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Abstract. Pattern mining has been more important in the solution of various data
mining jobs over the years. The extraction of common patterns was the primary
focus of pattern mining research for a long period of time, with the mining of
rare patterns being neglected. Rare pattern mining is becoming more popular
as researchers recognize the importance of rare patterns. The hyper-linked data
structure is suitable to store sparse data set in the main memory and enables
dynamic adjustment of links during the mining process using recursion. However,
a sequential approach to discovering rare patterns froma large dataset is inefficient.
Hence a CUDA-based parallel algorithm has been implemented to discover rare
itemsets. The algorithm is tested using dense and sparse datasets on a GPU. The
GPU initialization time affects the time taken to discover rare itemsets. The time
taken to transfer data between CPU and GPU is significantly large and the parallel
implementation of an algorithm with a recursive approach is unsuitable.

Keywords: CUDA · Data mining · Parallel programming · Rare itemset · Tree
data structure

1 Introduction

Data mining has gained popularity since the beginning of the digital revolution due to
its application in various fields. Alan Turing introduced the idea of a universal machine
in 1936, which was one of the first instances of data mining since it could do computa-
tions like those performed by modern computers [1]. Data mining is increasingly being
used by businesses to enhance anything from sales operations to financial analysis for
investment reasons. It involves analyzing huge quantities of data to discover business
insights that may help companies solve problems, reduce risks, and take advantage of
new opportunities [2]. It requires sifting through enormous amounts of data to discover
hidden value from the dataset. To get the best results, data mining requires a range
of tools and techniques such as artificial intelligence, association rule mining (ARM),
clustering, classification, machine learning and regression [2].
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Patternmining, a technique inARM,has played an important part in various datamin-
ing activities throughout the years. For a long time, pattern mining research focused only
on the extraction of common patterns, ignoring the mining of rare patterns. Rare patterns
have been shown to be useful in a variety of applications, including network anomaly
detection, equipment failure, medicine, and fraud detection [3]. Given the importance of
rare patterns, rare pattern mining research is gaining traction, and a significant amount
of effort has already been done to extract these significant patterns [4].

The term “frequent itemset mining” focuses on locating itemsets that appear in
groups frequently [5]. Rare itemsets mining uncovers previously unknown relationship
among the less frequent itemsets. All the algorithms in place to extract rare itemsets are
serial algorithms which will be time inefficient with the increasing volume of data. Due
to the nature of the task of finding rare itemsets, a certain part of the process, which is
time and resource-consuming, can be implemented in parallel hence reducing the time
taken to discover the rare itemsets. The research aims to understand the nature of the
hyperlink data structure in a parallel environment by implementing parallel mining with
the assistance of the CUDA framework.

2 Literature Review

Different algorithms that have been developed in a similar field are discussedwith its pros
and cons. Liu et al. [7] implemented rare pattern mining and assigned minimum support
threshold to each of the items separately, utilizing the Apriori-based method. The rare
itemset mining algorithms, ARIMA [6] and the AfRIM [8], on the other hand, utilized a
single minimum support value for all components. The use of Apriori-based algorithms
has several limitations which led to the development of tree-based methods, such as
the Compressed FP-Growth (CFP-Growth) which uses a multiple minimum support
framework to extract rare patterns. For mining rare patterns, the Rare Pattern Tree (RP-
Tree) Mining method described by Tsang et al. [9] is the most efficient pattern growth
technique. Only transactions with at least one rare item are considered by the system,
which employs two support criteria. Bhatt et al. implementedMCRP-Tree algorithm [10]
that improves it even further byutilizing several support levels for improvedperformance.
It dynamically assigns suitableminimumsupport to each item, allowing formore efficient
extraction of frequent itemsets including rare items than current methods. Rare pattern
mining methods as discussed by Borah et al. [4] collect patterns from databases in a
horizontal style, with one column representing the transaction id. The other, on the other
hand, indicates the total number of objects involved in the transaction with that specific
id. The Apriori algorithm is the most often used algorithm in pattern mining.
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Most rare pattern mining methods are based on frequent itemset mining techniques,
resulting in time-consuming candidate creation or traversal of all frequent patterns.
To address the aforementioned difficulties, the author offers a novel algorithm that is
based on top-down and depth-first approaches. For each transaction, a negative itemset is
created, which includes all the items that are not in the itemset. The method presented by
Lu et al. [11], the Negative Infrequent Itemset tree miner (NIIMiner), was implemented
in Java. The negative itemset in NIIMiner gets excessively big for sparse datasets, when
there is only one item in a transaction, resulting in extremely lengthy calculations.

