 be the duty of electronic load, the equivalent resistance offered by the EL can be
given in Eq. (6) as:

Rel = Rl1

D3
(6)

The parallel combination offers the load resistance Rl given in Eq. (7) by,

Rl = (Rel‖Rl2) = Rl1Rl2

(D3Rl2 + Rl1)
(7)

With Boost converter operating at a duty ratio of D2, the equivalent load resistance
seen from LiB side is given in Eq. (8) as,

Fig. 3 Basic BDC
arrangement
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Fig. 4 a Precision voltage reference circuit, b voltage sensing circuit, c current sensing circuit

Requi =
(

Rl1Rl2

(D3Rl2 + Rl1)

)
(1 − D2)

2 (8)

4.3 Design of Sensing Circuit

Battery current, voltage, and temperature are the three main parameters required to
be monitored during the charge and discharge cycles.

4.3.1 Battery Voltage Measurement

The battery voltage is suitably attenuated using a resistance divider arrangement as
shown in Fig. 4b. High-value precision resistors are used in the network to minimize
the loading effect and drift due to temperature rise.

4.3.2 Battery Current Measurement

Hall effect based, single polarity, bidirectional linear current sensor byAllegro Semi-
conductors is used for the battery charge–discharge current measurement. The sensor
has a sensitivity of 100mV/Ampwith an output voltage ofVcc/2 at zero currentwhere
Vcc is the supply voltage. Output has a positive or negative slope depending on the
direction of the current. Arrangement for the sensing of charge–discharge current
using a single sensor is shown in Fig. 4c.
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4.3.3 Temperature Measurement

To record the temperature, simple temperature sensor based on the LM35 from
National semiconductors is used. Suitable mechanical arrangement has been made
to protect the temperature sensor and mounted on the front side of the individual cell.

5 Control Structure

The main objective of control structure design is to accurately charge and discharge
the test battery as per the specified parameters. Constant Current/Constant voltage
(CC/CV) is the most commonly used charging technique referred to in the literature
and the same is used in this work [10]. CC/CV charging cycle refers to the use of C
rate and upper thresholds voltage (Vu) for CC charging and cut-off current for CV
charging. The discharge cycle is normally specified by the discharge rate and the
lower cut-off voltage (Vl) to avoid the deep discharge and potential damage to the
battery system. Use of complementary PWM pulses with duty ratio regulation for
switching MOSFET S1 and S2 has been referred to in the literature for controlling
the magnitude and direction of power flow through a bidirectional converter [11].
To avoid the simultaneous conduction of two switches, a delay is added between
the turn-off of one MOSFET and the turn-on of the other MOSFET. For a duty
ratio below 50%, the ontime of MOSFET S2 is more than that of S1, the energy is
exchanged from right to left of the circuit as shown in Fig. 4. For the duty ratio above
50%, the situation reverses and the energy is exchanged from left to right of the
circuit. This switching technique has limited regulation of duty ratio. Also, with an
active power source on either side of BDC, (chargingmode), exceeding the boundary
limit of duty ratio, reverses the direction of power flow with the input voltage tends
to rise more than the input side power source rating. This can severely damage the
power source used for the charging. To avoid this, both the switches are controlled
using independent signals in this work. In Buck mode i.e., battery charging mode,
switch S1 is controlled by regulating the duty ratio from 0 to 100% and MOSFET
S2 is off. The body diode of S2 works as the freewheeling diode. In boost mode
operation, MOSFET S2 is controlled using a PWM signal with a variable duty ratio
of 0–100% and MOSFET S1 is off. Body diode of S1 freewheels the energy stored
in the inductor.

5.1 Battery Charging Mode

The control structure for battery charging mode is shown in Fig. 5a. There are two
separate loops for CC and CV control along with a CC/CV mode selector block. In
the CC loop, Iref is the reference current i.e., specified CC charging rate, Ib is the
battery current, and Vref is the voltage reference signal generated by the PI block
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Fig. 5 Control loop structure for a CC–CV charging, b CC discharging

based on the error between Iref and Ib. Another PI controller is used for tracking the
Vref for obtaining the required charging rates. Upon reaching the CC/CV threshold
voltage, the mode selector block transfers the charging to CV mode. In this mode,
battery voltage is maintained at a constant level using a PI controller, till the charging
current drops to the end current value.

5.2 Battery Discharging Mode

The control structure for the discharge mode is shown in Fig. 5b. Here, Iref denotes
the specified discharge rate. A PI controller is used for maintaining the discharge
rate equal to Iref over the entire discharge cycle. The discharge cycle ends when the
battery voltage reaches to lower threshold voltage.

6 Experimentation and Results

As mentioned in Sect. 1, the entire battery test system has been built around the
microcontroller ATMega32A. Voltage, current, and temperature measurement is
done using 10-bit resolution on-chip ADC. 16-bit timer-based PWM peripheral is
used for controlling the switching of S1 and S2. Another PWMwith the 8-bit resolu-
tion is used for controlling the electronic load. A real-time clock is used for keeping
time and providing the timestamp to charge and discharge cycles. Long endurance
EEPROM is used to keep the track of charge/discharge cycle number, which is a
crucial information for SoH estimation. A standard report format providing the basic
information about time, cycle no, charging/discharging rate is developed. Test data
is the collection of voltage, current, and cell temperature.

Fig. 6a and b shows the photographs of the battery test set prototype and the
switching signals, battery voltage, and current profile during the discharging mode.
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Fig. 6 a Laboratory prototype, b output waveforms

To verify the effectiveness of the proposed test set, a two-cell battery system has been
assembled using LG18650 MH1 3200 mAh, 10 A, 3.7 V cell. The charge/discharge
profile is set according the datasheet specifications.

The battery system has been successfully tested for several charge-discharge
cycles.

The discharge profile of the fresh battery (Cycle 0 data) is used as a reference for
OCV SoC mapping.

Python is used as a tool for normalization. Figure 7a and b show the voltage and
current profile of the OCV test conducted on the battery set for SoC estimation.

The different OCV-SoC models for SoC estimation referred in [12] have been
implemented on the generated database and the comparison results over the linear
range are shown in Fig. 8a and b.

Using normalized OCV-SoC mapping, a look-up table is generated and stored
in the microcontroller flash. This database is used for the calculation for initial SoC
estimation and the real-time SoC during discharge is calculated using the CCmethod.
To verify the accuracy, SoC has also been estimated by OCV and KF method using
the data transferred to PC. Figure 9 (a) shows the estimated SoC using the OCV
and KF methods while (b) shows the same using CC method. The analysis of both
curves shows that the RMS error between estimated and calculated SoC is less than
1.038%.

Fig. 7 OCV test profile of a voltage and b current
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Fig. 8 Comparison of different OCV models on setup datasets

Fig. 9 a OCV and KF method and b CC method on setup dataset

7 Conclusion

This paper deals with the development of a LiB battery test setup for the estimation of
SoC and SoH. A bidirectional power converter, wherein power flow can be regulated
in either direction has been used for the charging and discharging of LiB. Modified
switching scheme with independent control of BDC MOSFETs has been used for
precise control of current through the converter. Duty radio-controlled electronic
load with a combination of fixed and variable load resistance has been used to test
the discharge profile of the battery under practical conditions. The performance of
the test set is validated by conducting several charge-discharge cycles of the LiB
battery system and estimating the SoC using different methods. As shown in result
section, the SoC estimated using CC, OCV, and KF methods have minimal error.

The setup can be used to generate a database under different operating conditions
over the entire life cycle of the battery set which can be used for the further analysis,
training, and testing of different machine learning methods for estimating SoH.

Thus, it can be concluded that the battery test set developed in this work can be
used as a reliable tool for conducting the experimentation and further research work
on LiB.
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A Novel Hybrid Islanding Detection
Technique in Multi DGMicrogrid System

Shashank Gupta, Santosh Kumar Singh, and Mahiraj Singh Rawat

1 Introduction

The best option for supplying the continuous energy of world needs is the solution as
green energy (GE) source as opposed to burning fossils. The continuous degrading
of fossil fuels has detrimental effects on the ecosystem and accelerates temp of envi-
ronment lead to globally wide spread warming. For such of these cause, the world is
looking to renewable energy sources (RES), VU/THD, and bilateral reactive power
variation to satisfy future energy demands [1]. Therefore, the green energy gener-
ating units like solar with wind and hydro refers to small-scale power generating
projects that are most likely to be integrated to the grid. The most serious issue with
DG systems, though, is islanding. From the standards referred by IEEE 1547 [2], “An
island represents a state where segment of an area aka electric power system (EPS) is
powered by one or more locally supported EPSs with their associated PCCs and that
segment of EPS is electrically isolated from rest of the left out EPS”. Term islanding
can be mainly categorizes in according to state of act ion i.e.: happened unintention-
ally and next is done for any particular purpose also known as intentional islanding.
During intentionally isolating a microgrid from the main grid, it continues to reliably
provide power energy support to local loads. It’s a controllable mode of operation.
When microgrids are cut off from the main grid, inadvertent islanding happens as a
result of line tripping, failure, and human error. Some disrupting utility infrastruc-
ture on the main grid are major highlighted drawbacks of islanding which accidently
or unintentionally occurred includes danger to working personal at work. Identi-
fication for non-intendant islanding, many islanding detection techniques (IDTs)
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are categorizes and proposed by researchers in literature. IDTs can further classi-
fied: local and remote techniques. Communication between a utility and DGs has
been supported by remote IDTs. The reliability of these techniques performs better
than local methods, but they are not much economical. For the most of instances at
distributed generation (DG) side, the locally evaluated parameter calculative tech-
niques applied. These detection terminologies are further divided in three different
modes i.e.; Active parameters based, passive parameters based, and hybridization of
two or more techniques. In Passive parameter based detection, mostly the voltage,
current, and frequency parameters locally available at the coupling bus are employed
to detect islanding. Strong non-detect zone (NDZ), however, is one of the main short-
comings of this method. We refer to these load combinations as the NDZ because
they frequently result in the failure of observation for islanded site. A steady ongoing
lower-frequency injected signal gets monitored with variations incorporated in the
observation, the active parameters based active IDT are evaluated.Design complexity
with some negative impact on power quality are drawbacks of such procedures. At
the bus of coupling point, ROCOF is measured using the phase locked loop (PLL)
in [3–5]. Since the IDTs based on ROCOF is sometimes gets vulnerable to many
different varying loads, setting a threshold is difficult. The VU-dependent passive
IDT can locate islands by calculating the sequences of negative and positive volt-
ages. The discrete fractional Fourier transform was developed and is utilised by
many academics [6]. A HID utilising ROCOF over reactive power and d-axis current
injection was employed to increase islanding detection time. In a mixed DG envi-
ronment, this HID performs well [7]. To address the shortcomings of the first two
methods, hybrid IDTswere proposed. Hybrid IDTs combine the advantages of active
and passive or two passive/active IDTs, increasing their potency. Grid-connected PV
systems have made up the majority of installations during the last few decades.
Therefore, having solar PV systems that are connected to the grid is necessary to
prevent islanding. This research suggests an improved hybrid IDT based on VU and
ROCOF. Due to their simplicity of execution and lack of impact on power quality
or detection time, the two PIDs are combined. According to the literature survey,
some hybrid IDTs are: In [8] variation in reactive power with Q-f droop analysis;
signal processing with controlling by power loop control [9]; voltage phase angle
gets evaluated with observing the unbalance in voltages [10]; neural network based
performance with wavelet transformations [11]; shift attaining voltage and actual
real utilizing power [12]; changes observed by rate in frequency gets observed with
sandia shift of frequency [13]; neural networking probabilistically with transforma-
tions employing wavelet packets [14]; interfacing the grid network system adap-
tive with neuro fuzzy [15, 16] analyze the factor of unbalancing in voltage pat-
terns; rate of changes incorporated with reactive and active powers [17]; recognizing
the patterns [18]; This paper suggests a combined hybrid improved solution with
conclusive VU-ROCOF IDT.

With the combined evaluation of such two locally voltage frequency based avail-
able algorithms aremergedwhich further have an additional advantage over no-effect
on system-power quality concerns with detection time.
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1.1 Prevailing Islanding Technique (PIT)

Before based on the imbalance found in the voltage profile and frequency set points in
this paper, a recently developed method has been employed to enhance hybrid IDTs.
The VU is measured for each DG and three-phase voltages seen at DG connected
bus terminals are reported using the current IDT. The authors [19] preferred the tech-
nique based on imbalance spikes detected in voltage over the one based on THD
in their suggested hybrid IDTs due to its great sensitivity to external disturbance.
The frequency of the DG drops from 60 to 59 Hz when the recorded spike of unbal-
anced voltage exceeds the limit threshold value, which is communicated using the
hybrid technique. Continuous voltage frequency measurements are made from the
DG output. If the frequency drops below 59.2 Hz within 1.5 s of the shift, the circuit
breaker at PCC trips, disconnecting the microgrid from the main grid. The hybrid
technique sends a signal to the DG’s frequency setpoint, forcing the frequency to
drop from 60 to 59 Hz, if the recorded Vu spike exceeds the threshold value. The
DG output voltage’s frequency is continuously observed. A trip signal is sent to the
circuit breaker at PCC to cut off power to the microgrid if the frequency drops to
59.2 Hz within 1.5 s of the shift. To enable the microgrid to operate on its own,
the frequency setpoint is set at 60 Hz. Even after lowering the frequency setpoint to
59 Hz, the frequency at the DG terminal voltage stays near to 60 Hz. The conclusion
that islanding has never occurred can be reached. This common strategy is explained
using a flowchart in Fig. 1.

2 Proposed technique

The HID that is suggested combines the ROCOF and VU methodologies. In the
event of a main grid separation, the DGs installed on the microgrid must be able to
handle the load requirements. As a result, voltage imbalances are apparent at the DG
terminals. Each DG’s VU is measured, and voltage of all three phases gets scrutinize
at the DG terminals. Any disturbances, like a sudden shift in the load or a main grid
failure, could be detected as an increase in VU. The three-phase voltage imbalance
at PCC is described using this PID method, which depends on the VU. This process
is known as islanding, and it measures the ratio of the negative sequenced voltage
(NSV) to the positive sequence voltage (PSV). The expression below in Eq. (1) can
be used to calculate the voltage unbalance at any moment t.

VUt = VNSt

VPSt
(1)

The voltage components in the negative and positive order at the DG output port
are displayed. Only when the device is connected to ground do the zero sequence
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Fig. 1 PIT chart start
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components appear. With the calculation of sequence analyzer based Positive, Nega-
tive, and Zero components for voltage and current sequence at PCC are eavluated.
There are negative sequence components throughout the islanding process [20]. The
sequences for voltages given using the expression below in Eqs. (2, 3, 4).

Va1 = 1

3
(Va + αVb + α2Vc) (2)

Va2 = 1

3
(Va + α2Vb + αVc) (3)

Va0 = 1

3
(Va + Vb + Vc) (4)

Va0, Va1, and Va2 represents the zero, positive, and negative series voltages,
respectively [21]. Where α = 1∠120°. The ROCOF approach was used to differ-
entiate between the load shift and the mains power failure. Once the VU spike
following islanding surpasses a certain threshold, the ROCOF relay tracks the degree
of changing frequency for the subsequent 2–50 cycles before transmitting it to the
low pass filter (LPF) circuit. LPF is used to lessen high-frequency transients caused
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by devices connected to the power system. The threshold value (TV) for a VU spike
is 35 times the VU’s average value over the just-past second [19]. After numerous
simulations, an empirical decision was made to use a one-second duration. If the
length is too short, it may be difficult to identify the spikes since the average values
that were produced closely resemble the instantaneous values. Only when instanta-
neous readings are much higher than average levels may spikes be recognised. If the
span is excessively lengthy, such as if an electronically controlled load is applied,
there would be an immediate increase in VU. On the other hand, it will take some
time for the average value to rise to a greater level. As a result, even a slight surge
could cause false tripping. The ROCOF, df/dt, is recorded across several cycles at
the PCC. The circuit breaker can cut off the power output if the df/dt value is higher
than the TV. The ideal TV for the ROCOF approach, according to the literature, is
0.3 Hz/s with 0.7 s for islanded mode limits of detection. ROCOF can be determined
[3], using Eq. (5).

d f

dt
= f (tk) − f (tk − �t)

�t
(5)

where f (tk) is the frequency at the time of the kth sample, f (tk−�t) is the frequency
value determined before the time of the kth segment, i.e. tk−�t. If ROCOF continues
to exceed the TV, a trip signal is delivered to the circuit breaker of PCC. Figure 2a
displays the flowchart for the suggested approach.
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Fig. 2 a Proposed technique’s flow chart, b single line diagram for test system
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3 Simulation Results

The suggested method has been tested on the test system shown in Fig. 2b. In order
to connect a 10 KW PV (DG1) array to a 25 kV feeder at PCC1, a universal bridge
and 100 KVA 380 V/25 kV star-delta transformer are utilised. At PCC2, a 3 MVA
Synchronous Diesel Generator (DG2) is connected to a 25 kV feeder using a 6MVA,
25/2.4 kV star-delta transformer. The lengths of four feeder systems are respectively
14 km, 5 km, 2 km, and 2 km, with a combined total of 25 kV. Start the simulation. A
47MVA120/25 kV star-delta transformer connects this 25 kV feeder to a 120 kV and
2500 MVA short circuit level main grid. The PV system used was 10 KW. Standard
test conditions of 25°C and 1000 W/M2 are used to launch the simulation. Several
disturbances were caused in the PCC1 lab, including 50 kW at 10 kVAR Microgrid
1’s (MG1) load number six turns on after two seconds and shuts off after 2.5 s.
Switching a 1 MW load 7 in the microgrid 2 at PCC2 at t = 3 s (MG2). At time
t = 4 s, Microgrid 2 (MG2) is unplugged. These disruptions result in VU spikes
and frequency changes at the corresponding DG terminals. The main grid terminal’s
circuit breaker opens at t= 4.5 s, which leads to unintentional islanding. A VU spike
and ROCOF are thus seen at the terminals of both DGs. Figure 3a–f depicts the
results of simulation for the above system at PCC1 (25 kV, 10 MVA base value).

At t = 2–2.5 s, load 6 in MG1 is shifted, but as can be seen in Figs. 3 and
4, this transition does not significantly affect the loading of DG1 and DG2 (d, e).
Because they fall below the limit established by Eq. (1), spike prompt of VU and
RO-COF detected by DG1 with DG2 are disregarded. At t = 3 s, MG2 switches to
load 7. The loading for both DG-1 and DG2 will not gets effected by this change-
over. As a result, the VU spike displayed by DG1 and DG2 is observd less than the
value and is once again disre- garded. The changes are only visible in ROCOF, but
the recommended technique does not classify them as accidental islanding. MG2 is
deleted with primary grid at t= 4 s. The transition causes a ROCOF spike and a VU
spike in PCC1. As demon- strated in Fig. 3, at PCC1, the ROCOF spike reaches the
TV but the VU does not (d, e). This implies that the recommended algorithm would
not see unintended islanding (UI) as occurring even the microgrid gets disconnected
from the central main-grid for repair. UI occurs as a result of the main grid terminal’s
circuit breaker (C.B.) opening at t = 4.5 s. As a result, the unexpected VU surge
occurred at PCC1, as seen in Fig. 3d. Additionally, as seen in the Fig. 3e and f,
the ROCOF surpasses the threshold value, causing a trip signal to be transmitted
to PCC1 at t = 4.515 s. Islanding may therefore be efficiently monitored in a short
amount of time (about 15 ms). The lab at PCC2 had the following disruptions: In
microgrid 1 (MG1), load 6 (10 kVAR, 50 kW) switches on after 2 s and shuts off
after 2.5 s. Switching a 1 MW load 7 in microgrid 2 at PCC2 at t = 3–3.5 s (MG2).
At t = 4 s, Microgrid 1 (MG1) is unconnected. These disruptions result in spikes
and disturbances for VU and frequency respectively at the corresponding DGs. The
main grid terminal’s circuit breaker opens at t= 4.5 s, which causes UI. A VU spike
and ROCOF are thus seen at the terminals of both DGs. The simulation output for
the mentioned system at PCC2 (25 kV, 10 MVA base value) is shown in Fig. 4a–f.
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. 3 PCC1 results, a voltagev(V) (in p.u.) versus time (T) (in sec), b current (I) (in p.u.) versus
T (in sec), c frequency (F) (in Hz) versus T, d VU w.r.t T, e ROCOF w.r.t T, f trip signal indication
to PCC-1 station’s CB

As seen in Fig. 4, when load 6 in MG1 is switched at t = 2–2.5 s, it has no
discernible impact on the loading of DG1 and DG2 (d, e). Due to the fact that they
are below the TV established by equation, the VU spike and ROCOF that DG1
and DG2 detected are ignored (1). At t = 3–3.5 s, MG2 switches to load 7. This
changeover does not substantial impact on the load charging distribution for DG-1
and DG2. Thereafter, the spike for the VU is visualized at DG1 and DG2 station
which will be below the control value that resulted in disregarded once again. The
changes are only visible in ROCOF, but the recommended technique does not classify
them as UI. MG-1 gets obsoleted from the grid at t = 4 s. The transition causes a
ROCOF spike and a VU spike in PCC2. At PCC2, as demon- strated in Fig. 4,
ROCOF and VU spikes do not exceed the TV (d, e). This is predicated on the notion
that the approach not take UI into account, even microgrid were isolated from the
main grid for maintenance. UI occurs when the main grid terminal’s circuit breaker
(C.B.) opens at t = 4.5 s. As a result, PCC2 saw the unanticipated VU increase, as
illustrated in Fig. 4d. A trip signal is provided to PCC 2 at t= 4.517 s as a result of the
ROCOF exceeding the threshold value in the Figs. 4e and f, respectively. Therefore,
islanding may be efficiently seen in a short amount of time (about 17 ms).
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4 Conclusion

This study provides a unique HID approach for microgrids with inverter-based diesel
generators employing VU and ROCOF.

(a)

(b)

(c)

Fig. 4 PCC-2’s results at, a V (in p.u.) versus T (in sec.), b I (in p.u.) versus T, c F (Hz) versus T,
d VU w.r.t T, e ROCOF w.r.t T, f trip signal indication generated at PCC-2’s station CB
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(d)

(e)

(f)

Fig. 4 (continued)

The proposed hybrid approach is contrasted with the hybrid IDT based on the
literature’s frequency setpoint (FSP) andVU. This technique can distinguish between
islanded situations and load switching conditions, preventing spurious trips in the
event of load switching. When used with a multi-DG system, this method works as
intended. As a result, the suggested IDT performs better than PIDmethods with huge
NDZ and active methods with poor power quality and no potential for autonomous
operation in islandedmode.According on the simulation results, the suggested hybrid
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method’s islanding detection time is between 15 and 25 ms. The hybrid approach
employing VU and frequency setpoint was also shown to have an islanding detection
time of 0.21 s. MATLAB/Simulink is used to produce the simulation results.
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Life Cycle Assessment of a Hybrid Solar
Based Electric Vehicle Charging Station
Using SimaPro

Shaifali Sood, Rajesh Kumar, and N. K. Tiwari

1 Introduction

Electrification of the transport sector is an important step toward decarbonizing the
mobility sector since transportation is still largely dependent on fossil fuels. With
India looking to be carbon neutral before 2070, electrification of hard-to-abate indus-
tries will be required. Transportation is one such sector which needs to control green-
house gas (GHG) emissions in order to improve the air quality of the cities. Electric
vehicles (EV) replacing the internal combustion engine vehicles will help to control
the direct emissions from the fuel combustion in the engine. Yet it must be noted if
the charging of EVs is grid-dependent and the grid has a high-carbon content, and it
will turn out to be harmful instead of being environment friendly [1]. India should
choose renewable energy sources as the alternative to the grid for charging purposes
and solar energy is the easiest to deploy for charging purposes [2].

The cost competitiveness of renewables can be exploited at charging stations, and
India’s goal of establishing 450 gigawatts of renewable energy installed capacity by
2030 is vital in this too. The national electricity capacity still has 53% [3] electricity
from coal, of this, about 60% is from fossil fuels.

In this study, a charging station energy system is designed and analyzed based
on its technical, economic and environmental performance. To evaluate the envi-
ronmental performance of energy sources used in charging, the lifetime assessment
(LCA) should be carried out [4]. The LCA of the energy sources is carried out using
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the Indian codes [5, 6]. Similar studies [7, 8] have been conducted to understand the
effect of electricitymixes of the countries and the energy sources usingwell-to-wheel
and cradle-to-grave types of LCA for the EV charging in the past as well.

The objective of this study is to design an energy system to be used at an EVCS
for placement inside the city at office parking space so that EVs can be charged
without travelling for long distances. The charging pattern is also synonymous with
the sunlight hours and the usage hours of the workspace parking. The energy source
is hybrid (grid-based). In case of unavailability, it can draw power from the grid
instead of relying on generators. The study intends to cover the following objectives:

• To carry out technical and economic study for the energy source used in a charging
station which makes use of a hybrid system

• To understand the implication of deploying charging station inside city space and
maximizing solar integration into that

• To conduct an LCAof the energy sources to understand the environmental impacts
of choosing renewable sources over grid electricity

• To conduct sensitivity analysis for various scenarios of solar PV plant to
understand its impact on economics and the environment.

2 Methodology

2.1 Modelling a Microgrid for a Charging Station

Study region. The optimal location for a charging station depends on its placement
in the area and overall functioning. Additionally, one should consider the charging
time and the availability of sufficient space. This study primarily takes into account
daytime charging at office parking. The EV charging points at locations where people
tend to park their vehicles can save the time and effort of travelling to access public
EVCS. For renewable energy based charging stations, while selecting a site, the space
constraint are to be considered. The installation of solar PV panels will require ample
rooftop area. The selected office parking is in Noida at 28.45° northern latitude and
77.51° eastern longitude; the details are shown in Table 1.

Table 1 The details of the
study region for the charging
station

Particulars Details

City Noida

State Uttar Pradesh

Country India

Latitude and longitude 28.45° N 77.51° E

Maximum temperature 42.5 °C
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Load Assessment. The charging station is intended to charge at least ten four-
wheeled EVs in a day that are parked in an office building. The EV load demand is
modelled in HOMER Pro from an available study [9]. To forecast the daily demand,
the data from the study were taken using the GetData software and procured data was
extrapolated for charging ten EVs at the EVCS. The resulting load profile, as shown
in Fig. 1 peaked around 1 p.m., making a strong case for utilizing solar energy at
the EVCS to maximize the usage of renewable energy in charging applications and
decreasing the CO2 emissions from the new system.

