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Abstract. With the increasement of urban rail transit operation density, the power
consumption of metro system is also rising sharply. Meanwhile the proportion for
urban rail transit of power consumption is increasing, so this problem needs more
and more attention. In order to reduce the power consumption of rail transit, this
research mainly focuses on the renewable energy utilization of train, which means
that the trainwillmake the best of the regenerative braking energy. For this purpose,
the flywheel energy storage device is used as on-board device, then the regener-
ative braking strategy of the train is optimized based on reinforcement learning
algorithm. Ultimately, the optimized train speed curve by the dynamic planning
and Q-learning can achieve more than 5% energy recovery of the total energy
consumption. The results show that this research can save the power consumption
of rail transit by recycling the braking energy, which is of great significance for
significance for energy saving and green transportation

Keywords: Regeneration energy · Dynamic planning · Reinforcement learning ·
Strategy optimization

1 Introduction

Urban rail transit is a kind of transportation mode with high reliability and large trans-
portation capacity. With the improvement of the economic development of cities at all
levels and the continuous improvement of engineering technology, subway, as a typical
representative of urban rail transit, has been growing rapidly in the whole country. At
present, China has ranked the first in the world in terms of operating mileage and passen-
ger flow scale. More and more attention has been paid to the research of energy-saving
operation of rail transit.

The main research goal of train energy-saving driving is to find the optimal speed
curve when the train energy consumption is the lowest through the analysis of the speed
curve of the train on the section under the condition of meeting the constraints of the
operation environment. The optimal speed curve is mainly determined by the train force
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and the tangent sequence of working conditions, so there are many research results at
home and abroad. Kunihiko [1] solved the train speed curve as a discrete bounded state
variable problem by using the Pontryagin maximum principle. Howlett [2] et al. Proved
the existence of single train energy-saving optimal operation method. Oshima [3] further
applies fuzzy control theory to train operation control and improves the punctuality rate
and stopping accuracy of automatic train driving system (ATO). Masafumi [4] et al.
Introduced the consideration of the state of charge (SOC) of the energy storage device
when studying the optimal control model, and comprehensively solved the optimal SOC
control strategy. DOMínguez [5] et al. Studied the energy-saving control driving strategy
when the train is equipped with ATO, and proposed a model solution based on multi-
objective particle swarm optimization algorithm. Bao [6] and others put forward the
simplified principle of train state space based on Pang’smaximumprinciple. Liu [7] et al.
used the value function approximation method to estimate the optimal value function,
which improved the accuracy and operation efficiency of train operation strategy.Wu [8]
et al. Combined with the control strategy of on-board energy storage device, studied the
optimization of train speed curve. They used mixed integer linear programming (MILP)
to solve the model.

Regenerative braking is also called feedback braking or regenerative braking in
the field of rail transit. The biggest feature is to use the reversibility of the motor.
When the train is braked, the traction motor reversely acts as the output energy of
the generator, which is usually called regenerative energy. Renewable energy has great
practical role and research value in many fields such as electric vehicles. In rail transit,
the use of traction power supply system can achieve multi vehicle cooperation, thus
reducing energy consumption at the system level. The principle of regenerative braking
is shown in Fig. 1:

Fig. 1. Schematic of Direct feedback of train regenerative energy

The function of on-board energy storage device is to directly recover and store the
regenerative energy generated by the train during braking, rather than feedback the
traction network [9, 10]. Therefore, the on-board energy storage device can be used as
an auxiliary power source to reduce the overall energy consumption of the traction power
supply system under the condition of train traction. The schematic diagram of on-board
energy storage device is shown in Fig. 2:
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Fig. 2. Renewable energy utilization of train energy storage device

The purpose of this study is to analyze the optimization of the operation curve of the
on-board energy storage train considering the recovery and utilization of regenerative
braking energy, and to analyze and solve the evaluation of the optimal control curve of
the train.

2 Model Formulation

When analyzing the forces on the running process of the railway train, it mainly needs
to analyze the traction force, and running resistance of the train. It is very important for
the calculation and optimization of the optimal speed curve to solve the stress state in
different operation stages orworking conditions. The train running resistance is generally
divided into basic running resistance and additional running resistance, and the force
situation is shown in Fig. 3:

Fig. 3. Schematic of Single train force analysis
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(1)

Fr = A + B · v + C · v2 (2)

Fr′ = M · g · sin θ = M · g · i · 1000 (3)

where F is the constant traction output under the constant torque mode of the train, P0 is
the power of the train traction motor at constant power output, P(v) is the output power
of traction motor decreases with the increase of vehicle speed in the power reduction
stage, μ0, μ0, μ0 and ε0, ε1 are all represent fitting coefficient.

