
Load Balancing in Cloud Computing
Using Multi-agent-Based Algorithms

Shyama Barna Bhattacharjee

Abstract In distributed environments, cloud computing is widely used to manage
user requests for resources and services. Resource scheduling is used to handle user
requests for resources based on priorities within a given time frame. The resource
scheduling concept of a virtual machine is used to manage servers. To manage load
and perform resource scheduling in a smooth manner in this paper, an attempt has
been made to propose a multi-agent-based load-balancing mechanism. In a multi-
agent-based load-balancing mechanism, multiple agent nodes at different layers are
used to manage load and requests and increase throughput.

Keywords Cloud computing · Agent · Multi Agent · Virtual machine and load
balancing

1 Introduction

Cloud computing is one such computing model that is so popular among this gener-
ation for providing better services to its users. It highly depends upon virtualization
technology [1] as well as the internet. In the cloud of Infrastructure-as-a-Service
(IaaS), an application from the artificial resource pool is placed in a virtual machine
(VM). VMs having common machines have the tendency to run several operating
environments of an operating system at one time. It can also be configured to provide
several services and software in accordance with several service requests. Addition-
ally, VMs can be initiated and ceased on one machine. It can also be transmitted
between different machines, which hugely expand the elasticity of the resource allo-
cation. The issues of over provisioning [2] or under provisioning appear because of
the unpredictability of the resource usage of applications by users. For maximising
the infrastructure utilisation without breaching the Service Level Agreement (SLA)

S. B. Bhattacharjee (B)
Department of CSE, UIET, Kurukshetra University, Kurukshetra, Haryana, India
e-mail: shyamabarna02@gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
S. Jain et al. (eds.), Emergent Converging Technologies and Biomedical Systems,
Lecture Notes in Electrical Engineering 1040,
https://doi.org/10.1007/978-981-99-2271-0_23

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-2271-0_23&domain=pdf
mailto:shyamabarna02@gmail.com
https://doi.org/10.1007/978-981-99-2271-0_23

276 S. B. Bhattacharjee

[3], the data centre workload can be easily balanced through the VM migration
process.

State algorithms are such existing migration methods that choose suitable node
for migration depending upon the recent execution and information of hardware
workload [4]. One such traditional static VM migration method is the dual-threshold
method [5] that keeps both a lower bound and an upper bound on host machines’
workload and initiates the migration when the workload is below a lower bound or
over an upper bound. Unfortunately, these strategies of threshold-based migration
could not foresee the host machines’ upcoming workload trend. Additionally, if the
host machine’s workload increases even for a second (for any reason), irrelevant
and useless VM migration would be triggered. Different and useful methods finalise
decisions depending upon the recent status as well as the past information of workload
[6].

2 Load Balancing in Cloud Computing

To enhance the performance as well as the utilisation of resources in the system,
dividing the employment among the accessible processors is all that is required. The
aim of readjusting load is to dispense the load among various nodes in different cloud
settings. Load adjustment is essentially an attempt to carefully balance the overall
system of load in multiple nodes by transmitting employment between nodes [7].
This is done in order to carefully dispense the ready nodes to give satisfactory overall
performance of the system [8].

2.1 Load-Balancing Taxonomy

(i) Static balancing of load: It is an algorithm basically to ensure the system’s
typical behaviour. Mostly, static algorithms are not complex and are ineffective
because they fail to reflect on the current and most recent state of the system
[9].

(ii) Dynamic balancing of load: Dynamic algorithms dispense load between the
nodes by utilising the most recent node state. Since dynamic load balancing has
to gather as well as respond to the state of the system, it is more complex than
static load balancing. Additionally, they have the tendency to behave in an extra
efficient manner as compared to the state algorithm because of the dynamic
load-balancing considerations [10].

Load Balancing in Cloud Computing Using Multi-agent-Based Algorithms 277

2.2 Agent Based Load Balancing

(i) Agent: An agent is basically a process entity which usually acts for other
objects by performing tasks and achieving goals. Agent systems are unique
programmes of software systems which mainly adhere to the information
domain [11]. They have the ability to react with a certain degree of inde-
pendence, primarily for holding actions required for achieving their various
goals [12].These agents are executed, especially when they are being operated
in different environments.

