
A Car-Following Model Considering
the Next-Nearest-Neighbor Interaction
of Electronic Throttle Information

Yirong Kang1(B) and Shuhong Yang2

1 School of Transportation Engineering, Guizhou Institute of Technology,
Guiyang 550003, China

kyr6700256@126.com
2 School of Computer Science and Communication, Guangxi
University of Science and Technology, Liuzhou 545006, China

Abstract. Aiming at the problem that the nearest preceding car of the considered
vehicle may leave the current lane and cause the latter to lose track reference,
based on the classical FVD model, this paper design a more effective feedback
control signal by considering the ET opening angle difference information from
the next-nearest-neighbor interaction at the previous moment, and propose a new
CAV cooperative driving following model. The effect of this new consideration
upon the stability of CAV traffic flow is examined through linear stability analysis.
A modified Korteweg-de Vries (mKdV) equation was derived via nonlinear anal-
ysis to describe the propagating behavior of traffic density wave near the critical
point. Good agreement between the simulation and the analytical results shows
that taking the next-nearest-neighbor interaction of electronic throttle historical
information into account leads to the stabilization of traffic systems, and thus can
efficiently suppress the emergence of traffic jamming. The results can be expected
to provide a theoretical reference for designing more effective traffic congestion
control strategies.

Keywords: Car-following Model · Electronic Throttle · Next-nearest-neighbor
Interaction · Connected and Autonomous Vehicle

1 Introduction

With the fast growth of the economy and the pace of social development, the problem of
traffic congestion is becoming increasingly prominent, which seriously hinders people’s
daily work and life. Studying on alleviating traffic congestion has attracted extensive
attention, and many traffic flow models [1–5] have been proposed to provide theoret-
ical support for solving traffic problems. At present, the existing traffic flow models
can be roughly divided into three categories: macroscopic models, microscopic models,
and mesoscopic models. The car-following model is a favorable type of microscopic
traffic models, which describe the interaction between each pair of leading and follow-
ing vehicles in the same lane based on the formula of stimulus response framework.
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Among them, the most well-known one is the optimal velocity (OV) model proposed
by Bando et al. [4], which has successfully revealed the dynamical evolvement process
of traffic congestion in a simple way. Hereafter, various OV-based car-following models
have been proposed one after another by introducing actual traffic factors, such as mul-
tiple information of headway [5] or relative velocity [6], backward-looking effect [7],
driver’s anticipation [8], curved road condition [9] and so on. These car-following mod-
els mentioned above can reproduce complex traffic phenomena and reveal mechanism
of traffic jams at a higher level.

Recently, along with the Vehicle-Vehicle communication technology, modeling the
car following process of Connected and Autonomous Vehicle (CAV) has attracted
increasing attention in the field of traffic flow. In this direction, some scholars succes-
sively developed some extended car followingmodel by factoring the effect of electronic
throttle (ET) opening angle. In 2016, based on the full velocity difference (FVD) model,
Li et al. [10] proposed a throttle-based car following model (recorded as T-FVD) to
describe the effect of ET opening angle on CAV traffic flow. After that, considering
the factors of lateral gap and electronic throttle opening angle in the same time, they
presented an extended car-following model under connected environment in 2017 [11].
Their results show that the stability of traffic flow with CAV is improved by introduc-
ing the new consideration. By making full use of ET angle control signal of multiple
preceding vehicles, a novel car-following model was established with consideration
of optimal velocity difference and ET angle information, in which the time-dependent
Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equa-
tion are inferred to describe the evolutionary process of density wave [12]. In 2019, Sun
et al. proposed an extended car-following model by taking the effect of ET signal into
account on the curved road [13], in which the ET opening angle difference from multi-
ple preceding vehicles at the previous moment is considered as a delay-feedback control
signal.

A series of research results of CAV car-following model mentioned above demon-
strate that with the help of vehicle-vehicle communication technology, the traffic jams
can be effectively suppressed by exchanging the ET opening angle data among contin-
uous preceding vehicles. However, the existing CAV car-following models are unsuited
to study the ET opening angle influence of the next-nearest-neighbor interaction (non-
adjacent the current vehicle), since they do not consider this factor at all. In fact, classic
traffic flow research results [14, 15] have proved that the next-nearest-neighbor inter-
action factors have an important influence on car following scene. Naturally, there is
an open question regarding to whether or not the next-nearest-neighbor interaction in
electronic throttle dynamics affects the CAV car-following. However, to our knowledge,
this open question has not been explored in the CAV car-following model up to now.
In view of the above reason, in this paper, a new car-following model is constructed by
considering the effect of ET dynamics for CAV traffic flow, in which the ET opening
angle difference from the next-nearest-neighbor interaction at the previous moment is
considered in the vehicle networking environment. The analytical and numerical simu-
lation are conducted to show that the new consideration has significant influence on the
stability and dynamic characteristics of CAV traffic flow.
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2 Models