The electric load is AC in the system as the EV batteries are charged using AC
current by the chargers. Also, the daily load was found sufficient for the ten cars
parked at the charging station, assuming their battery capacity to be 30 kWh. The
total daily demand and the peak demand can be seen in Fig. 2.
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Fig. 1 The load profile used for designing an energy system for the charging station is extrapolated
from a previous study

Fig. 2 The system architecture of one of the designs in HOMER
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Table 2 The cost for various components according to market prices including the government
subsidies

Component Capital Replacement O&M Unit

Solar |28,000 |28,000 |500 kW

Converter |5000 |3800 |115 kW

Battery |5000 |5000 |200 kWh

Systemcomponents. Solar PV.The systemutilizes a LONGiLR6-72HV-350Mwith
350Wp capacity with 72Mono-crystalline cells offering 18.1% efficiency of module
efficiency, as well as temperature coefficients and maximum operating temperature
of 0.410 and 45°C, respectively. The solar PV modules are to be placed on the top
of the roof of the charging station, which will be an office building. The interaction
of the various components in the system is shown in Fig. 2.

Converter. The converter for the energy system is SUNSYS PCS2 IM. This can
feature solar PV input, battery connection, grid or generator input, including the
load output. The efficiency for conversion from PV module to the load is 98% and
from the grid to load is 99%. The converter converts the solar PV plant DC to AC,
as shown in Fig. 2.

Battery storage. A lead-acid battery is featured in the preliminary system architecture
as the backup storage system at the charging station. The battery is from BAE Secure
PVSSolar 1.8 kWhwhose round trip efficiency is 85%.But sincemost of the charging
load is spread across the daytime very less backup is needed and there was cost
escalation due to including batteries, so it was not included in the winning system.

Economic assessment. The lifetime of the designed charging station energy, which
includes a solar PVplant is assumed to be 25 years asmost PVmanufacturers suggest.
For the study, the nominal discount rate of 12% [10], an expected inflation rate of
4.6% [11] and then an actual discount rate of interest of 7.07%was obtained, which is
used in the cost calculation of the software. As per the Central Electricity Authority,
the electricity rate is |6.5 and the grid sell-back rate for those supplying electricity
back to the grid is |2.25. In the study, additionally, the cost of various components
was taken into account according to the prevailing market prices in the country and
this is shown in Table 2.

2.2 Life Cycle Assessment of Microgrid

Goal, scope and functional unit. SimaPro 9.2.0.2 [12] softwarewas used to perform
the LCA to understand the effect of choosing the proposed case over other scenarios.
The functional unit is 1 kWhof charging electricity used to chargeEVs at the charging
station. The scope of the study was gate-to-gate, where only the operational stage
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of the energy systems was taken into account. The working stage for the solar PV
hybrid systemalso included installing the solar system in the study area.The scenarios
considered in the LCA are the same as shown in Table 3.

Life cycle inventory. The HOMER model was used as input at SimaPro primarily
for the life cycle inventory stage. The two cases, one with grid and the other with a
renewable energy system, were input into the software. To model the LCI for both
the energy sources, Indian grid and the solar PV plant, additional help was taken
from an earlier publication [13]. And the life cycle inventory of the electricity grid

Table 3 Life cycle inventory data used in SimaPro for conducting the LCA

Unit Quantity

Energy, electric vehicle charging kWh 1

Inputs from technosphere

Energy Source, grid kWh 0.277a

Energy Source, solar PV kWh 0.723a

Energy Source, grid kWh 1

Inputs from technosphere

Electricity, hard coal kWh 5.32 × 10−1

Electricity, natural gas kWh 6.30 × 10−2

Electricity, oil kWh 1.29 × 10−3

Electricity, hydro, reservoir, alpine region kWh 6.81 × 10−2

Electricity, hydro, reservoir, non-alpine region kWh 4.96 × 10−2

Electricity, hydro, run-of-river kWh 1.21 × 10−2

Electricity, nuclear, pressure water reactor kWh 1.71 × 10−2

Electricity, photovoltaic kWh 1.27 × 10−1

Electricity, wind kWh 1.01 × 10−1

Electricity, biomass, solid kWh 2.57 × 10−2

Electricity, from municipal waste incineration kWh 1.08 × 10−3

Energy source, solar PV kWh 1

Inputs from nature

Energy, solar, converted MJ 3.850

Inputs from technosphere

Tap water kg 0.00296

Photovoltaic plant installation p 6.70 × 10−6

Emissions to air

Water vapors m3 4.44 × 10−2

Output to technosphere

Wastewater m3 1.96 × 10−6

a Values correspond to scenario 1 in the energy system



94 S. Sood et al.

was from the year 2014 in the earlier publication, so it was adjusted to the year 2022
using data from Central Electricity Authority, India renewable dashboard [3]. The
dashboard includes that data on the total installed electricity generation capacity in
the country. Similarly, the life cycle inventory of solar PV was adjusted according
to the components identified as necessary in the HOMER system architecture of the
proposed case. The LCI data used in the software is shown in Table 3.

Life cycle impact assessment. One of the goals of this hybrid solar charging station
design is to address the environmental impacts coming from the operational phase
of the carbon-intensive grid in the country. The IMPACT 2002 + method from
the SimaPro software was chosen to carry out the analysis. This method has 15
midpoint categories transformed into four endpoint categories, including human
health, ecosystem quality, climate change, and resources. The human health category
has the unit of Disability-Adjusted Life Years (DALY), which shows the number of
years reduced from the average human lifetime indicating the reduced life quality.
The ecosystem quality indicates the effect on species other than humans. Its unit
PDF.m2.year shows terrestrial biodiversity loss where PDF is potentially disappeared
fraction. The climate change category is the most commonly used to understand the
impact of any new system or process. It converts all the gaseous emissions with
global warming potential into kg CO2 eq. The resources damage category indicates
the depletion of the resources.

3 Results and Discussions

3.1 Techno-economic Analysis Using Homer Pro

HOMER Pro simulations resulted in choosing the 84 kW solar PV system with a
65.8 kW converter. The proposed case indicated that a more significant amount of
energy is being used from the solar PV plant. When the sunlight goes out, the elec-
tricity purchased from the grid starts at the charging station. The energy generation
and purchase throughout the year can be seen in Table 4. The proposed case has
excess electricity of 1121 kWh per year.

Table 4 The summary for
electricity generated,
purchased and sold in a year

Component Production (kWh/year)

Solar PV 157,693

Grid purchases 56,942

Consumption (kWh/year)

Grid sales 80,544

AC load 127,020
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Table 5 The comparison of
energy systems simulated in
the Homer pro software

Scenario Base case Winning case

Solar PV Plant (kW) 0 84

Converter (kW) 0 65.8

NPC (million rupees) 9.56 5.00

Initial capital (million rupees) 0 2.68

O&M (million rupees) 0.82 0.20

LCOE (|/kWh) 6.50 2.10

Renewable fraction (%) 0 72.3

The economic assessment involves comparing the base case and the winning case,
which involves a solar PV plant. HOMER PRO provides the lowest NPC for 84 kW
solar PV system from the search space after performing the calculation. This is the
system which can be employed at least amount of investment and it will give the
LCOE of |2.10 as compared to the LCOE of |6.50 in the base case. The comparison
of the two systems is given in Table 5.

The economics of the winning case suggests that it will have a simple payback
period of 4.19 years where as the discounted payback will be 5.15 years that suggests
that in the remaining 19.85 years it will bring benefit to the charging point operator.
The internal rate of return (IRR) of 23.5% is obtained for the system. A greater
IRR % indicates that the system will deliver better returns and is, therefore, an
economically preferable choice. Also, the return on investment (ROI) of 19.3%. So,
it can be concluded that the system is both economically and technically feasible.
The lifetime of the designed charging station energy will have an annual worth of Rs.
393,663. And for sending the renewable energy into the grid it will achievemaximum
renewable penetration of 123% in its lifetime.

3.2 Environmental Analysis Using SimaPro

The interpretation stage of LCA presents the result in favour of the proposed case.
The usefulness of EVs is only if the carbon intensity of the grid is brought down and
with a small amount of renewable energy integration, this can’t be done. This can
only be achieved if there is the higher amount of renewable penetration in the grid.
The results from LCA indicate that the proposed case has a climate change 0.274 kg
CO2 eq per kWh energy produced as compared to the base case with climate change
value of 0.881 kg CO2 eq. It can cut down the total carbon dioxide emissions from
111,904 to 34,803 kg every year during the operation period of the charging, which
translates to 77,101 kg CO2 eq prevented from going into the atmosphere.

The LCA was not limited to the carbon dioxide emission but ranged to various
other damage categories of the IMPACT 2002 + method as shown in Table 6. The
damage categories help to understand the result and implication of the winning case
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Table 6 The LCIA results obtained for the two scenarios of energy system in SimaPro

Damage category Human health Ecosystem quality Climate change Resources

Unit DALY PDF * m2 * yr kg CO2 eq MJ primary

Base case 8.00E-07 0.1008 0.881 10.37

Winning case 2.70E-07 0.0481 0.274 3.33

better. The ecosystem quality improved by 52% in the winning case as compared to
base case. The human health damage category decreased 66% in the winning case
compared to the base case. Finally, the resource damage category that shows the
depletion has decreased by 7 MJ on choosing the winning system.

4 Conclusion

The requirement for electric vehicles will increase as efforts to decarbonize the
transportation sector grow. And the increasing use of electric vehicles will ramp up
the energy demand for the grid. In this study, a hybrid energy-powered charging
station is designed for Greater Noida. The system proposed for the location has a
renewable penetration of 72.3% and the difference in the NPC for the base and the
proposed case is Rs. 4.59 million, which shows its economic value. Such stations can
be utilized in any city parking whose rooftop has an ample amount of sunlight. The
amount of carbon dioxide that can be slashed by choosing the proposed case is 77
tons in a year. It can be concluded that the hybrid solar system will be beneficial both
economically and environmentally. Also, such a system will be useful in the coming
years for energy security in the nation as the fossil fuel prices in the international
market continue to grow. The NITI Ayog has already proposed to have a dense
charging station network powered by renewables that are high power or ultra-high
power for the inclusion of EVs in the mobility ecosystem. The charging station
located within the city will be particularly useful to work class travelling within the
city. Additionally, greater solar integration will bring and economic benefits. The
results clearly indicate that greater renewable integration brings down the overall
impacts on the energy system.
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Potential Assessment for Repowering
of Solar Projects in India

Saurabh Motiwala, Sudarshan Kumar, Ashish Kr. Sharma,
and Ishan Purohit

1 Introduction

India has recently achieved 100GWof installed capacity of power generation through
renewable energy technologies (RETs) in which solar power (~44 GW) and wind
power (~39 GW) segments were the key contributors [1]. The country has ambitious
plan of implementing 175 GW RE capacity for power generation by the end of year
2022. However, the target has also been upscaled 450 GW by 2030 [2]. This is one of
the largest expansions plans globally for renewable energy-based power generation.
In themeantime, Solar PV-based ‘clean power’ has also become the ‘cheapest power’
in India with the lowest tariff of 1.99 per kWh discovered in recent auctions [3]. It
is interesting to mention here that, the normative solar tariff during the inception
of National Solar Mission in India (2010) was around 17.91 per kWh. Even the
Government has to supported the solar power generation through various financial
and fiscal benefits. Similarly, the wind power sector has also shown strong southward
movement of tariffs ever since the competitive bidding process was adopted by the
Solar Energy Corporation of India (SECI) Ltd. Presently, levelized tariffs for solar
and wind power are seen to be in the close range of 2.0–2.50 per kWh.

Operational history of utility scale (MW capacity) solar power projects is about
10 years old, whereas the wind projects have been operating since 90’s in the country.
By the end of August 2021, the installed solar capacity in India has reached 44.3 GW
(38.8 GW utility scale ground mounted and 5.5 GW of rooftop solar) whereas wind
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Fig. 1 Status of wind and solar installations in India

power installations stand at 39.7 GW capacity. It is further reported that around
55 GW solar projects are in the pipeline. The Fig. 1 presents the infographics of
solar and wind power sector of India both for operational and pipeline capacities [4].

At present, the share of RE (solar and wind) in overall installed capacity5 (i.e., >
388 GW) is more than 20% contributing to 8.5% share in overall energy generation
in the country [5]. It is further known that most of the RE resources are intermittent
in the nature and therefore the power is not available at all times of the day. This is
the biggest difference between RE power and the conventional power. However, the
Government of India is trying to make RE power available 24 × 7 through several
policy and technology interventions, viz., competitive procurement of round-the-
clock (RTC) power, hybridization of wind and solar with battery storage, large scale
battery storage systems with grid, etc. The cost of battery energy storage system
(BESS) is gradually decreasing and, it is expected that theREpower can soon become
competitive to conventional thermal power with quite high level of dispatchability.

The allotment of RE projects in India has been largely based on the auctions,
which are called by several central and state agencies The intermediary procurement
agencies sign 25-years power purchase agreement (PPAs) with the Solar Project
Developers (SPD) at fixed tariff discovered through the auction process, and Power
Sale Agreements (PSAs) with the buying clients/DISCOMs at this tariff escalated by
the trading margin. Post 2016, wind power projects are also being procured through
competitive process as that for solar through SECI.

In the solar PPAs, the maximum and minimum energy generation and energy
feeding to grid is defined and accordingly SPDs design their projects in terms of
MWp. The projects which were installed in the initial phase, the nameplate allowed
capacity was relatively small and moderate (5–50 MW) the tariffs were high. On the
other hand, initial wind PPAswere not constrained in terms of such energy generation
perspective and as such there was no such limit for the amount of energy fed to the
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grid. With the introduction of procurement through competitive process, the wind
power contracts also saw cap for minimum and maximum energy generation.

As per the data published by Central Electricity Authority (CEA), from year 2016
onwards he average CUF for solar projects is in the range of 20–24%; however, for
wind projects it has been reported below 18% consistently [6].

Lower value of CUF compare to anticipated value, is directly related to the perfor-
manceof the power project and it’s a serious concern not only to the project developers
but also to respective lenders. Also, it means the underutilization of the evacuation
infrastructure especially dedicated to transport the energy. This situation has neces-
sitated to explore ways to enhance the energy generation of the operational solar PV
and wind power projects installed in India through re-powering This article deals
with the repowering scope of solar and wind projects in India, through assessing the
potential.

2 Scope of Solar Repowering in India

Through review of the portfolio of several project developers and reports available
in public domain, it has been observed that there is significant gap in the estimated
vs actual energy generation in the solar PV projects in India. Projects above 50 or
100MWcapacity are underperforming as compared to smaller capacity projects. The
projects implemented in early phases of NSM (from 2010–2013) have been analyzed
by collecting energy generation data from several sources [7] As an example, Figs. 2
and 3 present the energy generation pattern of few representative projects under the
National Solar Mission Phase-I Batch-I2 and Phase II Batch I3 from commissioning.

Fig. 2 Energy generation of representative projects under NSM Phase I
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Fig. 3 Energy generation of representative projects under NSM Phase II (VGF)

This might be due to limitation of developers to manage operation and main-
tenance of larger capacity projects or even their inability to source finance for
re-powering of those projects.

Thus, instead of replacing old technologies with new ones, the energy yield of
a utility-scale solar or wind power project could be increased and optimized by
adding a solar PV capacity up to a certain range. The nameplate capacity of solar
PV modules is essentially the capacity at standard test conditions (STC), despite it
is well established that the modules inherently possess a quality of degradation [8].
Thus, every year there is a deration in the solar plant capacity due to degradation and
other operational factors. To overcome this issue, it is suggested that since the ground
conditions are different than STC conditions, it is possible to install additional solar
capacity (DC)behind the inverters (AC) tomakeup for the reduced energygeneration.

Re-powering is an approach that addresses operational RE projects under
performance-related issues. Besides, it optimizes land use through more efficient
technologies and adequately utilizes power evacuation and transmission infrastruc-
ture of the operating projects as per the existing PPA requirements. In this context,
present study exploring the market potential of re-powering utility-scale solar PV
power projects in India. Once completed, the study could potentially be applied to
assess the techno-economic feasibility of such approach.

In India, utility-scale solar PV projects have power purchase agreements (PPAs)
at a fixed tariff for 25 years. This tariff is determined through competitive bidding
by off-takers (such as SECI, NVVN, Discoms, etc.). Repowering potential of solar
projects could be assessed through two approaches (i) Repowering up to PPA limit
and (ii) Repowering up to technical limits.
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Fig. 4 Approaches of repowering

2.1 Re-powering Within PPA Limits

This approach is mainly for solar PV projects in which the capacity gap (and energy
as well) due to degradation and plant unavailability could be fulfilled by installing
additional DC capacity. In the approach of repowering, the additional capacity would
be in line with the maximum allowed limit of energy generation as per the PPA
(Fig. 4).

2.2 Re-powering up to Technical Limits

In case of solar PV projects, since the inception of their commercial deployment there
have been several technological advancements especially in solar PVmodules (crys-
talline to PERC, higher efficiency, and Wp rating) and inverters (central to string).
For instance, about DC and AC, project developers have gradually increased their
overloading capacities 12. By 2016, overloading of solar projects was in the range
of 25–30%, and at present, several developers design projects with 55–60% over-
loading. Since 2019–20, mostly the industry has adopted at least 50% overloading.
The reasons to increase the overloading capacity include lower tariffs, technical
flexibility, reduced cost, higher upper limit of energy sale as per PPAs, etc.

Based on the discussions with Tier-1 solar PV module suppliers and inverter
manufacturers, it was observed that it is possible to overload solar PV projects up to
75–80% in Indiawith optimization of clipping losses and respective techno-economic
parameters. For re-powering, operational projects with 0–30% overloading could be
targeted to enhance energy generation to the best possible extent.

Up to the maximum PPA energy limits, the re-powered energy could be sold at a
fixed tariff to off-takers, however, selling re-powered energy above PPA limits would
require a separate (or amendment in the existing PPAs) regulatory framework.
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3 Methodology Adopted for Assessing the Repowering
Potential

Solar energy projects performed on variable energy resource, which comprises
inherent intermittency and operational challenges. It has been observed through the
technical assessment of a large capacity of utility-scale solar projects that there, is
considerable difference between estimated energy (at project design stage) and actual
generation, which might be caused by several reasons such as resource inadequacy,
inter-annual variability, technical and design issue, operation and maintenance issue,
grid availability, etc. In industrial practices, solar PV projects are financed at P50
level of energy generation; however, wind projects are at P 90 level of probability.
The project life of solar PV is essentially considered as 25 years. There is inherent
property of degradation in solar PV technology, which derates the capacity of the
plant continuously and reduces the energy generation accordingly. Similarly, in wind
projects wind resource makes maximum impact on energy generation. Considering
the latest portfolio of utility-scale solar PV (36.8 GW) in the country by second
quarter of year 2021 the potential of re-powering of solar has been estimated. The
methodology adopted for the same is illustrated in Fig. 5.

Fig. 5 Methodology adopted for estimating the repowering potential
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3.1 Identification of State Wise Locations and Data of Solar
PV Projects in India

Tobeginwith, statewise locations of solar power projects in India have been identifies
and validated throughmultiple sources. Further, data on the installed capacity of these
projects, year of installation, name of solar project developers, off takers etc. have
been collected. The other key aspects considered have been taken for estimating the
potential of re-powering of solar projects in India are listed below.

3.2 Module Degradation

Degradation is an inherent property of solar PV modules made of any technology
crystalline or thin film). This may involve either a gradual reduction in the output
power of a PV module over time or an overall reduction in power due to failure of
an individual solar cell in the module.

Degradation depends on several manufacturing, meteorological and operational
parameters hence no manufacturer essentially guarantees it. However, there is
warrantee associated with the solar PV modules, which reflects how this param-
eter may impact plant performance (Fig. 6). For potential estimation, in line with
the technical datasheet of TIER-1 solar PV modules and best industry practices the
following considerations have been made to incorporate degradation [8] in potential
assessment:

• 2.5% at the end of the first year (which includes LID + first year module
degradation)

• 0.8%/year up to first 10 years
• 0.7%/year for the next 15 years (i.e., 11th year onwards).
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Fig. 6 Impact of module degradation on plant performance
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3.3 Plant Availability

Plant availability depends on a lot of O&M parameters and protocol/practices of
preventive and operative maintenances. For older projects (say from 2010–14)—
even if the guaranteed plant availability by the O&M contractor is more than 96%
and up to 98.5%, the key issue lies with the availability of spare parts. As of today,
in these projects, it makes more sense to replace the entire equipment rather than
looking for spare parts (e.g., replacing an existing inverter with the latest one instead
of using substandard spare parts for existing inverters). The developers comprising
in-house EPC offer very aggressive plant availability guarantees. Based on the review
of various O&Mcontracts and guaranteed plant availability by the O&Mcontractors,
the following plant availability values have been considered:

• 96.5% for 2010–12 (means 3.5% loss)
• 97.0% for 2013–14 (means 3.0% loss)
• 98.0% for 2015–16 (means 2.0% loss)
• 98.5% for 2017–2018 (means 1.5% loss).

Apart from plant availability, grid-availability also makes significant impact on
annual generation from the projects especially, the projects connected to grids with
STUs (33–220kV level),where grid availability is 97–99.5%.Wehavenot considered
grid availability for estimation of the potential as this is beyond the control of the
developer or O&M contractor.

3.4 Overloading (DC-AC Ratio)

In inception phase of 2010–12, most of the solar projects have been implemented
with equal or minimum (~5%) DC to AC ratio due to higher cost of panels, policy
restriction, PPA limitations, technology limits, etc. With the increased limits of
salable energy to off-taker, technological advancements, and reduced cost of solar
PV modules, etc., the developers have gradually increased DC to AC ratio from 10–
30% to 50–55% or more. The key reason for high DC capacity is due to the fact
that standard test conditions of solar PV modules, which are essentially laboratory
conditions and not actual ground conditions. In the assessment, the DC capacity has
been quantified through tracking ofmultiple utility scale solar PV projects from 2010
to 2021 of various capacities.
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3.5 Sensitivity Assessment

From an investment and bankability perspective, utility-scale solar projects are struc-
tured and financed at P50 level of energy generation.6 There are several uncertain-
ties associated (resource, design, operation, etc.) with the projects which cause an
error of around 6–9% w.r.t P50 values. Solar resource database comprises maximum
uncertainty in energy yield estimation. It has been observed that projects devel-
oped in India are not based on the long-term ground (measured) data. Mostly, their
energy yields have been assessed using long-term average satellite databases, viz.,
Meteonorm7.1/7.2, and SolarGIS, etc. It has been observed that the projects commis-
sioned till the year 2015–16 are mainly based on Meteonorm 7.1 and 7.2 database,
which has an inherent uncertainty of 7–8%. From 2016 onwards, most of the devel-
opers are using Solar GIS satellite data, which has comparatively lower uncertainty
in the range of 4–5%. Boundaries for sensitivity analysis have been considered in
the range P50 (best case scenario) to P90 (worst case scenario). Most of the solar PV
projects are currently operating in between P50 and P99 range.

• Total uncertainty 8.75% has been considered for the projects of 2010–2016 w.r.t.
Meteonorm

• Total uncertainty 6.35% has been considered for the projects of 2017–2021 w.r.t.
Solar GIS.

• The difference between P50 and P99 values are in the range of 15–20% depending
on the database. Considering the above range of P values the re-powering potential
has been estimated.

4 Results and Discussion

Using the methodology adopted in Sect. 3, repowering potential of solar energy
projects in India has been estimated. Table 1 presents year-wise potential of re-
powering solar PV projects in India.

It has been observed that the potential of re-powering solar PV projects is around
2.89 GWp capacity in the country till 2021; however, it is around 973 MWp till
the year 2016. However, considering the input parameter’s of sensitivity analysis
mentioned in Sect. 3.5. The difference between P50 and P99 values are in the range
of 15–20% depending on the database. Considering the above range of P values the
re-powering potential has been estimated and presented in Fig. 7.

From the assessment of annual capacity growth and key considerations of the
derating of the capacity the potential of re-powering of solar power projects in India
has been estimated from 2.9 to 3.4 GWp in the range of P50–P99. From the perfor-
mance assessment of several operational projects, it has been found that mostly the
projects perform in between P50 and P75, hence around 3.0 GWp potential could be
considered to proceed.
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Table 1 Potential of re-powering of solar projects in India

CoD
year

Cumulative
capacity
(MW)

Annual
Inst.
capacity
(MW)

Overloading
(DC:AC)

Annual
inst.
capacity
(MWp)

Re-powering
potential
(MWp)

PPA tariff
range
(INR/kWh)

2010 64 5 5 5 1 10.95–12.76

2011 260 196 5 206 26 7.49–9.44

2012 1251 991 10 1090 132 7.00–12.45

2013 2303 1052 15 1210 131 5.50–8.01

2014 3032 729 20 875 88 6.46–6.71

2015 4609 1577 25 1971 164 5.00–7.02

2016 8885 4276 30 5559 422 4.34–5.20

2017 17,586 8702 30 11,312 715 2.44–3.47

2018 23,946 6360 40 8904 495 2.33–3.48

2019 31,371 7424 45 10,765 461 2.48–3.02

2020 33,986 2616 50 3923 118 1.99–3.99

2021 37,900 3914 55 6066 133 2.20–2.47

Total 37,900 51,948 2894

Fig. 7 Re-powering potential variation from P50 to P90 levels

State wise potential of solar repowering has also been presented in Table 2. For
which latest installed capacity data (end of July 2021) of various states have been
considered. This data provides AC capacities installed in each state. A weighted
average overloading ratio has been calculated on the entire installed AC capacity
based on the yearly overloading ratio values presented in Table. A weighted average
overloading ratio of 40% has been obtained from the above analysis and same value
has been applied to arrive at installed capacity (MWp) for each state. Table 2 presents
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Table 2 Potential of re-powering of solar projects in Indian states—Top 10

S. no State Inst. capacity (MW) Inst. capacity (MWp) Re-powering potential
(MWp)

1 Karnataka 7377 10,328 537

2 Rajasthan 6557 9180 477

3 Andhra Pradesh 4178 5849 304

4 Tamil Nadu 4003 5604 291

5 Telangana 3616 5062 263

6 Gujarat 3429 4801 250

7 Madhya Pradesh 2497 3496 182

8 Maharashtra 1939 2714 141

9 Uttar Pradesh 1795 2512 131

10 Punjab 930 1302 68

the 10 states for re-powering arranged in descending order of their respective poten-
tials. Based on the analysis, Karnataka has the highest re-powering potential in
India.