(ii) Agent-based load balancing: An agent has the quality of performing particular
tasks on its own, because of which it is known as an autonomous unit. The
communication between agent and server usually does not take much time to
process as compared to the centralised approach because of which the theme of
agent-based load is readjusted and also minimises the servers’ communication
price [13]. Additionally, it enhances the pace of load balancing, which further
increases the latency as well as the output of servers.

(iii) Existing system: The figure highlights the design of an existing system with
several clients connected through the internet as a supplier of facilities that has
revived many machines, systems of control, and the number of many mutual
groups of resources that appear as clients [14]. One life cycle of an agent
consists of the following steps:

(i) First step: It acts as an preliminary server which gives commands to the
final server for gathering data from all the servers that are actually needed
for balancing load.

(ii) Second step: Agent equals the ability of all the servers constructed to take
the cloud’s average load.

In the first step, an agent is started at an undefined server (mainly the initial server),
which further finds several jobs in that server’s line. After this, it calculates an average,
depending on which, it will calculate the server’s location and give a conclusion of
whether it is underloaded or overloaded. The agent will then repeat this entire process
till it reaches the last server. In the second step, the agent will reach from the initial
server to the final server for the concerned load. On the particular server, it gives the
solution for cross-checking the state. If the server is found to be overloaded, then
the agent will transmit the jobs to those servers which are underloaded, and if the
servers are underloaded, then it will get jobs from overloaded servers. The agents
are known for doing this activity to the extent that the initial server will again adjust
all the servers’ load that contains the initial server. In this way, representatives are
mainly utilised for balancing the load within the structure nodes.

278 S. B. Bhattacharjee

3 Literature Review

Patel et al. [15] focused on distributing the remaining burden evenly across the
compartment and shortening the make span. For load adjusting, various special-
ists have proposed various methodologies, such as genetic algorithm-based, PSO,
ACO, Mn-Max, and so on. The authors of this paper has proposed a Grey-Wolf
Optimization-based algorithm for adjusting load and shortening the make span. A
GWO-based methodology was presented alongside GA and PSO-based algorithms.

Junaid et al. [16] proposed the ACOFTF half-breed algorithm, which takes into
account significant QoS measurements such as SLA infringement, relocation time,
throughput time, overhead time, and improvement time. Even in the presence of
multiple datasets, the proposed model has demonstrated its ability to avoid untimely
union, which was one of the goals of half-breed meta-heuristics. In the same way, a
lack of variety encourages investigation, while a lot of variety often, but not always,
leads to abuse.

Babou et al. [17] proposed the HEC Clustering Balance procedure, which funda-
mentally decreases the preparation time of client solicitations while productively
utilising assets of the HEC node, MEC node, and the focal cloud on the three-level
HEC engineering. The proposed strategy also allows for the use of HEC nodes
that are not always selected. The proposed strategy uses a diagram to represent the
cloud–MEC–HEC structure. Each MEC, known as a group head, is in charge of a
sub-diagram, or bunch. There was a group head on each bunch (3-TER) that estab-
lished the upper layer or 2-TER of the HEC design. The group heads are then linked
together from one perspective and with the focal cloud from another.

Shahid et al. [18] focused on one of the CCMAN issues, such as load adjusting
(LB). The goal of LB was to equilibrate the algorithm on the cloud nodes so that
no host was under or overburdened. A few LB algorithms have been written in
order to provide successful organisation and client fulfilment for fitting cloud nodes,
to improve the general proficiency of cloud administrations, and to provide more
fulfilment to the end client. A good LB algorithm improves productivity and resource
use by dividing the remaining work among the framework’s nodes in the best way
possible.

Devraj et al. [19] proposed a load-adjusting algorithm based on the firefly and
improved the multi-objective particle swarm optimization (MPSO) strategy, dubbed
FMPSO. This method employs the firefly (FF) algorithm to narrow the search
space, while the MPSO strategy was used to identify the improved response. The
MPSO algorithm selects the global best (gbest) molecule with a small separation of
highlights.

Saeedi et al. [20] present the asset skewness-mindful VMs’ combination algorithm
based on a more advanced thermodynamic recreated toughening strategy because
asset skewness may prompt the algorithm to initiate extra workers. With the help of
two heuristics and two meta-heuristics, the proposed SA-based algorithm has been
tested in a wide range of situations with different amounts of skewness in the assets.

