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Abstract In distributed environments, cloud computing is widely used to manage 
user requests for resources and services. Resource scheduling is used to handle user 
requests for resources based on priorities within a given time frame. The resource 
scheduling concept of a virtual machine is used to manage servers. To manage load 
and perform resource scheduling in a smooth manner in this paper, an attempt has 
been made to propose a multi-agent-based load-balancing mechanism. In a multi-
agent-based load-balancing mechanism, multiple agent nodes at different layers are 
used to manage load and requests and increase throughput. 

Keywords Cloud computing · Agent · Multi Agent · Virtual machine and load 
balancing 

1 Introduction 

Cloud computing is one such computing model that is so popular among this gener-
ation for providing better services to its users. It highly depends upon virtualization 
technology [1] as well as the internet. In the cloud of Infrastructure-as-a-Service 
(IaaS), an application from the artificial resource pool is placed in a virtual machine 
(VM). VMs having common machines have the tendency to run several operating 
environments of an operating system at one time. It can also be configured to provide 
several services and software in accordance with several service requests. Addition-
ally, VMs can be initiated and ceased on one machine. It can also be transmitted 
between different machines, which hugely expand the elasticity of the resource allo-
cation. The issues of over provisioning [2] or under provisioning appear because of 
the unpredictability of the resource usage of applications by users. For maximising 
the infrastructure utilisation without breaching the Service Level Agreement (SLA)
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[3], the data centre workload can be easily balanced through the VM migration 
process. 

State algorithms are such existing migration methods that choose suitable node 
for migration depending upon the recent execution and information of hardware 
workload [4]. One such traditional static VM migration method is the dual-threshold 
method [5] that keeps both a lower bound and an upper bound on host machines’ 
workload and initiates the migration when the workload is below a lower bound or 
over an upper bound. Unfortunately, these strategies of threshold-based migration 
could not foresee the host machines’ upcoming workload trend. Additionally, if the 
host machine’s workload increases even for a second (for any reason), irrelevant 
and useless VM migration would be triggered. Different and useful methods finalise 
decisions depending upon the recent status as well as the past information of workload 
[6]. 

2 Load Balancing in Cloud Computing 

To enhance the performance as well as the utilisation of resources in the system, 
dividing the employment among the accessible processors is all that is required. The 
aim of readjusting load is to dispense the load among various nodes in different cloud 
settings. Load adjustment is essentially an attempt to carefully balance the overall 
system of load in multiple nodes by transmitting employment between nodes [7]. 
This is done in order to carefully dispense the ready nodes to give satisfactory overall 
performance of the system [8]. 

2.1 Load-Balancing Taxonomy 

(i) Static balancing of load: It is an algorithm basically to ensure the system’s 
typical behaviour. Mostly, static algorithms are not complex and are ineffective 
because they fail to reflect on the current and most recent state of the system 
[9]. 

(ii) Dynamic balancing of load: Dynamic algorithms dispense load between the 
nodes by utilising the most recent node state. Since dynamic load balancing has 
to gather as well as respond to the state of the system, it is more complex than 
static load balancing. Additionally, they have the tendency to behave in an extra 
efficient manner as compared to the state algorithm because of the dynamic 
load-balancing considerations [10].
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2.2 Agent Based Load Balancing 

(i) Agent: An agent is basically a process entity which usually acts for other 
objects by performing tasks and achieving goals. Agent systems are unique 
programmes of software systems which mainly adhere to the information 
domain [11]. They have the ability to react with a certain degree of inde-
pendence, primarily for holding actions required for achieving their various 
goals [12].These agents are executed, especially when they are being operated 
in different environments. 

(ii) Agent-based load balancing: An agent has the quality of performing particular 
tasks on its own, because of which it is known as an autonomous unit. The 
communication between agent and server usually does not take much time to 
process as compared to the centralised approach because of which the theme of 
agent-based load is readjusted and also minimises the servers’ communication 
price [13]. Additionally, it enhances the pace of load balancing, which further 
increases the latency as well as the output of servers. 