Further, in the perspective of potential tapping and implementation of repowering
at ground level off-taker and SPDwise potential has also been assessed. To assess the
same from the available database of commissioned solar PV projects, DISCOM-wise
cumulative AC capacity data has been consolidated as presented in Table 3.

SECI and NTPC projects are spread across several states. For example, in the
state of Rajasthan more capacity has been installed under Central schemes and less
through the state policy. The rating of the Discom may give clarity for decision
makers to develop bankable project considering minimum off-taker risk (Table 4).

Table 5 presents a case of overload commissioned projects up to 55%, which is
the current practice in India. This table suggests a huge potential for DC capacity
addition.

It has been determined that if the existing solar capacity of India could be repow-
ered till the best technical limits (as per current practices) the cumulative potential
of re-powering is above 6.5 GWp.

5 Concluding Remarks

• Using most conservative approach the potential of re-powering of solar PV
projects has been estimated around 3 GWp in India just to meet the gap of PPA.
In case the re-powering is targeted till the technical limits (or as per the recent
practices) of the equipment the potential may be 6–9 GWp.
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Table 3 Potential of re-powering of solar projects w.r.t. primary off-takers—Top 10

S. no Primary
off-taker

Inst. capacity
(MW)

Inst. capacity
(MWp)

Re-powering
potential
(MWp)

Rating Rating agency

1 SECI 5010 7014 365 AAA

2 NTPC 4040 5656 294 AAA

3
(etc.)

Karnataka,
BESCOM

3845 5384 280 B+ ICRA

4 Tamil Nadu,
TNGDC

3439 4815 250 C ICRA

5 Gujarat,
GUVNL

2821 3950 205 A+ ICRA

6 Telangana,
SPDCTL

2635 3689 192 B CARE

7
APL

Andhra
Pradesh,
SPCD

1778 2489 129 B CARE

8 Maharashtra,
MSEDCL

1573 2203 115 A ICRA

9 Uttar
Pradesh,
PVVNL

1457 2039 106 B+ CARE

10 Madhya
Pradesh,
MPPMC

1241 1737 90 B+ CARE

11 Rajasthan,
RVPNL

1128 1579 82 C+ CARE

12 Punjab,
PSPCL

906 1268 66 A ICRA

• The potential project developers for solar re-powering are Adani/Total, ReNew
Power, Azure Power, Tata Power, Acme, and SECI, NTPC, and the discoms of
Karnataka, Tamil Nadu and Gujarat are the key off takers.

• In case of solar PV projects—the repowered energy up to the limits of PPAs is
possible to sell power to the existing off taker at same PPA rate. However, the
surplus/excess energy above the PPA cap requires separate provisions in PPAs to
sell in the third parties/merchant market.

• Lots of business models could be explored considering the present regulatory
regime and required amendments, which may open the sector of re-powering
solar PV and wind power projects.
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Table 4 Potential of re-powering of solar projects—Top 12 project developers

S. No Solar project
developer (SPD)

Inst. capacity
(MW)

Inst. capacity
(MWp)

Re-powering potential (MWp)
at

P50 P75 P90 P99

1 ReNew 2546 3564 185 194 202 215

2 Adani 2410 3374 175 184 191 204

3 Adani-total JV 2373 3322 173 181 188 201

4 Azure power 2027 2838 148 155 161 172

5 Tata power 1880 2632 137 143 149 159

6 Acme 1803 2524 131 138 143 153

7 Greenko 1484 2077 108 113 118 126

8 NLC 1349 1889 98 103 107 114

9 Avaada 1152 1613 84 88 91 97

10 NTPC 964 1350 70 74 77 82

11 Hero future energy 838 1173 61 64 67 71

12 Sprng energy 714 1000 52 54 57 60

13 Mahindra 650 910 47 50 52 55

Table 5 Potential of re-powering—maximum technical limits

CoD year Annual inst.
capacity (MW)

Annual inst.
capacity
(MWp)

Overloading
(DC:AC)

Add. DC
overloading

Additional DC
capacity (MWp)

2010 5 5 5 50 3

2011 196 206 5 50 98

2012 991 1090 10 45 446

2013 1052 1210 15 40 421

2014 729 875 20 35 255

2015 1577 1971 25 30 473

2016 4276 5559 30 25 1069

2017 8702 11,312 30 25 2175

2018 6360 8904 40 15 954

2019 7424 10,765 45 10 742

2020 2616 3923 50 5 131

Total 33,928 45,820 6767
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Modelling and Economic Optimization
of Residential Load Based Microgrid
in HOMER Pro by Dispatch Strategy

Smruti Ranjan Behera , Jyoti Ranjan Baral , and Twinkle Kisku

1 Introduction

Renewable energy investment and adoption of microgrids are surging in the recent
years. Countries like China is investing in the renewable sector which is the world’s
highest and followed by United States and Japan. In this regard, a hybrid renewable
energy system will be a cost-effective and preferred method of supplying electricity.
In a study byMiah et al. [1] a stochastic method is used to achieve the least expensive
configuration. The strategy’s efficacy is determined by comparing themodel’s results
to those of a green-house where an enhancement model isn’t applied to it under the
same experiment parameters.

Swarnakar et al. [2] considered a technical university in Rajasthan, India and
optimized the microgrid within the university using HOMER Pro also performing
several sensitivity analyses.

Singla et al. [3] studied the HOMER Pro software for designing micro-grids using
various energy resources. The author briefs about the methodology used by HOMER
Pro software including resource extraction, addition of components and sensitivity
analysis of the design.

Dutta et al. [4] modelled and performed cost optimization on an existing micro-
hydro and other renewable sources available for a locality in Nepal.

The microgrid design is being done in HOMER. This software is developed by
NREL, United States. Softwares like HOMER, RETScreen, HYBRID2 and iHOGA
are widely used for hybrid energy resources optimization. Other software tools used
for HES either have some limitations in the range of component, compute slow or
do not provide efficient economic optimization. HYBRID2 unsuitable for economic
andmulti-objective optimization. iHOGA is a hybrid optimizer written in C++ that is
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used to determine the best size for hybrid renewable energy systems. Over all among
these softwares, HOMER has the advantage that it provides the option to simulate
wider range of components. HOMER is the most extensively used and useful. It
provides a comprehensive list of components to optimize as well as findings in the
form of technical, environmental, and cost—benefit analysis. It’s simple to use and
processes data quickly. Tables and graphs are used to display the results [5].

2 Methodology

The process is started with electric load estimation. Next, the resources for the partic-
ular region are collected and this data will be helpful during the optimization and
analysis process. For the best hybrid energy system setup, a number of economic
studies or optimizations are used. Using the HOMER Pro optimization tool, the
micro-grid design is simulated and results are generated. Optimum use of available
resources helps to keep production costs of energy generation as low as possible as
shown in Fig. 1.

2.1 Micro-grid Design

Here, the sizing of the micro-grid for a residence in a city on considering an annual
load increment using HOMER Pro. In this work, the components of micro-grid
taken into consideration are AC load (residential), PV modules, diesel generator
and battery energy storage system. The selected location is Bhubaneswar, Odisha,
India (20.2961° N, 85.8245° E). The synthetic data for residence group load profile
available in the software was taken into account. There is a 20.47 kW peak load
linked to this location’s residences, and daily usage is 110.26 kWh.

2.2 Collecting Resources

Temperature data: The temperature data is downloaded from HOMER Pro under
the resources tab. HOMERgets the data fromNASAprediction ofWorldwide Energy
Resources (POWER) database. The data consists of monthly average air temperature

Electric load 
estimation Resources Components Sensitivity 

analysis
Optimized 

result

Fig. 1 Process flow
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Fig. 2 Monthly average air temperature for the proposed location

Fig. 3 Monthly average solar global horizontal irradiance

over 30-years period (Jan 1984–Dec 2013). Based on their introduction site, PV
modules are evaluated at 25°C (STC), higher temperatures can adversely affect yield
by 10–25% [6]. As a result, while deciding on a site and solar panel configuration,
temperature is a critical consideration as shown in Fig. 2.

The annual average (°C) is found to be 26.69.

Solar GHI data: HOMER gets the solar irradiance data from National Renewable
Energy Laboratory database. The data consists of monthly average solar global hori-
zontal irradiance data. Keeping all parameters constant, higher the irradiance, higher
the PV output current, thus more power is generated as shown in Fig. 3.

2.3 Load Profile

Additionally, HOMER Pro provides us with a daily and annual load profile for our
chosen area. The month of June is predicted to be the peak in this study. Evenings
are considered the peak hours of the day in the daily load profile as shown in Fig. 4.
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Fig. 4 Daily load profile

2.4 Simulation Software

When utilizing HOMER Pro to model a solar-powered system, inputs on the techno-
logical alternatives, costs of the components, and available resources must be given.
Every year, the program calculates the energy balance between the potential quantity
of energy generated and demand by simulating a huge number of various framework
configurations. HOMER pro then calculates the flow of power between the archi-
tecture components. It is possible to configure HOMER such that it optimizes the
system based on a variety of factors, including the size of the system.

2.5 Dispatch Strategies

Cycle charging

When a generator is needed, it runs at maximum capacity, and any excess power
is used to recharge the battery bank. When renewable energy sources are few or
nonexistent, the most effective charging strategy is to use cycle charging. In the table
of results, “CC” stands for “cycle charging” [7].

Load Following

When a generator is required, it generates just enough electricity to fulfil the demand
under the Load Following method. In systems with a large amount of renewable
energy, load following is usually the best option.

MATLAB Link

An algorithm for HOMER Pro dispatch may be written using the HOMER Pro
MATLAB Link. During the simulation, HOMER communicates with the MATLAB
program to execute the specified MATLAB functions [7].

MATLAB Link controller is implemented in the work and a custom dispatch
strategy is written. List of simulation parameters [8] are used to write the MATLAB
script. According to the strategy, first the load requirement is fulfilled by the power
available from PV. If excess power is left, it is utilized in charging the battery. If there
is any unmet power, it is tried to be fulfilled by battery. If battery is unable to fulfill
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Fig. 5 Dispatch strategy
flowchart

the demand, the diesel generator comes into play and meet the required demand as
shown in Fig. 5.

3 Model and Simulation

Ahybridmicrogrid ismodelled inHOMERProconsistingof diesel generator, battery,
PV and converter. The DC bus is used to link the battery and PV, whereas the AC
bus is used to connect the load and diesel generator. The converter is connected to
both AC and DC bus. Batteries and diesel generator will be used as reserve elements.
The cost of each component is given as input to HOMER Pro. The microgrid system
taken into consideration is shown in Fig. 6.
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Fig. 6 Micro-grid
connection schematic model

Table 1 Comparison of results from different controllers

Dispatch PV
(kW)

Battery
(kWh)

Converter
(kW)

Gen10
(kW)

NPC (|) COE
(|)

Ren
frac
(%)

Fuel
(L/yr.)

MATLAB
link

14.3 14 9.10 10 1,82,32,060 35.46 38.1 9878

Load
following

14.8 15 10.00 10 1,81,52,682 35.69 35.0 10,087

Cycle
charging

14.2 15 9.95 10 1,81,00,691 35.38 30.1 10,166

4 Results and Discussions

4.1 Optimization Results Using Different Controllers

From Table 1. it is noted that the price of energy is |35.46 for MATLAB link, |35.69
using Load Following and |35.38 using Cycle Charging. In Cycle Charging, the fuel
used is more than that of Load Following because it uses Generator at full power.

WhereasMATLABLink provides the option to gowith a custom dispatch strategy
with near about similar cost of energy.

4.2 Optimization Results of MATLAB Link Controller

Figure 7 shows the hourly details from all power sources against the load. During
the day time, when the PV output is good enough, it is used to serve the load. During
night, when there is no PV output, battery and diesel generator are used together to
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Fig. 7 Time series plot for a day

meet the load demand. As it is a residential load, the load is peak during the evening.
As there is no PV output in the evening, most of the load is met by diesel generator.

4.3 SOC of the Battery

Figure 8 shows the state of charge of the battery in a day for a whole year. The graph
clearly shows that the battery is being used least during peak months (i.e., around
180th day of the year) at the peak hours (10.00–14.00 h). The state of charge of
battery during these hours is maximum indicating least usage further indicating that
most of the load requirement is met by the solar PV system. This makes the system
efficient.

Fig. 8 SOC data throughout the year
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Fig. 9 Renewable penetration throughout the year

4.4 Renewable Energy Sources Output

Figure 9 shows the amount of load met by renewable energy (i.e. renewable output
divided by load) in a day over a year. The graph clearly shows that the value of
renewable output/load is greater than 100% during the day time which means the
load is completely met by renewable sources. For the rest of the day, it is less than
100 percent. It implies that renewable resources are not able to meet the load. Other
sources contribute to the production of energy to meet the demand.

From Table 1 the renewable energy resource penetration in our proposed system
is around 38%.

5 Conclusion

The aimof this paper is to design a sustainable and economicalmicro-grid for residen-
tial purpose in Bhubaneswar, Odisha using HOMER PRO software. The renewable
resource used in this paper is solar energy. It can vary depending upon the loca-
tion and availability of resources over there. The total load demand is 40,245 kWh,
production of energy is 43,282 kWh and cost of the proposed system is |1,82,32,060
while that of base system is |2,17,26,659. We are able to mitigate the load demand
using the design proposed under a reasonable budget. Thismakes our system efficient
and practically usable. Three dispatch strategies have been explained which includes
cycle charging, load following and MATLAB link. We can write our own dispatch
strategies and make the design more feasible and sustainable.
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Conductance Factor-Based Control
of Solar Photo-Voltaic Fed Shunt Active
Power Filter

Ravi Kumar Majji , Jyoti Prakash Mishra , and Ashish A. Dongre

1 Introduction

In recent times, the development and deployment of solar photo-voltaic (SPV)-based
microgrids are gaining significant attention particularly in rural electrification [1].
However, in practice, the power generated from the SPV-based microgrids is intrin-
sically unreliable due to unpredictable environmental and site conditions [2]. It is
known fact that the power electronic converters plays a vital role in the effective con-
trol of SPV-based microgrids for reliable and stable operation along with appropriate
maximumpower point tracking (MPPT) algorithms [3]. These power conversion sys-
tems, however, are classified as nonlinear loads for the utility system. They produce
significant harmonics and reactive currents, which interact with the line impedance,
resulting in harmonic voltages and affecting other loads connected to the same point
of common coupling (PCC) [4]. Shunt active power filter (SAPF) has been con-
sidered to overcome these issues since it offers a higher capacity of filtering and
control flexibility. Indeed, SPV fed SAPF’s are widely used as better choice since
they are designed to fed the real power into the utility system while providing the
multi-functional services at PCC [5]. Hence, SPV fed SAPF’s may be termed as
multi-functional-SAPF’s (MF-SAPF’s). Furthermore, MF-SAPF’s can be operated
in grid-injection or grid supplying mode of operation.
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It is essential to design a flexible and effective control strategy for the appropriate
operation of MF-SAPF [6]. The MF-SAPF’s control strategy includes the reference
current estimation and current tracking controller for the converter. In the literature,
various reference current estimation techniques are reported to improve the control
flexibility of the MF-SAPF. The conservative power theory [7], synchronous refer-
ence frame (SRF) theory [8], instantaneous reactive power theory (IRPT), adaptive
theory, unit vector template (UVT) controllers, and second-order generalised inte-
grator (SOGI)-based theory have all been used to improve the characteristics of
MF-SAPF. Low-pass filters (LPFs) and phase-locked loops (PLLs) for grid synchro-
nization are essential components of SRF, IRPT, UVT controllers, and other classic
controllers. Because of LPF and PLL blocks, the estimated signals are delayed [9].
Under a distorted utility voltage scenario with IRPT, the MF-SAPF’s performance
degrades. In [10], a conductance factor (CF)-based control is employed in three-phase
utility with simplified computations. The supply current in the CF-based control is
the sum of a fundamental active component of load current and the current required
to maintain a constant dc-link capacitor voltage.

In the literature many studies has been devoted to the design and develop-
ment of current tracking controllers employed for MF-SAPF’s. Such controllers are
proportional-integral (PI), hysteresis control, sliding mode, back-stepping [11], and
Lyapunov function (LF) controllerswith associatedmodulation stage. Amajor defect
in the sliding-mode control method is the design of the sliding surface in a dynamic
system. If the surface design is inadequate, the performance in dynamic situations
suffers. As a result, this control method is ineffective in dynamic situations. The PI
controllers are employed generally in the MF-SAPF applications because of their
simplicity, readily available, and ease of implementation. However, the performance
of such controllers has not acceptable under source-side variations and dynamic load-
ing scenario. Further, PI controllers are designed and tuned based on the equivalent
linear model [8], wherein the MF-SAPF’s include nonlinear dynamics. Further, the
modulation stage in conventional control strategy causes control delays. In recent
years, several research efforts on a finite control set-model predictive control (FCS-
MPC) have experienced rapid growth, and prove that this controller is effectively
tracking the estimated reference current/voltage/torque in various power electronic
converter applications [12–14]. This is because an FCS-MPC is simple to implement,
incorporatesmodel dynamics into the control algorithm, provides better dynamic and
steady-state performance, and allows constraints to be easily incorporated into the
cost function. In this context, in present work an FCS-MPC is employed for refer-
ence current tracking by the associated converters under solar irradiance variation
and dynamic loading conditions. The following are the primary contributions of the
present study:

– The SPV is connected to an MF-SAPF for improved power quality and active
power injection into the distribution load connected at PCC.

– DC-link voltage regulation is analyzed with LF-based nonlinear controller.
– The performance of the SPV fedMF-SAPF is analyzedwithCF-basedFCS-MPCC
under variation in solar irradiance and dynamic loading conditions.
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Fig. 1 SPV fed shunt active power filter in single-phase utility system

The rest of the paper is structured as follows:The systemconfiguration is described
in Sect. 2, followed by the MF-SAPF and SPVC dynamics in Sect. 3. The scheme
of control strategy is described in Sect. 4. In Sect. 5, results and discussions under
dynamic operating conditions are illustrated. Finally, the conclusions of the study
are briefly summarized in Sect. 6.

2 System Configuration

Figure 1 depicts the configuration of solar photo-voltaic (SPV) fed shunt active power
filter (SAPF) in single-phase utility system. The utility system voltage and current
are represented with vs and is respectively. The line impedance is represented with
Rs and Ls . The SAPF is a H-bridge voltage source inverter connected at PCC through
filter r f and L f . Since, SAPF can be controlled to provide multifunctional services,
it is known as multifunctional-SAPF (MF-SAPF). The output current and voltage of
theMF-SAPF are represented with i f and vinv respectively. The SPV generation unit
is coupled at the common dc-link through dc-dc boost converter as shown, resulting
in a double stage configuration. The filter parameters for SPV converter (SPVC) is
represented as rpv and L pv . Similarly, Vpv and i pv represents the voltage and current
of the SPV unit. The dc-link capacitance is represented as Cdc with voltage Vdc. The
distribution load considered at point of common coupling (PCC) is the combination
of linear (R–L) and diode bridge rectifier (DBR), a nonlinear load. For the purpose of
dynamic loading, linear load is connected using the switch swl . The voltage at PCC,
voltage and current at distribution load are represented as vpcc, vl , and il respectively.

3 Converter Dynamics

The dynamics for MF-SAPF and SPVC are provide in the continuous and discrete-
time domain as follows.
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3.1 MF-SAPF Dynamics

From Fig. 1, owing to theMF-SAPF topology, the expression for the inductor current
as a function of switching control variable (S) usingKirchhoff’s voltage law is defined
as follows:

L f
di f
dt

= S ∗ Vdc − r f i f − vpcc (1)

where S depends on switching states of theMF-SAPF and following complementary
action for converter-leg, thus, it can be defined as

S =
{

1 if S1 and S4 is ON
− 1 if S2 and S3 is ON

(2)

Similarly, using Kirchhoff’s current law, the current at PCC is defined as

is + i f − il = 0 (3)

Based on Eqs. (1) and (3), the required discrete dynamics for the MF-SAPF
at t = k + 1 instant with sampling-time Ts using forward-Euler approximation are
expressed as follows:

i f (k + 1) ≈ i f (k) + Ts
L f

[
vs(k) − r f i f (k) − S ∗ Vdc

]
(4)

is(k + 1) ≈ il(k + 1) − i f (k + 1) (5)

Equation (5) is the predicted utility system current to implement the indirect
current control approach.

3.2 SPVC Dynamics

The SPV generation unit consists of dc-dc boost converter integrated at the common
dc-link of the system as shown in Fig. 1. The SPVC is used to regulate the SPV
output with the help of a incremental conductance method-based maximum power
point tracking (MPPT) algorithm [6]. The MPPT output current (impp) according to
variation in solar irradiance is considered as reference current (i pvre f ) for SPVC.Now
the expression for the inductor current as a function of switching control variable
(Sspv) is defined as follows:

di pv
dt

= Vpv

L pv
− rpvi pv

L pv
− [

1 − Spv
] ∗ Vdc

L pv
(6)
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Then Eq. (6) in discrete form using forward Euler approximation for sampling
time Ts at t = k + 1 instant can be expressed as

i pv(k + 1) ≈ i pv(k) + Ts
L pv

[
Vpv(k) − rpvi pv(k) − [

1 − Spv
]
Vdc

]
(7)

4 Control Strategy

4.1 Reference Current Estimation

In this study, the CF-based reference current estimation technique is realized to
accomplish the indirect current control of MF-SAPF. Figure 2a depicts the CF based
reference current estimation. Assume that the voltage at PCC is distortion free and
sinusoidal. Thus, based on pq-theory [14], vpcc is considered as α-axis component
and the β-axis component is obtained by π /2 lag of vpcc. Similarly, the α and β-axis
components of load current are obtained as shown in Fig. 2a. Then the single-phase
instantaneous load power is calculated as presented. However, for the purpose of
indirect current control approach, the average loadpower (pl f ) due to the fundamental
component is obtained using low pass filter (LPF).

LF-based dc-link voltage regulator: Generally, in conventional control approach
PI controller is employed to generate the loss component for MF-SAPF. However,
these are linear and the controlled system is nonlinear. Further, the performance of
MF-SAPF is deteriorated under dynamic operating conditions with PI. The direct
Lyapunov approach is widely used to determine the behavior of dynamic systems
such as MF-SAPF about there equilibrium point, which is described by differential
equations. Hence, the objective in this study is to develop a control method that
ensures the global asymptotic stability of dc-link voltage of the MF-SAPF around its
equilibrium. Now, a scalar energy-like function V (x), called LF is constructed with
the variables related to the energy stored (Edc) in the dc-link capacitance as follows:

Fig. 2 Control strategy for SPV fed SAPF
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Edc = 1

2
∗ C ∗ V 2

dc (8)

Theorem: A globally asymptotically stable system can be guaranteed using the direct
Lyapunov approach if the LF satisfies the properties [15] such as V (0) = 0, V (x) >

0, for all x �= 0, and V̇ (x) < 0 for all x �= 0.

Proof : In order to ensure better performance from the LF-based controller, consider
the squared errormagnitudes of the actual and reference dc-link voltage as�

(
V 2
dc

) =
V 2
dc − V 2

dcre f
. Then Eq. (9) can be rewrite as

�Edc = 1

2
∗ C ∗ (

�V 2
dc

)2 = 1

2
∗ C ∗

(
V 2
dc − V 2

dcre f

)2
(9)

Now time-derivative of Eq. (9) result in the relation

�Ėdc = �ploss = 2 ∗ Vdc

(
V 2
dc − V 2

dcre f

)
∗ C ∗ V̇dc

where, ploss is the active power component needed to maintain the common dc-link
voltage at reference.

�Ėdc < 0 ⇔ 2 ∗ Vdc

(
V 2
dc − V 2

dcre f

)
∗ C ∗ V̇dc < 0

A constant kl (strictly negative) is introduced to satisfy the condition Ėdc < 0 for
V̇dc �= 0, which yields

⇔ 2 ∗ ploss =
(
V 2
dc − V 2

dcre f

)
kl

⇔ ploss =
(
V 2
dc − V 2

dcre f

)
2kl

(10)

Hence, according to direct Lyapunov approach, if �V 2
dc = 0, �Edc ≈ 0, and

�Edc > 0 for �V 2
dc �= 0; and Ėdc < 0 for V̇ 2

dc �= 0. The realization of a LF-based
nonlinear controller [16] is illustrated in Fig. 2a. The optimal value of kl shows
impact on the performance of the dc-link voltage regulation. In this study, kl is equal
to − 2.75, that gives better performance of LF-based controller for dc-link voltage
regulation.

Now, the requisite conductance factor (G) is defined and calculated as

G = pl f + ploss − ppv

v2
peak

(11)

where, ppv is the power obtained from the SPV generation unit and vpeak of the
fundamental voltage component of the utility system. The vpeak is expressed as
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vpeak =
√

v2
pccα + v2

pccβ (12)

Finally, the expression for the reference utility system current for realization of
indirect current control approach is defined as

isre f = G ∗ vpccα (13)

Algorithm 1 FCS-MPCC for MF-SAPF and SPVC
1: Measure required current and voltages of the MF-SAPF and SPVC.
2: Initialize ns ← 0, n pv ← 0, S1 − S4 ← 0, Spv ← 0, gops ← ∞, goppv ← ∞.
3: Increase counter ns ← ns + 1, n pv ← n pv + 1.
4: Predict is → (S1 − S4) and i pv → (Spv) at k + 1 instant using Eqs. (5) and (7)
respectively. For SPVC: If n pv = 1, Spv = 1; else if n pv = 2, Spv = 0; end.
5: Retrieve isref from CF-based estimation of reference current unit,
ipvref from MPPT algorithm.
6: Cost-function minimization for optimal switching vectors using gs and gpv .
7: Check If gs < gops , gpv < goppv then gops ← gs , goppv ← gpv .
8: Similarly, if ns < 4, n pv < 2 go to step-4, else gops = min · [gs(ns)];
goppv = min · [gpv(n pv)].
9: Apply S1 − S4 correspond to min · [gops(ns)]; Spv correspond to min · [gpv(n pv)].

