
Traffic Simulation and Autonomous Driving
Experiment in VIPLE

Yinong Chen(B) and Gennaro De Luca

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
{yinong.chen,gennaro.deluca}@asu.edu

Abstract. This paper presents the development of visual programming languages
and summarizes the recent research in traffic simulation and autonomous driving
experiments in VIPLE (Visual IoT/Robotics Programming Language Environ-
ment). The traffic simulator is developed in the Unity programming engine. The
traffic simulator allows generation of different traffic patterns, either randomly
or guided through a recorded real-world traffic dataset. Traffic experiments can
be programmed in VIPLE or in Unity simulator, allowing developers to create
such experiments without a deep understanding and lengthy support programming
around the environment. Instead, the user can focus on implementing optimal rout-
ing algorithms that navigate a vehicle through the city traffic. The autonomous
driving environment is based on TORCS simulation environment. A variety of dif-
ficulty levels of autonomous driving experiments can be created. Both traffic simu-
lation and autonomous driving experiments can be written in visual programming
language VIPLE, as well as in C# and Python within VIPLE environment. VIPLE
has been widely used in different courses worldwide. This new advancement in
VIPLE can particularly help students to perform traffic control and autonomous
driving related programming,machine learning, and artificial intelligence research
and experiments.

Keywords: Traffic simulation · dynamic routing · autonomous driving ·
computer science education

1 Introduction

Software engineering has evolved in several generations. The first generation was from
the 1970s to 1980s,where the focuswas to use structured programming languages to con-
struct well-structure computer programs. The second generation of software engineering
was from the 1990s to 2000s, where design patterns, modeling, and object-oriented pro-
gramming were introduced. The third generation of software engineering was from the
2000s to 2010s, where architecture-driven development, service-oriented computing,
cloud computing, and visual programming languages were introduced. The fourth gen-
eration of software engineering is based on big data processing, machine learning, and
hardware-software co-design [1].

As a part of the third generation of software engineering, visual programming lan-
guages emerged in the 2000s, which allow software compositions through connecting

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Zeng et al. (Eds.): ITASC 2022, LNEE 1042, pp. 1–13, 2023.
https://doi.org/10.1007/978-981-99-2252-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-2252-9_1&domain=pdf
https://doi.org/10.1007/978-981-99-2252-9_1


2 Y. Chen and G. De Luca

existing components and services using orchestration and choreography styles [1, 2].
In the orchestration composition style, a central process takes control over the involved
components and services and coordinates the execution of different operations. This
composition style is defined by the following features.

• The involved components and services communicate with the central process only,
within the application.

• The overall functionality is achieved by aggregating other components and services.
• The composition style is particularly useful for private business process, using
independent components and services.

• BPEL (Business Process Execution Language) is the flagship language using this
style.

• A complementary composition is choreography, which is defined by the following
features.

• There is no central coordinator.
• Each component and service involved can communicate with multiple partners within
the application.

• Each component and service decide how to interact with other services to consume
their functionality.

• The composition style is particularly useful for public business process involving
coordinated design of distributed services.

• WS-CDL is an example language using this style.

The main applications of visual programming environments and the composition
styles are in business and in education, as visual programming environments help busi-
ness developers and students to develop applications without deep understanding of
computer organizations and programming language details at low level, such as syntax
design, memory management, resource sharing, process synchronization, etc. [3]. As
software engineering enters its fourth generation, some visual programming languages
also include big data processing and machine learning capabilities. VIPLE is one such
visual programming languages that has included fourth generation software engineering
features [4].

In this paper, we introduce different visual programming environments used in busi-
ness and in education. We focus on discussing the new features that are recently devel-
oped in VIPLE programming environment, including traffic simulation with machine
learning capacity and autonomous driving, and quantum computing.

The basic parts of VIPLE have been used at different grade levels in middle and
high schools. The advanced parts, such as traffic simulation, autonomous driving, and
quantum computing are being used at senior and graduate levels at universities [5].

The rest of the paper is organized as follows. Section 2 gives an overview of the
composition languages and their composition styles. Section 3 discusses VIPLE visual
components and composition examples. Section 4 presents the recent development and
new functions in VIPLE and their applications in traffic simulation, autonomous driving.
We also briefly introduce quantum computing for machine learning. Finally, Sect. 5
concludes the paper.