The RP-growth method outperforms all prior algorithms in terms of finding rare
itemsets, but its performance degrades for sparse data, and memory consumption rises.
Rare Pre-Post is a novel algorithm proposed by Darrab et al. [12] (RPP). By eliminating
conditional trees at each stage of the RP growth, it saves spending time and resources
on worthless candidate itemsets. The memory usage of RPP was lower than that of
the RP-growth algorithm for certain minSup criteria. The threshold values chosen for
both minSup and maxSup have an impact on the outcomes of rare itemset mining by
Kanimozhi et al. [13]. However, when these numbers are changed, the results vary
dramatically, allowing the discovery of intriguing patterns. The itemsets are divided into
three groups in this method, and each group’s threshold is generated independently. The
itemsets over the suggested threshold in each group are then grouped back together.

By using the principles of fuzzy theory, the author introduces us to FRI-Miner by
Cui et al. [14], a fuzzy-based mining method that helps us discover intriguing, rare
itemsets from a quantitative database. FRI-Miner is described in detail in this article.
It is necessary to perform certain pruning procedures in each step-in order to improve
the performance of the algorithm and to make better use of the available resources. This
algorithm is more concerned with discovering fewer rare itemsets that are qualitative in
nature rather than finding numerous rare itemsets, which is what the Automated Apriori
algorithm is concerned with doing. The method has been thoroughly tested by changing
various factors such as the minSup value and the density of the dataset, and the results
have been documented for the varied runtimes for the various values. Themost significant
disadvantage of this method is the difficulty in determining the right minSup value since
it must be set manually.

Recent advancements in Graphics Processing Units (GPUs) have made it possible
to achieve low-cost high-performance computing for a wide range of general-purpose
applications. A programming paradigm based on Compute Unified Device Architec-
ture (CUDA) offers programmers with sufficient C language-like APIs that allow them
to better utilize the parallel capabilities of the graphics processing unit (GPU). Data
mining is extensively utilized and has substantial applications across a broad range of
industries and disciplines. Current data mining toolkits, on the other hand, are unable
to satisfy the performance requirements of applications that use large-scale databases in
terms of speed. According to this paper [15], the author proposes three techniques for
speeding up fundamental problems in data mining algorithms on the CUDA platform.
These techniques are scalable thread scheduling scheme for irregular pattern, concurrent
distributed top-k scheme, and concurrent large-scale high dimension reduction scheme.
Adil et al. [16] propose a new CUDA based approach for association rule mining what
has a 18x speedup over the serial algorithm for association rule mining.
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3 Methodology

Various terminologies that are used to describe the algorithm are discussed. Furthermore,
the algorithm, and its implementation details are discussed in this section.

3.1 Basic Terminologies

• Itemset: An itemset is a collection of items in the database Td and it is represented as
I. A set of n items in an itemset I is represented as I = i1,i2,….,in.

• Database: The database is a collection of m transactions represented as Td = t1,
t2,….,tm where t1, t2,….,tm are transaction identifiers representing each transaction.

• Support: A support is a user-defined threshold to discover frequent and/or infrequent
itemsets. The support of any itemset in a database with Td transactions is calculated
as the total number of times it has appeared in the transaction database.

• Frequent Itemset: An itemset is said to be frequent if its occurrence in the database is
greater than or equal to the user-defined threshold minfreq.

• Infrequent (or Rare) Itemset: An itemset is said to be infrequent if its occurrence in
the database is between two thresholds minrare and minfreq. If the occurrence of the
itemset is less than minrare then it is considered noise.

3.2 Efficient Hyper-Linked Rare Pattern Structure Algorithm

Algorithm 1 computes the header table which consists of the different items present in
the database transactions and their support counts, this table can be further used to find
our rare and frequent itemsets. Algorithm 2 is used to generate the projected databases
after discarding the frequent itemsets at each step to discover rare itemsets.
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13: if minrareSup < support count(IT) <minfreqSup
14 Rare←Rare U IT
15 for each transaction TR DB do
16 if r| (minrareSup < r<minfreqSup) r TR then
17 RareItemTransaction ← TR
18 end if
19 end for each
20 Create different queues,Qj with following fields: itemid and hyper-link that 

stores the items of jth RareItemTransaction. Use a hyperlink to link all transac-
tions with the same first item.

21 for each item x in HT
22 create rare item projections from x-projected database()
23 end for each

Algorithm 1 : Efficient Hyper-Linked Rare Pattern Structure (EHLRPS)

Input: Complete original transaction database (DB), minrareSup, minfreqSup
Output: Complete set of rare itemsets

1 Create header table (HT) containing the following fields: itemid, supcount and 
hyperlink

2 for each item IT DB do
3 if item IT is in the HT then
4 support count(IT)←support count(IT)+1
5 Sort HT in ascending order of Sup_Count
6 else if item IT not in the HT then
7 create entry for item IT in HT
8 support count(IT)←1
9 hyperlink←NULL
10 end if
11 end for each
12 for each item IT in HT do
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Algorithm 2: Create a x-projected database to mine rare itemsets:

Input: Main Header table HT, str
Output: Rare itemsets
1 for each item x in HT do
2 Traverse the queues attached through hyperlink
3 Create a sub-header HTsub with the items in the transaction queues and its

corresponding support count.
4 Create a string ‘str’ to store the itemsets and its corresponding support
5 for each item in HTsub do
6 if minrareSup < HTsub. item_id.support < minreqSup
7 concatenate (x, HTsub.item_id)
8 concatenate (x, “: HTsub. item_id.support”)
9 end if
10 end for
11 if HTsub.item.hyperlink is not NULL and if the item y in HTsub is Rare then
12 xy-projected database ()
13 end if
14 end for

The flowchart shown in Fig. 1 (a) describes the basic flow of the sequential algorithm.
Initially, the data is read from the file and the transactions are copied into the main
memory in a hyperlink data structure. In the next step, a support count map is created
for the items in the transaction. This step is taken when the database is read once, to
reduce multiple reads of the database. Next, the support count map is sorted based on
the support count in ascending order. This sorted map is used to create the data structure
HeaderTable, HTwhich contains the item, its support count, and a hyperlink which links
to the transactions containing that item. The items are added to the results that have a
support count which falls in the range of minSup and maxSup. In the next step, a sub
HeaderTable is created for the items that have the support count in the required frequency.
Further, a loop is run over these sub HeaderTables and this process is repeated for all
the elements in the sub HeaderTable using a recursive function, and the rare itemsets are
added to the results.

In the second algorithm, it can be noticed that the rare items are extracted for each
entry of the HeaderTable HT in a loop, thus indicating that each entry in the HeaderTable
can be processed separately. This is the main idea behind the design of the parallel algo-
rithm. The initial preprocessing part which includes the algorithm -1 can be implemented
in serial. We can process each entry of the HeaderTable in a different thread parallelly
in CUDA. This process is done in the kernel code, and the further recursive calls made
by each separate entry of the HeaderTable are executed on the same thread. All the
results are collected in an array and displayed after the parallel execution is completed.
The CUDA program can be divided into two parts, sequential instructions, and parallel
instructions. In the sequential part, the input file is read and the initial HeaderTable is
constructed. Then the contents of the HeaderTable are copied onto the GPU since the
parallel part of the code cannot refer to the variables declared and initialized in the serial
code The parallel execution of the code begins from when the __global__ function is
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Fig. 1. Flowchart of (a) serial algorithm and (b) parallel algorithm



Discovery of Rare Itemsets Using Hyper-Linked Data Structure 297

called. This function can only be called from the host code. Each of the items in the
HeaderTable is used on a different thread to construct the sub header table and then
process it recursively. This recursive process is done in a __device__ function which
can only be called from the __global__ function. All the results are collected in an array
and this array is copied back from the device to the host. The flowchart of the parallel
approach is shown in Fig. 1 (b).

4 Result Analysis

The results are recorded by testing the algorithms against standard transaction databases
used to test the performance of datamining algorithms. All the tests have been conducted
on Chess and Connect datasets obtained from [17]. The number of transactions in chess
data is 3,196 and tests have been conducted by varying the number of the transactions and
the number of items in each transaction between 6 and 7. There are 67,557 transactions
in the Connect dataset.

4.1 Performance of Sequential Approach

The serial algorithm is implemented in C++ and all the tests are conducted on a
Linux machine running Intel(R) Core (TM) i5-7200U CPU @ 2.50GHz processor. The
compiler used is g++, which is a GNU-based C++ compiler.

The experiments are conducted by varying the number of rows in the database and
the size of the transactions in the database. In Tables 1 and 2, we summarize the results
that are recorded after running the code 5 times and the average execution time is noted
down.

The following observations can be made from the results obtained as shown in
Tables 1 and 2:

1. The execution time increases as the length of the transaction increases, this is because
it increases the depth of the recursion as we generate more sub header tables.

2. The execution time also increases as we increase the number of transactions, but
this observation has a lot of irregularities in it. This is because, as we store only the
unique transactions, an increase in the size of the database might not always lead to
growth in the size of our data structure as the new transactions might already exist
in it. Also, it depends on the items falling in the range of minSup and maxSup. If the
items that are rare have only a few transactions linked to it through the hyperlink, the
depth of the recursion decreases, and the runtime decreases substantially because of
this.

4.2 Performance of Parallel Approach Using CUDA

The parallel code has been developed in C++ using the CUDA library. The experiments
have been conducted on the Google Colab environment which provides a GPU for
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Table 1. Execution time(milliseconds) for Chess dataset using sequential and parallel approach

# Transactions Chess 6 Chess 7

Sequential Parallel Sequential Parallel

500 4366 8501 5467 8917

1000 5677 8648 6668 8927

1500 4494 8764 6286 8841

2000 4855 8601 6738 8903

2500 4686 8662 7074 9018

3000 6435 8623 6020 8961

running our code. It provides a single 12GB NVIDIA Tesla K80 GPU. We have used
the nvcc compiler to compile the CUDA code.