4.2 Current Controller

Figure 2b illustrates the realization of current controller based on FCS-MPCC. As
per the control logic of the FCS-MPCC, control objectives are framed in terms of
cost function. Thus, a simple cost functions are adopted, considering the quadratic
current errors of the MF-SAPF and SPVC as follows:

gs = (isref − is(k + 1))2 (14)

gpv = (
ipvref − i pv(k + 1)

)2
(15)

where, gs and gpv are the corresponding cost functions of MF-SAPF and SPVC.
The minimization (close to zero) of above mentioned cost functions are subjected to
obtain the optimal switching vectors for associated converters. The simplified FCS-
MPCC algorithm steps for generating optimal switching vectors for MF-SAPF and
SPVC are described in Algorithm 1. Since the algorithm is formulated with the finite
control switching vector set and employed for reference current tracking control, it
is known as finite control set model predictive current controller (FCS-MPCC).
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5 Results and Discussions

The feasibility and effectiveness of the proposed control strategy is verified through
MATLAB/Simulink simulation results under dynamic operating conditions. The sys-
temparameters for the simulation study are presented inTable 1. The dynamic operat-
ing conditions considered for the purpose of analysis are variation in solar irradiance
(0–965 W/m2) at standard temperature (27 ◦C) and sudden increase in distribution
load. All dynamical operating conditions are verified for a simulation time of 1.25 s
and analyzed for three operating modes as shown in Fig. 3.

Mode-1 (0–0.2 s): In this mode, a DBR load is connected at PCC and fed by the
available SPV power and utility system. Since vs and is are in-phase, this mode is
known as grid supplying mode. The solar irradiance considered as 220 W/m2. Thus,
accordingly, MF-SAPF injects available SPV real power into the PCC along with
harmonic compensation and reactive power support.

Table 1 System parameters for the simulation study

Parameters Numerical values

vs , fs 220 V, 50 Hz

rs , Ls 0.02 �, 0.2 mH

r f , L f 0.2 �, 30 mH

Cdc, Vdc 3500 µF, 400 V

SPVC: rpv , L pv 0.2 �, 5 mH

Linear load: R3, L2 25 �, 10 mH

DBR load: R1, L1, C , R2 42.5 �, 10 mH, 3900 µF, 20 �

Fig. 3 Simulation results of a is , b i f , c il , and d i pv in SPV fed SAPF
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Fig. 4 Simulation results of under dynamic operating conditions

Mode-2 (0.2–0.6 s): In this mode, for analysis purpose, the solar irradiance is
increased to 650 W/m2 and 965 W/m2 at t = 0.2 and 0.4 s respectively. Further,
another linear load is connected to PCC at t = 0.5 s. Hence, the increased load
demand is met by the SPV fed SAPF as observed. Since vs and is are in phase
opposition, this mode is known as grid injecting mode. The surplus power from SPV
feeding into the PCC may be utilized to support other loads connected at PCC.
Mode-3 (0.6–1.25 s): In this mode, the solar irradiance is decreased to 390 W/m2

at t = 0.6. Now the load demand is supported by the available SPV power through
MF-SAPF and utility system. Since vs and is are in-phase, this mode is also referred
as grid supplyingmode. Further, at t = 1.0–1.25 s, the solar irradiance is considered as
≈ 0W/m2 such thatMF-SAPF performs only active power filtering for power quality
improvement. Furthermore, the total harmonic distortion (THD) of is is improved at
various operating scenario as presented in Fig. 4.

Figure 4a illustrates the power management in Watts among SPV (ppv), load
(pload ) and utility system (ps), followed by the reactive power in vars of the load
(Ql) and utility system (Qs) in Fig. 4b. The dc-link voltage is regulated better in
terms of low steady state error with LF as compared to PI as shown in Fig. 4c. The
simulation of vs and is are presented in Fig. 4d under different operating modes. For
analysis purpose, is is multiplied with a gain of 15 to its actual value.

6 Conclusion

The CF-based reference generation algorithm is implemented forMF-SAPF applica-
tion. The computational burden is simplified as compared to conventional algorithms.
Further, the application of FCS-MPCC is investigated for reference current track-
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ing by the MF-SAPF and SPVC. The dc-link voltage regulation is realized using
LF-based nonlinear controller. The performance of FCS-MPCCwith CF approach is
analyzed under variation in solar irradiance and dynamic loading conditions. From
the presented results, it is evident that the control flexibility of the MF-SAPF is
enhanced to provide the multifunctional services such as reactive power support,
harmonic current compensation, and feeds the real power from the SPV generation
unit into the utility system at unity power factor. The feasibility of the proposed
control strategy is verified through the MATLAB/Simulink-based results.
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Machine Learning Based Prediction
of Solar Power Plant Performance Under
the Impact of Natural Dust Accumulation

Sruthi Elaprolu and Ankur Bhattacharjee

1 Introduction

In recent years, with pollution levels reaching significant height and nonrenewable
fuel sources running out exponentially, solar power can be a primary solution as green
energy.Not only is it environment friendly, but it also has zero production cost and is a
resource we can never exhaust. Solar Photovoltaic (PV) technology, has now drawn
the interest globally to cater the sustainable development goals ensuring cleaner
environment [1]. Eco-friendly sources offer abundant energy tomeet the continuously
increasing energy demand while significantly reducing the environmental hazards
that could arise [2]. The increasing market of solar power as an alternate form of
energy prompts interest in developing and operating PV systems to tap solar energy
on a large scale to integrate it into society as a viable energy source.

Solar radiation is available in abundance around the equator region. However,
most of these areas exhibit high ambient temperature and low-frequency rain, which
aids dust accumulation. These environmental factors along with aging of the PV
modules, can be detrimental to the performance of solar PV systems. The efficiency
of solar power systems is influenced by many factors, such as weather conditions,
topographic elevation, solar inclination, and seasonal changes etc. Their unreliability
faces challenge in large-scale implementation. The accuracy of forecasting the power
generation from the PV modules can influence the capability of stand-alone and/or
power grid-connected solar PV systems. As the transmittance variation plays a major
role in PV power generation, the position of solar PVmodules need to be determined
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to trap maximum amount of photon energy [3]. Therefore, transmittance prediction
is crucial for estimating the overall performance of solar PV plants.

Powerful Deep Learning techniques such as ANN and LSTM etc., are now being
used inmany studies in recent years to predict the power output of soiled PVmodules
[3–6] as they are accurate, interactive, and flexible. Such works are essential for
efficient operation of solar power systems by applying optimal cleaning schedule
and introducing novel material coating that can help self-cleaning of PV modules
[7].

Considering the above-mentioned issues, in this paper, the prediction of trans-
mittance (optical performance) for rooftop solar PV systems has been demonstrated
under the impact of natural dust accumulation. ANN and LSTM tools have been
utilized to predict the transmittance and thereby the performance of solar PV plants
based on real experimental data set obtained over a period of one year (2020). The
experimental setup has been established on the rooftop of the academic building
at Birla Institute of Science and Technology (BITS) Pilani, Hyderabad campus for
acquiring site specific data under seasonal variation throughout the year.

2 Experimental Setup

The data sets for predicting the transmittance have been obtained from an experi-
mental setup at BITS Pilani (17° 32′ N, 78° 34′ E), Hyderabad campus, India. The
wavelength and energy transmission for twelve months have been recorded using
low-iron glass slides of 5 cm × 5 cm with a 4 mm thickness brought from the
Renewable Energy Laboratory, University of Exeter, Penryn Campus, UK. These
glass slides are primarily used to encapsulate the top layer of solar PV modules.

Suitable 3D printed stands were designed and fabricated to place the glass slides
angled in three different ways; horizontal, vertical, and at the local tilt angle as shown
in Fig. 1. Figure 2 shows the solar panels installed on the rooftop at the local tilt angle,
in order to realize the actual power generation on field.

Fig. 1 a Low-iron glass slides kept in different positions for experimentation b 3D printed frames
c different orientation of glass slides d bare glass slide as reference
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Fig. 2 a Solar PV installation set up and b solar PV power measurement unit

The optical performance measured using the glass samples are useful for core-
lating the impact of dust accumulation and power generation of PV panels installed
at the same place.

The transmittance studies were performed using a UV–Vis spectrometer from
Ocean optics (Custom Configured Maya2000 Pro Series) of wavelength ranges from
300 to 1100 nm. All these measurements were captured regularly and analyzed with
the naturally accumulated dust particles on the glass slideswithout using any cleaning
mechanism.

3 Proposed Prediction Models

In this work, the optical performance of solar PV modules under the impact of
natural dust accumulation has been predicted by ANN and LSTM techniques based
on practical site datasets.

ANN is a widely used tool for performance prediction where a network is created
with a certain number of neurons that are interconnected, and data is fed to the
network so that the network is trained as per the data input given after which the
network is simulated with the testing data to predict the outcome.

The growing popularity has led to increased research comparing various fore-
casting techniques; auto-regressive models, neural networks, and optimized neural
networks [8]. LSTMs are built with recurrent neural network (RNN) architecture
with extended memory. Unlike Feedforward Neural Networks, RNNs cycle the data
in loops, making the algorithmmore suitable for sequential data like time series such
as weather records and stock prices (Fig. 3).

A study [9] with data from a solar power plant in Tiruchirappalli, India worked
with ANNmodels to forecast a 24-h (Day-ahead) solar power output; we are looking
to predict the transmittance values using data recorded monthly throughout the year
2020. We use the data recorded across twelve months of 2020, containing transmit-
tance percentages for just over eighteen hundred wavelengths ranging from three



136 S. Elaprolu and A. Bhattacharjee

Fig. 3 Feedforward neural network and recurrent neural network (LSTM) architectures

hundred to eleven hundred. The angle of inclination (of the PV modules) signifi-
cantly determines the radiation transmission. Each plant has a particular angle that
maximizes the output (local tilt angle) depending on the region. Even though the
generation of power from the PV modules is affected by various factors like irradi-
ance,wind speed, ambient temperature, dust, snow, the orientationof thePVmodules,
maintenance, etc., [3, 10–12] these factors have not been considered.

Deep Learning models such as ANN, and LSTM are evaluated and compared
in predicting the percentage transmittance of the PV modules for a given range of
recorded wavelengths, as shown in Fig. 4. The accuracy of the prediction models
was determined by computing error parameters such as; mean absolute error and
percentage error (MAE/MAPE), root mean square error (RMSE), and the correlation
coefficient (R2) and plotting linear regression graphs.

Input 

Transmi�ance 
dataset for twelve 
months

ANN MATLAB tool

Divides input data 
into sec�ons; 70% 
data for training, 
15% data for 
valida�on, and 15% 
data for tes�ng.

predicted transmi�ance

Training algorithm 
"Levenberg-
Marquardt" is 
implemented to 
predict output 
values

Input

da
da

Transmi�ance 
dataset for twelve 
months

LSTM algorithm

Divides input data into
training and tes�ng 
sets, chooses the 
percentages 
individually for each 
model

Predicted 
transmi�ance

Uses the first ten 
months data to predict 
transmi�ance values for 
the last two months

Fig. 4 Process flow for ANN and LSTM based prediction
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The ANN model is created using a Neural Net Fitting Tool present in MATLAB.
It allows for selecting the training algorithm and the number of neurons to be used.
The ANN model automatically divides the data provided as 70% data for training,
15% data validation, and 15% data for testing. The training algorithm is “Levenberg–
Marquardt,” built into the tool. Note that this particular algorithm observed accuracy
better than that of the other built-in algorithms present. The error has reduced as the
number of data points used to train the ANN model is increased.

Two LSTM models are designed and compared in terms of the accuracy percent-
ages; they work by recognizing a pattern, computing the data till time ‘t − 1’ to
predict the value at a time ‘t.’ Both the models are coded in Python and predict
transmittance values for the last two months.

4 Results and Discussion

4.1 Neural Network Model Based Analysis

The MATLAB/Simulink model based data driven prediction results are shown in
Fig. 5.

The graphs indicate that the model has provided the horizontal output’s predicted
values with an accuracy of 99.19%, inclined with 99.01%, and vertical with 99.03%.

4.2 Long Short-Term Memory (LSTM) Algorithms

In the ‘first algorithm’, the model is trained with the data of the first ‘eight’ months,
and values from the previous ‘two’ months are used to predict a value for this month.
The accuracy of the model increases as the slope of the regression plot gets closer to
1. The analysis of error parameters is shown in Fig. 6 and Table 1.

In the ‘second al’, the data is split into ‘ten’ months for training and validation
and ‘two’ months for testing and prediction. The transmittance data of the first ‘ten’
months is used to predict the value for the 11th month, and the data of months ‘two
to eleven’ is used to predict the value for the 12th month. The algorithm code is run
multiple times, with minimal training and validation losses has been chosen. The
analysis of error parameters is shown in Fig. 7 and Table 2.
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Fig. 5 The graphs show the mean square error (MSE) and regression plots for a horizontal, b
inclined in local tilt angle, c vertical glass slides’ transmittance prediction (optical performance
study)
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Fig. 5 (continued)
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Fig. 5 (continued)

5 Conclusion

This work demonstrates a machine learning based prediction of solar PV power plant
performance has been done using Neural Network in MATLAB/Simulink environ-
ment. The accuracy of the predicted data is around 99.01–99.19% for three different
sets of input data, inclined at the local tilt angle, vertically, and horizontally posi-
tioned solar panels. The data from the three orientations provide with the information
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Fig. 6 Regression plot slopes of 1.02, 0.98, 0.92 for the month-11 (a) and 1.004, 0.976, 0.98 for
month-12 (b) for horizontal, vertical and inclined in local tilt angle respectively

Table 1 Transmittance prediction error statistics for the first algorithm

Orientation of glass samples MAPE MAE RMSE R2

Month 11
R2

Month 12

Horizontal 2.488 1.977 2.308 0.907 0.918

Vertical 2.534 2.235 2.557 0.97 0.897

Inclined 5.386 4.92 5.81 0.97 0.966

to understand the effect of dust accumulation on the solar PV plant optical perfor-
mance in terms of transmittance and thereby further estimation of power output.
LSTM and ANN algorithms have been used to predict the optical performance of
solar PV plant. Both the models show the highest accuracy in predicting data for
the horizontally placed panels. As a validation of prediction work, The ANN model
offers an accuracy of over 99%, whereas the LSTMmodel provides with an accuracy
of over 92%. These prediction study will help in predicting the performance of the
location specific solar power plants.
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Fig. 7 Regression plot slopes of 1.023, 0.984, 0.988 for month-11 (a) and 1.008, 0.985, 0.987 for
month-12 (b) for horizontal, vertical and inclined in local tilt angle respectively

Table 2 Transmittance prediction error statistics for the second algorithm

Orientation of glass samples MAPE MAE RMSE R2

Month 11
R2

Month 12

Horizontal 2.325 1.85 2.12 0.928 0.938

Vertical 2.498 2.195 2.47 0.985 0.925

Inclined 5.736 5.03 6.41 0.988 0.986
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Application of Neural Networks
in Reliability Evaluation of Distribution
Networks Integrated with Distributed
Generation

Meera Karamta and Matsiko Joshua

1 Introduction

Reliability is “the ability of a power system to perform the function it is designed
for under the operating conditions encountered during its projected lifetime” [1].
Reliability is key in the power system today because of its immense impact on
consumer satisfaction and electricity prices. The main purpose of the power grid
is to uninterruptedly supply economical electrical energy to consumer loads. The
distribution system as the final link between the bulk transmission and the customers
did not previously attract reliability concern due to utilities only focusing on meeting
demand within acceptable limits [2].

Distribution reliability has gained attention due to 80–90% of consumer reliability
problems occurring within the distribution network. These failures are mainly due
to the radial configuration of the distribution system, and partly due to the many
constituents & devices within the distribution network. Reliability is represented
basically as component failure rate and repair time and secondarily as statistical
averages of a specific reliability attribute for a whole system or subsystem [2].

The onset of climate change has led to a proliferation of DERs such as solar
PV systems, wind turbines and fuel cells within the grid, due to their renewability
and zero greenhouse gas emissions. These are often connected to the distribution
system to augment and backup supply from the grid. This enables the radial feeders
to disconnect themselves from the grid in case of remote faults and continue meeting
load demand using the DER supply, thereby improving distribution reliability. The
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conventional grid is therefore under drastic transformation from an inactive and
mono-directional system to an active smart grid (SG). The SG has reliability and
sustainability as key features and is expected to reduce interruption durations and
associated losses due to faster power restoration, self-healing capabilities and optimal
operation of the distribution system. The introduction of DERs close to the consumer
loads is anticipated to ameliorate the voltage characteristic and decrease energy losses
within the grid [1, 2]. The integration of numerous smart electronic devices into the
grid, utilization of electric vehicles as storage devices, and themany prosumers could
worsen power quality issues and consequentially deteriorate reliability. Additionally
DER energy output is dependent onweather conditions such as solar irradiance, wind
speed and tidal range,which greatly fluctuate, therebymakingDERpower stochastic.
Therefore, this necessitates the need to evaluateDER impact ondistribution reliability
[3].

Reliability assessment techniques are either based on Monte Carlo Simulation
(MCS) or analytical method. MCS relies on probability and samples component
failure states for different scenarios to compute reliability indices whereas analytical
methods rely on mathematical analysis. MCS is complex and intensive in terms of
computing power and time. This constrains practical implementation of MCS and
necessitates the need for pragmatic techniques such asANN in reliability assessment.
ANN are a dynamic ML techniques that mimic the interconnections and signals in
the human brain to continuously learn [4, 5].

The impact of DERs on reliability in distribution networks is studied by Tawfiq
and Aljohani [6] using MCS. DER optimal placement was studied and reliability
benefits realized in by having DERs close to the load center. Memari et al. [7] applied
various clustering algorithms in reliability assessment in a bid to improve accuracy
and duration of MCS-related techniques. Fuzzy c-means technique was found to
be superior to other algorithms. Gengfeng et al. [5] developed a novel machine
learning based distribution network reliability assessment technique as a solution
to the inefficiency, complexity and slowness of analytical techniques. A framework
that coordinatedML andMCSwas developed to improve pragmatic use of reliability
assessment. Sanaullah et al. [4] assessed reliability gains with integration of DERs
into the distribution network and found significant improvements. ANN was applied
to optimally place the DER within the system for maximum reliability gains.

In this study we seek to assess the reliability gain with introduction of DERs
into the distribution network and implement an ANN to predict reliability indices
with DER integration. The paper is organized in five sections. Section 2 contains
the system and simulation description. Section 3 contains the simulation results and
discussion. Section 4 contains the conclusion.
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2 Simulation

The Electrical Transient Analysis Program (ETAP) program is utilized for reliability
evaluation of the IEEE-34 node system and MATLAB software utilized for ANN
based prediction of reliability indices.

2.1 Base Case System

The IEEE 34 node test system in an existing distribution network with a nominal
voltage of 24.9 kV and contains long and lightly loaded overhead transmission lines,
numerous unbalanced loads summing to 2.063 MVA, a short low voltage section of
416 V, 2 inline voltage regulators and a pair of capacitor banks [8]. The base case of
the study is attained by reliability evaluation of the IEEE-34 node feeder. The system
parameters such as line lengths and material composition, regulator configurations
and tap settings among others are obtained from [8] for input into ETAP. The intrinsic
component average reliability statistics according to IEEE standards are obtained
from [9] for input in ETAP.

2.2 DER Study Case

In case II, the base case is modified by inserting a 1 MW PV array at point 890 in
the low voltage section of the system. Figure 1 represents case III, wherein the same
DER is placed at node 838, the farthest node from the utility substation.

Fig. 1 Modified IEEE 34 node feeder with DER at node 838
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All component reliability statistics, configurations and load ratings aremaintained
for all study cases. In order to study network dynamics for all cases, load flow analysis
is performed using the load flow tool in ETAP and network parameters such as nodal
voltages and branch currents studied and compared. TheNewton–Raphson technique
is used for the load flow analysis with error limit set to 0.1%.

2.3 Simulation Tools

ETAP is a state of the art computer program used to model and evaluate elec-
trical systems. The ETAP modules used for the study are Reliability assessment and
balanced load flow analysis [10]. This study relied on code written in MATLAB to
implement the ANN for reliability index prediction [11]. The methodology adopted
by the study for reliability evaluation in ETAP is shown in Fig. 2.

Fig. 2 Reliability evaluation
flowchart
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Fig. 3 Trained neural network layout

2.4 Scenario Generation and ANN Implementation

Various scenarios are generated by placing the solar PV system at each node in the
system and the associated reliability indices noted according to the distance of the
node from the utility substation. The dataset created is then input into the ANN.ANN
is applied so as to predict the reliability gained when the DER is placed at a particular
node within the system. A 4-layered feed-forward propagation ANN is developed
by coding in MATLAB trained by Levenburg-Marquardt (LM) optimization. LM
combines gradient descent and newton optimization methods. The distance of the
DER from the utility substation i.e. node 800, is fed as the input and the actual relia-
bility values fed as output. The LM algorithm maps them as a regression technique.
Accuracy of ANN is measured in terms of Mean Square Error (MSE) by Eq. (1);
where Yi is the actual output and Ŷi is the predicted output.

MSE = 1

n

n∑

i=1

(
Yi − Ŷi

)2
(1)

Figure 3 represents the trained neural network for the proposed reliability
assessment.

3 Results and Discussion

3.1 Reliability Indices Calculation

System reliability indices commonly used include System Average Interruption
Frequency Index (SAIFI), System Average Interruption Duration Index (SAIDI),
and Expected Energy Not Served (EENS), among others [4]. These are computed as
per the equations below;

SAI F I =
∑

ri ∗ Ni∑
Ni

(2)
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Table 1 Comparison of reliability indices: base case versus case III

Reliability index Base case Case II Case III

SAIFI (f/customer yr) 6.3029 5.4555 5.3997

SAIDI (h/customer yr) 199.2082 190.7629 190.3165

CAIDI (h/customer interruption) 31.606 34.967 35.246

EENS (MW h/yr) 354.781 337.675 337.177

AENS (MW h/customer yr) 14.1913 13.5070 13.4871

SAI DI =
∑

Ui∗Ni∑
Ni

(3)

CAI DI = SAI DI

SAI F I
(4)

EENS = Pi∗Ui (5)

where ri—failure rate, Ni—number of customers, Ui—outage duration per year and
Pi—average load.Upon reliability evaluation in ETAP, the reliability statistics shown
in Table 1 are attained for the base case, case II and case III.

Table 2 indicates the percentage improvement of each reliability index with inte-
gration of the DER at node 838. It is seen that all system reliability values improve
with addition of a DER into the system. From Table 2, it is observed that there is
a negative percentage change of CAIDI. As per Eq. (3), CAIDI is a fraction based
on the SAIFI and SAIDI. The percentage improvement in SAIFI is much higher
than that of SAIDI. The fractional improvement in the CAIDI comes out as nega-
tive. However, it can still be inferred from the results that overall for a customer the
average interruption frequency reduces significantly in comparison to the reduction
in the interruption duration.

Failure rates of power system components are dependent on their age, functional
temperature andvoltage strains amongothers. The component functional temperature
is dependent on the line current [12]. The load flow results for all the study cases
found a substantial reduction in branch currents on insertion of a DER, as shown
in Fig. 4. This reduction is due to DER providing power to the loads and therefore
offsetting a huge amount of current that was flowing through the lines from the utility.

Table 2 Reliability indices
percentage improvements in
study case III

Reliability index Improvement (%)

SAIFI 14.33

SAIDI 4.46

CAIDI − 11.52

EENS 4.98

AENS 4.96
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Fig. 4 Variation in line currents for IEEE-34 test system with DER located at node#890 and
node#838

This reduction in branch currents results in a reduction of component temperatures
due to reduction in ohmic losses. Voltage drops and energy losses reduce too and
result into reduction in component failures and thus the improvement in reliability.

Figure 5 shows the per-unit (p.u.) nodal voltages within the system for all the
study cases. It is clear that there is a substantial enhancement in the voltage profile
with DER integration, particularly farther away from the utility. The under voltages
registered in the base case are improved to about 1 p.u., the nominal voltage.

3.2 ANN Based Reliability Indices Prediction

On scenario generation, reliability values are attained for all the locations in the
IEEE-34 node system. The variation in the actual values for SAIFI plotted against
different DER location is shown in Fig. 6. It can be seen that reliability improves the
farther the DER is placed within the system or closer to the load centers.

A plot of the actual and ANN predicted values in-terms of SAIFI, SAIDI and
EENS are shown in Figs. 7, 8 and 9. It can be seen that nearly all the actual reliability
values are accurately predicted by the ANN algorithm in all 3 cases.

On simulation, the performance of the ANN in termsMSE is found to be as low as
0.1256 and the average regression value found to be 1. These reflect a high prediction
accuracy by the ANN.

The regression plots from the training, validation and testing of the ANN are
shown in Fig. 10. The ANN accuracy is further indicated by all the points lying
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Fig. 5 Variation in per unit voltages for IEEE-34 test system nodes with DER located at node#890
and node#838

Fig. 6 SAIFI variation against DER location for test Case III: 1 MW PV placed at different system
nodes

along the respective regression lines showing a positive correlation between input
and output data.
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Fig. 7 Prediction results of SAIFI variation against DER location for test Case III: 1 MW PV
placed at different system nodes

Fig. 8 Prediction results of SAIDI variation against DER location for test Case III: 1 MW PV
placed at different system nodes

3.3 ANN Model Validation

The ANN model was further validated by creating a random node perfectly in-
between nodes 828 and 830 at a distance of 38.20973 km from node 800. The
distance was fed into the ANN model and corresponding results noted. The DER is
then placed at the same point in ETAP and the corresponding reliability results noted.
The results of both cases are compared in Table 3. The ANN prediction accuracy is
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Fig. 9 Prediction results of EENS variation against DER location for test Case III: 1 MW PV
placed at different system nodes

shown by calculating the MSE for all the three reliability indices. It is found to be
0.03313, which validates the ANN model as nearly accurate.