Traffic Simulation and Autonomous Driving Experiment 3

2 Development of Visual Programming Languages

This section gives an overview of different visual programming language environments.
Visual programming language environments wrap components and services into

visual blocks and enable drag and drop methods to compose workflows and business
processes. The basic concepts of visual programming languages were discussed, and
the existing attempts are surveyed in early research by Berkely scientists [6]. Another
survey of visual programming languages was conducted byMishra in 2017 [7]. New lan-
guages with practical applications were developed since 2000. Some of these languages
are commercial products and others are widely used in computer science education.
Figure 1 shows the major composition languages and environments that support visual
composition of workflows and business processes.

There are full released and well documented visual programming languages. There
are many more that are for research only. PSML-S was a research language that helped
to establish the initial research of visual programming language development at ASU
[8].

XLang

Microsoft

2001/03

BPMN

by BPMI

2001/05

WSFL

IBM

2001/06

BPSS

ebXML

2002/03

WSCL

HP

2002/06

WSCI

Sun

BEA

SAP

W3C

2002/08

BPEL1.0

BEA

IBM

Microsoft

Oracle

2003/03

BPEL1.1

OASIS

2004/11

OWL-S

W3C

2005/07

SCA/SDO

IBM2005/11

PSML-S

ASU2006

Microsoft

VPL

2007

Workflow

Foundation

2004/12

WS-CDL

W3C

Web Service

Choreography

Interface

Cloud Computing

/ Mashup

2008

Amazon

SWF

2014

2015

ASU

VIPLE

2016

Intel IoT

Orchestration

2000/05

Fig. 1. Development of Visual composition languages and environments

Table 1 lists the architecture styles and the features of a few key languages that
are used in business process composition. These languages are either visual notations
themselves, such as BPMN [9] and WF [10], or have external visual tools to visualize
the text notations, such as BPEL [11]. Some of these languages are standards defined
by standard organizations, and these languages can have different implementations by
different vendors, such as BPEL and BPMN. Some of the languages are proprietary to



4 Y. Chen and G. De Luca

certain companies. For example, WF is part of Visual Studio by Microsoft, and SWF a
part of Amazon Web Services cloud [12]. As indicated in Fig. 1, BPEL is defined by
different companies jointly based on XLang, BPMN, and WSFL to make sure that it is
not vendor dependent. It has become a major standard support across the industry.

Table 1. Key languages and features in business applications

Language environment Architecture Style Other features

BPEL 2002 Orchestration Based on SOAP, WSDL, UDDI
directory, widely used by large
corps

BPSS 2001 BP Spec. Schema Choreography Business Process Specification
Schema
Based on SOAP, ebXML
repository, CPP/CPA
collaboration, for small biz

BPMN 2001 BP Modeling
Notation

Orchestration A superset of BPEL, supports
advanced semantics & complex
structures, by BPMI which merged
with OMG in 2005

WSCI 2002 Choreography WS Choreography Interface:
Complementary to BPEL,
submitted to W3C, not widely used

WS-CDL 2004 Choreography Complementary to BPEL, W3C
own proposal

Work-flow Foundation WF 2007 Orchestration and
Choreography

A general programming
environment allowing visual
workflows and code activities for
general computing and business
processes

SWF 2014 Orchestration Used for connecting Amazon
lambda-functions and APIs to form
business process in AWS cloud

In addition to business process oriented visual languages, there are a set of visual
programming languages used for education. These languages allow students without
programming background to implement their logic ideas and build their computational
thinking concepts. These languages are used at different grade levels. Some languages are
created by universities for public access, such as Scratch [13], Alice [14], App Inventor
[15], andVIPLE [1, 3, 4]. Someare proprietary products associatedwith certain hardware
products, such as Microsoft VPL [16] and Lego EV3 [17].

Table 2 lists a few key languages in this category, including their main purposes and
grade level of students who can start to use the languages.



