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Chapter 1 
Introduction to Nanomedicine 

Abstract A brief introduction is given to nanomedicine, an emerging paradigm 
intersecting two burgeoning fields of nanotechnology and medicine. It covers the 
application of nanomedicine in diagnostics and therapy of a wide range of diseases 
such as cancer, cardiovascular, orthopaedics, and neurodegenerative disorders. A 
wide range of nanomaterials, nanoparticles and biomaterials for these applications 
are discussed. 

Keywords Nanoparticles · Nanomedicine · 2D nanomaterials · Quantum dots ·
Diagnostics · Therapy · Cancer · Neurodegenerative disorders · Cardiovascular 
diseases · Orthopaedics 

1.1 Nanomedicine 

Nanomedicine is a field of interdisciplinary science that integrates physical, chem-
ical, and engineering sciences, utilizing nanotechnology (functional nanomaterials, 
and structures at the nanometer scale between 1 and 100 nm) and medicine (drugs, 
imaging tools and delivery devices) for disease diagnosis and therapy. 

Today, nanomedicine is a buzzword for a variety of diseases including cancer 
(Chow and Ho 2013; Min et al. 2015; Chen et al. 2017; Liu et al. 2017; Nam et al. 
2019), cardiovascular (PA Ferreira et al. 2015; Di Mauro et al.  2016), orthopaedics 
(Mazaheri et al. 2015; Perli et al. 2017), dental (Besinis et al. 2015; Padovani et al. 
2015; Chieruzzi et al. 2016; Priyadarshini et al. 2016; Fawzy et al. 2017; Priyadarshini 
et al. 2017), kidney (Marom et al. 2012; Kamaly et al. 2016; Williams et al. 2016), 
and neurodegenerative diseases (Goldsmith et al. 2014; Saraiva et al. 2016; Tapeinos 
et al. 2017; Teleanu et al. 2019a).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
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2 1 Introduction to Nanomedicine

1.1.1 Nanomaterials for Cancer Nanomedicine 

In cancer nanomedicine, a wide range of nanomaterials including two-dimensional 
2D MoS2/Bi2S3 (Liu et al. 2014; Wang et al. 2015a, b; Song et al. 2016), MnO2 

nanosheets (Chen et al. 2014f), graphene oxide (Chen et al. 2014e), transition metal 
dichalcogenide nanomaterials (Gong et al. 2017) have been developed extensively 
for therapeutic and diagnostic (i.e. theranostics) applications of cancer (Peng et al. 
2017). Nanotechnology assisted approaches for stem cell differentiation, tracking, 
labelling, and therapy have been delineated in recent reviews by our group (Nanda 
et al. 2017; Yi et al.  2017). 

Different nanoparticles (NPs) have been designed for nanomedicine over the last 
decade. Metallic NPs (e.g. Au, Ag, Pd, Pt, Cu) have been used as plasmonic nanosen-
sors or surface-enhanced Raman scattering (SERS) probes for label-free ultrasensi-
tive molecular detection of body fluids (Kosaka et al. 2014; Bui et al. 2015; Lane 
et al. 2015; Langer et al. 2015; Jeong et al. 2016; Yang et al. 2016b; Xie et al. 
2017). Conversely, semiconductor quantum dots (QDs) have been extensively used 
for biological applications (Mattoussi et al. 2000; Gao et al. 2004; Medintz et al. 
2005; Chang and Rosenthal 2012). 

Despite toxicity issues related to heavy metal cadmium, even today, semicon-
ducting NPs such as CdSe/ZnS QDs are the best diagnostic agents for in-vitro cell 
labelling and in-vivo animal imaging studies, thanks to their excellent optical prop-
erties and stabilities (Yen and Selvan 2015; Freyer et al. 2019; Hanifi et al.  2019; 
Ondry et al. 2019) Alternate non-cadmium based QDs have emerged in response to 
combat heavy metal Cd-based cytotoxicity (Xu et al. 2016). For example, Mn-doped 
ZnS QDs have been used as protein sensors (Wu et al. 2013), used for detection of 
H2S (Wu et al. 2014) and dopamine (Diaz-Diestra et al. 2017) in biological samples, 
and as imaging probes for intracellular Zn2+ ions (Ren et al. 2011). Earlier, our 
group contributed to the grafting of Mn-doped ZnS nanocrystals and anticancer 
drug (doxorubicin) onto graphene oxide for cell labelling and delivery (Dinda et al. 
2016). Conversely, molybdenum disulfide QDs (Liu et al. 2018) has been used for 
the detection of dopamine. 