4 Conclusion

This study evaluates the reliability gains within a distribution network with inte-
gration of a DER in contrasted with the base case system containing no DERs. A
1MW solar PV array is introduced as the DER into the IEEE-34 node test feeder and
ETAP software used for reliability assessment. Upon simulation, improvement in
all reliability indices is registered. Load flow analysis is undertaken to study system
dynamics for all the study cases. Given that power system component failures depend
on operating temperature and voltage stresses, the reliability improvement is mainly
attributed to significant reduction in line currents and improvement of the system
voltage profile with DER integration. Line current is proportional to line tempera-
ture, ohmic losses and voltage drops. Various reliability scenarios are then generated
in ETAP by placing the DER at all nodes in the network. Reliability is found to
improve the closer the DER is to the load centers. The data is then fed into an ANN
in MATLAB software so as to predict reliability indices depending on DER loca-
tion within the system. The ANN accurately predicted the reliability values with
a mean square error of only 0.1256. The algorithm’s performance is further vali-
dated through ETAP and accuracy found to be high. The ANNmodel can be applied
in power systems to predict reliability gains in the IEEE-34 system with solar PV
integration or network extension.
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Fig. 10 ANN simulation regression plots

Table 3 Validation results of
the ANN model

SAIFI SAIDI EENS

ANN model results 5.8080 193.2592 343.4021

ETAP results 5.7379 193.0217 343.207

Error − 0.0701 − 0.2375 − 0.1951

Squared error 0.00491 0.00564 0.03806
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Feasibility Assessment of the Smart Grid
in Uganda

Matsiko Joshua and Meera Karamta

1 Introduction

1.1 Challenges of Uganda’s Power System

Uganda experiences incessant nation-wide power blackouts, with 17 incidents regis-
tered since 2016. The outages are more rampant at distribution level, with each
customer encountering power outage for 16 h amonth. Electricity reliability at house-
hold level is 36% [1]. Uganda’s power system also faces high technical power losses,
standing at 16% in the distribution system and 3.6% at transmission level. This is
mainly due to congested and dilapidated transmission and distribution infrastructure
[2]. Consequentially, this has led to poor power quality in relation to recommended
voltages, frequency and wave shapes. Power in Uganda is occasioned by power
surges, flickers, voltage instability and fluctuations [3].

Uganda also has highpower tariffs,with electricity prices growing at 22%annually
in the last 5 years. These high tariffs are why only 20% Ugandans have access to
grid electricity [3]. There is also rampant power theft in Uganda, with the power
utility reporting non-technical losses of 18%, translating to losses of $30 million
annually. Power thefts are mainly attributed to the high cost of power [3]. Uganda
also has an unfavorable monopolistic electricity market structure, with a sole power
transmitter and 90% of the country served by a single distributor. This means there
is no competition and the consumer has to accept the price set by the utility. This has
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fostered high power costs and little re-investment. The sector regulator is also not
independent [2].

Additionally, Uganda’s power sector is at the risk of climate change due to 84%
of electricity being generated from hydro resources. This heavy reliance is growing
riskier, as temperatures are rising, rainfall is more unpredictable and occasional
droughts. Recently, persistent drought led to hydropower production dropping from
340 to 140MWdue to lowwater levels in dams, which led to widespread power cuts.
World-over, energy is a major contributor to climate change due to its production of
greenhouse gases (GHG). Energy production is affected by climate change and the
power supply affected in terms of reliability and costs. In Uganda, the energy sector
contributes 10% of the GHG emissions, ranking 3rd [4].

1.2 The Smart Grid

Smart Grid involves integration of Information Communication Technologies (ICT)
into the conventional power grid enabling bi-directional transfer of energy and infor-
mation between the consumers and utility, plus introduction of Distributed Energy
Resources (DER) in order to improvemonitoring and control. The SG involves use of
ICT for Wide Area Monitoring (WAM) of the power system, with visibility up to the
load points, through advanced monitoring and metering infrastructure (AMI) such
as PMUs, and smart meters. Benefits of the SG include efficient power transmission,
faster power restoration, lower maintenance costs, active Demand SideManagement
(DSM), improved reliability, active customer participation, dynamic power pricing,
power system self-healing, more accurate load forecasting and fault location [5].

Reference [6], undertook a feasibility evaluation of execution of the SG in
Bangladesh as a solution to challenges of Bangladesh’s inefficient grid. Reference
[7] undertook SG feasibility assessment in India to solve their grid challenges.
SG technologies were found to improve reliability, fault detection, and self-healing
capabilities.

Reference [8] carried out a feasibility assessment of a SG in Nantucket as
way to lower the tariffs, reduce aggregate demand and offset the huge invest-
ments needed. Reference [9] evaluated feasibility of a SG demonstration network in
Panipat. The scope included smart metering and distribution automation etc. Refer-
ence [10] conducted feasibility assessment for a SG in Ufa in order to reduce losses,
improve security, power quality and reliability, and introduce intelligent protection
and communication in the power network.

The SG’s capabilities underscore the SG as the solution to the challenges of
Uganda’s power system. However, no previous study has examined Uganda’s power
system to assess technical or economic viability of implementation of the SG. This
study seeks to cover this literature gap. The remainder of the paper is organized in
sections. Section 2 consists of the methodology and SG design. Section 3 consists of
renewable resource mapping. Section 4 consists of the proposed system and Sect. 5
covers the CBA.



Feasibility Assessment of the Smart Grid in Uganda 159

2 System Design

2.1 Methodology

The methodology used is adopted from [11] and is described stepwise below;

Project Definition

Under this, the project is explicitly defined, and technologies that could solve existing
problems are surveyed. The renewables available for mapping are specified.

Specify Smart Grid Features

The SG features and their associated benefits are specified and how they solve the
challenges. Overlapping functions are also highlighted.

Specify Benefits

The selected features are then matched to their benefits. Benefits are defined in terms
of value gained by any stakeholder. Cross-cutting benefits are again highlighted.

Monetize Benefits

The specified benefits are monetized through estimation of their value in comparison
to the base case and the cost offset from the present. The benefits are then discounted
to their net present value (NPV). Benefits are quantified across the project lifetime.

Costing

This involved attaching monetary costs to project equipment, its installation, its
operation and maintenance plus the qualitative benefits.

Cost and Benefit Comparison

NPV is used to quantify future costs and benefits to present value according to
prevailing depreciation of money. NPV of costs and benefits is compared to assess
whether the project is cost effective.

Sensitivity Analysis

Sensitivity analysis involves assessing how achieved results could change with
changes in inputs and the challenges faced. Focus is put on uncertain inputs [11].

2.2 Major Smart Grid Components

Phasor Measurement Unit

PMUs Units are advanced devices that cyclically measure local estimates of current,
voltage, phasor, frequency and its rate of change with a universal time stamp. PMU
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use is justified by the need to capture system dynamics during unstable or faulty
conditions to enable fast real-time control of the system [5].

Phasor Data Concentrator (PDC)

A PDC is “a function that collects phasor data, and discrete event data from PMUs
and possibly from other PDCs, and transmits data to other applications.” Values from
PMUs are erratic and therefore PDCs carryout alignment and signal conditioning to
transform the time-stamped phasor measurements into useful information [5].

Smart Meter

A smartmeter is used as ameasurement tool for hourly power usage and transmits it’s
readings to the centralized utility’s system for system monitoring, control, invoicing
and post-disturbance analysis. Smart meters are capable of real-time remote control
of customer appliances and facilitate active DSM techniques [11].

Wide Area Monitoring System

WAMs are composed of remote PMUs, conveying time-stamped system parameters
to PDCs that carryout signal handling and provide a high quality repository for the
data before relaying the data to controllers for appropriate action [5].

Smart Grid Market

The smart market operates in synergy with the grid for optimal management, given
the unpredictable events in a power system. DERs owners turn into active market
players, continuously engaging inmarket scheduling andwith the feed-in-tariff equal
to market price. The smart market facilitates active DSM and integration of electric
vehicles and virtual power plants [11].

2.3 Smart Grid Communication

Smart devices collect huge amounts of data which must be relayed in real-time, this
requires a robust and quick communication system. The SG is made up of hetero-
geneous protocols, technologies and architectures which must be interconnected
[11].

3 Renewable Resource Mapping

3.1 Solar Photovoltaics

Solar PV entails conversion of the sun’s radiation and heat into electricity by solar PV
cells. Solar PV has great potential due to being abundant, inexpensive and emission
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Fig. 1 Uganda’s solar power potential [13]

free [12]. The solar PV potential of Uganda in kWh) per installed kWp per year is
shown in Fig. 1. It is evident that the greatest potential for solar PV is in the North
and Eastern regions of Uganda [13].

3.2 Wind Energy

Wind is air in motion from high pressure regions to lower pressure regions due
to temperature imbalances on the earth’s surface. Rotating wind turbines convert
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the mechanical energy of wind into power, with output depending on wind speeds.
Favorable wind speeds range from 2.5 to 25 m/s. In most of Uganda, wind speeds
range from 2 to 4 m/s, which is insufficient for large scale wind generation [14].

3.3 Hydropower

Hydropower (HPP) involves conversion of the kinetic energy of running water which
is motion due to difference in height. The running water rotates a turbine which is
coupledwith an electrical generator to produce electricity [15]. LargeHPPproduction
today stands at 855 MW in Uganda. Uganda’s untested capacity is estimated to be
2000 MW. Uganda today boasts of 155 MW of small HPP with identified potential
sites having estimated capacity of 274 MW [3, 14].

4 Proposed System

4.1 Substation Automation

Substation automation involves placing of PMUs and PDCs at both distribution
and transmission substations along with ICT tools to enable WAM. This is essential
becausemost equipment taskedwith optimal functioning and protection of the grid is
in substations.WAMof the grid enables faster location and identification of cascaded
faults, which are responsible for Uganda’s nationwide power outages. With proper
fault location, appropriate relaying actions can be undertaken to avoid these outages
[16].

4.2 Transmission Substation Automation

Installing PMUs at all substations of the network would be ideal for accurate moni-
toring. However, due to the high price of PMUs, this would make the system uneco-
nomical, plus the communication technology availability constraint. Due to ohms
law, a PMU at a particular bus is able to monitor adjoining buses, which makes it
possible to use less PMUs than the number of system buses. This is known as the
PMU optimal placement problem, an integer linear programming (ILP) optimization
problem [16].

Uganda’s transmission network shown in Fig. 2 is simplified into a 26 bus system,
with integers assigned to each substation/bus as follows Lira (x1), Opuyo (x2),
Tororo (x3), Iganga (x4), Bujagali (x5), Isimba (x6), Nalubaale (x7), Lugazi (x8),
Namanve-South (x9), Namanve (x10),Mukono (x11), Lugogo (x12), Queensway (x13),
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Mutundwe (x14), Kampala-North (x15), Kawaala (x16), Kapeeka (x17), Kawanda
(x18), Masaka (x19), Mbarara (x20), Nkenda (x21), Kabulasoke (x22), Nkonge (x23),
Rugongo (x24), Fort-Portal (x25) and Hoima (x26).

An ILP problem is formulated with 26 variables and 52 constraints, in order to
optimally locate the PMUs within the system. Its equations are shown in (1)–(28)
where xi is a binary decision variable corresponding to bus i. The value xi is assigned
one if the PMU is placed at bus i and assigned zero if not.

Objective Function: Min Z = x1 + x2 + x3 + x4 + x5 + x6 + x7
+ x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19
+ x20 + x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 (1)

Constraints: subject to bus monitoring constraints as below;

Fig. 2 Uganda’s transmission network [2]
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Bus 1: x1 + x2 ≥ 1 (2)

Bus 2: x1 + x2 + x3 ≥ 1 (3)

Bus 3: x2 + x3 + x4 + x5 ≥ 1 (4)

Bus 4: x3 + x4 + x5 ≥ 1 (5)

Bus 5: x3 + x4 + x5 + x6 + x7 + x18 ≥ 1 (6)

Bus 6: x5 + x6 ≥ 1 (7)

Bus 7: x5 + x7 + x8 + x9 + x10 + x11 + x12 + x15 ≥ 1 (8)

Bus 8: x7 + x8 ≥ 1 (9)

Bus 9: x7 + x9 + x10 + x11 ≥ 1 (10)

Bus 10: x7 + x8 + x9 + x10 + x15 ≥ 1 (11)

Bus 11: x7 + x9 + x11 ≥ 1 (12)

Bus 12: x7 + x12 + x13 + x14 + x15 ≥ 1 (13)

Bus 13: x12 + x13 + x14 ≥ 1 (14)

Bus 14: x12 + x13 + x14 + x15 + x16 + x18 + x22 ≥ 1 (15)

Bus 15: x7 + x10 + x12 + x14 + x15 + x16 ≥ 1 (16)

Bus 16: x14 + x15 + x16 ≥ 1 (17)

Bus 17: x17 + x18 ≥ 1 (18)

Bus 18: x5 + x14 + x17 + x18 + x19 ≥ 1 (19)
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Bus 19: x18 + x19 + x20 + x22 ≥ 1 (20)

Bus 20: x19 + x20 + x21 ≥ 1 (21)

Bus 21: x20 + x21 + x24 + x25 + x26 ≥ 1 (22)

Bus 22: x14 + x19 + x22 + x23 ≥ 1 (23)

Bus 23: x22 + x23 + x24 ≥ 1 (24)

Bus 24: x21 + x23 + x24 + x25 ≥ 1 (25)

Bus 25: x21 + x24 + x25 + x26 ≥ 1 (26)

Bus 26: x21 + x25 + x26 ≥ 1. (27)

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15,

x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28 ≥ 0 (28)

On solution, the optimal solutions are x1, x5, x7, x14, x21 and x22. The proposed
system therefore has 6 PMUs and PDCs at transmission level.

4.3 Distribution Substation Automation

For distribution automation,wemakeuseofµPMUandµPDC.Uganda’s distribution
system is made of 33 and 11 kV lines, with 78 distribution substations. Adopting the
same ILP technique used for the transmission system, 26 microPMUs and PDCs are
found to be adequate for full visibility into the distribution system.

4.4 DER Integration

This is the ultimate phase of network modernization. For its effective operation,
substation automation needs to be in place for real-time control of DERs, given with
impulsive output [11]. FromFigs. 1 and 2, it is evident that there is need for distributed
generation in the North East and NorthWest of Uganda due to non-availability of the
power grid. This study therefore proposes 5 MW solar plants in each of the regions.
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5 Cost Benefit Analysis

5.1 Cost Analysis

Installing a PMU at transmission level is $167,000 and $90,000 at distribution level.
A PDC costs $135,000 at transmission level and $65,000 at distribution level. These
PMUs measure up to 1000 V, have 40 inputs, capture 50 frames per second and
sampling frequency of up to 16 kHz [17]. A kilometer of fiber optic cable is $1000.
It is assumed that $2 million dollars are spent on using telecom infrastructure for
the project lifetime. Meter DataManagement Software (MDMS) costs $180,000 and
server & database software costs $160,000 and PDC support software costs $4000
[7]. O&M costs are calculated as in [7] for the project lifetime of 15 years. According
to [11] it costs $4000/kW for a PV solar power facility in initial capital expenditure
and $20/kW for maintenance annually.

5.2 Project Costing

Table 1 details all costs excluding O&M costs. O&M costs are shown in Table 2.
It is to be noted that the value of money changes over time and therefore the O&M

charges foreseen are not of the same value today. The Present Worth Factor (PWF)
is used to estimate the present value [7]. PWF is calculated as per (29).

Table 1 Infrastructure project costs

Item Unit cost References Quantity Total cost

1 Transmission PMU $167,000 [17] 6 $1,002,000

2 Transmission PDCs $135,000 [17] 6 $810,000

3 Distribution PMUs $90,000 [17] 26 $2,340,000

4 Distribution PDCs $65,000 [17] 26 $1,690,000

5 Fiber optical cable $1000 [7] 39 $39,000

6 PDC software $4000 [7] 1 $4,000

7 Meter data management software $180,000 [7] 1 $180,000

8 Server OS database and antivirus
software

$160,000 [7] 1 $160,000

9 5 MW PV power plant $2,000,000 [11] 2 $4,000,000

10 Communication charges by
telecoms

$2,000,000 [7] 1 $2,000,000

Sub total $12,225,000

Taxes and installation charges 15% [7] $1,833,750

Total after taxes $14,058,750
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Table 2 Annual operation and maintenance costs

Item Unit cost References Quantity Annual cost Lifetime cost

Transmission PMU (2.5%) $4175 [7] 6 $25,050 $375,750

Transmission PDCs (2.5%) $3375 [7] 6 $20,250 $303,750

Distribution PMUs (2.5%) $2250 [7] 26 $58,500 $877,500

Distribution PDCs (2.5%) $1625 [7] 26 $42,250 $633,750

Fiber optical cable (2.5%) $18 [7] 39 $683 $10,238

MDMS (5%) $9000 [7] 1 $9000 $135,000

Server OS (5%) $8000 [7] 1 $8000 $120,000

PV power plant $20,000 [11] 2 $40,000 $600,000

Sub total $203,733 $3,055,988

Table 3 Project cost
summary

Item Future value Present value

Infrastructure costs $14,058,750 $14,058,750

Operation and maintenance costs $3,055,988 $1,986,392.2

Total $17,114,738 $16,045,142.2

PWF =
T∑

t−1

(
1 + IF

1 + IR

)t

(29)

IF is inflation rate while IR is interest rate. At IF = 6% and IR = 12%, PWF is
0.65. The project costs in present worth are summarized in Table 3.

5.3 Benefit Costing

The benefits rates are adopted from [11] and shown in Table 4.

5.4 Payback Period

The payback period is calculated by dividing the total investment cost by the annual
benefits from the project.

Payback = (Total project costs)/Benefits p.a.

= $16,045,142/$8,344, 000 = 1.9229years.
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Table 4 Project benefit costs

Benefit Present value References Annual Value

Reduced CO2 emissions due to
10 MW solar plant

$50/ton, and each MWh at
0.68 tons of CO2

[11] $544,000

Reduced technical losses due to
automation and distributed
generation

Automation offsets 3% and
DERs offset 4% losses

[11] $2,100,000

Annual savings due to reduction
in outages

Estimated to reduce
sustained outages by 1%

[11] $4,000,000

Offset investments in distribution $0 in year 1, growing to
$1.4 m by year 15

[11] $700,000

Decreased ancillary service cost $0 in year 1, growing to
$3.6 m by year 15

[11] $1,000,000

Total $8,344,000

5.5 Sensitivity Analysis

Uncertainties that arise in calculations of interest rates and payback duration of SG
projects are largely based on utility tariffs and the implementation costs. In case
of tariff increment, the envisaged growth in electricity demand can be matched by
compensations from decreased technical losses or DSM techniques. The second
uncertainty arises from economies of scale, whereby large scale implementation
could significantly reduce SG investment costs and reduce payback duration.

Advances in SG technologies could also affect economic analysis by increasing
benefits and reducing payback durations. The falling prices of DERs and more accu-
rate metering could also be a factor. Climate change could reduce renewable outputs
further and affect return rates due to reduced benefits. In Uganda’s scenario, the
other uncertainty today is the incompatible power market structure that does not
support implementation of active DSM techniques. Lack of appropriate regulatory
framework could lead to less return rates since full benefits are not attained.

6 Conclusion

This study aimed at assessing the technical ability of the smart grid as a solution
to Uganda’s power system’s challenges mainly focusing on rampant nationwide
blackouts. The SG components and features such as PMUs, WAM and DSM are
found technically feasible to solve existing challenges in Uganda’s power system.
The study further maps possible renewable energy resources in Uganda and found
solar PV the most feasible for implementation.

The study further proposes a SG system in which PMUs are optimally located
within the transmission and distribution system to facilitate WAM. The economic
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analysis focuses on estimating the cost of the proposed system and quantifying
the benefits from implementation over the 15 year period project lifetime. The
outcome of the cost–benefit analysis is a 2 year payback period which is minimal
and confirmed the project economically feasible. Sensitivity analysis is also done to
factor in uncertainties in the CBA analysis.
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Two-Stage Boost Inverter for Wave
Energy Conversion

Souvik Datta and P. Sriramalakshmi

1 Introduction

1.1 Background

The modern world is much concerned about the excessive usage of conventional
fossil fuel power plants. These fossil fuel power plants also cause greenhouse effect
which is a prime reason for the climate change. Moreover, increasing power demand
and the fast depletion of fossil fuels encourage the countries to find alternate solu-
tions such as wind power, photo voltaic and ocean energy. Renewable energy sources
will clearly play a vital role in reducing greenhouse gas emissions and ensuring a
sustainable future for the entire globe. Development of renewable energy sources,
including ocean, tidal and wave energy arises to reduce greenhouse effect and hence
improves the production of electricity as well as reduces emission of carbon foot-
print. To address the aforementioned issues, wave energy has become more popular
and various wave energy conversion systems are developed [1, 2]. Recently, ocean
wave energy is emerging research area since it is considered as one of the cleanest
and safest energy sectors. Hence it is gaining more attention among the researchers.
Ocean waves are generated by numerous techniques such as through gravity, seismic
tremors, solar energy etc. The wave energy potential is calculated theoretically as
16,000 TWh/year [3, 4], which is very much helpful in meeting the global energy
demand. The wave energy resource with other renewable energy sources, such as
wind and solar, can lead to positive synergies [5–7]. Wave energy systems can
generate the power up to 90% power from the source, but wind and solar power
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systems can generate only 20–30% [5–7]. Around 2% of the total energy demand of
the globe is met by the ocean wave energy technology [8]. This is one of the cheapest
among all other renewable resources, which is mostly rely on photovoltaic and wind
power. A comprehensive review on the wave to wire model is presented in [6, 9–
11] which reviews the various methodologies adopted for the conversion process of
ocean wave energy to electrical energy using wave to wire model. A series of power
electronic converters are essential to convert wave energy to electrical energy before
feeding it to the load or grid. The detailed review of wave energy converter topolo-
gies is elaborated in [12]. Various electrical generators such as linear and rotary types
used in the conversion process are elaborated in [13]. A direct-drive linear generator
or rotary generators are used to convert the mechanical energy to electrical energy.
The linear type system makes the overall system very economical. Different types of
linear generators are available for converting the wave energy into electricity [13].
Based on the geometric andmagnetic structures, various configurations of generators
like linear and rotational types are available. Among all, the linear tubular genera-
tors are found to be highly efficient. The translator may be inside or outside of the
generator stator. The power density is not similar for various generators. The linear
generators produce the linear motion while the rotational one produces the rotary
motion. There are various principles such as Oscillating Water Columns (OWCs),
Wave-Activated Bodies (WABs) and Overtopping Devices (ODs), are associated
with the wave energy conversion (WEC) technologies. Buoy Type WECs consist of
various floating buoy. Very common type of WEC is the Heaving Point Absorber
and it takes energy from any direction.

There are various power converter topologies used to convert the wave power
to electrical power. There are many WECS technologies available in the literature.
But the most promising method of conversion is still not definite for converting
wave power to electrical power. The wave energy conversion techniques need to
be chosen based on the location to achieve the highest efficiency of conversion. In
addition, modeling and control techniques take main role in improving the efficiency
of theWECS. Various configurations of wave energy conversion system (WECS) are
presented in the literature and each one has adopted different converter topology. The
power conditioning topologies are mainly used to adjust and condition the source
voltage of the system to attain the desired output voltage.An appropriate combination
of a diode rectifier and DC- DC boost converter is used as an interface between the
PMSG and a single phase or three phase inverters [4].

In this research article, a wave energy powered zeta converter based two stage
boost inverter is used to boost and invert the voltage availed from the wave energy
powered rectified dc voltage.ACvoltage is generated by aPMSGgenerator combined
with the wave energy conversion system. The conventional boost converter cascaded
withHbridge inverter is already available in the literature. In this article zeta converter
based inversion is performed to obtain the constant magnitude of AC voltage from
the variable AC voltage generated at the PMS generator. The grid integration aspects
are well explained in [15]. A two-stage conversion system to convert variable AC
voltage to a constant amplitude AC voltage with constant frequency is implemented
using cascaded buck boost inverter system [16]. The complete article is arranged as
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Fig. 1 Block diagram of wave energy powered boost inverter

follows: in Sect. 2, the proposed wave energy powered zeta converter-based boost
inversion, and the design specification of wave conversion model, PMSG generator
design specifications, zeta converter design specifications are tabulated. Section 3,
discusses the operation of the zeta converter and modulation technique adopted to
generate the pulses for the inverter. The simulation results of the completed wave
energy based boost inverter are discussed in Sect. 4. The conclusions of the article
and the future direction of research in the field ofwave energy conversion is presented
at the end of the article.

2 Circuit Analysis

2.1 Wave Energy Powered Boost Inverter System

The block diagram of the wave energy powered zeta converter based boost inverter is
shown in Fig. 1. The wave power converted using the wave energy converter system
is given to the permanent magnet synchronous generator as shown in Fig. 1. The
electrical energy obtained from the PMS generator is rectified using the AC-DC
rectifier and then the converted DC is given as the input to the zeta converter to boost
the rectified DC voltage. Further the boosted DC if fed to the single-phase H-bridge
inverter for inversion operation. The inverter output is supplied to the resistive load.

2.2 Zeta Converter to Boost the PMSG Output

The zeta converter used to boost the availed rectified DC voltage is depicted in Fig. 2.
Zeta converter is similar as buck-boost converter. In addition, it has a wider range of
duty ratio compared to any other conventional converters. Moreover, Zeta converter
has low input current distortion andhence it has an improvedpower factor. In addition,
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the output current has lower ripple and output-power range is wide. In this work, the
duty ratio of Zeta converter is chosen to act as a boost converter. The boost converter
is basically a DC-DC converter in which output voltage is greater than input voltage,
while stepping down the current. It has two inductors (L1, L2), two capacitors (C1,
C2), switch (TQ1), Diode (TD1). The circuit operation is explained in two modes
considering that zeta converter is in Continuous Conduction Mode (CCM) and are
presented in Figs. 3 and 4 respectively. The frequency of 100 kHz is used to produce
the firing pulse for the zeta converter with the duty ratio of 0.697.