(iii) Existing system: The figure highlights the design of an existing system with 
several clients connected through the internet as a supplier of facilities that has 
revived many machines, systems of control, and the number of many mutual 
groups of resources that appear as clients [14]. One life cycle of an agent 
consists of the following steps: 

(i) First step: It acts as an preliminary server which gives commands to the 
final server for gathering data from all the servers that are actually needed 
for balancing load. 

(ii) Second step: Agent equals the ability of all the servers constructed to take 
the cloud’s average load. 

In the first step, an agent is started at an undefined server (mainly the initial server), 
which further finds several jobs in that server’s line. After this, it calculates an average, 
depending on which, it will calculate the server’s location and give a conclusion of 
whether it is underloaded or overloaded. The agent will then repeat this entire process 
till it reaches the last server. In the second step, the agent will reach from the initial 
server to the final server for the concerned load. On the particular server, it gives the 
solution for cross-checking the state. If the server is found to be overloaded, then 
the agent will transmit the jobs to those servers which are underloaded, and if the 
servers are underloaded, then it will get jobs from overloaded servers. The agents 
are known for doing this activity to the extent that the initial server will again adjust 
all the servers’ load that contains the initial server. In this way, representatives are 
mainly utilised for balancing the load within the structure nodes.
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3 Literature Review 

Patel et al. [15] focused on distributing the remaining burden evenly across the 
compartment and shortening the make span. For load adjusting, various special-
ists have proposed various methodologies, such as genetic algorithm-based, PSO, 
ACO, Mn-Max, and so on. The authors of this paper has proposed a Grey-Wolf 
Optimization-based algorithm for adjusting load and shortening the make span. A 
GWO-based methodology was presented alongside GA and PSO-based algorithms. 

Junaid et al. [16] proposed the ACOFTF half-breed algorithm, which takes into 
account significant QoS measurements such as SLA infringement, relocation time, 
throughput time, overhead time, and improvement time. Even in the presence of 
multiple datasets, the proposed model has demonstrated its ability to avoid untimely 
union, which was one of the goals of half-breed meta-heuristics. In the same way, a 
lack of variety encourages investigation, while a lot of variety often, but not always, 
leads to abuse. 

Babou et al. [17] proposed the HEC Clustering Balance procedure, which funda-
mentally decreases the preparation time of client solicitations while productively 
utilising assets of the HEC node, MEC node, and the focal cloud on the three-level 
HEC engineering. The proposed strategy also allows for the use of HEC nodes 
that are not always selected. The proposed strategy uses a diagram to represent the 
cloud–MEC–HEC structure. Each MEC, known as a group head, is in charge of a 
sub-diagram, or bunch. There was a group head on each bunch (3-TER) that estab-
lished the upper layer or 2-TER of the HEC design. The group heads are then linked 
together from one perspective and with the focal cloud from another. 

Shahid et al. [18] focused on one of the CCMAN issues, such as load adjusting 
(LB). The goal of LB was to equilibrate the algorithm on the cloud nodes so that 
no host was under or overburdened. A few LB algorithms have been written in 
order to provide successful organisation and client fulfilment for fitting cloud nodes, 
to improve the general proficiency of cloud administrations, and to provide more 
fulfilment to the end client. A good LB algorithm improves productivity and resource 
use by dividing the remaining work among the framework’s nodes in the best way 
possible. 

Devraj et al. [19] proposed a load-adjusting algorithm based on the firefly and 
improved the multi-objective particle swarm optimization (MPSO) strategy, dubbed 
FMPSO. This method employs the firefly (FF) algorithm to narrow the search 
space, while the MPSO strategy was used to identify the improved response. The 
MPSO algorithm selects the global best (gbest) molecule with a small separation of 
highlights. 