Recently, ZnO nanowires and nanocomposites (e.g., Ag–ZnO) have shown great 
potentials in the detection of cancer biomarkers such as RNA, DNA, proteins, and 
extracellular vesicles (Guo et al. 2018; Paisrisarn et al. 2022; Chattrairat et al. 2023; 
Huang et al. 2023; Jung et al. 2023). It is worth mentioning here the application of ZnO 
and TiO2 nanostructures for the biosensing of proteins using the surface-enhanced 
Raman scattering (SERS) approach (Adesoye and Dellinger 2022). 

Multifunctional NPs for multimodal bioimaging incorporating optical imaging 
using NIR emitting QDs or up-conversion luminescence, computed tomography 
(CT) and magnetic resonance imaging (MRI), and therapy (Lee et al. 2012) (photo-
dynamic, photothermal, targeted drug delivery (Liu et al. 2015), pH-triggered on-
demand drug release (Wang et al. 2015c) etc.), have attracted immense interest (Chen 
et al. 2014d; Wu et al.  2015; Li and Chen 2016; Duan et al. 2017; Amirav et al.
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2019). We have also pioneered the synthesis of bifunctional nanomaterials (fluores-
cent QDs, magnetic iron oxide, up-conversion, and magnetic/antibacterial NPs) for 
bimodal imaging (optical and MRI) and therapeutic applications (Selvan et al. 2007; 
Ang et al. 2009; Selvan et al. 2009; Das et al. 2010; Selvan 2010; Zhang et al. 2014). 
Carbon nanodots (Bhunia et al. 2013; Shi et al. 2015; Xu et al.  2015) and graphene 
QDs (Zhang et al. 2012; Zheng et al. 2015a, b; Yang et al. 2016a; Yao et al. 2016; 
Yan et al. 2019) have been extensively explored as bioimaging probes. Interestingly, 
carbon dots have recently emerged as a potential candidate system in nanomedicine 
to protect the cells from oxidative stress, eliminating intracellular reactive oxygen 
species (ROS) (Xu et al. 2015). It is worth mentioning here the use of ceria–zirconia 
NPs as a therapeutic nanomedicine for treating ROS-related inflammatory diseases 
such as sepsis (Soh et al. 2017). Several ROS-mediated nanomedicine systems have 
been delineated recently (Yang et al. 2019; Ding et al. 2023; Naik and David 2023). 

Notable advances have been made in the synthesis of different magnetic NPs 
(MNPs) (e.g., Fe3O4, Fe2O3, FePt, Co), and their nanostructures and composites. 
(Yen et al. 2013b; Yen et al. 2015; Kang et al. 2017; Wang et al. 2018; Yang et al. 
2018; Ray et al. 2019; Satpathy et al. 2019; Esthar et al. 2023; Liu et al. 2023). 

These magnetic nanocomposites can be used as drug carriers (Farmanbar et al. 
2022; Turrina et al. 2022; Esthar et al. 2023; Liu et al. 2023), hyperthermia agents 
(Ansari et al. 2022; Shabalkin et al. 2023), and MRI contrast agents (Cheraghali 
et al. 2023; Jiang et al. 2023) in cancer diagnosis/bioimaging (Mohapatra et al. 
2023) and therapy (Su et al. 2023; Vangijzegem et al. 2023). Iron oxide NPs combined 
radioisotopes (e.g., Tc-99 m) can be used as dual modality contrast agents for the high 
spatial resolution of MRI applications combined with high sensitivity single photon 
emission computed tomography (SPECT), and positron emission tomography (PET) 
(Karageorgou et al. 2023). 