Fig. 2 Zeta converter based boost inverter topology

Fig. 3 Mode 1 of operation of zeta converter

Fig. 4 Mode 2 operation of zeta converter
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The topological structure of zeta converter-based boost inverter is depicted in
Fig. 2. The Zeta converter operates in two modes

(1) Zeta Converter in Mode 1

During mode 1 as in Fig. 3, the MOSFET switch TQ1 is fired on and the diode
TD1 is reverse biased. The source charges both the inductors L1 and L2. The
inductor current IL1 and IL2 increases linearly. Also, C1 charges C2.

Inductor voltages (VL) are obtained as

L1 ∗ d IL1
dt

= Vs (1)

d IL2
dt

= Vs

L2
+ Vc1

L2
− VC2

L2
(2)

The capacitor charging current is obtained as

C2 ∗ dVc2

dt
= Ic2 (3)

(2) Zeta Converter in Mode 2

During mode 2 as in Fig. 4, the switch TQ1 is switched off and the diode TD1 is
forward biased. Inductors L1 and L2 discharge through capacitors C1 and C2.
Therefore, the inductor currents IL1 and IL2 decrease gradually.

Inductor voltage (L1) is given as,

L1
d IL1
dt

= −V1 (4)

Inductor voltage (L2), is obtained by,

L2
d IL2
dt

= −VL2 (5)

Current through the capacitor C1 is,

IL1 = C1 ∗ dVC1

dt
(6)

V0

V s
= Iin

Io
= D

1 − D
(7)

where D is the duty cycle,
Iin is the input current through the zeta converter,
Vo and Io are the output voltage across the zeta converter and current through

the converter.
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Fig. 5 H bridge inverter

3 Process of Converting Boosted DC to AC

The boosted voltage obtained from the zeta converter is fed to H bridge inverter
as shown in Fig. 5. In this wave powered boost (Zeta) inverter, a resistive load
is connected and ac power is delivered to the load. The conventional sinusoidal
PWM strategy is used to produce the pulses for the MOSFET switches of the H-
bridge inverter. The sinusoidalmodulating signal is comparedwith the high frequency
triangular waveform to produce the firing pulses of the inverter.

Vacpk = MBVs√
2

(8)

where M is the modulation index,
B is the boost factor,
Vs is the DC output voltage across the rectifier.

4 Simulation Model of the Proposed System

The overall simulation model of the WECS powered boosted inverter system is
depicted in Fig. 6 [17]. The wave energy conversion is modeled using the functional
block with the parameters given in Table.1 and the specifications list of PMSG is
listed in Table 2.

The proposed system is simulated using the specifications of Zeta converter [14]
and H-bridge inverter as shown in Tables 3 and 4.

The switching pulse for the zeta converter is produced with the duty ratio (D) of
69.7% and at the switching frequency of 100 k Hz.
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Fig. 6 Simulink model of the complete wave powered boost inverter system under study

Table 1 Wave energy
conversion system parameters

Attributes Values

Wave height (H) 1 m

Wave period (T) 10 s

Tidal current speed factor (Kgc) 1.5

Wave angular frequency (ω) 2 * pi/T

Wave number 0.408

Table 2 Specifications of
permanent magnet
synchronous generator

Attributes Values

Number of phases 3

Back Emf waveform Sinusoidal

Rotor type Round

Stator phase resistance (Rph) 0.0484 �

Armature inductance (La) 3.95 × 10–4 H

Flux linkage (L) 0.1194

Pole pairs 8

Table 3 Specifications of the
zeta converter

Attributes Values

Input DC voltage (Vs) 30 V

Inductors (L1 and L2) 1.6 mH

Capacitance C1 0.159 μF

Capacitance C2 4e−4 F

Duty ratio (D) 0.697

Switching frequency (fs) 100 kHz

Output voltage (Vo) 120 V
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Table 4 Specifications of
H-bridge inverter

Attributes Values

Boosted DC voltage 120 V

Modulation index 1

Switching frequency 100 kHz

Output frequency 50 Hz

Output voltage 118 V

Resistive load 15 �

Filter inductance 3 mH

Filter capacitance 20 μF

5 Simulation Results

The simulated output AC voltage of PMSG is shown in Fig. 7. A three phase AC peak
voltage of 30 V is obtained from PMS generator. The voltage from PMS generator
is given to the diode rectifier for AC to DC conversion.

A rectified DC voltage of 30 V is availed from the rectifier circuit and is depicted
in Fig. 8 and is given to Zeta converter for further boosting action.

The boosted voltage obtained from Zeta converter is shown in Fig. 9. It is boosted
to 120 V DC.

The voltage stress across the diode (TD1) which presents in zeta converter is
shown in Fig. 10. The current flows through the inductors L2 and L1 are shown in
Figs. 11 and 12 respectively.

The voltage stress across the switch present in the zeta converter is shown in
Fig. 13. It is similar to the voltage which is boosted at the zeta converter terminals.
The same boosted voltage acts as the input voltage for the H bridge inverter.

Fig. 7 Three phase AC voltage of PMSG (V)
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Fig. 8 Rectifier output (zeta converter input voltage)

Fig. 9 Zeta converter output voltage (V)

Figures 14 and 15 depict the output voltage and output current at the inverter
terminals before filter (Fig. 16).

The voltage stress across the switch S1 in the inverter bridge is shown in Fig. 17.
The filtered AC inverted voltage obtained from the H Bridge inverter is given in
Fig. 18. The filtered peak AC output voltage of 118 V is obtained across the resistive
load terminals.

Figure 19a shows the relation between duty ratio and the voltage boost occurs
in the circuit. For the same duty ratio, zeta converter can provide the higher boost
compared to conventional boost converter.

By changing the value of duty ratio of the zeta converter, the conduction period of
the switches can be controlled. With the rectified dc voltage of 30 V, zeta converter
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Fig. 10 Voltage stress across diode (V)

Fig. 11 Current through inductor L2 (A)

boosted the voltage to 120 V and with the modulation index of 1, the inverted ac
voltage of 118 V is obtained at the efficiency of 98.33% keeping all the devices
as ideal during the simulation. Figure 19b and c shows the harmonic profile of the
output load current flowing through the load and voltage across the resistive load at
fundamental frequency. The THD content meets the IEEE standards.
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Fig. 12 Current through inductor L1 (A)

Fig. 13 Voltage across zeta converter switch TQ1 (V)

6 Conclusion

Wave energy technologies are going to be the better replacement and meet the
shortage of fossil fuel in the near future. The wave energy is converted into electric
energy using modern WECS technologies; but, they are not yet commercialized.
And ocean technologies have great potential, but standard policies must be framed
to support the research. EfficientWECS need to be developed in the upcoming years.
More converter topologies and control strategies need to be developed for efficient
conversion. Instead of two stage conversion, single stage boost conversion can be
adopted to improve more boost and effective conversion.
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Fig. 14 Inverter output voltage without LC filter

Fig. 15 Inverter output current without LC filter
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Fig. 16 Inverter output current with LC filter

Fig. 17 Voltage stress across switch S1 (V)
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Fig. 18 Inverter AC output waveform (V)

Fig. 19 aGraphbetween duty ratio and boost factor.bHarmonic profile of load current. cHarmonic
profile of load voltage
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A Comprehensive Review
for the Optimal Deployment of Plug-In
Electric Vehicle Charging Station
with Solution Techniques

Fareed Ahmad , Imtiaz Ashraf, Atif Iqbal, Irfan Khan,
and Mousa Marzband

1 Introduction

This paper aims to aggregate and analyze the most recent studies on the optimal
placement of electric vehicle charging stations (EVCS) during the last four years.
The demand for plug-in electric vehicles (PEVs) has increased dramatically in the last
decade, owing to the quick reduction inCO2 emissions [20] and running charges com-
pared to diesel-petrol base vehicles [27]. According to studies, EVs might reduced
CO2 by 28% by 2030 [1]. Nevertheless, two premium challenges could influence
the broad society when moving to EVs, such as the increased price and the scarcity
of charging establishments. The various enterprises and governments worldwide are
expected to push the EV demand to USD 974,102.5 million by 2027, extending at
a high compound yearly development rate from 2020 to 2027 [2]. The absence of
facility for charging EVs is one of the most pressing concerns handled by the writ-
ers in this investigation. EVs are exponentially growing worldwide, posing a further
issue for electrical distribution network operators (EDNO). Therefore, in this paper,
the authors addressed the optimal siting problem for CSs in distribution networks by
considering EDNO, EVs users, and CS owner perspectives.
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The authors of [17] studied the parking lots by increasing the income of the park-
ing lot and using the cost related to power loss, electrical network reliability, voltage
variation, and parking lot as the deciding factors. Furthermore, a mixed-integer pro-
gramming prototype was produced to represent the challenge of optimizing total EV
flows in the system, and the GA was employed to handle the presented problem. The
authors developed a multi-objective mixed-integer nonlinear model, including the
cost of FCS installation, the energy consumption of EVs, distribution system power
loss, DGs, and bus voltage deviation in [25]. In [6], authors built a multi-objective
mixed integer nonlinear problem including CS investment cost, EV traveling cost for
charging, cost of power loss, DGs installation, and voltage variation. In this analysis,
the non-dominated sorting genetic algorithm II was used to optimize the placement
of CSs and DGs in the distribution network. According to [21], the power loss of a
distribution system was offered as an objective for the location of CS, and the PSO
algorithmwas used to solve the specified optimization challenge. Power loss is taken
as an objective for problem formulation and addressed by the PSO method, and CS
and renewable energy sources are deployed at the optimal sites for the distribution
network [11].

2 Evaluation of Problem Formulation

According to the literature, the writers have determined that CS owners must locate
the CS to reduce installation costs while maximizing gain. Alternatively, EV owners
want to locate the CS to reduce the cost of traveling, charging time, waiting time,
charging for battery, access for charging, and so on, whereas EDNO want to install
the CS to minimize the influence on distribution network parameters. Therefore,
three studies for optimal CS placement are discussed, as seen in Fig. 1 which is also
illustrated in Table 1.

2.1 Electrical Distribution Network Operator Perspective

Electricity is distributed to all connected power loads in the domestic, corporate, and
industrial sectors through the electrical distribution network (EDN). In addition, the
deployment of the new loadswould impact the distribution network (DN) parameters.
As a result, the EDNO perspective optimizes the cost for active power loss [5, 7, 19,
22], cost for reactive power loss, voltage deviation [5, 7, 9, 19], reliability cost [9],
and distribution network stability for the of CSs.



A Comprehensive Review for the Optimal Deployment … 189

Fig. 1 Perspective for charging station deployment

Table 1 Different perspectives with references for siting of CS

Perspectives for optimal placement of CS References

EDNO perspective [11, 21]

CSO perspective [10, 25]

EV user perspective [18]

EDNO and CSO perspective [5, 7, 9, 17, 19, 22]

CSO and EV user perspective [13, 24, 28]

EV user and EDNO perspective Not available

EDNO, CSO and EV user perspective [6, 8, 15, 23]
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2.2 Charging Stations Owner Perspective

The charging station owner (CSO) bears the total costs associated with installing
EVCS to maximize income from the CS through charging. As a result, the CSO is
looking for CS locations with the most income and the lowest investment. Therefore,
the CSO perspective considers the investment cost [10, 23, 24], installation cost [5,
7, 9, 13], operating cost [9, 13], maintenance cost [7, 19], road construction cost,
and land cost while determining the best CS site.

2.3 Electric Vehicle Users Perspective

The location of CS influences the behavior of EV charging. The cost for accessing
the CS, traveling from energy required location to CS, time for waiting [24], and
charging was evaluated as objective functions for CS deployment under the EV
user’s perspective.

In essence, when defining the optimal position of CS, the problem modeling of
CS deployment in any specific zone is highly challenging. Recognizing objectives
and constraints for modeling is a substantial research challenge for CS location, and
recently four years of publication studies are expressed in Table 2.

2.4 Objective Function

This section delivers an overview of the miscellaneous objectives used to formulate
the CS placement planning issue.

Cost Several research studies have addressed cost as an analytical function. As
previously stated, cost functions may be created utilizing a variety of factors and
methodologies. Infrastructure costs are a one-time expenditure involved with the
construction of CSs and can be subdivided into cost of building, labor, land and
charger. The cost ofCS investment is specified in (1) as an objective function provided
in various research articles [4, 5, 7, 9, 13, 15] for CS placement.

ICi = C f ix + 25× Cland × Si + PC × Ccon × (Si − 1) (1)

where C f ix is the fixed cost of CS, Cland is a cost for land, Si shown the connectors
installed at i th CS, and Ccon is the cost for per connector.

Net benefit The CS might act as a link between the charging of EV batteries and the
electricity network. Furthermore, the V2G enables EVs to contribute electricity to
the electrical network via CSs during peak times. Net profit is used as the objective in
the planning of V2G-enabled CSs. Furthermore, the profit raised by CSs in Eq. (2) by
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Table 2 Analysis of CS placement problem in the perspectives of EDN operator, CS owner and
EV user

Objective functions Year Method Load
modeling

DGs V2G

Cost of voltage deviation, CS
development and power loss [7]

2021 BMA × × ×

Cost of energy loss, voltage
deviation and land [19]

2021 HHO � × �

Cost of CS fixed and operating,
traveling and for penalty [8]

2021 CSO,
TLBO

× × ×

Power loss cost [11] 2020 PSO × � ×
Active power losses cost [21] 2020 PSO × � ×
Traveling cost [18] 2020 EHDG × × ×
Cost of development, specific
energy consumption and power
loss [6]

2019 NSGA-II × � ×

Power loss cost and EV flow [22] 2019 GWO � × ×
Cost of installing EVCS [10] 2019 LP � × ×
Construction and operational
cost [13]

2019 Simulation � × ×

Cost of CS development, EV user,
power loss and voltage
deviation [5]

2019 SFL-TLBO × � ×

Reliability, cost for installation,
operation and power loss [9]

2019 CSO-
TLBO

× × ×

Cost of power loss, reliability and
voltage improvement [17]

2018 GA × × ×

Cost for investment for CS,
traveling time and waiting
time [24]

2018 SCE-UA � × ×

Cost for connection, demand
response, investment and power
loss, demand response [23]

2018 PSO × × ×

Cost of transportation, sub-station
power loss and CS development
[15]

2018 BLSA × × ×

Cost of CS installing, users
charging, CS access and waiting
time [28]

2018 CPLEX × × ×

Plug-in electric vehicle flows [25] 2018 HA, GA × × ×
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delivering energy to the network during peak time represents a benefit of supplying
energy from the electrical network.

R(i) = Prp × Ppark(i) × tdis(i) (2)

where R(i) is the raised total amount from i th CS, tdis(i) is time in which battery
of EV discharging through V2G perspective, Prp is the rate of energy during peak
time.

Other cost functions Researchers consider power loss, distance, and covered trip
as objective functions when addressing the CS placement challenges. Furthermore,
installing a CS increases the burden on the existing network. Furthermore, the cost
of power loss and voltage variation are the primary concerns for the deployment of
CS under the EDNO concept. As a result, most researchers have included the cost of
power loss [5, 7, 19, 22] and voltage variation [10, 24] as objective functions in (3).

Pc
loss = EC

B∑

i=1

B∑

j=1

Gi j
(
V 2
i − V 2

j − 2ViVj cos(θi j )
)

(3)

where, EC is rate of energy in $, B is the total nodes, Gi j is the conductance of
branch between i th node to j th node, Vi is the i th node voltage, θi j is the difference
of load angle, V t

i , is the node voltage of i th.

2.5 Constraints

The CS placement issue is cracked under equality and inequality constraints. After
installing CSs in the distribution network, the voltage restrictions at each bus, branch
current limits, and temperature limits should be satisfied. The min. and max. CSs
installedmust also be specified. Furthermore, CSs should not be put too near together.
The distance constraint considers the distances between CSs.

3 Review of the Solution Techniques for the Placement
of CS

The solution methods minimize or maximize the objective functions to place the CS
at an optimal location. The specified problems formulation for the deployment of
EVCS, for instance, can be multi or single objective, it can be also non-linear also
with concave or convex property. The problem model might be continuous, integer,
discrete, or a mix of the variables utilized. As a result, selecting the appropriate
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Fig. 2 Optimization techniques classification

strategies for the assigned issue is crucial. The paper provides a summary of different
approaches for CS optimum position in this study, as depicted in Fig. 2. Furthermore,
the two effective optimization techniques are classical and advanced optimization.

Classical optimization techniques can handle only differentiable and continuous
problem. Moreover, most of the time formulated problem is not continuous and/or
differentiable, therefore, this approach have limited applications.

Advanced optimization techniques Multi-modality, dimensionality, and differen-
tiability are associated with optimizing large-scale issues, which traditional method-
ologies struggle to tackle. Because most classical approaches need gradient infor-
mation, they are unsuitable for solving non-differentiable functions. Furthermore,
traditional strategies frequently fail to address optimization issues with several local
optima. On the other hand, advanced approaches devastate these obstacles to solving
the optimization challenge.
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3.1 Optimization Approach for Single Objective

In comparison to the multi-objective optimization problem, the handling procedures
of the single-objective is straightforward. To address single-objective problems, con-
ventional and advanced optimization methods are applied.

Genetic algorithm as the name indicates, imitate the genetic component of candidate
populations to enhance the current set selection. When applying a GA, rigorous plan
decisions should acclimate the algorithm. The gene-encoding procedure, crossover
process, and fitness functions impact the technique’s capacity to identify the correct
output. A big pool of different data is also needed to prevent the technique from
tangling in regional minima. This is often performed by randomly picking genes
for a crossover, resulting in a slow convergence speed while ensuring exploration.
According to [26], the target functions to frame the problem for EVCS deployment
andproblemshandled byGA include traveling cost, installing cost forCSs, substation
operating cost, and power loss cost.

Particle swarm optimization is a popular and efficient technique that optimizes
execution using randomization and global particle communication. The swarm of
potential solutions (particles) comb the investigation area for the most excellent
solutions, continually trading and comparing personal and global bests. Recently,
IPSO, several enhancements to the earliest PSOwere created to improve computation
time and deliver more exact results. CS and DER are put at an ideal RDS position in
[3], and power loss is used as an objective for the model handled by the PSOmethod.

3.2 Multi-objective Optimization Techniques

The multi-objective functions have two main approaches: a posteriori and a pri-
ori. The priori technique reduces a multi-objective function into a single-objective
function using weight coefficients. Furthermore, weights determine the objective’s
importance in the modeled problem. The major drawback of such a method is that
technology should be performed numerous times to determine the Pareto optimal set.
In addition, professional assistance is necessary, and this approach cannot identify
some specific Pareto optimal fronts [16].

Non-dominated sorting genetic algorithm-II is a multi-objective meta-heuristic
GA often used to tackle optimization issues with multi-objectives. The NSGA-II
separates the population into numerous non-dominated chromosomal fronts, with
the chromosomes in each group ordered in order of diversity [6].
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3.3 Machine Learning Techniques

Without any explicit programming, the computer learns from prior experience in
machine learning. The data-set that the algorithmutilizes to train itself is referred to as
experience in this context. The models may effectively forecast trends with time and
learning experience, offering predictive analysis [14]. Typically, machine learning
techniques are divided into supervised and unsupervised learning, and reinforcement.
Therefore, authors in [12] used hybrid version of GA and reinforcement learning
algorithm to obtained the optimal placement of CS.

According to Table 2, researchers employ various techniques to solve the loca-
tion problem of CS. GA and PSO are the two primary problem-solving approaches
employed by researchers. Other methods used by the authors to handle the model
includeTLBO,ACO,LP,ABCgreedy algorithm,GOA,GWOandbranch and bound.

4 Conclusion

The placement of the CS may influence the characteristics and viability of the elec-
trical system, the choice of the EV driver to charge the battery, and the decision of
the investor to build the CS. As a result, this review paper approached the subject
of optimal charging station location from three perspectives: electrical distribution
system operator, CS owner, and EV user. Many studies in the review have inves-
tigated and assessed the problem modeling, perspectives, objective functions, and
constraints to establish a strong position for the CS. Furthermore, this paper discusses
objective functions and constraints for the problem, EV load modeling, renewable
energy source integration, solution methodologies, and utilized perspectives.
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After Lifetime Reliability
and Performance Analysis of PVModules

Mugala Naveen Kumar , Birinchi Bora , Arup Dhar , Deepak Yadav ,
Jai Prakash , and Chandan Banerjee

1 Introduction

As the fossil fuels are going to extinct in coming years, the entire world is looking for
renewable energy sources as a step forward. Indian prime minister pledges in COP
26 that India aims to reach net zero emissions by 2070 and to meet 50% of the energy
requirements from renewable energy sources by 2030. This shows the importance of
renewable energy in coming decades. Generating electricity using solar PV is one of
the major sources of energy production in India. One of the main challenges of using
PVmodules are cost effectiveness, lifetime and reliability. To enhance the usefulness
of PV module, one of the solutions is to reuse the PV module for power generation
after its lifetime.

By performing the degradation analysis of the PV modules which are in working
condition for long duration, we can estimate the useful life time of the PV modules.
People have reported about the degradation analysis of PV module for different
climatic zones of India [1–3]. Withstanding for long period in harsh outdoor envi-
ronment is one of the major technical strengths of the photovoltaic (PV) modules.
Long term reliability and durability are the essential points not only for the manu-
facturers to determine the warranty period of the module but also for the consumers
who can rely on the power generation from these PV modules.

In this study, monocrystalline modules from one of the Indian PV module manu-
facturers which are located in National Institute of Solar Energy (NISE), Gurugram,
Haryana are considered. A study about these modules was already reported [4]. The
PVmoduleswhichwere installed and operational since 2000 are selected statistically.
Various tests and characterization are performed to obtain the rate of degradation and
understand the reliability of themodule. Themodule reliable in terms of performance
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and safety could be reuse for production of energy. The degradation rate measured
for themodule is used to estimate the energy generation in the coming years using the
current power rating of the PV modules. This has been done on PVSyst by creating
the ‘.PAN file’ of the selected PV module and designing a Photovoltaic system of
1 kWp.

2 Methodology

Mono crystalline PVmodule from an Indianmanufacturer which is installed in NISE
outdoor test bed for 22 years are used for this analysis. Themodules were statistically
selected and various performance analysis were performed. The performance of
the module measured in indoor conditions using solar simulator before installation,
after 10 years of exposure and after 22 years of exposure. Degradation rates are
determined after 10 and 22 years of exposure. The process flow chart used formodule
characterization after 22 years of exposure is given below:

(a) Visual inspection of the PV modules: PV modules are inspected visually as per
IEC 61215-2021 to determine their physical conditions [5].

(b) Performance measurement of PV modules at STC: Initially the performance of
the modules is measured at STC using A+ A+ A+ solar simulator. Post STC
performance, the effect of angle of incidence has been measured as per IEC
61853-2 [6]. After that, temperature coefficients of PV module are measured
as per IEC 61853-1 [7]. These measurement data are necessary for creating a
‘.PAN’ file in PVSyst using which energy generation from these PV modules
are estimated.

(c) Once the electrical characterization of the PVmodules is done, thermal imaging
of these PV modules was performed using infrared (IR) thermal camera.
Thermal imaging gives the insight on the heat signature of the PV modules
which enable the understanding of the hotspot formation during operation, cell
mismatch, shunt resistance and Potential Induced Degradation (PID) of the PV
modules.

(d) EL imaging is a crucial testing for determining the health of the PV module
by which the micro-cracks and the operational region of the PV cells can be
determined.

(e) Insulation test of the PVmodules has done as per IEC 61215-2021 to determine
the leakage current and insulation resistance between the active circuit and the
frame of the PV module.
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Fig. 1 Some of the observed visual defects during inspection

3 Results and Discussions

3.1 Visual Inspection

The visual inspection of 14 modules which are continuously exposed in outdoor
condition for a long time are inspected under the illumination of 1000 lx. In this
test it has been observed that many modules are severely affected in terms of back-
sheet disruption, bubble formation due to moisture ingress, delamination and glass
breakage. Figure 1 shows the visual defects of the PV module observed.

The results of the visual inspection are quantified in Table 1.

3.2 Performance Analysis at STC

To determine the degradation rate, electrical parameters such as Open circuit (Voc),
Short circuit current (Isc), Voltage at maximum power point (Vmp), Current at
maximum power point (Imp), Power at maximum power point (Pmax) and Fill factor
(FF) of all the modules are performed at STC. These current results are compared
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Table 1 Various defects observed during visual inspection of the PV modules operational for
22 years

S. No. Visual defect Percentage of modules effected (%)

1 Chalking 85

2 Corrosion in busbar, interconnection ribbon 85

3 Discoloration in the cells 71

4 Bubbles in the back sheet 14

5 Damage of back sheet 85

6 Damage of junction box 100

7 Corrosion of frame 0

with the STC results performed earlier on 2000 and 2010. With all these results the
degradation rate is determined using the formula:

Degradation rate (%) = I ni tial value − Final value

Ini tial value × Year of exposure
× 100%

Adetailed annual degradation rate of all the electrical parameters of thePVmodule
is shown in Fig. 2.

Detailed degradation rates (per year) of all the electrical parameters of the PV
module are shown in Fig. 2, where last 12 years mean from 2010 to 2022, first
10 years replicate 2000–2010 and total 22 years is from 2000 to 2022. It can be

Fig. 2 Annual degradation rate of the electrical parameters
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observed from Fig. 2 that the degradation in Voc after initial 10 years (2000–2010)
and in last 12 years (2010–2022) consecutively is around 0.02% (per year) and 0.16%
(per year). These results indicate that the junction quality and the shunt resistance of
the of the PV modules has not degraded significantly. For Pmax, the initial 10 years’
degradation is 0.4% (per year) and for last 12 years is around 1.2% (per year).
The modules show power degradation of 0.85% per year The result of Voc and
Pmax degradation signifies that the FF has degraded significantly in last 12 years as
compared to the initial 10 years, which is evident from Fig. 2. Whereas in case of Isc,
it has degraded to approximately 0.96% (per year) in first 10 years and then 0.24%
(per year) in last 12 years. This points toward the fact that the Isc degradation has
almost saturated in the first 10 years and very less degradation of Isc has happened
in last 12 years. The possible reasons behind this can be the ARC degradation and
reduction in transparency of the glasses happens in the initial 10 years only.