In 1995, Bando et al. proposed the OV model [4] to describe car-following behavior on
a single-lane highway. The motion equation is as follows:

dvj(t)

dt
= a[V (�xj(t)) − vj(t)] (1)

where xj(t) and vj(t) are the position and velocity of the jth car respectively, and t
represents time. a denotes the sensitivity of the driver and is given by the inverse of the
delay time τ , namely a = 1/τ . �xj(t) = xj+1(t) − xj(t), represents the headway of two
successive vehicles. V (·) is the optimal velocity function. Comparison with empirical
data shows that too high acceleration and unrealistic deceleration occurs in OV model.

To overcome the deficiency of OV model, Helbing and Tilch [16] proposed a gen-
eralized force (GF) model via introducing a negative velocity difference into the OV
model. Later, considering the positive relative velocity into the GF model, Jiang et al.
[17] developed the full velocity difference (FVD) model as follows:

dvj(t)

dt
= a[V (�xj(t)) − vj(t)] + λ�vj(t) (2)

where �vj(t) = vj+1(t) − vj(t) is the velocity difference between the leading car j + 1
and the following car j at time t. λ is the responding factor of the velocity difference.
The results illustrate that the FVDmodel has better agreement with field data, compared
with the OV and GF models. However, unrealistically high deceleration also occurs in
the FVD model [17].

To capture the nature of CAV traffic flow, Li et al. [10] proposed the throttle-based
FVD (T-FVD)model by introducing the effect of ET opening angle into the FVDmodel.
The dynamic equation is described as follows:

dvj(t)

dt
= a[V (�xj(t)) − vj(t)] + λ�vj(t) + γ�θj(t) (3)

where θj(t) is the electronic throttle opening angle of jth vehicle at time t. �θj(t) =
θj+1(t)− θj(t) represents the ET opening angle difference between the vehicle j+ 1 and
the vehicle j at time t. γ > 0 is the control coefficient of the angle difference.

According to the existing literature [10, 12], the mathematical relationship between
the electronic throttle angle and the velocity difference and acceleration can be expressed
as follows.

dvj(t)

dt
= −p(vj(t) − ve) + q(θj(t) − θe) (4)

where p and q are constant greater than zero, ve is the current equilibrium speed, θe is
the electronic throttle angle, it corresponds to the current equilibrium speed.

According to the idea mentioned in the introduction, this paper proposes an extended
model by considering the information of the ET opening angle difference from the next-
nearest-neighbor interaction at the previous moment. The proposedmodel is represented
as follows:

dvj(t)

dt
= a[V (�xj(t)) − vj(t)] + λ�vj(t) + k[θj+2(t − 1) − θj+1(t − 1)] (5)
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where the next-nearest-neighbor interaction term θj+2(t−1)−θj+1(t−1) is the historical
informationofETopening angle difference between the (j+2)thvehicle and its following
vehicle (j + 1)th at time t − 1. k is the sensitivity coefficient. The control strategy of
this extended CAV car following model is that the host car adjusts his acceleration
not only by the received information of velocity vj(t) and velocity difference �vj(t) of
the jth car at time t, but also by the collected signal of ET opening angle difference
θj+2(t − 1) − θj+1(t − 1) from the next-nearest-neighbor interaction at the previous
moment t − 1. When k = 0, the new model degenerates into FVD model [17].

According to Eq. (4), we can get

θj(t) = 1

q

[
dvj(t)

dt
+ p(vj(t) − ve)

]
+ θe (6)

Thus, we can obtain the opening angle difference of electronic throttle between the
(n + 2) th and the (n + 1) th vehicles at time t-1 as

θj+2(t − 1) − θj+1(t − 1) = 1

q
[dvj+2(t − 1)

dt
− dvj+1(t − 1)

dt

+ p(vj+2(t − 1) − vj+1(t − 1))] (7)

Substituting Eq. (7) into Eq. (5), we can rewrite Eq. (5) as:

dvj(t)

dt
= a[V (�xj(t)) − vj(t)] + λ�vj(t)

+ k · 1
q

[
dvj+2(t − 1)

dt
− dvj+1(t − 1)

dt
+ p(vj+2(t − 1) − vj+1(t − 1))

]
(8)