Traffic Simulation and Autonomous Driving Experiment 5

Table 2. Languages for computing education

Language Main purpose Starting from

MIT Scratch Visual game and movie programming Primary school and up

Alice Visual game and movie programming Middle school and up

MIT App Inventor Phone App visual programming High school and up

Lego EV3 Lego EV3 robot programming Middle school and up

Microsoft VPL Robot programming High school and up

Intel IOT SOL IoT and embedded system programming College students

ASU VIPLE General programming and robot programming High school and up

3 VIPLE

VIPLE is a visual programming language environment designed for general-purpose
programming. It particularly offers activities and services for IoT and robotics appli-
cation building. This section reviews the general-purpose computing part, and the next
section will present the recent new features of VIPLE.

As a general-purpose programming language, VIPLE offers the necessary pro-
gramming constructs, such as assignment, calculate, if-then-else, and loop. Figure 2
shows the basic activities and general-purpose services that allow the construction of
general-purpose programs.

Fig. 2. VIPLE basic activities and general-purpose services



6 Y. Chen and G. De Luca

Figure 3 shows a VIPLE program that counts from 0 to 10. It uses Text to Speech
service to read the current number and uses Print Line service to print “All Done” at the
end of counting. A Merge basic activity is used for selecting the initial entrance of the
loop and the reentrance of the loop. A variable Counter is used to store the increasing
number, and a Calculate activity is used to perform add 1 operation.

Fig. 3. A VIPLE program that counts from 0 to 10

The same program can also be implemented using a While loop activity.

Fig. 4. VIPLE Robot/IoT services



Traffic Simulation and Autonomous Driving Experiment 7

VIPLE is called an IoT and robotics programming language, because it offers a large
set of Robot/IoT services. Figure 4 shows the list of such services.

There are four sets of different types of services.
Robot/IoT Controller is the main service that defines a control center of a Robot/IoT

system.Oneormore controllers canbeused, specifying a single control center ormultiple
control centers.

The next set of services includes the Robot/IoT sensor, drive, and message services.
These services will be associated with one of the controllers to give the controller input
or to take output from the controller to perform actions.

The third set of services are TORCS services for autonomous driving experiments,
which will use TOCS simulator to exhibit the driving simulation. We will discuss this
set of services in the next section.

The last set of the services included is the traffic simulation services that will com-
municate with a Unity Traffic Simulator. We will discuss this set of services in the next
section.

Figure 5 shows the commands that can start different functions.

Fig. 5. VIPLE Start commands

The first command Start will start the execution of a VIPLE program. If a simulator
is involved, we need to start the simulator first before we start the VIPLE program.

The next three Start commands will start one of the three Unity simulators embedded
into VIPLE. We will discuss Start Unity Traffic Simulator in the next section.

The next Command is to start TORCS simulator [18].
The next two commands are to start the Web 2D maze simulator and to start the

Web 3D maze simulator, respectively. These simulators are developed within VIPLE
environment [1].

In addition to the simulators, VIPLE also supports Pi-Calculus based program anal-
ysis, proof, and verification [19, 20], which are shown in the next three commands in
Fig. 5.



8 Y. Chen and G. De Luca

4 Latest Additions to VIPLE

This section presents the latest developments in VIPLE, including traffic simulation,
autonomous driving, and quantum computing.

4.1 Traffic Simulation

A traffic simulator is recently developed using Unity game engine. The simulator will
generate a city map and random or controlled traffic (cars marked in yellow) on the
streets. Once started the simulation, a red car will appear in the map, and it can be
programmed in VIPLE to travel from the current position to any position on the map.
Figure 6 shows the overall map with clusters of dense areas connected by freeways.

Fig. 6. The overall traffic map

Figure 7 shows a part of the map with the red car, multiple yellow cars, and the
controls on the map. The controls on the map can define the traffic density (number of



Traffic Simulation and Autonomous Driving Experiment 9

yellow cars in the map), destination of the red car, planning path and trace of the red car,
showing different areas of the city, different views of the map, zoom in and zoom out,
etc.

Fig. 7. Traffic map showing controls and cars in streets

The map contains traffic lights, traffic signs (e.g., stop sign), speed limits on each
section of streets, distance of each section of streets, etc. These pieces of information
are sent to VIPLE in real time and VIPLE can program the red car to implement the
shortest-distance path to the destination and the shortest-time path to the destination.