The basic resistance can be expressed by Davis Equation, and the main sources
of additional resistance are: tunnel, turning radius and ramp. In this study, the ramp
resistance is mainly considered. The resultant force on the train is indicated by C(v):

C(v) =
⎧
⎨

⎩

μf Ft(v) − ω(v) − ω′(x)
−(ω(v) + ω′(x))
μbFb(v) − ω(v) − ω′(x)

(4)

a(v) = μC(v)

(md + ms)
(5)

where μ is the coefficient of action of the resultant force, ms, md represents the static
load and dynamic load of the train respectively.

E =
n∑

k=0

C(vk) · sk (6)

The total energy consumption of the train in the operation section mainly depends
on the stress of the train in the sub section. Where k is the number of subintervals,
k ∈ [0, n]; sk is the length of k subinterval.

Ek,stroed = Tk · Pf ,r = 1

2
J
(
ω2
k − ω2

k−1

)
(7)

ω2
k = ω2

k−1 + 2Ek,stored

J
(8)

where Ek,stored is energy storage of flywheel energy storage device in k subinterval; ωk ,
ωk−1 represent the flywheel rotation speed in k and (k-1) subinterval; J is the moment
of inertia of flywheel, kg·m2; Pf ,r is rated power of flywheel energy storage device, w.

The objective function is shown in Eq. 9:

E = min

(
n∑

k=0

μF(vk) · lgap − Ek,stored

)

(9)
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3 Solution Approach – DP

Dynamic programming (DP) is a theory first proposed by mathematician Richard Bell-
man in 1953 to solve multi-stage decision-making problems, rather than a specific algo-
rithm or a specific mathematical model. Dynamic programming can effectively solve
the problem with the property of optimality principle, which means that any decision
subsequence contained in the decision sequence is always optimal, and satisfying the
optimality principle can ensure that the discretized state has no aftereffect. So, the core
of dynamic programming is to determine the Bellman equation according to the bellman
optimality principle.

The problem can be discretized by evenly dividing the train operation intervals,
and some sub intervals can be obtained [11]. Each interval corresponds to a driving state
containing speed information, so that the problem of solving continuous speed curve can
be transformed into a set of sub interval states. Suppose the length of the train operation
section is l, and the operation section is divided into n sub sections. The length of each
sub section is recorded as lgap, and the set of all sub sections is recorded as Sk , thus
(n + 1) states are divided. The state set corresponding to the subinterval can represent
the vehicle speed and flywheel rotated speed at this position, which is shown in Eq. 10
(Fig. 4):

Sk = {
sk,1, sk,2, . . . , sk,n

}

= {(
xk,1, vk,1, ωk,1

)
,
(
xk,2, vk,2, ωk,2

)
, . . . ,

(
xk,n, vk,n, ωk,n

)} (10)

Fig. 4. Schematic diagram of dynamic planning state transfer

By traversing the state transitionmatrix and analyzing the time and energy consump-
tion of each transition, the optimal utility function can be solved quickly in the process of
dynamic planning, which provides the basis for action selection. The objective function
of the optimal velocity curve is used to describe the state transition:

G
(
sk,vi , sk+1,vj

) = α
(
ME − Ek,i

k+1,j

)
+ β

∣
∣
∣Tt,k − Tk,i

k+1,j

∣
∣
∣ + γEk,stored (11)

where G
(
sk,vi , sk+1,vj

)
is the function value of state transition; α, β and γ respectively

represent the weight of energy consumption, time consumption and energy storage in
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the evaluation of transfer, which are greater than 0 and α + β + γ = 1; ME represents
a constant for energy consumption, and as the reduced number of energy consumption
Ek,1
k+1,i corresponding to state transition, the lower the energy consumption, the better

the effect; Tt,k represents the reasonable time consumption of k stage in the interval, and
the closer the actual time consumption is, the better the effect is.
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Gk in matrixG represents the result of the effect evaluation function of the transition
from state si in phase k to sj in phase k + 1. By this analogy, we can get the effect
evaluation matrix of each stage in the whole process of the interval. According to the
principle of Bellman optimality, we can get the optimal index function of the inverse
solution of dynamic programming:
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f ∗
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(
sk,vj

) = G∗(sk,vj , sk+1,vi

) + f ∗
k+1

(
sk+1,vj

)
(14)

Equation 13 indicates that for the optimal index of state sk,vj in phase k, it is necessary
to traverse all the states that can be converted to sk,vj in phase k + 1, and calculate the
effect of these transformations. In Eq. 14, f ∗

k (sk,vj ) represents the optimal solution for
the transition to sk,vj state, and G∗(sk,vj , sk+1,vi ) represents the action corresponding to
the optimal transition.