Saeedi et al. [20] present the asset skewness-mindful VMs’ combination algorithm 
based on a more advanced thermodynamic recreated toughening strategy because 
asset skewness may prompt the algorithm to initiate extra workers. With the help of 
two heuristics and two meta-heuristics, the proposed SA-based algorithm has been 
tested in a wide range of situations with different amounts of skewness in the assets.
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4 Proposed Work 

4.1 Motivation 

The existing system model agent-based dynamic load-balancing approach has a 
disadvantage, i.e. for every instance of a new job, the agent has to complete a life 
cycle (i.e. calculate the average and decide the status of the server). Hence, agents 
need to travel twice to allocate the job: once to find the average work load and 
a second one to balance the loads among nodes. To overcome this, we propose 
a multi-agent architecture for agent-based load balancing. A multi-agent architec-
ture comprises Directory Agents and Mobile Agents. In this section, the proposed 
framework has been presented in detail. In the proposed work, we first provide a 
rank assignment framework to assign rank to the resources, and after that, an agent 
selection framework has been presented to select agent node. Finally, we present a 
resource allocation framework to allocate resources in an optimal manner to achieve 
high QoS and update the resource allocation table. 

4.2 Rank Algorithm 

Rc = 1 \* initializing the resource counter*\ 
Rk = 1 \* initializing resource rank*\ 
Cp = R[Rc]. Rpc \* initializing the processing capacity of current resource to 
capacity of resource in the counter index*\ 
Cbw = R[Rc]. Rbw \* initializing the bandwidth of current resource to bandwidth 
of resource in the counter index*\ 
Crt = R[Rc]. Rrt \* initializing the response time of current resource to response 
time of resource in the counter index*\ 
Cl= R[Rc]. Rlc \* initializing the latency of current resource to latency of resource 
in the counter index*\ 
For ∀ R[] do \* repeat for all resources in the resource list*\ 
For i = 1:R[].size 
If R[i]. Rpc ≥ Cp& R[i].Rbw ≥ Cbw&R[i]. Rrt ≥ Crt 
&R[i]. Rlc ≥ Cl \* compare the capacity of the current resource and the resource 
in the counter index*\ 
Cr=R[i] \* set current resource to resource in the counter index if above condition 
is true*\ 
End for 
Rank = Rk \* rank the resource with the value in the rank variable*\ 
Update Cr Rank in At \* update current resource in dynamic resource table*\ 
Remove(R[].Cc) \*remove current resource from resource list*\ 
Rk = Rk + 1 \* increment resource rank*\ 
Rc = Rc + 1 \* increment resource counter*\
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End for 

In this algorithm, they assign rank to the resources. The rank of a resource is 
assigned based on parameters such as processing capacity, bandwidth, response time, 
and delay. The highest ranked resource capacity is updated for agent allocation in 
the agent information table. 

After that, the host agent analyses the tasks and their requirements in the task list 
and chooses an appropriate layer for the completion of such tasks. Furthermore, once 
the connection is established, it is then up to the layer agent to perform the actual 
transmission. 

4.3 Agent Selection Algorithm 

Let Bmax, Pmax, Lcmax, Smax, and Rtmax represent bandwidth, processing 
capacity, latency, storage, and response time of the highest ranked resource in fog, 
high-capacity fog, and cloud layer. 

Let Br, Pr, Lct, Sr, and Rtr represent task required bandwidth, processing capacity, 
task tolerable latency, task required storage, and response time. 

The host agent selects an agent to allocate a resource for the execution of task by 
comparing the QoS requirement of the task and the capacity of the highest ranked 
resource in each host dynamic resource table. 

For ∀ t ε R do \* repeat for all task in a request*\ 
If td ≤ ac. Lcmax + ac.Rtmax&Sr ≤ ac.Smax\* compare task deadline with sum 
of latency & response time of cloud *\ Submit task to cloud agent \* submit task 
to cloud agent if above condition is true*\ 
Else 
Return (Resource unavailability message) \* return failure due to resource 
unavailability*\ 
End if 
End for 

In this algorithm, the host agent selects an agent to allocate a resource for the 
execution of a task by comparing the QoS requirement of the task and the capacity of 
the highest ranked resource in each host dynamic resource table. An agent allocates 
a capable resource for a task received from a host agent by taking into account the 
deadline of the task, required processing capacity, bandwidth, response time, and 
tolerable latency. Any available resource that meets the requirements of the task is 
allocated for the execution of such a task.
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4.4 Resource Allocation Algorithm 

Let Bw, Pc, Lc, S, and Rt represent bandwidth, processing capacity, latency, storage, 
and response time of resource in fog, high-capacity fog, or cloud layer. 

