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Abstract This study focuses on the use of human bio-signals for the early diag-
nosis of PD (Parkinson’s disease). EEG (Electroencephalography) and EMG have 
been used to examine human brain and muscle signals to learn more about the func-
tional and neurological alterations of Parkinson’s patients. Parkinson disease (PD) 
is a neurological illness that typically affects people over the age of 50. Dopamine, 
a neurotransmitter, is depleted in the substantia nigra as a result. As this neurotrans-
mitter is released, the person’s muscles begin to contract. Reduced dopamine produc-
tion causes a loss of brain and muscle coordination, which manifests as unsteady limb 
movement in a person with PD. The underlying aetiology of PD can be validated by 
studying the functional and neural alterations using EEG and correlating the results 
with EMG. It will explain the origin of the wide range of early-stage motor and non-
motor PD symptoms. The EEG and EMG results for detecting early-stage PD were 
validated using other radiological data, such as a Brain Magnetic Imaging signal. 
The mathematical model for PD diagnosis was developed utilising an ANN and a 
graphical user interface. The ANN-designed classifier achieved a near-perfect accu-
racy rate of 100% while testing its ability to distinguish between an early-stage PD 
patient and a control subject using a dataset consisting of electroencephalogram and 
electromyogram readings as input features. 
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1 Introduction 

The human brain is the most important organ in the body for processing sensory 
information. The brain is the central processing unit and command and control centre 
of the body. It is responsible for a wide variety of bodily processes. Everything is 
taken into account, including but not limited to sight, hearing, speech, memory, 
intelligence, emotion, and cognitive ability. 

While studying human electrical activity, it is normal practise to collect impulses 
from the scalp. The endocrine system, which is comprised of a complex network of 
neurons and hormones, is responsible for regulating and coordinating the operations 
of the body. Motor nerves are another type of neuron that are responsible for trans-
mitting signals to effectors from the brain and spinal cord [1]. The cerebral cortex, 
the cerebellum, and the brainstem are the three primary components that make up 
the rest of the brain. 

The cerebrum is the largest region of the brain and is roughly divided in half 
along the lines that separate the two hemispheres. The processing of sensory infor-
mation from the senses of touch, sight, and sound, as well as language, cognition, 
emotion, instruction, and motor control, are just few of the numerous functions that 
the cerebrum is responsible for. At this point, the brain can be broken down into four 
different regions. Other parts of the brain include the occipital, parietal, frontal, and 
temporal lobes [2]. 

The cerebellum plays a role in the coordination of many bodily functions, 
including muscular movement and the upkeep of different body positions. Its location 
is below the brain. 

The brainstem’s primary function is to link the spinal cord to the higher brain 
regions (cerebrum and cerebellum). It helps keep things like heart rate and core body 
temperature steady. Little human body functions like puking, digestion, and sleep 
cycles are also tracked [3]. 

1.1 Disease of the Nervous System 

Neurodegenerative disorders refer to diseases that predominantly impact brain 
neurons. Neurons like these make up the brain and spinal cord [4].

• Parkinson Disease: The loss of dopamine in the human brain’s substantia nigra 
over time causes a chronic neurodegenerative illness known as PD. This causes the 
individual’s brain and muscles to stop working together effectively. Most people 
with PD are over the age of 50. The prevalence of PD increases with age, with 
93.1 cases per 100,000 persons diagnosed between the ages of 70 and 79, and 17.4 
cases per 100,000 people diagnosed between the ages of 50 and 59, according to 
a statistical analysis.

• Alzheimer’s disease (AD): AD has a wide range of effects on cognitive abilities 
and typically manifests in middle age. Dementia is the main culprit in this case.
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The gradual decline in memory and cognition caused by Alzheimer’s disease can 
make it difficult, if not impossible, for a patient to engage in the routine tasks 
required to maintain daily functioning. Instances of dementia can take several 
forms. Dementias include those caused by Lewy bodies, diseases of the fron-
totemporal lobes, and stroke [5]. Alzheimer’s disease and vascular dementia, for 
example, might occur concurrently in some persons, creating a condition called 
mixed dementia.