The above method is brought into the calculation example for verification, assuming
that the information of operation section is shown in Table 1, and the information of
train and vehicle is shown in Table 2:

Table 1. Section line information

Parameter Symbol (unit) Value

Line length L (m) 1000

Maximum speed limit Vmax(km/h) 80

Standard operation time Tt(s) 82

Floating range �(s) 1

Stage gap lgap(m) 10
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Table 2. Basic train information

Parameter Symbol (unit) Value

Static mass of train Ms(t) 360

Dynamic quality of train Md (t) 386

Maximum braking acceleration ab,max(m/s2) 1.1

Maximum traction acceleration at,max(m/s2) 1.1

Maximum traction Ft,max(kN) 410

Davis Equation factors A 10.079

B 0

C 0.001334

Table 3. Performance parameters of flywheel energy storage device

Parameter Symbol (unit) Value

Quality Mf (t) 2

Minimum rotated speed ωmin(rad/s) 280

Maximum rotated speed ωmax(rad/s) 560

Rated rotated speed ωr(rad/s) 442.72

Moment of inertia J (kg · m2) 180

Rated power Pr(w) 3*105

Energy storage Er(J) 10.58*106

The basic parameters of flywheel mechanism of on-board energy storage device [12,
13] are shown in Table 3.

The optimized train speed curve can be obtained through the calculation as shown
in the Fig. 5.
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Fig. 5. Train speed curve calculated by dynamic planning

The test results show that the total energy consumption of the train running section
is 166.82MJ, which can realize the recovery of the regenerative energy of the train about
8.4 mj, accounting for 5.25% of the total energy consumption. At the end of the section,
the SOE of the flywheel energy storage device is 79.22%.

4 Solution Approach– Q-Learning

Reinforcement learning (RL) and deep learning, both of which have developed for many
years, are the hot research categories in machine learning. Reinforcement learning is
a kind of “environment” and “reward mechanism” established to evaluate the action
and realize the optimal control of the decision-making process. The optimal control of
urban rail train for the selection of train working conditions and the switching time of
working conditions in the operation section conforms to the application direction of
reinforcement learning. Q-learning is a kind of reinforcement learning without model.
Compared with the model-based method, reinforcement learning without model does
not need to bring into the model to solve the decision-making of the action subject [14],
so as to plan in advance for the impact of the execution action.

Combined with Q table and R table, the updated Q value of action an in states can
be calculated. The update of Q value is based on the Behrman function, just like the
effect evaluation function in dynamic programming. The problem solved needs to meet
no aftereffect. The Bellman equation on which the Q value is updated is shown in Eq. 15:

Qnew
S,A = QS,A + α

(
RS,A + γ ∗ maxQ′(s′, a′) − QS,A

)
(15)

where Qnew
S,A is the new Q-value after update;QS,A is the Q-value in state S after perform-

ing action A; RS,A is immediate return on performing action A; s
′
is the state converted

to after performing action A in state S; maxQ
′(
s
′
, a

′)
represents the maximum Q-value

that can be obtained by all executable actions of state S in Q-table; α is learning effi-
ciency, 0 < α < 1, the greater α is, the greater the weight of the existing Q value is; γ
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is discount factor, 0 < γ < 1, the greater the value of γ , the greater the weight of delay
return.