3.3 Insulation Test

To address the safety issues of the modules, insulation test is performed. The leakage
current of a module increases with decrease in the insulation resistance, this comes
under the safety concern of the PV modules. The insulation resistance tests of all
the modules are performed using insulation resistance tester. For these modules
insulation test is conducted under 2 conditions i.e., dry insulation test andwet leakage
test. In dry insulation test the modules were tested by shorting the two terminals
and applying 2200 V (1000 + 2 times the maximum system voltage of module)
with respect to frame for two minutes. In wet insulation test (wet leakage test) the
modules were tested by shorting the two terminals and applying 600 V (maximum
system voltage of module) with respect to frame for two minutes. This procedure
is performed as per the standard IEC 61215-2-2021. According to the standard,
insulation resistance should be more than 400 Mega ohm (M�) for a module of area
less than 0.1 m2. It has been observed from the wet insulation testing that, out of 14
modules, 10 modules have insulation resistance value less than 400 M�. Therefore,
it can be concluded that, only 4 modules have passed the Wet Leakage Test. In case
of dry insulation test, 7 modules have insulation resistance value less than 400 M�

out of 14 modules and therefore only 7 modules passed the dry insulation test. Only
qualified module should be used for reusing. Before their deployment in the field,
insulation test must be performed to ensure the safety.

3.4 IR Thermal Imaging

Due to poor contact between the cells and material degradation of a module, partial
or complete solar cell may get heated locally and the temperature is not equally
distributed throughout the entire module. As a consequence, hotspots may occur in



204 M. N. Kumar et al.

Fig. 3 IR images of the PV modules which were operational in field for more than 20 years

the PV modules. IR Thermal imaging has been performed using Fluke IR thermal
imager and is presented in Fig. 3. For 14 modules IR images have been taken, and it
has been observed that only in 4 modules hotspots are present. The reason for these
hotspots is the corrosion of contacts which have increased the series resistance of
the solar cells. This is also evident from the IV data of the particular modules when
compared with their earlier IV curves.

3.5 Electroluminescence Imaging (EL Imaging)

Some cracks in the module is not visible with the naked eye, to have an insight of
the electrical active area electroluminescence (EL) is performed where rated current
and voltages are used to excite the solar cells and they emit light having wavelength
near infrared region. To capture the higher wavelength light special IR camera are
used and the picture obtained shows bright light from the electrically active area.
Figure 4 shows the EL image of the particular module. If the brightness of the cells
is uniform, there will be low series resistance. Almost all the modules have minor
micro-cracks which can be clearly seen from the EL images shown in Fig. 4. Some
solar cells of the modules also show degradation in terms of their shunt resistance.
The cumulative degradation has resulted in the power losses over the time they were
operational in the fields.
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Fig. 4 EL images of the PV modules which were operational in field for more than 20 years

3.6 Estimation of Energy Generation of the PV Modules
After 22 Years

The module with no visual defects or with reparable defects, no safety issues and
low degradation rates could be reuse for the energy production after its lifetime
as declared by the manufacturer. “PAN” file for PVSyst has been designed for the
initial and current rating of the PVmodule and energy yieldwere estimated. The PAN
file contains specifications of photovoltaic modules in text form. The designed plant
capacity is of 1 kWpACwhich consists of 15 PVmodules of 78.4Wp each according
to their initial STC data in the year 2000. The energy estimation using the initial STC
value of the module projected the generation of around 1730 kWh in the year 2022 as
shown in Fig. 5a. During this energy estimation annual degradation of PV modules
were considered as 0.4% (per year). After 22 years the same plant is designed with
current STC data of the module i.e. 67.2 Wp and it was observed from Fig. 5b that
the energy generation in the 1st year (2022) is around 1360 kWh. Therefore, it can
be clearly observed that there is a significant deviation in the energy yield from the
previous PVSyst energy estimation as compared to that of the current state of the
PV modules. The reason behind the deviation is the rate of degradation which was
predicted as 0.4% (per year) but in actual the yearly degradation happened to be
around 0.95% (per year). With this new degradation rate PVSyst energy estimation
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Fig. 5 a Energy estimation of the power. b Energy estimation of the power plant using the initial
data of the PVmodules plant using the current performance data of in 2000 the PVmodules in 2022

was again performed and it is observed that the solar PV plant having 22 years old
modules can generate 1000 kWh of energy after 25 more years. This is somewhere
around 50% of the energy which the power plant was generating at its initial state.

This energy yield estimation after 20 years concludes that the PV modules which
are installed in PV power plants for more than 20 years can still be used for power
generation for various low power solar PV applications. For calculating the energy
yield, one should use the current degradation rate and some crucial test should be
performed to ensure the safety and performance of these refurbished PV modules.
The visual inspection, EL imaging, IR imaging and the insulation test can predict
the expected performance and safety of the modules. Reusing the PV module will
maximize their utilization and reduce the electronics waste which will be generated
from targeted use of solar PV modules.

4 Conclusion

In this work, the PV modules which were operational in outdoor field since 2000
are tested after 10 and 22 years of exposure. During visual inspection of theses PV
modules, some defects like chalking of back sheet, metal corrosion, discoloration in
the cells and damage of Junction box was observed. Although they seemed visually
damaged, some of themodule could be repaired and theywere generating power with
overall degradation of around 0.85% (per year) in terms of power. The performance
analysis of all the PVmoduleswere performed and it was observed that themaximum
degradation is due to the fill factor losses. Therefore, it has been concluded that the
shunt resistance has degraded significantly which is also evident from EL images. To
reuse this PV modules, insulation and IR imaging has been performed which gives
insight on the safety of the PVmodules. Those PVmodules which passes the criteria
of 400 M� for both the dry and wet insulation test can be considered safe for further
use after 20 years. Finally, with the current performance data and the degradation
rate of the PV modules after 22 years the energy generation is estimated for another
25 years and it has been observed that it can still generate energy. Through this work,
it is concluded that the PV modules which are in operation for more than 20 years
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can be further used for power generation with few necessary testing, which ensures
the precise power estimation and safety of the PV module. This exercise can be used
make cheaper PV modules available for low power solar applications and can help
in reducing the e-waste which is being produced due to discarding of PV modules
post lifetime. However, to estimate the reliability of the module post lifetime, it is
required to do reliability testing as per IEC 61215: 2021, which is a future scope of
this study.
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Financial Viability of Rooftop PV
Systems in Residential Housing Societies
in India

Pratik Joshi, Anand B. Rao, and Rangan Banerjee

1 Introduction

In 2015, India set a target of installing 100 GW of solar PV capacity under the
National Solar Mission by 2022 to promote solar energy and reduce its dependency
on fossil fuels [1]. The target was split between two categories; 60 GW of capacity
was planned from ground-mounted large-scale PV installations, whereas the rest of
the 40 GW was planned from rooftop PV systems.

Since the launch of the national solar mission, the states and the central govern-
ment of India have aligned their policies by implementing various policy mecha-
nisms such as reverse auction, capital subsidy, generation-based incentives, elec-
tricity bundling, tax incentives (such as a rebate on property tax, accelerated depre-
ciation), and research grants. Renewable portfolio obligations, renewable energy
certificates, and access-based regulatory policies such as net metering and net billing
are adopted. Renewable power plants have been awarded a ‘must-run’ status to
maximize energy yield and safeguard capital investment. India’s solar PV industry
has significantly grown in the last seven years. The supply chain for PV modules,
inverters, and balance of components is emerging, and the number of engineering
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procurement and commissioning companies engaged in the PV plant installation
business have increased multifold.

The country has installed 53.9 GW of PV capacity by the end of March 2022 [2].
It includes 45.79 GW of ground-mounted large-scale installations and 6.65 GW of
rooftop systems. Around 1.56 GW of capacity is reported from Off-grid systems.
Only 16.6% capacity addition has been achieved in the rooftop category against 76%
in the ground-mounted category. The rooftop category is lagging behind its target
compared to the ground-mounted systems, which makes it imperative to study the
reasons behind the modest deployment of rooftop PV systems andmeasures to accel-
erate the same. Understanding barriers and driving forces related to rooftop systems
under the present policy scenario can help re-align future policies to accelerate the
deployment.

This paper discusses the financial viability of rooftop PV systems under prevailing
electricity tariffs and capital subsidies for various capital cost conditions. This paper
aims to understand the conditions under which the rooftop PV project becomes
financially viable for investment.

1.1 Background

The electricity sector in India is regulated as per the Electricity Act 2003. State
electricity regulatory commissions annually revise electricity tariffs based on aggre-
gate revenue requirement proposals submitted by electricity distribution companies
(Discoms). The net electricity bill amount is inflated as discoms levy surcharges
and state government taxes on consumed electricity in addition to fixed and energy
charges mentioned in the electricity tariff schedule. From an economic point of view,
consumers are looking for a cost-effective alternative to reduce the burden of high
electricity bills. Rooftop PV systems are considered a natural solution due to their
low maintenance, stationary structure, and environment-friendliness.

Around 75% of rooftop PV installations come from the commercial and industrial
(C&I) segments [3]. Domestic consumers’ reluctance to install PV systems can be
attributed to lower electricity tariffs (than C&I consumers), high capital costs for
small plant capacity, and limited access to capital.

The total technical rooftop PV potential of thirteen cities in India is estimated at
around 17.8 GWp, indicating adequate capability to achieve set rooftop PV targets
if implemented nationwide [4]. In order to achieve the target of 40 GW, govern-
ment intervention is necessary to make PV systems profitable for a broad range of
consumers. This paper focuses on assessing the economic feasibility of rooftop PV
plants installed in residential housing societies (for common services such as lift,
water pumping, and street lighting) in four Indian cities, namely Mumbai, Chennai,
Kolkata, and Delhi.

Rodrigues et al. have discussed the economic feasibility analysis of 1 and 5 kW
systems in 13 countries [5]. Ghosh et al. and Fuke et al. have presented a case for
5 kWp for Bangalore using actual site data and Delhi using a simulation study,
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respectively [6, 7]. Similar studies by Mukherji et al., Shukla et al., and Saxena et al.
have been reported in the literature [8–10].

The analysis chooses the residential housing society over the individual house
as cities will have more multi-storey buildings than individual houses. Moreover,
system sizes with a wide capacity range can be considered in the case of housing
society as the range of required PV capacity will be broad. The required PV capacity
for a particular society will broadly depend on the number of families in it and the
availability of shade-free rooftop areas. In the next section, a detailed methodology is
explainedwith the help of a techno-economic framework, followed by data collection
and assumptions.

2 Methodology

This paper uses a cash-flow model approach to study the effect of location and
size on the Simple Payback Period (SPP) and Internal Rate of Return (IRR) under
different compensation scenarios and various capital cost conditions. SPP and IRR
are used to assess the economic feasibility of a project. SPP indicates the time (in
years) required to recover the initial investment cost. A lower payback period shows
that investment is recovered earlier, ultimately reducing investment risk. This metric
is easy to calculate and understand. However, it does not consider the time value
of money and ignores cash flows beyond the payback period. In the present study,
each year’s cumulative cash inflows are calculated to arrive at the payback period,
as annual cash inflows are uneven. The following formula is used to calculate SPP;

Simple Payback Period = E + B

C
(1)

In the above equation, E represents the year immediately preceding the year when
cumulative cash flows become more than or equal to zero, B represents the residual
recovery amount, whereas C stands for cash inflow during the final recovery year.

The IRR is the discount rate value at which the investment’s net present value
becomes zero. IRR is compared with investors expected minimum rate of return. It
is determined by setting the net present value equal to zero and iteratively solving
for the discount rate value. The following formula is used to calculate IRR;

I RRk+1 = Annual return

Initial investment

(
1 − 1

(1 + I RRk)
n

)
(2)

In the above equation, k indicates iteration, and n indicates the project’s economic
life. The step-by-step calculation process is explained with the help of a techno-
economic framework in the following section.
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2.1 Framework

A techno-economic framework is shown in Fig. 1. The framework uses the System
Advisor Model (SAM) developed by the National Renewable Energy Laboratory to
simulate the monthly electricity generation of a solar PV plant in Mumbai, Chennai,
Kolkata, and Delhi for three system sizes (10, 50, and 100 kWp).

Four compensation scenarios (25, 50, 75, and 100% of monthly electricity
consumption) are created. Compensation scenarios use compensation ratio (CR)
to factor in a temporal mismatch in the generation and consumption of electricity
over a billing period. For a perfectly designed grid-tied system, the compensation
ratio is the ratio of self-consumed units compensated at the retail electricity tariff rate
to the total number of units generated by the PV system in a specific billing period.
The compensation ratio can also accommodate regulatory conditions requiring the
loss of specific grid-injected units against distribution grid balancing and manage-
ment expenses. It allows the investor to compare PV system performance under such
regulatory restrictions.

During simulation in SAM, Trina solar 335 Wp multi-crystalline PV module is
selected. The inverter selected for this study is Fronius Symo Advanced 10.0 kW for
10 kWp system, ABBTrio 50 kW for 50 kWp system, and Solis 100 kW for 100 kWp
system. The number of modules in a string and the total number of strings are chosen
such that DC/AC ratio for the PV system remains 1 for the 10 kWp system, 1.07 for
50 kWp, and 1.08 for 100 kWp. The average capacity utilization factor (CUF) of all
three system sizes at four locations is shown in Table 1. Under the given assumptions,
the capacity utilization factor across four locations varies in the range of 1.83%.

Monthly bill savings are obtained by applying the electricity bill calculation
methodology of respective Discom to each compensation scenario. The monthly
electricity bill calculation methodology is determined from electricity bills and tariff
schedules. The bill calculation consists of calculating energy charges, wheeling

Fig. 1 The techno-economic framework used in the present study
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Table 1 Related information on all locations (applicable cost in INR)

City Mumbai Chennai Kolkata Delhi

Electricity
distribution
company

Tata Power Tamil Nadu
Generation and
Distribution
Corporation Ltd

West Bengal
State Electricity
Distribution
Company Ltd

BSES Yamuna
Power Ltd

Tariff category LT I (B) LT I-A A(DM-U) for <
50 kW and D-ID
for ≥ 50 kW

Domestic

Applicable cost
for 10 kWp

40,000 39,770 44,640 37,000

Applicable cost
for 50 kWp

37,000 36,170 41,640 37,790

Applicable cost
for 100 kWp

37,000 36,170 41,640 37,790

Wheeling charges
(INR/kWh)

1.88

Regulatory asset
surcharge (% of
energy charges)

8

Pension trust
surcharge (% of
energy charges)

7

Electricity duty
(% of energy
charges)

16

Electricity tax 0.2604 INR/kWh 5% of energy
charges and
surcharges

Average CUF (%) 18.47 18.27 16.64 17.04

charges, electricity duty, tax on the sale of electricity, regulatory asset surcharge,
and pension trust surcharge wherever applicable. The only variable component of
bill calculation is considered to determine monetary savings as fixed charges are
required to be paid even after installing the PV system.

The central government provides a 20% capital subsidy for residential housing
societies up to a capacity of 500 kWp [11]. The subsidy is calculated on appli-
cable cost, the lowest rate between rates discovered for rooftop systems by different
states/union territories in that year, or MNRE benchmark cost [12]. The government
of Tamil Nadu provides INR 20,000/- per kW under Chief Minister’s Solar Rooftop
Capital Incentive Scheme [13]. The total capital subsidy (central + state) is calcu-
lated to determine the net capital cost. To see the cost effect, the gross capital cost is
changed from INR 40,000/kWp to INR 90,000/kWp in the INR 10,000/- step. The
system is assumed to be maintenance-free. A simple payback period and internal
rate of return are calculated to arrive at the results. The framework is used for three
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system sizes in four cities under six capital cost scenarios. The results are discussed
in the results section.

2.2 Data Collection

The name of Discom, tariff category, applicable cost, and various charges used in
monthly electricity bill calculation are shown in Table 1. The electric distribution
company (Discom) is assigned to each city based on location. The electricity connec-
tion category for housing societies and associated tariff schedule is accessed from the
websites of Tata Power for Mumbai [14], Tamil Nadu Generation and Distribution
Corporation Limited for Chennai [15], West Bengal State Electricity Distribution
Company Limited for Kolkata [16], and BSES Yamuna Power Limited for Delhi
[17].

2.3 Assumptions

During simulation in SAM, the system with a fixed tilt mechanism with a tilt angle
equal to latitude is selected. The azimuth angle is kept at 180°. An average annual
soiling loss of 5% is assumed, which causes a reduction in total irradiance. An annual
DC degradation rate of 1.84%/year accommodates module degradation under Indian
climatic conditions over its lifetime [18]. The project’s lifetime is assumed to be
25 years for this study. It is assumed that the electricity tariff and electricity consump-
tion remained unchanged.Any rise in electricity tariffwillmake the economic param-
eters (SPP and IRR) favor investors, whereas the probability of a significant fall in
the long term is low. The electricity consumption of a housing society is not expected
to change significantly as most of the loads are constant in nature.

3 Results

The SPP and IRR for 10, 50, and 100 kWp systems in Mumbai, Chennai, Kolkata,
and Delhi under four compensation scenarios with the capital cost at INR 40,000/-
and INR 50,000/- are shown in Fig. 2. It can be observed that Mumbai has a higher
rate of return than the rest of the cities under all compensation scenarios.

Systems become financially viable at a capital cost of INR 40,000/kWp and INR
50,000/kWp in all cities for a compensation ratio of 0.75 and one, with a payback
period ranging from 1.7 to 6.2 years (average SPP of 3.7 years) and with IRR ranging
from 14.14 to 57.6% (average IRR of 28.9%). It shows that systems become econom-
ically feasible at low capital cost provided that an adequate compensationmechanism
is in place.
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Fig. 2 SPP and IRR at INR 40/Wp capital cost for system size of a 10 kWp, b 50 kWp, c 100 kWp
and at INR 50/Wp capital cost for system size of d 10 kWp, e 50 kWp, f 100 kWp

SPP and IRR for 10, 50, and 100 kWp systems inMumbai, Chennai, Kolkata, and
Delhi under four compensation scenarios with the capital cost at INR 60,000/kWp
and INR 70,000/kWp is shown in Fig. 3. IRR for all system sizes for compensation
ratio of 0.75 and one range from 8.08 to 35.17% (average IRR of 17.56%). Mumbai
remains the most favorable location, with the highest IRR of 35.17% for a 100 kWp
system size for a compensation ratio of one. A compensation ratio of 0.25 is unviable
for all system sizes across all locations.
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Fig. 3 SPP and IRR at INR 60/Wp capital cost for system size of a 10 kWp, b 50 kWp, c 100 kWp,
and at INR 70/Wp capital cost for system size of d 10 kWp, e 50 kWp, f 100 kWp

Under prevailing conditions, systems with a 10 kWp size with capital cost equal
to or higher than INR 60,000/kWp are marginally viable and require case-specific
details to comment on economic feasibility. Figure 4 shows SPP and IRR for 10, 50,
and 100 kWp systems in Mumbai, Chennai, Kolkata, and Delhi under four compen-
sation scenarios with the capital cost at INR 80,000/kWp and INR 90,000/kWp. At
a capital cost of INR 90,000/kWp, for a compensation ratio of one, the average SPP
in four cities remains at 7.5 years for 10 kWp, seven years for 50 kWp, and 6.8 years
for 100 kWp. The average IRR values are 12.05% for 10 kWp, 13.69% for 50 kWp,
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and 14.05% for 100 kWp. Systems with 0.25 and 0.5 compensation ratios are not
financially viable. The system finances deteriorate as system cost increases.

In the case of Mumbai and Delhi, IRR increases as system size increases from 10
to 50 kWp above, which shows modest changes. IRR’s rate of change in the case of
Kolkata and Delhi is low. In Kolkata, for a compensation ratio of one, IRR decreases
as system size increases. In Mumbai, the average IRR of a 10 kWp system reduces
from 52 to 21% as capital cost increases from INR 40,000/kWp to INR 80,000/kWp.

Fig. 4 SPP and IRR at INR 80/Wp capital cost for system size of a 10 kWp, b 50 kWp, c 100 kWp,
and at INR 90/Wp capital cost for system size of d 10 kWp, e 50 kWp, f 100 kWp
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The results presented in this study are validated by comparing SPP and IRR with
similar studies. Rodrigues et al. have reported an IRR of around 20% for a 5 kW
system located in Jaipur, India, for an initial cost of INR 46,834/kWp [5]. Ghosh
et al. assessed a 5 kWp system in Bangalore and found SPP of 8 years and IRR
of 10% for a capital cost of INR 67,400/kWp, degradation factor of 0.5% per year,
and a plant load factor of 19% [6]. In a 2020 study, Fuke et al. reported an SPP of
9.73 years for a 5 kW grid-connected system in Delhi at the cost of INR 67,240/kWp
[7].

For the capital cost of INR79,690/kWp, 20% capital subsidy, andCUFof 14.64%,
Mukherji et al. reported SPP of 5 years and IRR of 20% for a 50 kWp system in Jaipur
[8]. A simulation study on a 110 kWp system on a hostel building in Bhopal resulted
in an SPP of 8.2 years, considering the capital cost of INR 74,560/kWp [9]. In a
recent study performed in 2021, an SPP of 5.78 years was achieved for a 100 kWp
system in Delhi at a capital cost of INR 65,371/kWp and CUF of 20.66% [10]. While
the uniqueness of the study design and variation in input parameters, including but
not limited to location, time, initial cost, and tariff rate, restrict the direct correlation
of SPP and IRR, the comparison shows that the findings in the present study are in
line with previous studies.

4 Conclusion

The financial viability of rooftop PV systems largely depends on the effective elec-
tricity billing rate and capital cost. Under prevailing tariff and subsidy conditions, the
economic parameters of rooftop systems in Mumbai are more favorable than in the
rest of the locations due to the high electricity bill rate and higher capacity utilization
factor.

The system’s internal rate of return is sensitive to the capital cost, and it halves
as the capital cost doubles. It signifies the importance of capital cost in decision-
making for an investor. PV modules and inverters contribute more than half of the
capital cost. Hence, government intervention is needed to protect the market from
price shocks as PV manufacturing, and the associated supply-chain is concentrated
in a few countries.

Systems with a compensation ratio equal to or lower than 0.5 are not viable
irrespective of system size and location—ahigher self-consumption results in notable
improvement in the payback period and rate of return. Hence, efforts should be made
to promote the self-consumption of electricity at the consumer end. The existing
net-metering/billing mechanism can be replaced with a mechanism that promotes
self-consumption and discourages consumers from injecting electricity into the grid
within a specific billing period. It includes not carrying forwarding excess injected
units into the successive billing cycle and depositing part of injected units to recover
distribution grid balancing and management expenses.
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Electricity Access-Development Linkages
of Centralised and Decentralised Supply
Schemes

Omkar Buwa and Anand B. Rao

1 Introduction

“Have you worked out the problem of electricity for every home?What is the cost?”1

on 30th April 1945, Mahatma Gandhiji wrote a letter to Cambridge return economist
Shri. Amiya Nath Bose expressing his concern about the electricity access to every
home in India. These efforts were worth taking as in later years, the importance of
electricity for development was acknowledged by the global community.

The electricity access to every end user may be realized through different supply
schemes. They are categorized as centralised or decentralised. Centralised supply
scheme is a grid network where bulk power stations supply electricity through trans-
mission and distribution. Decentralised supply schemes are mini grids at community
level or solar home systems (SHS) at household level.

These different supply schemes differ in terms of the attributes. The various
models may also exist considering whether these supply schemes exist separately,
compete, or integrate with each other. The choice of electricity supply scheme and
the choice of supply model may impact the development.

The aim of this paper is “to understand the electricity access-development link-
ages of centralised and decentralised supply schemes”. In particular, households’
electricity access is considered. Following are the major contributions:

(a) Discussion on the attributes of the supply schemes and linkages to the
development

1 Quoted by Shri Chandra Kumar Bose (Son of Shri Amiyo Nath Bose); Available
at http://www.dailyo.in/politics/mahatma-gandhi-indian-freedom-struggle-sarat-chandra-bose-par
tition-congress/story/1/6599.html; last accessed on March 25, 2022.
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(b) Discussion on the relationship between supply schemes and relevant models.

Some future research work areas are also briefly described.

2 Electricity Access and Development Linkages

2.1 Electricity Access

There is no internationally accepted and adopted definition of electricity access.
But some common important meanings are minimum level of household electricity,
access to the services driving economic development and the public services like
schools, hospitals etc. International Energy Agency (IEA) defines the energy access
as “a household having reliable and affordable access to both clean cooking facilities
and to electricity,which is enough to supply a basic bundle of energy services initially,
and then an increasing level of electricity over time to reach the regional average”
[8]. The definition talks about the household level electricity access.

On 25th September 2017, SAUBHAGYA-Pradhan Mantri Sahaj Bijli Har Ghar
Yojana was launched in India. This scheme proposes either grid extension or
providing SHS to unelectrified households [15]. There is no consideration of mini
grids as source of electricity supply as per this scheme. On 28th April 2018, Govern-
ment of India declared that every single village has access to electricity [14]. But
the electricity access to every end user is still dream in India. As per latest available
data of the World Bank in 2020, 1% population (around 1.4 crores) of India was still
without electricity access [16].

2.2 Development

Impact of electricity access on economic growth is indicated by relationship between
per capita electricity consumption and economic growth indicator—GDP in per
capita. It is observed that GDP per capita increases with electricity access. Human
development index considers three dimensions—a long and healthy life, knowl-
edge, and decent standard of living. Electricity plays very important role in all the
three dimensions for positive growth. Economic growth is considered with social
and environmental impact analysis to define “sustainable development”. Sustainable
development goals (SDGs) were set by UN in 2015 with the 2030 agenda for sustain-
able development. Out of 17 SDGs, SDG 7 is “Ensure access to affordable, reliable,
sustainable and modern energy for all”.
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2.3 Electricity Access and Development: Case Studies

The links between energy supply and income generation were empirically assessed.
The region chosen for the same was Indian Himalayas. The impact of use of energy
appliances on income generating activities was studied in this research [10].