For the convenience of nonlinear analysis, Eq. (8) can be further rewritten as:

d2�xj(t)

dt2
= a[V (�xj+1(t)) − V (�xj(t)) − d�xj(t)

dt
] + λ[d�xj+1(t)

dt
− d�xj(t)

dt
]

+ k · 1
q
{d

2�xj+2(t − 1)

dt2
− d2�xj+1(t − 1)

dt2
+ p[d�xj+2(t − 1)

dt
− d�xj+1(t − 1)

dt
]}
(9)

In this paper, we take the following optimal velocity function(for short,OVF)
calibrated with the empirical data by Helbing [16]:

V (�xj) = V1 + V2 tanh[C1(�x − lc) − C2] (10)

Here, parameters in the OVF are set as a = 0.85 s−1, V1 = 6.75 m/s, C2 = 1.57,
C1 = 0.13 m−1, V2 = 7.91 m/s and the length of the vehicle is lc = 5 m.

3 Linear Stability Analysis

There is no doubt that the performance of stability is the most important characteristic of
CAV traffic flow control system. In this section, the linear stability analysis is conducted
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to investigate the stabilizing ability of ET in CAV scene. It is obvious that the CAV
traffic flow reach steady state when the cars run with the uniform headway b and optimal
velocity V (b). Therefore, the steady-state solution is given as,

x0j (t) = bj + V (b)t, b = L/N (11)

where L is the road length and N is the total car number. Suppose yj(t) is a small
deviation from the steady state x0j (t): xj(t) = x0j (t) + yj(t). Substituting it into Eq. (8)
and linearizing them yields

y′′
j (t) = a[V ′(b)�yj(t) − y′

j(t)] + λ[y′
j+1(t) − y′

j(t)]
+ k · 1

q
{y′′

j+2(t − 1) − y′′
j+1(t − 1) + p[y′

j+2(t − 1) − y′
j+1(t − 1)]} (12)

where V ′ = dV (�xj)/d�xj
∣∣
�xj=b And �yj(t) ≡ yj+1 − yj.

Via expanding yj(t) = Aeikj+zt ,where z = z1(ik)+ z2(ik)2 +· · · , and inserting them
into Eq. (12). One has the first- and second-order terms of ik respectively,

z1 = V ′(b), z2 = 1

2
V ′(b) + (

λ

a
+ 1

aq
kp)V ′(b) − 1

a
[V ′(b)]2 (13)

If z2 < 0, the uniformly steady-state flow becomes unstable, while the uniform flow
is stable when z2 > 0. Thus the neutral stable criteria for this steady state is given by

a = 2[V ′(b) − λ − 1

q
kp] (14)

For small disturbance with long wavelengths, the homogeneous traffic flow is stable in
the condition that

a > 2[V ′(b) − λ − 1

q
kp] (15)

As k = 0, the result of stable condition is the same as that of the FVD model [17].

a > 2[V ′(b) − λ] (16)

The neutral stable condition Eq. (14) clearly show that the sensitivity coefficient
k play an important role in stabilizing the CAV traffic flow. The neutral stable curves
under different values of k are depicted in the headway-sensitivity space (�x, a) for the
proposed model with p = 0.8, q = 0.27, λ = 0.3. In Fig. 1, the headway-sensitivity
space is divided into two different parts by each curve. The upper part of neutral stability
line denotes the stable area, and the lower part of the curve represents unstable area.
Different regions mean that traffic flow of CAV will show different evolution states
when small disturbances are added. Generally, when the traffic flow is in a stable area,
the small disturbances will eventually evolve into a uniform state of motion. However,
when it is in an unstable state, the unstable signal will be gradually enlarged, and the
corresponding traffic flow will eventually evolve into a congestion state with time. From
Fig. 1, one can see that every curve exists apex (hc, ac) named critical point. As k
increases, the unstable region is compressed gradually, and the corresponding critical
point of each curve decreases gradually, which means that the new consideration leads
to the stabilization of CAV traffic systems. Particularly, as k = 0, the neutral stability
line is the same as that of FVD model [17].
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Fig. 1. The neutral stability curves in headway-sensitivity space (�x, a)

4 Nonlinear Analysis and mKdV Equation

To investigate the slowly varying behavior of CAV traffic flow near the critical point
(hc, ac), nonlinear analysis and derivation of the mKdV density wave equation are con-
ducted to describe traffic jam propagation near critical point. For extracting slow scales
with the space variable j and the time variable t, the slow variable X and T are defined
as follows:

X = ε(j + bt) and

T = ε3t, 0 < ε ≤ 1 (17)

where b is a constant to be determined. Given

�xj(t) = hc + εR(X ,T ) (18)