The results in Table 1 show initial observation from executing the parallel code. The
execution time is much higher than the execution time of the serial code for the same
data. On further investigation it is found out that this is due to the time taken to initialize
the GPU as the GPU switches off whenever it is not in use. Most of the algorithms that
are developed in CUDA are tested after running a warmup call to the kernel code. This
warmup call initializes the GPU and all the setup that is required. Interesting results
were found after timing the second call to the kernel function for the Chess dataset.

Table 2. Execution time(milliseconds) for Connect dataset using sequential and parallel approach

# Transactions Connect 6 Connect 7

Sequential Parallel Sequential Parallel

10000 2218 8440 3211 8956

20000 2713 8578 3072 9148

30000 2392 8535 3431 9278

40000 2885 8702 3050 8988

50000 2738 8561 3718 8863

60000 2985 8543 3334 8958

The execution times for the second run are much faster than any of the results. It
has a 400 times speedup on the initial run of the parallel code and approximately 250
times speedup against the serial code. To make sure that the results are accurate, we
have flushed the Cuda memory using cudaFree() API and copied the data back to the
device again to test the algorithm before the second run. The execution time includes
the cudamemcpy API as well. To make sure the results are accurate we have noted down
the average execution times of multiple runs.
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Table 3. Execution times for parallel code in after initiating the GPU for Chess data

#Transactions 500 1000 1500 2000 2500 3000

Execution time (ms) 16 21 20 32 21 20

Both the Chess and Connect datasets are dense datasets, experiments are also con-
ducted against sparse data that are generated using the SPMF generator from [16]. This
data set contains 1000 transactions with 5000 unique items having a maximum transac-
tion length of 7. A real-life example may be any rare disease with multiple mimicking
symptoms such as sarcoidosis. The sparse data utilizes more memory than the dense
data because the number of items in the sparse data is much higher than that of the
dense data, hence it was running out of space and time on the CUDA kernel. A parallel
approach was implemented to analyze the performance to discover rare itemsets from
dense and sparse dataset. Theoretically, one can assume that the parallel algorithm is
faster than the serial code because of the nature of the code. But the parallel code takes
longer time to execute, this is because of the time taken to initialize the GPU which was
not accounted for beforehand. The same can be observed in Table 3 which contains the
execution time after initiating the GPU for Chess dataset.

5 Conclusion and Future Scope

This is one of the first algorithms in the field of rare itemset mining that has been devel-
oped to execute in parallel. The execution time increases as the length of the transaction
increases, this is because it increases the depth of the recursion as we generate more sub
header tables. The execution time also increases as we increase the number of transac-
tions, but this observation has a lot of irregularities in it. This is because, as we store
only the unique transactions, an increase in the size of the database might not always
lead to growth in the size of our data structure as the new transactions might already
exist in it. Also, it depends on the items falling in the range of minSup and maxSup. If
the items that are rare have only a few transactions linked to it through the hyperlink,
the depth of the recursion decreases, and the runtime decreases substantially because of
this. One of the limitations of the parallel and serial codes that have been implemented
is memory consumption. Since it is a recursive process and due to the large sizes of the
datasets the main stack memory might be full if we increase the size of the transactions
or the size of the database. The memory that can be stored in the CUDA functions is even
lesser. We can run the code in the latest NVIDIA GPUs which have a higher compute
capability and thus allow us to store more data. Further optimizations can be made in the
algorithms too to reduce memory usage. This limitation can be observed while running
the algorithms on sparse datasets which consume more memory than the dense datasets
like chess and connect data.

In the parallel code, only one level of parallelism is achieved i.e., the load on the
main thread is reduced by only one-fold. After the initial kernel call, all the processing
happens on the same thread for each item of the HeaderTable HT. Further developments
can be made to increase the parallelism of the algorithm by making the algorithm run in
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parallel in the next level too. This can be done using dynamic parallelism in CUDA. A
recursive method has been used in the kernel function to generate the itemsets of size k,
where k= 1, 2, 3,…, n where n is the size of the transaction. This algorithm is converted
into an iterative algorithm by using a data structure to store all the necessary parameters
for the next iteration since CUDA does allow recursion only up to one level. Further
optimizations can be made in the algorithm by using tree-based approaches. Another
optimization that can be done to the code is the usage of variable support values [13].
Only static minSup and maxSup values are used in the code. Using variable values for
each itemset might lead to more accurate results. The memory that can be utilized on the
CUDA device is little. Since the sparse data uses more memory than the dense datasets,
it was not possible to execute the generated sparse dataset. This is a limitation of the
parallel algorithm.
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