Load Balancing in Cloud Computing Using Multi-agent-Based Algorithms 279

4 Proposed Work

4.1 Motivation

The existing system model agent-based dynamic load-balancing approach has a
disadvantage, i.e. for every instance of a new job, the agent has to complete a life
cycle (i.e. calculate the average and decide the status of the server). Hence, agents
need to travel twice to allocate the job: once to find the average work load and
a second one to balance the loads among nodes. To overcome this, we propose
a multi-agent architecture for agent-based load balancing. A multi-agent architec-
ture comprises Directory Agents and Mobile Agents. In this section, the proposed
framework has been presented in detail. In the proposed work, we first provide a
rank assignment framework to assign rank to the resources, and after that, an agent
selection framework has been presented to select agent node. Finally, we present a
resource allocation framework to allocate resources in an optimal manner to achieve
high QoS and update the resource allocation table.

4.2 Rank Algorithm

Rc = 1 * initializing the resource counter*\
Rk = 1 * initializing resource rank*\
Cp = R[Rc]. Rpc * initializing the processing capacity of current resource to
capacity of resource in the counter index*\
Cbw = R[Rc]. Rbw * initializing the bandwidth of current resource to bandwidth
of resource in the counter index*\
Crt = R[Rc]. Rrt * initializing the response time of current resource to response
time of resource in the counter index*\
Cl= R[Rc]. Rlc * initializing the latency of current resource to latency of resource
in the counter index*\
For ∀ R[] do * repeat for all resources in the resource list*\
For i = 1:R[].size
If R[i]. Rpc ≥ Cp& R[i].Rbw ≥ Cbw&R[i]. Rrt ≥ Crt
&R[i]. Rlc ≥ Cl * compare the capacity of the current resource and the resource
in the counter index*\
Cr=R[i] * set current resource to resource in the counter index if above condition
is true*\
End for
Rank = Rk * rank the resource with the value in the rank variable*\
Update Cr Rank in At * update current resource in dynamic resource table*\
Remove(R[].Cc) *remove current resource from resource list*\
Rk = Rk + 1 * increment resource rank*\
Rc = Rc + 1 * increment resource counter*\

280 S. B. Bhattacharjee

End for

In this algorithm, they assign rank to the resources. The rank of a resource is
assigned based on parameters such as processing capacity, bandwidth, response time,
and delay. The highest ranked resource capacity is updated for agent allocation in
the agent information table.

After that, the host agent analyses the tasks and their requirements in the task list
and chooses an appropriate layer for the completion of such tasks. Furthermore, once
the connection is established, it is then up to the layer agent to perform the actual
transmission.

4.3 Agent Selection Algorithm

Let Bmax, Pmax, Lcmax, Smax, and Rtmax represent bandwidth, processing
capacity, latency, storage, and response time of the highest ranked resource in fog,
high-capacity fog, and cloud layer.

Let Br, Pr, Lct, Sr, and Rtr represent task required bandwidth, processing capacity,
task tolerable latency, task required storage, and response time.

The host agent selects an agent to allocate a resource for the execution of task by
comparing the QoS requirement of the task and the capacity of the highest ranked
resource in each host dynamic resource table.

For ∀ t ε R do * repeat for all task in a request*\
If td ≤ ac. Lcmax + ac.Rtmax&Sr ≤ ac.Smax* compare task deadline with sum
of latency & response time of cloud *\ Submit task to cloud agent * submit task
to cloud agent if above condition is true*\
Else
Return (Resource unavailability message) * return failure due to resource
unavailability*\
End if
End for

In this algorithm, the host agent selects an agent to allocate a resource for the
execution of a task by comparing the QoS requirement of the task and the capacity of
the highest ranked resource in each host dynamic resource table. An agent allocates
a capable resource for a task received from a host agent by taking into account the
deadline of the task, required processing capacity, bandwidth, response time, and
tolerable latency. Any available resource that meets the requirements of the task is
allocated for the execution of such a task.

Load Balancing in Cloud Computing Using Multi-agent-Based Algorithms 281

4.4 Resource Allocation Algorithm

Let Bw, Pc, Lc, S, and Rt represent bandwidth, processing capacity, latency, storage,
and response time of resource in fog, high-capacity fog, or cloud layer.

Let Br, Pr, Lct, Sr, Rtr, and td represent task required bandwidth, processing
capacity, task tolerable latency, task required storage, response time, and task
deadline.

The resource allocation algorithm selects the best available resource for execution
of task that satisfies the QoS requirement of the task.