Upconversion NPs (UCNPs) (e.g. NaYF4:Er, NaGdF4:Er) are another interesting 
class of materials utilized extensively for bioimaging, owing to their stable lumines-
cence; and fabricated as core–shell NPs (Dou et al. 2015) or multifunctional NPs 
for bioimaging, and photodynamic therapy (PDT) (Idris et al. 2012; Chen et al. 
2014a; Wang et al. 2015b; Zhou et al. 2015; Zhou et al. 2016; Xu et al.  2017; Liu  
et al. 2019b; Zhang et al. 2019). Other polymeric NPs (Ang et al. 2014), hybrid NPs 
(Nguyen and Zhao 2015; Zhang et al. 2017), and multifunctional NPs derived from 
small organic building blocks (Xing and Zhao 2016) have considerably contributed 
to nanomedicine. Conversely, rare-earth oxide NPs (e.g. gadolinium oxide) found 
their potential uses in MRI and chemotherapy (Wu et al. 2019). 

Although metallic NPs such as Au, Ag are synthesized in water directly, most of 
other NPs such QDs, UCNPs, MNPs are synthesized in presence of organic ligands at 
temperatures over 200 °C, resulting in hydrophobic NPs. Different coating methods 
have been developed to make these hydrophobic NPs water soluble. Today, the stabi-
lization of NPs in water and biological media has become a matured strategy, thanks 
to a wide variety of coating strategies that exist in the literature. This includes silica 
(Mulvaney et al. 2000; Gerion et al. 2001; Selvan et al. 2004; Darbandi et al. 2005; 
Selvan et al. 2005; Yi et al.  2005; Zhelev et al. 2006; Tan et al. 2007), polymer (Hong 
et al. 2012; Wang et al. 2013; Yen et al. 2013a; Chen et al. 2014b; Topete et al. 2014;
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Palui et al. 2015), peptides (Narayanan et al. 2013; Chen, Li et al. 2014c; Yang et al. 
2017; Zhang et al. 2018), lipids/liposomes (Medintz et al. 2005; Murcia et al. 2008; 
Weng et al. 2008; Al-Jamal et al. 2009; Tian et al. 2011), proteins (Mattoussi et al. 
2000; Chithrani and Chan 2007; Yang et al. 2013; Hu et al.  2014; Tay et al. 2014; 
Sasaki et al. 2015; Scaletti et al. 2018), antibodies (Goldman et al. 2002; Medintz 
et al. 2005; Snyder et al. 2009), and enzymes (Kong et al. 2016) for the stabilization 
of NPs. Hydrophobic ligands such as HDA can also be used for the stabilization of 
Au NRs and heterostructures (Cheng et al. 2014; He et al.  2014). 

1.2 Challenges and Advancements of Nanomaterials 
for Nanomedicine 

In general, nanomaterials in biomedical applications pose an important concern: what 
are the safety concerns of nanomaterials? How do we address the growing needs of 
ageing population with neurodegenerative disorders, and early diagnosis and thera-
peutic measures for diseases like cancer? This Book attempts to address the above 
concerns with the advent of nanomedicine. Compared to cancer nanomedicine, the 
application of nanomedicine in neurodegenerative diseases is still in its infancy state. 
The biggest challenge in neurodegenerative diseases is to tackle the permeability of 
blood-brain-barrier (BBB) and deliver therapeutic drugs to the brain (Ramanathan 
et al. 2018). Toward this goal, nanoscale materials have been developed and used 
either as bio-labelling agents or as therapeutic carriers, and in some cases as neuro-
protective agents for neurodegenerative diseases (Goldsmith et al. 2014; Saraiva et al. 
2016; Teleanu et al. 2019b; Liu et al. 2019a; Le Floc’h et al.  2019). 