• Huntington’s disease (HD): HD causes involuntary movement and mental decline 
in affected individuals. Huntington illness typically appears in people’s 30 and 
40 s, but it can occur at any age. A transformation in the Huntington gene is 
the underlying cause of autosomal dominant inheritance. The Huntingtin gene 
describes the protein’s ancestry. An aberrant gene is formed when the number of 
CAG (cytosine-adenine guanine) triplet repeats in the coding for the Huntingtin 
protein increases. In most cases, genetic testing is used to identify Alzheimer’s 
disease. 

1.2 Bio-signal Consequence 

The electroencephalogram, sometimes known as an EEG, is a analytical method that 
does not include any offensive measures. In order to quantify the activity of the EEG, 
microvolts and frequencies up to 30 Hz are used. The EEG is useful in the diagnosis 
of a wide variety of neurological conditions. Electroencephalograms, sometimes 
known as EEGs, are non-invasive diagnostic tools used by medical professionals to 
diagnose a wide range of abnormalities that can occur in the brain [6]. There is a lack 
of standardisation in the application of EEG techniques in medical research when it 
comes to clinical applications. This can be problematic. On the other hand, research 
into mental health disorders, which is both more prevalent and commonly utilised, 
demonstrates the opposite pattern. EEG scans are recordings made of a person’s 
brainwaves made using scans of their head. Any electrical activity that was detected 
on an EEG but did not originate in the brain is referred to as an artefact. There are 
two basic categories that can be used to describe artefacts, physiological and non-
physiological [7]. An artefact is a glitch that occurs during the process of analysing 
the signal coming from the brain. The genesis of non-physiologic artefacts may be 
traced back to non-biological causes, whereas the origin of physiologic artefacts can 
be traced back to the human body. Artifacts have the potential to affect a number 
of statistical metrics used to evaluate the quality of an EEG, including the mean, 
median, distribution, standard deviation, and signal-to-noise ratio. It is possible to 
lessen the impact of artefacts by carefully planning the EEG procedure, engaging in 
intensive training prior to the examination, making use of a response of an appropriate 
rejoinder device [8].
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1.3 Symptoms

• Bradykinesia, literally “slow motion,” is one of the utmost communal motor indi-
cations. A marked slowing or stopping of spontaneous movement is what we call 
bradykinesia, and it can cause an individual to appear unusually silent and to lose 
some of their facial expression.

• The limbs, neck, and trunk become stiff and unyielding when rigidity is present. 
Muscles tend to lengthen during movement and relax afterward.

• In the case of a tremor, the shaking of body parts and eases when the affected 
limb or body part moves. Those with PD and their loved ones may notice that the 
affected person has a tremor.

• Someone who experiences postural instability has a tendency to lose their balance 
while standing [9]. 

Non-motor Symptoms

• Neuropsychiatric: These indications are communal in PD and are associated with 
an enlarged maintenance load and an amplified hazard of entering a nursing home, 
both of which have substantial effects on quality of life and regular working.

• Impulse control disorders (ICDs) are seen in a subset of people with PD, and are 
most often linked to increased gambling, eating, sex, and shopping.

• Sleep disturbance: Sleep disturbances are common in PD and may stem from a 
wide variety of causes. Sleep problems can occur both at night and during the day 
[10]. 

Reducing the presence of artefacts in an EEG can be done in a number of ways. The 
majority of their uses are in clinical diagnosis, scientific study, and brain-computer 
interface (BCI) technology. Such examples are ICA and discrete wavelet transforma-
tions (DWT). Correcting the recorded EEG with independent component analysis is 
a reliable procedure, much like second-order blind identification (SOBI). Extended 
information maximisation (InfoMax) and an adaptive mix of independent component 
analysers (AMICA) are two further methods that can be used [11]. 