For ∀ t ε T[] * repeat for all task in task list*\
For ∀ r ε R[] * repeat for all resource in resource list*\
If td ≤ Lc + Rt& Pc ≥ Pr&r.status = free* compare task deadline with sum of
latency & response time of resource *\
Allocate resource to task * allocate resource to task if above condition is true *\
r.status = allocated. * change resource status to allocated *\
t.status = allocated * change task status to allocated *\
End if
End for
If t.status = !Allocated * change task status not allocated *\
Return (Resource unavailability message) * return failure due to resource
unavailability*\
End for

In this algorithm, the optimal resource for completing task is selected to fulfil the
QoS of task.

4.5 Dynamic Resource Table Update Algorithm

Let R [], At, and Ct represent resource list, corresponding agent table, and current
task executed by resource.

The dynamic resource table update algorithm updates the status of a resource after
task execution is completed.

For ∀ r ε At. R[] * repeat for all resource in dynamic resource update table*\
tc = R[].Get (Ct) * get the current task executed by a resource*\
If tc = NULL * if task not found*\
r. status = free * change the status of the resource to free*\
End If
End for

282 S. B. Bhattacharjee

Table 1 Simulation
parameters Parameters Values

No of servers 100; 200; 300; 400

CTC (existing centralized scheme) 10 units

CTC (proposed) 1 unit

CTC (process of LB) 50 units

Platform MATLAB 2013

Operating system Windows 10

5 Results and Analysis

In this section, results and analysis have been presented. To implement the proposed
mechanism, MATLAB is used. MATLAB is a general-purpose programming
language developed by Mathworks. It provides a number of functions for different
researchers to compute their simulations and plot results.

5.1 Performance Matrices

(i) Throughput: It indicates the total number of requests processed in perspective
of total number of requests generated during data transmission.

(ii) Latency: It indicates the delay or time consumed by CPU during processing of
requests by Agent.

5.2 Simulation Parameters

In this section, parameters used for simulation analysis have been discussed. To
simulate a proposed mechanism, nodes are varied from 100 to 400. The simulation
area is 100 × 100, and the initial energy of the node is 0.5Jule. Table 1 shows the
complete parameters used for simulation.

5.3 Discussion

The simulation results of proposed and existing mechanisms are discussed in Figs. 1
and 2. In Fig. 1, a comparative analysis with the throughput parameter is presented,
whereas Fig. 2 presents the latency of both proposed and existing techniques.
The throughput is high in the proposed mechanism, whereas latency is less in the
perspective of the existing single agent-based LB technique.

Load Balancing in Cloud Computing Using Multi-agent-Based Algorithms 283

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

100 200 300 400

Th
ro

ug
hp

ut

No. of Servers

Proposed Multi Agent based LB Single Agent based LB

Fig. 1 Throughput of proposed Multi Agent_LB and Single Agent_LB

0

5000

10000

15000

20000

25000

100 200 300 400

La
te

nc
y

No. of Servers

Proposed Multi Agent based LB Single Agent based LB

Fig. 2 Latency of proposed Multi Agent_LB and Single Agent_LB

6 Conclusion

The existing system model agent-based dynamic load-balancing approach has a
disadvantage, i.e. for every instance of a new job, the agent has to complete a life
cycle (i.e. calculate the average and decide the status of the server). Hence, agents
need to travel twice to allocate the job: once to find the average work load and a
second one to balance the loads among nodes. To overcome this, we propose a multi-
agent architecture for agent-based load balancing. In this paper, an attempt has been
made to propose a multi-agent-based load-balancing mechanism for cloud environ-
ments. A distributed load-balancing strategy based on multi-agent is proposed in this
paper. The proposed mechanism has been simulated with the help of MATLAB. The
simulation results show that throughput is high in the proposed mechanism, whereas
latency is less in the perspective of the existing single agent-based LB technique. In
the future, it is intended to continue working on it and apply the proposed mechanism
in other environments, such as edge computing, which also improves throughput with
less end-to-end delay.