The impacts of electrification on educational outcomes, gender and power rela-
tions, income generation, feelings of inclusion and exclusion and health in the village
of Tsilitwa in the rural Eastern Cape, South Africa were studied. Complex nature of
access development was observed in this work and ethnographic method is recom-
mended to study the access development linkages. Authors concluded that the impact
of electricity access will be different for different individuals and may be negative
sometimes e.g. rising sense of income disparity [12].

When causal relationship between electricity consumption andHDIwas analysed,
it was observed that there is no major impact of electricity access on HDI in short
run while long run shows positive co integration. Similar study was carried out to
understand the causal relationship between electricity consumption and economic
growth (GDP). The sensitivity of electricity-economic growth was observed to be
very high for regional differences, countries’ income levels, urbanisation rates and
supply risks [9].

The effect of electricity on income, education, health, and labor productivity in
Nepalwas studied. Econometric approachwas followed for the study. It was observed
that a household electricity access has a very large and significant effect on income,
educational attainment, and agricultural productivity while effect of electricity on
health is not very significant [5].

In addition to household level, the impact of electricity consumption on environ-
ment in Cambodia was analyzed. Findings of this research are useful for SDG7 goal
achievement and design the environment friendly policy [7]. Some more research is
reported in the literature where the similar studies were conducted in India, Ghana,
Côte d’Ivoire, and Africa [1, 2, 6, 13].

In Table 1, it is observed that different attributes, the types of electricity supply
scheme, their relationship, and the impact of the different supply scheme models on
the development are not explored in electricity access-development linkages studies.

3 Electricity Supply Schemes

3.1 Attributes of Electricity Supply Schemes

Availability of electricity supply in terms of electric wires and other required
infrastructure is not sufficient to achieve the development. Electricity should flow
as and when required by the different services. IEA definition of energy access
consists of three attributes—reliability, affordability, and capacity to fulfill the elec-
tricity demand. Typical household electricity services are lighting, entertainment and
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Table 1 Electricity access impact with various end uses [4]

End use Impact of electricity access

Use of variety of electrical appliances Improved standard of living and comfort levels

Activities like reading, watching TV,
socialising

Increased length of the active day

Household activities for women Time saving from laborious work, opportunity to
take part in income generating activities, improved
reading

Studying Increased study time, improvement in the school
enrollment and grade completion

Refrigeration Positive impact on health, improved food
conservation, enhanced nutrition

Electric lighting Reduced likelihood of respiratory illness, reduced
fire incidences due to candles and other fuel lamps

communication, space cooling and heating, refrigeration, mechanical loads, product
heating and cooking. These services are impacted by the attributes of electricity
supply.

Electricity services affect the socio economic development as they fulfill the
requirements of household activities. Energy sector management assistant program
(ESMAP) of theWorld Bank defines multitier matrix to measure access to household
electricity supply. The attributes referred for the same are—Capacity, Availability,
Reliability, Quality, Affordability, Legality, Health and Safety [4].

The attributes of electricity supply is the important link between electricity access
and development. In Table 2, it is also observed that the expectation of the people
have increased with the access of electricity. They seek improved electricity services
and thus the assessment of the quality of services is necessary [3].

3.2 Types of Electricity Supply Schemes

Centralised electricity supply is the conventional electricity supply scheme. This is
also called as a grid extension. The electricity is generated using fossil fuels (coal
based plants), nuclear energy, and water (hydro power plants) in centralised power
plants. The same is transferred through transmission and distribution network which
is monitored by national and state level utilities. This is called as vertical structure
of electricity supply.

Monopoly of centralised supply scheme ended due to various reasons like
increased competition in the electricity industry, entry of private players, and tech-
nology development in renewable electricity generation. There are various environ-
mental, economic, technical, political and social reasons for the development of small
scale generation near the loads [11]. This small scale generation is called as decen-
tralised electricity supply scheme.Decentralised electricity supply can be categorized
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Table 2 ESMAP household electricity attributes [4]

Attribute Meaning Measure

Capacity The ability of the system to provide a
certain amount of electricity in order
to operate different appliances

Watts or watt hours

Availability The amount of time during which
electricity is available

No. of hours per day, no. of
evening hours

Reliability Defined in terms of frequency and
duration of scheduled outages

No. of disruptions, reliability
indices

Quality Electrical supply quality in terms of
voltage

Power quality indices

Affordability Whether households are able to pay
for the electricity they use

Comparison with defined standard
consumption package

Legality Electricity connection following
norms of the supplier

Household survey, bill payment

Health and safety Wiring installation as per national
standard set by regulation

The evaluation of electrocution risk

Fig. 1 Centralised and decentralised electricity supply schemes

as mini grids and solar home systems. Figure 1 shows centralised electricity supply
(vertical structure at left) and decentralised electricity supply (horizontal structure at
right).

4 Supply Schemes Relationship Models

Three possiblemodels of relationship between centralised and decentralised schemes
are—separated model, uncoordinated integration, and integrated development. In
separated model, decentralised electricity supply is planned separately and those
areas are focused where the centralised supply has not reached or unable to reach
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due to various constraints. In uncoordinated integration, there is competition between
centralised and decentralised electricity supply. Thismodelmay create some overlap-
ping issues due to the lack of coordination between service providers. The strengths
of both the models can be brought together in the integrated development approach.
This model requires detailed policy and financial considerations [17].

5 ESMAP Electricity Supply Attributes and Models

The models and relevant ESMAP attributes are described in Table 3. In the analysis
of decentralised supply systems, mini grids and SHS resemble in the attributes like
availability, reliability, quality. Role as a prosumers (producer plus consumer) is
possible for the SHS user. Prosumers can take benefit by selling electricity to the
network as shown in Fig. 1.

It is observed that some of the attributes at household level like legality may not
impact the development and the end user can choose any of the available choices.
This is also applicable to health and safety attribute as national and international
standards are mandatory in the processes independent of type of supply scheme and
model. The attributes like capacity, availability, reliability, quality, and affordability
are major drivers for the development.

6 Conclusion

To understand the linkages of electricity access and the development, there is need to
look beyond the electricity access as physical connection. In state of the art literature,
the electricity access—development linkages are studiedwithout any special focus on
the attributes, types of electricity supply, and their different realisation models. The
attributes for the electricity supply schemes give different results for differentmodels.
The attributes of electricity supply and the supply scheme models are important
linkage to the development.

7 Future Scope

The attributes may differ for other end users like agriculture, small scale industry.
There is scope to understand the access-development linkages amongst the end user
categories and measure the overall development. Future research can also study the
linkages amongst the attributes. The changes in one attribute e.g. affordability may
directly or indirectly impact the other attributes e.g. availability. This study can be
extended to understand the dynamics of electricity access and development with
computer simulations.
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More options of electricity supply like energy storage, vehicle to home and vehicle
to grid technology, and electricity generation by using biomass may be considered in
the analysis. The end user may use electricity from multiple sources simultaneously
in case of uncoordinated and integratedmodel. The linkages of this utilisation pattern
to the development may be studied. There is scope to study the transition from one
scheme or model to another and study the relevant impact on the development.

Table 3 Attributes and models linkage for different supply schemes

Attribute Supply scheme

Model

Separated
(centralised 
and decentral-
ised supply 
separate)

Uncoordinated
integration 
(centralised and 
decentralised 
supply in com-
petition)

Integrated de-
velopment (cen-
tralised and 
decentralised 
supply in coor-
dination)

Capacity

Centralised High
To be calculated 
considering 
demand closest 
to the generation

Appropriateness 
is decided by the 
detailed study, 
long term com-
prehensive 
policyDecentralised

Low (areas not 
covered by 
centralised grid 
are focused)

To be calculated 
considering 
remote area 
demand

Availability

Centralised

Available for 
more time, 
Proper network 
planning can 
increase avail-
ability

Available for 
more time, 
Proper network 
planning can 
increase availa-
bility

Better compared 
to other two 
models due to 
detailed analysis 
for integration

Decentralised

Seasonal fluc-
tuations, re-
quired energy 
storage to 
ensure availa-
bility after 
sunset

More sophisti-
cated model 
than ‘separated’
as decentralised 
supply is in 
competition 
with the grid

Reliability

Centralised High High

Better compared 
to other two 
models due to 
detailed analysis 
for integrationDecentralised

Low due to 
seasonal fluc-
tuations

Impacted by 
seasonal fluctua-
tions, energy 
storage must 
ensure the relia-
bility, reliability 
expectation 
more than ‘sepa-
rated’ model

(continued)
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Table 3 (continued)

Attribute Supply scheme

Model

Separated
(centralised 
and decentral-
ised supply 
separate)

Uncoordinated
integration (cen-
tralised and decen-
tralised supply in 
competition)

Integrated 
development 
(centralised 
and decentral-
ised supply in 
coordination)

Quality

Centralised High power 
quality High power quality High power 

quality

Decentralised

Power quality 
improvement 
actions are 
needed, pow-
er quality is 
impacted by 
seasonal 
fluctuations

Power quality 
improvement 
actions are needed, 
higher quality 
supply expected as 
area covered is 
larger compared to 
separated model

Power quality 
improvement 
actions are 
needed, higher 
quality supply 
expected and 
gets support 
from grid sup-
ply

Affordability

Centralised

Lower tariff 
which is 
decided by 
the regulatory 
commission

Tariff decided by 
the regulatory 
commission

Tariff decided 
by the regula-
tory commis-
sion

Decentralised

Higher tariff 
which is 
decided by 
the operator 
and village 
energy com-
mittee

Tariff decided by 
the operator, but 
the investment 
depends on gov-
ernment policies

Tariff decided 
by the opera-
tor, but the 
government 
support is 
given in terms 
of subsidies

Legality

Centralised
Connection process is standardized, thefts are caught 
by dedicated vigilance department, regulatory commis-
sions decide the rules

Decentralised
Connection process is decided by the operator and 
local committee, thefts are caught through complaints 
and local vigilance, the operator and local committee 
decide the rules

Positive points
Drawbacks
Floating points
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Optimal Allocation of Electric Vehicle
Charging Station with Distribution
Generation and D-STATCOM Using
Grey Wolf Optimization

Udit Kumar and Shelly Vadhera

1 Introduction

EVs are an electric load to the already burdened Indian grid system.With the increase
in number of electric vehicles there comes a variety of issues such as increased active
power loss, generation-demand mismatch, voltage profile degradation, reduction of
voltage stability margin. To address these issues, proper and optimal allocation of
EVCShas to be done.Optimal allocation handles the rising electric load andmanages
the resources at hand with greater ease.

Optimal allocation of EVCS has been done in the past works using various algo-
rithms minimizing the cost function. In the work [1], simultaneous optimal locating
and sizing of EV and Renewable Energy System (RES) with the management of
electric vehicle charging is achieved. To achieve the goal, a optimization problem
with multi-purpose is created to procure objective variables for bringing a reduction
in active power loss, fluctuation in voltage by reducing voltage deviation, EV battery
cost, and charging and demand supply cost. The capacity and position of EVCS and
RES are taken as objective variables. Once the problem is formulated, a hybrid algo-
rithm combining to solve the optimization issue for the various situations, theGenetic
Algorithm-Particle Swarm Optimization (GA-PSO) is used. The performance of the
recommended methodology is examined on standard bus system (IEEE 33 RDS) to
validate the capability of the hybrid algorithm for optimally locating and sizing RES
and EVCS simultaneously. The result of hybrid algorithm shows that it outperforms
algorithms such as Differential Evolution to achieve the desired objective. Many
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works such as [2] propose the hybrid algorithm implementing the Pareto dominance-
basedChicken SwarmOptimization (CSO) alongwithTeachingLearning (TL) based
algorithm to obtain pareto optimal solution inheriting the strengths of both CSO
and TL. To extract the best option from a non-dominated pool of candidates, fuzzy
decision making has been used. The Optimization framework desires to concurrently
reduces the cost, increase grid stability, and getting access of feasible charging station
easily. To compute the grid stability the composite index comprising of reliability,
voltage stability, and power loss using VRP index. Multi-purpose objective function
comprising single objective functions such as cost, VRP index, accessibility index
is used. Grasshopper Optimization Algorithm (GOA) based fuzzy approach is also
used for optimal allocation of EVs, DG, and Shunt Capacitors (SC) in DS [3]. The
algorithm is executed in two stages. In the first stage, optimal allocation of DG and
SCs is done using GOA based fuzzy approach to improve power factor, voltage
profile, reduce active power loss. In the second stage optimal location of EVCS and
number of EVs at charging station is found. GOA is found to be fast converging
than PSO and GA techniques with simulations performed on 51 bus and 69 bus
indicating the superiority of algorithm over the simultaneous optimization approach
done conventionally. The advantage of integrated DGs and SCs is that they can effec-
tively handle the load growth in distribution network while supplying EVCS with
full capacity. DGs and SCs can maintain node voltages during steady-state battery
charging. AI based approaches [4] has also been implemented for optimal alloca-
tion of EVCS and DGs. This work integrates AI based approach with hybrid particle
swarm optimization along with grey wolf optimization (HGWOPSO) to find the suit-
able nodes for EVCS and DGs. The algorithm is tested on IEEE-33 and IEEE-69 bus
system. To further validate accuracy of the algorithm the outcome of this algorithm is
compared with the outcome of other approaches such as PSO and GWO optimizing
individually. In comparison to GWO and PSO for the above bus system, HGWOPSO
shows significant loss reduction. With fixed EVCS load incorporating current and
voltage restrains optimal DG installation is carried out for loss mitigation in distri-
bution system (DS). Reliability analysis on the distribution network is done to point
out influence of DGs and EVs on its health. For different cases reliability indices are
calculated. Result of the work shows that reliability indices decline when only EVCS
are placed on the 33 and 69 bus system. However, an increase in the reliability indices
is observed on incorporation of DGs into the grid along with EVCS. Several works
[5] also measures reliability of distribution network when plug-in electric vehicles
(PEV) are connected for varying penetration levels to investigate the impact on the
grid. Few of the PEVs are integrated in vehicle-to-grid (V2G) mode to render aid
during peak loads. Reliability of this type of network in accessed using multi-level
coordinate search (MCS) along with minimal path method. The modification in this
method is the arbitrary charging sites, driving distances, and initial PEV battery
status generation and use of PVDG units as DG. Thus, EVCS are integrated with
solar PV modules. In addition to the system reliability calculation, Expected Energy
Not Charged (EENC) is presented to measure reliability of PEV’s in the system.
Three PEV penetration levels with and without DGs have been analyzed i.e., 35, 51,
and 62%. An increased reliability of system with the use of PEVs can be observed
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from this work. EENC showed great improvement with DG and PEVs. EENC is
an energy index and plays a major role in deciding location for EVCS for suitable
charging possibilities and preventing charging when the distribution network fails.
In the event of failure of the network restoration can be performed by injecting power
into the system via V2G mode.

DG may be used to provide energy closer to load centres, minimising line power
losses and improving voltage profile. Renewable DGs such as PVDG andWTDGcan
help lessen CO2 emissions. As a consequence of DG employment, consumers turn
prosumers by collaborating in energy generation in their dwellings [6]. DSTATCOM
are hooked to the line to assist reactive power compensation, which leads to reduced
power quality issues [7].

The GWO technique is proposed in this work for effective EVCS planning to
diminish the impact of charging of EV by integration of DG. The recommended
approach employs DG and D-STATCOM for improving reliability along with power
loss reduction and voltage profile improvement. Load-oriented reliability indicators
are used to investigate the influence on system reliability.

2 Problem Formulation

2.1 Objective Functions

min(Fa(k), Fb(k), Fc(k), Fd(k)) k ∈ variable space (1)

Equation (1) is used for the optimal placement of EVCS.
Where Fa(k) is the minimum value of TPL for variable space i.e. k
Fb(k) is the minimum value of TQL for variable space i.e. k
Fc(k) is the minimum value of voltage deviation index for variable space i.e. k
Fd(k) is the maximum value of voltage stability index for variable space i.e. k

Fa = minT PL =
Nb∑

i=1

|Ii |2 · Ri (2)

Fb = minT QL =
Nb∑

i=1

|Ii |2 · Qi (3)

where TPL and TQL are total active and reactive power losses
Ii : Current flowing in ith branch
Ri : Resistance of ith branch
Qi : Reactance of ith branch.
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Voltage Deviation Index (VDI)

The quality of the bus voltage is analyzed in respect of voltage deviation index.
Voltage deviation index is expressed as:

Fc = min

(
Nb∑

i=1

(
Vn − Vref

)2
)

(4)

Fc is the minimum voltage deviation index
Vn is the node voltage
Vref is the reference voltage.

Voltage Stability Index (VSI)

VSI of DS can be formulated as follows:

V SIn+1 = |Vn|4 − 4 · [
Pn+1Xm − Qn+1Rm

]2

− 4 · [
Pn+1Rm + Qm+1Xm

] · |Vn|2 (5)

where, VSIn+1 depicted the VSI of (n + 1)th bus, Pn+1 specifies the active power at
(n + 1)th bus and Qn+1 shows the reactive power at (n + 1)th bus and, Xm and Rm

expresses the reactance and resistance of mth branch joining the nth and (n + 1)th
bus.

Throughout operation, voltage collapse at the node with the lowest voltage
stability index. As a consequence, the objective function for maximising lowest
VSI is given as:

Fd = min

(
1

V SIn+1

)
(6)

Load Orientate Reliability Indices

Indices for Reliability are also considered and the mathematical formulas of various
types of load-oriented reliability such as EENS (Expected Energy Not Supplied) and
AENS (Average Energy Not Supplied) are considered [4].

2.2 Constraints

Voltage Limit. Each bus voltage must lie within the range of [0.95–1.05 p.u.]

Vmn ≤ Vn < Vmx (7)
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Line Current. Current carried within every line must not exceed the allowable line
current limit.

Im ≤ I mx
m (8)

where, Im represents the actual current flows in mth line.

Power Injection. The power injected both real and reactive must be within specified
limits.

Pmn
dgn ≤ Pdgn ≤ Pmx

dgn (9)

Qmn
dgn ≤ Qdgn ≤ Qmx

dgn (10)

Power Balance. The sum of TPL and added EVCS load must be equal to the active
and reactive power injected by DG and substation (SS) combined.

Psub +
Nbus∑

n=1

Pdg(n) =
Nbr∑

n=1

Pm
ls (n, n + 1) +

Nbus∑

n=1

Pd,n + Pn
evcs (11)

Qsub +
Nbus∑

n=1

Qdg(n) +
Nbus∑

n=1

Qdstat (n) =
Nbr∑

n=1

Qm
ls(n, n + 1) +

Nbus∑

n=1

Qd,n (12)

where, Psub and Qsub are the active and reactive power supplied by SS subsequently,
Qdstat (n) is the reactive power injected by D-STATCOM at nth bus, Pd,n and Qd,n are
the power demand for active and reactive power at nth bus, Qm

ls and Pmls represents
the reactive and real power loss in the mth branch, Qdg (n) and Pdg (n) are the total
reactive and real power injected byDGsat nth bus, Pnevcs is the charging load at nth bus
subsequently Nbr and Nbus denotes the number of branches and buses, respectively.

Load Flow Analysis

Gauss Seidel and Newton Raphson techniques cannot be applied in case of DS
(Distributed system) because of various problems arising due to the complex structure
of distribution network thus themost prominently usedLoad flowanalysis techniques
in case of DS are forward backward sweep and direct load flow. In this analysis
the direct load flow method is implied to find the required solutions because of its
robustness [8].



236 U. Kumar and S. Vadhera

2.3 Grey Wolf Optimization

In 2014, Mirjalili et al. [9], stated a population based meta-heuristic optimization
approach called “Grey Wolf Optimizer” (GWO) which is influenced by hunting
mechanism and social hierarchy shown by the grey wolves. Onward with this
the wolves engage in aggregate hunting, which require pursuing, enclosing and
eventually attacking which are also depicted in this technique.

Algorithm 1: Optimal placement of EVCS with DG and D-STATCOM

Input: Data of System, Customer information, Failure rate, Outage time, EVCS data

Output: Optimal allocation

1: DLF Load Flow

2: while Run GWO till iter(Max) reached

3: Initialize Search Agents

4: Objective Function

5: Calculate Power Loss by calling DLF

6: if (Power Loss defies constrains) then

7: Eliminate Solutn

8: else

9: Update positn

10: end if

11: if (Obtained Solutn better than last run) then

12: Take new Solutn

13: else

14: Replay GWO

15: end if

16: end while

17: return Optimal allocation

3 Results and Calculation

The implementation of the algorithm is presented in this section and then applied to
IEEE 33-bus system with base values taken as 100 MVA and 12.66 kV with the total
loading of 3715 kW and 2300 kVAr respectively. Every EVCS contains 30 charging
outlets with each having capacity of 50 kW thus making the total capacity of unit
EVCS as 1500 kW [4]. Now the total power loading becomes 1503.715 kW and
2300 kVAr respectively.

To test the algorithm several cases are defined which are as follows:
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Case 1: Base Case (W/o the placement of EVCS, DG, D-STATCOM).
Case 2: Two EVCS placed at second and nineteenth node.
Case 3: Two EVCS and one DG with upf.
Case 4: Two EVCS and one DG with fixed power factor of 0.95.
Case 5: Two EVCS and one DG with optimal power factor of 0.89.
Case 6: Two EVCS and one DG with upf, one D-STATCOM.

Several indices such as VSI, VD, EENS, AENS, TPL, TQL are calculated to
optimally place the EVCS for case 2 to case 6 and case 1 is the base case. In the
base case the losses are 210.98 kW and 143.02 kVAr respectively with the minimum
voltage and minimum VSI of 0.9038 p.u. and 0.6672 p.u. respectively.

Effect of Two EVCS with DG and D-STATCOM Integration

The power losses in case 2 are 234.20 kW and 156.54 kVAr respectively with
minimum voltage being 0.9018 p.u. and minimum value of VSI being 0.6615 p.u.
appearing at bus 18 and two EVCS is the optimally located at 2 and 19 bus. Subse-
quently in case 3withDGvaluing 3.703MWwith upf situated at bus 8 and twoEVCS
is the optimally located at 8 and 19 bus, the power loss is obtained as 130.32 kW and
94.85 kVAr respectively with the minimum voltage being 0.9479 p.u. and minimum
value of VSI being 0.8073 p.u. appearing at bus 33. Therefore, with the addition of
DG TPL, TQL reduces whereas the minimum voltage and minimum value of VSI is
improved. Whereas in case 4 for DG valuing 4 MW 0.95 fixed power factor placed
at 7 bus and two EVCS is the optimally located at 7 and 19 bus, the losses amount
to be 78.65 kW and 65.4 kVAr, therefore TPL and TQL reduces with the addition
of DG and for case 5 with DG valuing 4 MW with optimal power factor of 0.8905
placed at 26 bus and two EVCS is the optimally located at 2 and 26 bus, the losses
accounted are 74.5572 kW and 58.4425 kVAr. With implement of D-STATCOM as
stated in case 6 the active power loss and reactive power reduces to 80.77 kW and
57.9868 kVAr respectively, DG is placed at 10 bus, D-STATCOM is placed at 30
bus and two EVCS is the optimally located at 10 and 19 bus. DG and D-STATCOM
are linked with EVCS to ensure the smooth operation of the DS, due to its positive
impact on voltage profile as seen in Fig. 1. In the case 3, the min voltage of 0.9479
p.u. at bus number 33, whereas in case 6 the min voltage is improved to 0.9734 p.u.
at bus 33. Thus, it can be implicated that voltage profile improvement can be seen
with employment of D-STATCOM with VD (voltage deviation) being minimal in
case 6 which is 0.077 p.u., it can be seen from Fig. 1. The inclusion of EVCS and
DG units has an impact on both the VSI and the voltage profile. VSI for base case is
0.6672 p.u. and drops down to 0.6615 p.u. in case 2. It can be seen from Fig. 2, that
optimal allocation of DG along with D-STATCOM enhances minimum VSI which
is 0.8979 at 33 node. Figure 3 shows the convergence curve. Table 1 depicted all the
cases with their optimal location. Optimal node for EVCS, DG and D-STATCOM
placement is found by using GWO for loss reduction, from above algorithm.

Figure 3 graph show the convergence curve for different cases.
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Fig. 1 Voltage profile of 33 bus system after integrating EVCS with DG and D-STATCOM units

Fig. 2 VSI for 33 bus system for different cases

Fig. 3 Convergence curve for 33 bus system for different cases
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Table 1 Values of different indices calculated for all the cases

Cases EENS
(MWh per
year)

AENS
(MWh per
customer
per year)

EVCS
location

DG location TPL (kW) TQL
(kVAr)Location Size (MW)

Case 1 1883.5 2.045 – – – 210.98 143.022

Case 2 2663.5 2.8656 2.19 – – 234.20 156.54

Case 3 2063.5 2.2454 8.19 8 3.7037 130.3261 94.8523

Case 4 2063.5 2.2454 7.19 7 4 78.652 65.34

Case 5 2321.5 2.5261 2.26 26 4 74.5572 58.4425

Case 6 2171.5 2.3629 10.19 10 3.0771 80.7794 57.9868

Effect of EVCS Integration with DG and D-STATCOM on Reliability of 33 Bus
Distribution Networks

On EVCS integration into the DS the power supplied is unable to meet the set load
demand with inturn increases the indices associated with the energy not supplied
which is not desirable formDS’s perspective. On installation of EVCS a deterioration
in the load-oriented reliability indices is observed with the AENS base value being
2.045–2.8656MWh/customer/year after the EVCS integration.WhereasDG integra-
tion enhances these indices due to its effective voltage management thus improving
power transfer capability while reducing power loss by governing power injected
into the system which is realized from Table 1.

4 Conclusion

In this paper the authors have presented the impact of EVCS on the standard bus
system with the addition of DG and DSTATCOM. The mechanism of EV charging
requires additional grid power, leading to increased power losses. Consequently, DG
with different power factor and D-STATCOM should be used to recompense the
increased generated power losses due to EVCS. Optimal node for EVCS, DG and D-
STATCOM placement is found by using GWO for loss reduction. The investigation
shows that unit DG and D-STATCOM significantly increase the system’s perfor-
mance by voltage profile enhancement and loss reduction. Additionally, analysis on
reliability is performed to assess the combined effect of loading due to EVCS and
DG on the power quality of the DS with dependability indicators being studied for
various circumstances. The installation of EVCS significantly reduces the network’s
reliability however on inclusion of DG increases the reliability indices.
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