Let Br, Pr, Lct, Sr, Rtr, and td represent task required bandwidth, processing 
capacity, task tolerable latency, task required storage, response time, and task 
deadline. 

The resource allocation algorithm selects the best available resource for execution 
of task that satisfies the QoS requirement of the task. 

For ∀ t ε T[] \* repeat for all task in task list*\ 
For ∀ r ε R[] \* repeat for all resource in resource list*\ 
If td ≤ Lc + Rt& Pc ≥ Pr&r.status = free\* compare task deadline with sum of 
latency & response time of resource *\ 
Allocate resource to task \* allocate resource to task if above condition is true *\ 
r.status = allocated. \* change resource status to allocated *\ 
t.status = allocated \* change task status to allocated *\ 
End if 
End for 
If t.status = !Allocated \* change task status not allocated *\ 
Return (Resource unavailability message) \* return failure due to resource 
unavailability*\ 
End for 

In this algorithm, the optimal resource for completing task is selected to fulfil the 
QoS of task. 

4.5 Dynamic Resource Table Update Algorithm 

Let R [], At, and Ct represent resource list, corresponding agent table, and current 
task executed by resource. 

The dynamic resource table update algorithm updates the status of a resource after 
task execution is completed. 

For ∀ r ε At. R[] \* repeat for all resource in dynamic resource update table*\ 
tc = R[].Get (Ct) \* get the current task executed by a resource*\ 
If tc = NULL \* if task not found*\ 
r. status = free \* change the status of the resource to free*\ 
End If 
End for
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Table 1 Simulation 
parameters Parameters Values 

No of servers 100; 200; 300; 400 

CTC (existing centralized scheme) 10 units 

CTC (proposed) 1 unit 

CTC (process of LB) 50 units 

Platform MATLAB 2013 

Operating system Windows 10 

5 Results and Analysis 

In this section, results and analysis have been presented. To implement the proposed 
mechanism, MATLAB is used. MATLAB is a general-purpose programming 
language developed by Mathworks. It provides a number of functions for different 
researchers to compute their simulations and plot results. 

5.1 Performance Matrices 

(i) Throughput: It indicates the total number of requests processed in perspective 
of total number of requests generated during data transmission. 

(ii) Latency: It indicates the delay or time consumed by CPU during processing of 
requests by Agent. 

5.2 Simulation Parameters 

In this section, parameters used for simulation analysis have been discussed. To 
simulate a proposed mechanism, nodes are varied from 100 to 400. The simulation 
area is 100 × 100, and the initial energy of the node is 0.5Jule. Table 1 shows the 
complete parameters used for simulation. 

5.3 Discussion 

The simulation results of proposed and existing mechanisms are discussed in Figs. 1 
and 2. In Fig.  1, a comparative analysis with the throughput parameter is presented, 
whereas Fig. 2 presents the latency of both proposed and existing techniques. 
The throughput is high in the proposed mechanism, whereas latency is less in the 
perspective of the existing single agent-based LB technique.
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Fig. 1 Throughput of proposed Multi Agent_LB and Single Agent_LB 
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Fig. 2 Latency of proposed Multi Agent_LB and Single Agent_LB 

6 Conclusion 

The existing system model agent-based dynamic load-balancing approach has a 
disadvantage, i.e. for every instance of a new job, the agent has to complete a life 
cycle (i.e. calculate the average and decide the status of the server). Hence, agents 
need to travel twice to allocate the job: once to find the average work load and a 
second one to balance the loads among nodes. To overcome this, we propose a multi-
agent architecture for agent-based load balancing. In this paper, an attempt has been 
made to propose a multi-agent-based load-balancing mechanism for cloud environ-
ments. A distributed load-balancing strategy based on multi-agent is proposed in this 
paper. The proposed mechanism has been simulated with the help of MATLAB. The 
simulation results show that throughput is high in the proposed mechanism, whereas 
latency is less in the perspective of the existing single agent-based LB technique. In 
the future, it is intended to continue working on it and apply the proposed mechanism 
in other environments, such as edge computing, which also improves throughput with 
less end-to-end delay.
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