284 S. B. Bhattacharjee

References

1. Zhang J, Liu Q, Chen J (2016) A multi-agent based load balancing framework in cloud environ-
ment. In: 2016 9th international symposium on computational intelligence and design (ISCID),
vol 1. IEEE, pp 278–281

2. George SS, Pramila RS (2021) A review of different techniques in cloud computing. Mater
Today Proc 46:8002–8008

3. Shafiq DA, Jhanjhi NZ, Abdullah A, Alzain MA (2021) A load balancing algorithm for the
data centres to optimize cloud computing applications. IEEE Access 9:41731–41744

4. Annie Poornima Princess G, Radhamani AS (2021). A hybrid meta-heuristic for optimal load
balancing in cloud computing. J Grid Comput 19(2):1–22

5. Mohanty S, Patra PK, Ray M, Mohapatra S (2021) A novel meta-heuristic approach for
load balancing in cloud computing. In: Research anthology on architectures, frameworks, and
integration strategies for distributed and cloud computing. IGI Global, pp 504–526

6. Balaji K (2021) Load balancing in cloud computing: issues and challenges. Turk J Comput
Math Educ 12(2):3077–3084

7. Kapila D, Dhir V (2021) Performance evaluation of new hybrid appraoch of load balancing in
cloud computing. Des Eng 698–716

8. Jangra A, Mangla N, Jain A, Dewangan BK, Perumal T (2021) Classification of various
scheduling approaches for resource management system in cloud computing. In: Autonomic
computing in cloud resource management in industry 4.0. Springer, Cham, pp 149–157

9. Jangra A, Dubran H (2021) Simulation annealing based approach to enhanced load balancing
in cloud computing. In: 2021 9th international conference on reliability. Infocom technologies
and optimization (trends and future directions) (ICRITO). IEEE, pp 1–4

10. Mishra K, Majhi S (2020) A state-of-art on cloud load balancing algorithms. Int J Comput
Digital Syst 9(2):201–220

11. Neelima P, Reddy A (2020) An efficient load balancing system using adaptive dragonfly
algorithm in cloud computing. Clust Comput 23(4):2891–2899

12. Semmoud A, Hakem M, Benmammar B, Charr JC (2020) Load balancing in cloud computing
environments based on adaptive starvation threshold. Concurr Comput Pract Exp 32(11):e5652

13. Jangra A, Mangla N (2021) Cloud LB using optimization techniques. In: Mobile radio
communications and 5G networks. Springer, Singapore, pp 735–744

14. Singh N, Elamvazuthi I, Nallagownden P, Ramasamy G, Jangra A (2021) Assessment of micro-
grid communication network performance for medium-scale IEEE bus systems using multi-
agent system. In: Mobile radio communications and 5G networks. Springer, Singapore, pp
377–387

15. Patel KD, Bhalodia TM (2019) An efficient dynamic load balancing algorithm for virtual
machine in cloud computing. In: 2019 International conference on intelligent computing and
control systems (ICCS). IEEE, pp 145–150

16. Junaid M, Sohail A, Rais RNB, Ahmed A, Khalid O, Khan IA, Huassin SS, Ejaz N (2020)
Modeling an optimized approach for load balancing in cloud. IEEE Access 8:173208–173226

17. Babou CSM, Fall D, Kashihara S, Taenaka Y, Bhuyan MH, Niang I, Kadobayashi Y (2020)
Hierarchical load balancing and clustering technique for home edge computing. IEEE Access
8:127593–127607

18. Shahid MA, Islam N, Alam MM, Su’ud MM, Musa S (2020) A comprehensive study of load
balancing approaches in the cloud computing environment and a novel fault tolerance approach.
IEEE Access 8:130500–130526

19. Devaraj AFS, Elhoseny M, Dhanasekaran S, Lydia EL, Shankar K (2020) Hybridization of
firefly and improved multi-objective particle swarm optimization algorithm for energy efficient
load balancing in cloud computing environments. J Parallel Distrib Comput 142:36–45

20. Saeedi P, Shirvani MH (2021) An improved thermodynamic simulated annealing-based
approach for resource-skewness-aware and power-efficient virtual machine consolidation in
cloud datacenters. Soft Comput 25(7):5233–5260

	 Load Balancing in Cloud Computing Using Multi-agent-Based Algorithms
	1 Introduction
	2 Load Balancing in Cloud Computing
	2.1 Load-Balancing Taxonomy
	2.2 Agent Based Load Balancing

	3 Literature Review
	4 Proposed Work
	4.1 Motivation
	4.2 Rank Algorithm
	4.3 Agent Selection Algorithm
	4.4 Resource Allocation Algorithm
	4.5 Dynamic Resource Table Update Algorithm

	5 Results and Analysis
	5.1 Performance Matrices
	5.2 Simulation Parameters
	5.3 Discussion

	6 Conclusion
	References