The traffic on the streets can be generated randomly or guided by know traffic pat-
terns. In the latest study, we have used Arizona Maricopa government published data to
guide our traffic generation and write VIPLE program to find the shortest-time path [21].
A video demonstrating the traffic simulation with dynamic shortest distance computing
in the simulation environment is available at [23].

4.2 Autonomous Driving

Another major development in VIPLE is the TORCS autonomous driving experiments.
VIPLE makes autonomous driving experiments simple to write and easy to understand.
Figure 8 shows a simple VIPLE program. The main code is in the Code Activity in C#,
as shown in Fig. 9.



10 Y. Chen and G. De Luca

Fig. 8. Simple VIPLE code for autonomous driving

The code keeps the car in the middle of the racetrack, maintaining acceleration at
0.3, driving slowly at gear 2, and not applying brake at all. The car can complete the
racetrack in about 74 s.

Fig. 9. Code Activity in the VIPLE code

Obviously, this program is not optimal to completing the racetrack. In a real race
program, we need to raise the gear as the speed increase, maximize the acceleration
when the track is straight, and need to brake before the curve. An optimized VIPLE
program is shown in Fig. 10.

This program can complete the racetrack in 54 s, reducing from 74 s.
VIPLE also supports two-car racing, where each car also needs to sense the other

car to avoid the collision. Figure 11 shows the experiment with two cars in the same
racetrack. We can ally the same algorithm or two different algorithms for the two cars.



Traffic Simulation and Autonomous Driving Experiment 11

Fig. 10. Optimized VIPLE code for autonomous driving

Fig. 11. Two car races in the same racetrack

4.3 Quantum Computing

The latest development in VIPLE is the inclusion of quantum computing, particularly
for accelerating machine learning [22]. Figure 12 shows Quantum Basic Activities and
Quantum Services that have been built in VIPLE.

From these activities and services, different computationally intensive applications
can be developed, particularly for accelerating machine learning training and testing.



12 Y. Chen and G. De Luca

Fig. 12. VIPLE built-in Quantum Basic Activities and Quantum Services

5 Conclusions and Future Work

This paper presented the development of visual programming languages in business and
education applications. VIPLE, developed by the authors, was presented and its new
functions were introduced. VIPLE has been used as a teaching tool in many schools
and universities around the world. The basic parts can be used at different grade levels
in schools and the advanced parts, such as traffic simulation, autonomous driving, and
quantum computing are being used at senior and graduate levels at universities.

Acknowledgments. This research is supported by the general fund of the IoT and Robotics
Education Lab at Arizona State University.

References

1. Chen, Y., De Luca, G.: Service-Oriented Computing and System Integration: Software, IoT,
Big Data, and AI as Services, 8th edn. Kendall Hunt Publishing (2022)



Traffic Simulation and Autonomous Driving Experiment 13

2. Megargel, A., Poskitt, C., Shankararaman, V.: Microservices orchestration vs. choreography:
a decision framework. In: IEEE 25th International Enterprise Distributed Object Computing
Conference (EDOC) (2021). https://doi.org/10.1109/EDOC52215.2021.00024

3. De Luca, G., Li, Z., Mian, S., Chen, Y.: Visual programming language environment for
different IoT and robotics platforms in computer science education. CAAI Trans. Intell.
Technol. 3(2), 119–130 (2018). https://doi.org/10.1049/trit.2018.0016

4. Chen, Y., De Luca, G.: VIPLE: visual IoT/robotics programming language environment for
computer science education. In: 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW) (2016). https://doi.org/10.1109/ipdpsw.2016.55

5. De Luca, G., Chen, Y.: Semantic analysis of concurrent computing in decentralized IoT and
robotics applications. In: Proceedings of ISADS, Utrecht, the Netherlands, pp. 95–102 (2019)

6. Boshernitsan,M., Downes,M.: Visual Programming Languages: A Survey, University of Cal-
ifornia, Berkeley, Technical Report No. UCB/CSD-04–1368, December 2004. http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2004/CSD-04-1368.pdf

7. Ray, P.P.: A survey on visual programming languages in internet of things. Sci. Program.
(2017).https://doi.org/10.1155/2017/1231430