An orderly exchange of information takes place between the neurons that make 
up the cortex. In an electroencephalogram, oscillatory communications between 
the cortex of the brain and the subcortical processes can be detected as sinusoidal 
rhythmic activity. This communication linkage is more likely to take place whenever 
the brain is not actively engaged in any task. As the cortex is actively engaged in 
a task, its electrical activity begins to desynchronize, and lower amplitude, faster 
electrical pulses begin to predominate. This continues until the task is completed, 
at which point the brain returns to its normal resting condition [12]. The PDR is 
the example of this that is the most well-known to a wide audience. The back of a 
person’s head will demonstrate an oscillating rhythm ranging from 8.5 to 12 Hz when 
the eyes are closed, the individual is awake, and they are comfortable. When you 
open your eyes, a stream of visual information is given to the brain. This stimulates 
the visual cortex, which is located at the back of your head. At activation, the visual 
cortex momentarily falls out of sync with the thalamus so that it can process the most
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recent visual information. As a consequence of this disagreement, the PDR will be 
absent for an extended period of time. 

Muscular contractions and relaxations captured when a human was moving freely 
under their own volition. Compound action potentials, also known as CMAPs, and 
motor evoked potentials, also known as MEPs, are both induced by cortical and 
PNS stimulation, respectively. In addition to providing stimulation to the brain, the 
PNS also monitors the integrity of the external motor system. The health of the 
corticospinal circuit can be evaluated with the help of transcranial magnetic stimu-
lation, often known as TMS [13]. Weakness or numbness in a muscle detected by 
electromyography that can be linked back to an illness or injury to the neurological 
system or to any of the nerves that supply that muscle. This can be caused by a 
disease or injury to any of the nerves that supply that muscle. EMG is capable of 
diagnosing a wide variety of disorders. 

2 Related Work Done 

The authors created a DNN to detect freezing of gait (FoG) in PD patients during 
unrehearsed situations. The PD patient’s three ACC sensors and one surface EMG 
sensor fed data into the DNN, creating the input features. While the EMG sensor is 
attached to the shin, the forearm of the other. By the end of the study, they deter-
mined that the custom FoG detector had a second-by-second sensitivity of 83% and 
a specificity of 97% [14]. 

With the use of sensors, researchers were able to construct a portable, efficient 
gait analysis system to assess the level of impairment in PD patients based on their 
walking patterns. There were a total of 16 healthy participants, 14 people in the 
early stages of PD, and 13 people in the intermediate stages of PD. Sport shoes 
equipped with gyroscopes and accelerometers were requested for gait analysis. A 
wireless signal recording device used for acquisition. With a sensitivity of 88% and a 
specificity of 86%, the system distinguished PD patients from healthy controls [15]. 
It also ranked participants with gait impairments in terms of how mild or severe they 
were. 

Using an AI system, researchers could tell PD patients from control people. This 
research makes use of human voice recordings from a range of individuals. The 
maximum training and testing accuracy (95.38% and 94.72%, respectively) were 
achieved using an adaptive Neuro-Fuzzy classifier in combination with linguistic 
hedges [16]. 

Myotonometry was used to assess patients with PD for passive muscle dysfunc-
tion. Muscle resting surface and mechanomyography electrical activity reports and 
offline amplitude analyses. Higher levels of PD were associated with increased stiff-
ness in the Bicep Brachii (BB) muscle. A positive link between the parkinsonian 
rigidity score and passive stiffness values of Bicep Brachii was found using the 
Spearman correlation coefficient. The EMG and MMG amplitudes of the BB muscle
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did not significantly differ between groups, nor did the relevance of these measures 
correlate strongly with the patients’ rigidity ratings [17]. 

By determining the ideal biceps brachii loading levels, the authors analysed sEMG 
characteristics of the biceps brachii in PD patients and compared it to control old and 
young people. When contrasted with the UPDRS and finger-tapping scores, these 
factors shed light on the nature of PD [18]. The biggest discrepancy occurred in 
isometric elbow flexion when no weights were used. There is little to no discernible 
difference in the overt characteristics of EMG between elderly and youthful people. 