To sum up, the pseudo code of Q-learning algorithm using ∈ greedy search strategy
to optimize the solution process of train speed curve can be expressed as follows:

The Q-value updating strategy in the solution process can be expressed as:

(sk , ai) = (1 − α)Q(sk , ai) + α
(
R[sk ][ai] + γ ∗ max

{
Q

(
s′k+1, a′j

)})
j, i ∈ (0, na)

(16)

where Q(sk , ai) is Q-value corresponding to ai of state sk ; R[sk ][ai] is the return value

corresponding action a
′
j of state sk in R-table; max{Q

(
s
′
k+1, a

′
j

)
} is delayed returns; na

is the number of executable actions.
The calculation of the return function is shown in Eq. 17:

R
(
sk,ai

) = (ME − E(vk , ai)) + α
∣
∣Tk,t − T (vk , ai)

∣
∣ + β

(
Tk,b ∗ Pin

)
(17)

where ME is the reduced constant of action energy consumption, then the greater the
energy consumption and the lower the return; E(vk , ai) represents the energy consump-
tion of the action ai performed in the k stage of the interval; Tk,t , T (vk , ai) represents the
time consumption in the k stage when the optimization is not carried out and the time
consumption obtained by the execution of the action respectively. Tk,b is the duration of
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brake application; Pin is the input power of energy storage device during train braking;
α is the time consumption coefficient, which is mainly used to balance the order of
magnitude of time consumption and energy consumption; β is the weight of renewable
energy.

The main parameters related to Q-learning and the general settings of exploration
strategies are shown in Table 4:

Table 4. Q-learning algorithm parameters

Algorithm parameter Value

Learning rate α 0.1

Discount factor γ 0.9

Greedy coefficient ε 0.8

Learning times 3000

The comparison of the optimized speed curve is shown in the Fig. 6:

Fig. 6. Train speed curve calculated by Q-learning algorithm

In order to compare the train energy consumption, time consumption and regen-
eration energy recovery before and after optimization, Table 5 is established for
analysis:

Through comparison, it can be found that:whenusing dynamic programming to solve
speed curve, state discretization is based on uniform segmentation of speed interval δ,
which helps to solve dynamic programming quickly and simplify state aggregation, and
inevitably simplifies the speed after partial state transfer. In the uphill stage of the train
(0−400 m interval in this case), if the train chooses the coasting condition, it will react
on the speed instead of braking; but if the train chooses the coasting condition in the
downhill stage (400−1000 m stage in this case), the speed will change slightly due to
the short value of l_gap. In the forward search stage of dynamic planning, it will be
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Table 5. Comparison of operation effect before and after Q-learning optimization

Algorithm Total energy
consumption MJ

Time consum s Brake time consume
s

Estored MJ SOE

DP 184.33 81.81 30.34 9.10 86.0%

Q-Learning 182.04 81.77 32.65 9.80 92.55%

due to the speed integration and conversion in the next stage the former is the same
and recorded as cruise condition. This will lead to additional energy consumption of the
train, and because the constant speed of IV in the working condition stage makes the
speed curve tend to have greater braking force in the braking stage, which is reflected in
the braking time of the train will not be conducive to the recovery of braking energy by
the flywheel energy storage device.

Because the optimization based on Q-Learning is based on the response of the envi-
ronment to the action, when establishing the return matrix in the forward search, the
operation condition of the train is recorded according to the execution of the action.
In this way, the train can use the terrain of the environment in the example to turn to
coasting to reduce the running energy consumption, and according to the weight coef-
ficient of the braking time in the call back function calculation, the better collection of
the regenerative energy of the train can be realized. From the results in Table 5, it can be
seen that through the optimization of Q-learning, the SOE of energy storage device in a
single interval can increase the collection of renewable energy by 6.55%, and the total
energy consumption in the interval decreases by 2.29mj, accounting for 1.24% of the
total energy consumption of the original dynamic planning solution, while the difference
between the operation time consumption in the interval and the standard time length is
0.232% and 0.28%, respectively, which are within the allowable error range.

5 Conclusions

Due to the proportion for urban rail transit of power consumption is increasing, so this
uses the fly-wheel as the on-board energy storage device to save the braking energy.
This method not only can effectively recycle the regenerative energy of the train, but
also can reduce the overall energy consumption of the urban rail transit system. Based on
the reasonable measure of selecting the fly-wheel as energy storage device, the dynamic
planning andQ-learning algorithm is used to optimize train speed curve. The results show
that the proposed method can achieve more than 5% energy recovery of the total energy
consumption. Therefore, this research has some certain significance for significance
for reducing energy consumption of rail transit. However, this research is only at the
theoretical and simulation stage, so we need pay more attention to the fly-wheel using
as the on-board device. In addition, the train regenerative braking strategy optimization
algorithm needs further study.
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