8. Tsai,W.T., Paul,R.,Xiao,B.,Cao,Z.,Chen,Y.: PSML-S: a process specification andmodeling
language for service oriented computing. In: The 9th IASTED International Conference on
Software Engineering and Applications (SEA), Phoenix, pp. 160–167 (2005)

9. BPMN, Business ProcessModel andNotation 2.0 (2010). https://www.omg.org/spec/BPMN/
2.0/

10. Scribner, K.: MicrosoftWindowsWorkflow Foundation Step By Step.Microsoft Press (2007)
11. Saraswathi, R., Singh, J.: Oracle SOA BPEL Process Manager 11gR1 - A Hands-on Tutorial.

Packt (2013)
12. AWF,AmazonSimpleWorkflowService,DeveloperGuide,APIVersion 2012–01–25. https://

docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg.pdf#swf-dg-intro-to-swf
13. Getting Started with Scratch (2022). https://sip.scratch.mit.edu/wp-content/uploads/2020/06/

Getting-Started-With-Scratch-3.0.pdf
14. Rogler, H.: Alice Programming, 2nd edn. Kendall Hunt Publishing (2016)
15. Lang, K., Tezel, S.: Become an App Inventor. MITeen Press (2022)
16. VPL,Microsoft Visual Programming Language. https://en.wikipedia.org/wiki/Microsoft_Vis

ual_Programming_Language
17. Jawaharlal, M.: LEGO EV3 Robotics: A Guide for Educators. Red Gerbera (2015)
18. TORCS, the open race car simulator, Sourceforce. https://sourceforge.net/projects/torcs/
19. De Luca, G., Chen, Y.: Visual IoT/robotics programming language in pi-calculus. In: 2017

IEEE 13th International Symposium on Autonomous Decentralized System (ISADS) (2017).
https://doi.org/10.1109/ISADS.2017.32

20. Zhao, S., Li, Y., Wang, Y., Chen, Y.: Validating trustworthy service composition through
VIPLE and pi-calculus. Int. J. Simul. Process Model. 15(1–2), 76–88 (2020). https://doi.org/
10.1504/IJSPM.2020.106971

21. Zhang, Z., De Luca, G., Archambault, B., Chavez, J., Rice, B.: Traffic dataset for dynamic
routing algorithm in traffic simulation. J. Artif. Intell. Technol. (2022). https://doi.org/10.
37965/jait.2022.0106

22. De Luca, G.: A survey of NISQ era hybrid quantum-classical machine learning research. J.
Artif. Intell. Technol. 2(1), 9–15 (2021). https://doi.org/10.37965/jait.2021.12002

23. Zhang, Z., De Luca, G., Chen, Y.: Dynamic Dijkstra algorithm traffic simulation (2022).
https://venus.sod.asu.edu/VIPLE/Videos/DynamicDijkstra.mp4

https://doi.org/10.1109/EDOC52215.2021.00024
https://doi.org/10.1049/trit.2018.0016
https://doi.org/10.1109/ipdpsw.2016.55
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2004/CSD-04-1368.pdf
https://doi.org/10.1155/2017/1231430
https://www.omg.org/spec/BPMN/2.0/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg.pdf#swf-dg-intro-to-swf
https://sip.scratch.mit.edu/wp-content/uploads/2020/06/Getting-Started-With-Scratch-3.0.pdf
https://en.wikipedia.org/wiki/Microsoft_Visual_Programming_Language
https://sourceforge.net/projects/torcs/
https://doi.org/10.1109/ISADS.2017.32
https://doi.org/10.1504/IJSPM.2020.106971
https://doi.org/10.37965/jait.2022.0106
https://doi.org/10.37965/jait.2021.12002
https://venus.sod.asu.edu/VIPLE/Videos/DynamicDijkstra.mp4

	Traffic Simulation and Autonomous Driving Experiment in VIPLE
	1 Introduction
	2 Development of Visual Programming Languages
	3 VIPLE
	4 Latest Additions to VIPLE
	4.1 Traffic Simulation
	4.2 Autonomous Driving
	4.3 Quantum Computing

	5 Conclusions and Future Work
	References