A Portuguese adaptation of the CERAD neuropsychological battery, the modified 
Hoehn and Yahr scale for PD, was used to assess 32 people with PD and 26 people 
without the condition [19]. They tested people using the Mini-Mental State Exam and 
the Clinical Dementia Rating scales. Resting state EEG band amplitude in absolute 
and relative terms. 

There were a total of four groups studied: one healthy group, one with PD 
(composed of seven people), one with dementia (ten people), one with mild cognitive 
impairment (fifteen people), and one with no mental abnormalities (fifteen people). 
When comparing healthy individuals to those with PD, the qEEG found no note-
worthy differences without causing any noticeable disruptions in cognitive function 
[20]. Those with mild cognitive impairment showed a rise in posterior theta absolute 
and relative amplitude, while those with dementia showed an increase in posterior 
delta absolute and relative amplitude. The researchers found that eEEG is a promising 
new method for evaluating cognitive decline in PD. 

During the on-medication phase, the authors examined EMG and MMG alter-
ations in the biceps and triceps brachii of PD patients holding an absolute submaximal 
load [21]. The biceps brachii of PD participants was found to have a higher ampli-
tude and the median muscle activation frequency (MMAF) was found to be lower for 
both forces. When in PD the median frequency of electrical muscle stimulation of 
the triceps brachii muscle increased. In addition to showing differences between PD 
and healthy subjects, the MMG was unaffected by physiological postural tremor, 
suggesting that this condition is a valuable tool for neuromuscular examination 
[22–24]. 

Two popular classifiers, ANN and SVM, were evaluated and compared for their 
classification accuracy (SVM). In PD patients, it helped them distinguish their gait 
pattern at the walking speed of their choosing. Features of gait were determined, 
including their location and velocity in space and time and their kinematics in space 
and time [25–27]. Intragroup and intergroup normalisation were used to pre-process 
these features. Based on the data fed into the classifiers, the elements’ efficacy was 
determined. The results demonstrated that both the ANN and the SVM classifier 
achieved a high rate of accuracy while using basic spatiotemporal as a feature during 
intragroup normalisation [28]. 

Researchers analysed PD patients’ EEG sub-bands using wavelet Energy and 
Overall Wavelet Entropy. This is accomplished through a multi-resolution decom-
position of EEG, which was originally based on a discrete wavelet transform during 
the ice-age. PD patients that experience freezing while walking can be identified by 
the Back Propagation Neural Network classifier. It demonstrated almost 75% average
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values for precision, awareness, and specificity. The data presented here show that 
EEG can be used for FOG diagnosis and treatment in the future [29]. 

Authors researched on EEG and EMG in PD utilising multi-block Partial Least 
Squares (mbPLS) during the sinusoidal squeezing test. The researchers discovered a 
connection between EEG electrodes that mirrors the activity of the skeletal muscle. It 
found that the occipital area of PD patients was more connected than that of healthy 
controls [30]. 

The authors investigated the feasibility of detecting PD via vocal cues. The accu-
racy of the k-nearest-neighbourhood classifier was 92.46% while utilising tenfold 
validation. While k is the closest, post-processing achieved a 96.83% success rate in 
identifying a single individual [31]. 

Changes in temporal microstate variables that connect with different motor func-
tions were used to detect aberrant brain dynamics in drug-free patients. They arrived 
at a few findings that could aid in PD identification efforts [32]. 

Patients with PD were tested with a visual oddball paradigm task to determine the 
event-related responses. By means of a 32-channel direct current (DC) EEG recording 
equipment, we can study the brain’s electrical activity. Twice a year following the 
initial assessment, PD patients underwent additional cognition testing and EEG read-
ings. Seven locations were chosen. This early study revealed a gradual weakening 
of event-related theta strength in PD patients [33]. Patients were not different from 
one another in terms of neurocognitive assessments. 