Substituting Eq. (17) and Eq. (18) into Eq. (9) and making the Taylor expansion to
the fifth order of ε lead to the following expression:

ε2(b − V ′)∂X R + ε3(
b2

a
− V ′

2
− λb

a
− 1

aq
kpb)∂2X R + ε4{∂TR − [V

′

6
+ bλ

2a

+2kb2 + kpb(3 − 2b)

2aq
]∂3X R − 1

6
V ′′′∂X R3} + ε5{(2b

a
− λ

a
− 1

aq
kp)∂T ∂xR

−[V
′

24
+ λb

6a
+ 3kb2(3 − 2b) + kpb(3b2 − 9b + 7)

6aq
]∂4X R − 1

12
V ′′′∂2X R3} = 0

(19)
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where V ′ = [dV (�xj)
/
d�xj]|�xj=hc and V ′′′ = [d3V (�xj)

/
d�x3j ]|�xj=hc .

Near the critical point (hc, ac), τ = (1 + ε2)τc, taking b = V ′ and eliminating the
second order and third order terms of ε from Eq. (19) result in the simplified equation:

ε4[∂TR − g1∂
3
X R + g2∂X R

3] + ε5[g3∂2X R + g4∂
4
X R + g5∂

2
X R

3] = 0 (20)

where

g1 = V ′

6
+ bλτc

2
+ 2kb2 + kpb(3 − 2b)

2q
τc (21)

g2 = −V ′′′

6
g2 = −V ′′′

6
(22)

g3 = (b − λ − 1

q
kp)bτc (23)

g4 = (2b − λ − 1

q
kp)τc[V

′

6
+ bλτc

2
+ 2kb2 + kpb(3 − 2b)

2q
τc]

−[V
′

24
+ λbτc

6
+ 3kb2(3 − 2b) + kpb(3b2 − 9b + 7)

6q
τc]

(24)

g5 = 1

12
[(4b − 2λ − 2

q
kp)τc − 1]V ′′′ (25)

To derive the regularized equation, the following transformations are performed on
Eq. (20):

T ′ = g1T , R =
√
g1
g2

R′ (26)

The standard mKdV equation with a O(ε) correction term is given as follows:

∂T ′R′ − ∂3X R
′ + ∂X R

′3 + εM [R′] = 0 (27)

where

M [R′] =
√

1

g1
[g3∂2X R′ + g4∂

4
X R

′ + g1g5
g2

∂2X R
′3] (28)

Ignoring the O(ε) term, we can obtain the mKdV equation with the kink-antikink
soliton solution:

R′
0(X ,T ′) = √

c tanh

√
c

2
(X − cT ′) (29)

With the method described in Ref. [18], we obtain the selected velocity c.

C = 5g2g3
2g2g4 − 3g1g5

(30)
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Hence, we obtain the kink-antikink soliton solution as follows:

�xj(t) = hc +
√
g1C

g2
(
τ

τc
− 1) tanh

√
C

2
(
τ

τc
− 1)[j + (1 − Cg1(

τ

τc
− 1))t] (31)

Then, amplitude A of the kink-antikink soliton is given by

A =
√
g1c

g2
(
τ

τc
− 1) (32)

The kink-antikink solution represents the coexisting phases, which consists of the
freely moving phase at low density and the congestion jam at high density. Through
nonlinear analysis, the propagating property of traffic jams near the critical point can
be described by the solution of the mKdV density wave equation. Based on Eq. (30),
the values of propagation velocity C under different values of k are shown in Table 1
for the proposed model. From Table 1, it can be found when k increases, the critical
value ac and the propagation speed C of traffic waves (jams) decrease gradually, which
means that the stability of traffic flow increases gradually and the traffic jams has been
reduced significantly by considering the effect of ET opening angle difference from the
next-nearest-neighbor interaction at the previous moment.When k = 0, the result is the
same as that in the FVD model [17].

Table 1. The critical sensitivity ac and the propagation speed C for the proposed model when
p = 0.8,q = 0.27,λ = 0.3.