In order to learn the similarity in tremor severity between surface EMG signals, 
they built S-Net, a lightweight and computationally effective convolution neural 
network. Evaluations with 147 individuals diagnosed with PD demonstrate that their 
method significantly outperforms the status quo. In addition, their method is simple 
and might be used to create useful applications [34]. 

3 The Objective of the Research Work 

Examining the clinical interpretations of patients with PD at the Stage 1 and Stage 
1.5 levels of the disease according to the Modified Staging.

• To observe and analyse outward symptoms of Parkinson’s disease.
• Imaging studies (CT and MRI) confirm the diagnosis of PD to support this.
• To create a mathematical model using EMG and EEG connection to
• Quantitate the drug-induced improvement in Parkinson’s disease. 

4 The Proposed Work 

Electrical activity was recorded from the Extension Carpis Ulnaris and the Flexor 
Digitorum Superficial is of the hand during flexion and extension of the wrist. In 
addition to the bio signal features, clinical data sheets, demographic information,
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and SpO2 levels were obtained from each and every individual. The clinical data 
sheet contained the MMSE, the GDS, and the Fatigue Severity Scale (FSS). The 
information contained in these fact sheets was utilised in order to zero in on a broad 
spectrum of non-motor symptoms. We inquired about age, gender, occupation, nutri-
tion, smoking, drinking and depression, usage of well water, history of brain injury, 
and history of exposure to insecticides. It was clear from the results whether or not 
the patient had problems falling or staying asleep. A graphical user interface and an 
artificial neural network were utilised in the creation of the mathematical model for 
PD diagnosis. Using a dataset that included readings from an electroencephalogram 
and an electromyogram as input features, the artificial neural network (ANN) classi-
fier that was developed achieved an almost perfect accuracy rate of 100% while being 
tested on its capacity to differentiate between an early-stage PD patient and a control 
subject. When it comes to following the evolution of an illness in its early stages, 
clinicians will find this model to be a very helpful tool. This app will not only monitor 
how far along the condition has gone, but it will also monitor how well the patient is 
doing both before and after taking any medications that have been prescribed. The 
model will operate as a centralised centre for the speedy diagnosis of a variety of 
motor and non-motor symptoms that are linked with PD. This one-of-a-kind approach 
has the potential to become a practical instrument in the not-too-distant future for 
the diagnosis of PD and other neurodegenerative disorders. 

Figure 1 illustrates the proposed block diagram. PD is a neurological condition 
that typically strikes adults over the age of 50. Dopamine, a type of neurotransmitter, 
is lost in the substantia nigra of the human brain as a consequence of this condition. 
Dopamine production slows down, which causes a loss of brain and muscle coor-
dination in people with Parkinson’s disease, which in turn causes limb motions to 
become disorganised. In addition, the individual has postural instability as well as 
bradykinesia and tremors in numerous parts of their body, such as their hands, legs, 
and lips. The investigation of the functional and the neurological changes utilising 
EEG in combination with EMG will justify the root cause of PD from the brain to 
the muscles. It will provide an explanation for the numerous motor and non-motor 
symptoms that are present in the early stages of Parkinson’s disease. The results 
obtained for the early-stage detection of PD using EEG and EMG were verified using 
a variety of radiological data’s such as Brain Magnetic Imaging (MRI)/Computerized 
tomography (CT) etc.

5 Result and Analysis 

In order to identify motor symptoms, components of patients’ electroencephalograms 
and electromyograms were obtained, as were those of control participants. Patients 
with early-stage PD were involved in this learning. The bio-signals were used to 
derive a great number of characteristics, both in the time domain and the frequency 
domain. Properties of the electroencephalogram (EEG) include the autocorrelation 
function, the Shannon entropy, the kurtosis, the variance, the RMS, the standard
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Fig. 1 The proposed block diagram

deviation, the median frequency, the mean frequency, the standard deviation, and 
the length of the waveform. Recordings of the subject’s frontal and temporal regions 
of the EEG were made. The following EMG parameters were retrieved: Power, 
Variation, Variability, Root Mean Square, Waveform Length, Median Frequency, 
Mean Frequency, Percent Maximum Voluntary Contraction, and Grip Strength. Table 
1 lists the comparison for PD and CS stages performance. 