K 0 0.02 0.04 0.06 0.08

ac 1.4566 1.3973 1.3381 1.2788 1.2196

C 2.3376 1.7415 1.3288 1.0271 0.7977

5 Numerical Simulation and Validation

The numerical simulation is carried out under a periodic boundary condition to verify the
effectiveness of theoretical analysis for the new model. The platform for all numerical
simulation and validation is a computer with Intel Core(TM) i7 8700 CPU @ 3.2 GHz
and 16G RAM.Matlab is employed as the programming language. The total car number
N = 100 and circuit length L = 1500 m. The related parameters are taken as a = 1,
p = 0.8, q = 0.27, λ = 0.3. The initial disturbance is same as that in Ref. [18]:

x1(0) = 1m, x1(0) = (n − 1)L/N m for, n �= 1 (33)

ẋn(0) = V (L/N ) (n = 1, 2, · · · ,N ) (34)
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Figures 2 and 3 demonstrate snapshots of all vehicles’ velocity and headway at
t = 1000s for different values of k respectively. When k = 0, the results are consis-
tent with FVD model [17]. In Fig. 2 and 3, when k = 0 and k = 0.02, the stability
conditions are not satisfied, the initial disturbance propagates along the upstream of the
CAV traffic flow and enlarges gradually, and finally evolves into a stop-and-go waves
(traffic jams).However, under the same condition, because of the new consideration is
introduced into the proposed model, one can observe clearly in Fig. 2 and Fig. 3 that the
fluctuation amplitude of speed and headway of the new model are smaller than that of
FVDmodel [17], which means that the stability is improved by incorporating the histor-
ical information of next-nearest-neighbor interaction of electronic throttle. Furthermore,
with the increasing value of k, the number of stop-and-go waves and the correspond-
ing fluctuation amplitude reduced obviously in the snapshot of velocity and headway,
hence the system stability of CAV traffic flow is enhanced effectively. Especially, when
k = 0.09, the stability condition hold true and thus the initial small disturbance sig-
nal will gradually decay, and the CAV traffic flow finally become stable again after a
sufficiently long time.

Fig. 2. Snapshot of the velocities of all vehicles at different values k when t = 1000s in the new
model (a = 1, p = 0.8, q = 0.27, λ = 0.3).
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Fig. 3. Snapshot of the headway of all vehicles at different values k when t = 1000s in the new
model (a = 1, p = 0.8, q = 0.27, λ = 0.3).

Figure 4 shows the velocity-headway trajectory of the proposed model for different
value of k. After sufficiently long time, the closed trajectories called hysteresis loops
are clearly observed. In Fig. 4, as the value of k increases, the area of hysteresis loop
becomes progressively smaller. This indicates that the new consideration plays a positive
function on the stabilization of traffic flow. Particularly, when k = 0.09, the loop will
shrink into a point on the optimal velocity curve, and the traffic flow get the stability
state.

In order to investigate the performance of the proposedmodel further, we analyze the
start-up velocity and delay time of vehicle queue compared with classical FVD model.
The initial conditions and parameters are consistent with reference [17]:When t < 0, the
signal light is red, the 11 cars are evenly lined up at intervals of 7.4 m, the corresponding
speed is zero, and when t = 0, the signal light changes from red to green, all the cars
began to speed up.

We define the delay time of car motion by δt as that in FVD model [17], Then the
kinematic wave speed can be defined as cj = 7.4/δt.The statistical results are shown
Table 2 by taking the same parameters as those in FVD model [17].

As shown in Table 2, the velocity cj of the proposed model are included in the
expected range [17 km/h, 23 km/h] just as Bando et al. [4] pointed out, while the delay
time δt is obviously shorter than FVD model. Which illustrates that by considering
the ET opening angle difference information from the next-nearest-neighbor interaction
at the previous moment, our model can respond to the change of preceding car more
quickly, and thus is benefit to the smoothing of traffic.
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Fig. 4. The loops for new model under different values k. The dashed curve represents OVF.

Table 2. δt and cj in FVD model and the proposed model.

Model a(s−1) λ(s−1) k(s) δt(s) cj(km/h)

FVD 0.41 0.5 0 1.4 19.03

Our model 0.41 0.5 0.01 1.2 22.11

6 Conclusions

In this paper, a new car-following model is proposed by considering the information
of next-nearest-neighbor interaction of electronic throttle at the previous moment for
the connected Autonomous Vehicles environment. The influence of the electronic throt-
tle information on the stability of CAV traffic flow is investigated by using the linear
stability theory. Furthermore, on the basis of previous linear analysis, the mKdV equa-
tion has been derived to describe the density wave of CAV traffic flow near the critical
point through nonlinear analysis. The simulation results are in good agreement with
theoretical analysis and further indicate that, taking the historical information of next-
nearest-neighbor interaction of electronic throttle into account, the traffic congestion
can be effectively alleviated and the stabilization of CAV car following process can be
achieved. Therefore, it is reasonable to conclude that historical information of the next-
nearest-neighbor interaction of electronic throttle plays an important role in stabilizing
the traffic flow in car following process and thus should be considered in traffic flow
modeling.
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