The preceding graph shown in Fig. 2 demonstrates that those who have PD have 
much greater rates of depression than the general population (7–14 points). The 
GDS scores of healthy controls, on the other hand, can range anywhere from 0 to 7, 
indicating a significantly lower level of depression than that seen in PD patients.

A person who does not have PD has substantially more grip strength than a person 
who does have the condition, as can be seen in the bar graph that came before it. A 
person who has PD will notice a gradual weakening of their muscles as the condition 
advances. This will have an influence on the individual’s ability to grasp and grip 
objects as the condition progresses. 

The presented results provide an illustration of the development of cognitive 
decline seen in PD. People with PD have cognitive impairment if they have scores 
between 16 and 24 on the Mini-Mental State Examination (MMSE), while healthy

Table 1 Comparison for PD and CS stages performance 

S. No. Stage GDS Grip strength MMSE FSS SpO2 

1 PD 12 25 20 6 10 

2 CS 6 68 30 2 35 
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Fig. 2 Comparison for PD and CS stages performance

controls receive scores between 24 and 32, which suggest that they do not have such 
impairment. 

We just looked at a comparison of the patients’ levels of exhaustion in the graph 
that came before it. A person living with PD is more worn out than a member in the 
control group. As they become worn out so easily as a consequence of this, they are 
unable to carry out the regular responsibilities that are expected of them. 

The graph displayed a significant disparity between the SpO2 levels of a patient 
with PD and those of a healthy control participant. This research suggests that a person 
with PD typically has trouble sleeping due to the gradual decline in the amount of 
oxygen that is supplied to the brain. Table 2 lists the variance of Lyapunov Exponent 
and Inverse Lyapunov Exponent. 

This reveals that the spatio-temporal correlation is one of the factors that contribute 
to lower correlations between neurons in the brains of people with PD.

Table 2 Variance of 
Lyapunov exponent and 
inverse Lyapunov exponent 

PD Lyapunov 
Exponent 

Frontal 5.63 

Temporal 2.879 

Inverse Lyapunov 
Exponent 

Frontal 0.1435 

Temporal 0.1278 

CS Lyapunov 
Exponent 

Frontal 2.89 

Temporal 3.43 

Inverse Lyapunov 
Exponent 

Frontal 0.6609 

Temporal 0.279 
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The findings of an electromyography (EMG) study revealed that healthy controls 
performed better than patients with PD in terms of root mean square, waveform 
length, power, and modified mean frequency. As the condition progresses, the 
person’s muscles will begin to waste away, and it will become increasingly diffi-
cult for them to move their limbs. The findings provide new insight into the factors 
that contribute to the underlying cause of muscle weakness and difficulties with 
walking. 

6 Conclusion 

The fundamental objective of this research is to develop a unified model that can 
identify PD based on many different EEG and EMG characteristics. The neural 
network can be taught using any one of a large number of different instructional 
methods. 

According to the findings of our study, we are aware that electroencephalogram 
(EEG) and electromyogram (EMG) data were collected with the intention of diag-
nosing Parkinson’s disease, and that a satisfactory identification rate was achieved. 
In contrast, we have combined the information obtained from EEG and EMG into a 
single dataset that is then used as input to a classifier. This dataset contains both raw 
and processed data. 

It is not possible to evaluate the effectiveness of classification by comparing the 
degrees of accuracy attained by using various types of classifiers. In order to train a 
classifier, we made use of a variety of EEG and EMG time domain and frequency 
domain data, and the combination of these three types of data led to the highest 
classification rate of all of the cases that we examined (only EEG or EMG features). 
When compared to other types, the recognition rate is maximum 98.9%, when a 
combination of EEG and EMG information is used as the input to the network. 
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