This Brief focuses mainly on the application of nanomedicine in cancer and 
neurodegenerative diseases. It also attempts to cover the application of nanomedicine 
in other emerging areas such as orthopaedics, and cardiac diseases (Fig. 1.1).

1.2.1 Nanomedicine Advancements in Cancer 
and Neurodegenerative Diseases 

Some of the recent advancements (See Chap. 2) in cancer diagnosis (e.g., multimodal 
tumor imaging) and therapy (e.g., combined therapies involving either photothermal, 
chemotherapy, photodynamic or immunotherapy) have been made using 2D nano-
materials (Chen et al. 2020; Ding et al. 2020) (e.g., MoS2/Bi2S3 nanocomposites 
(Wang et al. 2015a; Wang et al. 2019), molybdenum oxide nanosheets (Song et al. 
2016; Wang et al. 2023b), MoS2 nanosheets (Liu et al. 2014; Murugan and Park 
2023), MnO2 nanomaterials (Chen et al. 2014f; Tan et al. 2017; Ding et al. 2020), 
doped graphene nanosheets (Lu et al. 2022), graphene oxide-based multifunctional 
nanomaterials (Gonçalves et al. 2013; Chen, Xu et al. 2014e; Gu et al.  2019; Itoo
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Fig. 1.1 Applications of nanomedicine in cancer, orthopaedics, neurodegenerative, and cardiac 
diseases

et al. 2022), and multifunctional Au-based nanomaterials (Ouyang et al. 2023; Wang 
et al. 2023c), and magnetic nanomaterials (Mukherjee et al. 2020; Liu et al. 2021). 

Chapter 3 deals with different nanomedicine approaches for neurodegenerative 
diseases such as Alzheimer’s disease (AD). Design of inorganic NPs (e.g., Au, ZnO, 
MoS2, CeO2) and organic NPs (e.g., curcumin, green tea polyphenol- EGCG) for 
inhibiting the amyloid aggregation and tau hyperphosphorylation associated with 
the AD are discussed (Han et al. 2017; Shukla et al. 2021; Tamil Selvan et al. 
2021). Different NP-based drug delivery approaches (e.g., apolipoprotein, peptides, 
dendrimers) to the delivery of CNS drugs across the blood–brain barrier (BBB) are 
also discussed (Tapeinos et al. 2017; Arvanitis et al. 2020; Loch et al. 2023). 

1.2.2 Nanomedicine Advancements in Orthopaedics 
and Cardiovascular Diseases 

Chapter 4 addresses nanomedicine and tissue engineering approaches for 
orthopaedics. Bone mimicking scaffolds composed of polymers (e.g., polycaprolac-
tone, polylactic acid, chitosan) and inorganic nanomaterials (e.g., reduced graphene
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oxide rGO, hydroxyapatite) (Seyedsalehi et al. 2020), and zwitterionic chitosan/β-
tricalcium phosphate hydrogel/GO scaffolds (Wang et al. 2023a) for bone tissue 
engineering applications are covered. Orthopaedic drug delivery systems using 
dextran/β-tricalcium phosphate nanocomposite hydrogel scaffolds (Ghaffari et al. 
2020), and chitosan-vancomycin hydrogel bone repair scaffold (Gao et al. 2023) are  
also delineated. 

Chapter 5 delineates the applications of nanomedicine in diagnostics and treat-
ment of cardiovascular diseases (CVDs). Recent developments in multifunctional 
NPs (Kleinstreuer et al. 2018), nano/biomaterials and devices to diagnose and treat 
a variety of CVDs with the attributes of mechanical, conductive, and biological 
requirements are discussed (Liu et al. 2020; Saeed et al. 2023). 

Chapter 6 provides conclusions and perspectives on different types of 
emerging nanomaterials and NPs as theranostic tools for cancer, neurodegenerative, 
orthopaedic, and cardiac diseases. 
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Chapter 2 
Cancer Nanomedicine 

Abstract This chapter deals with emerging QDs and NPs that can be utilized as 
bioimaging probes for cancer nanomedicine. It covers topics on deep-tissue bimodal 
imaging utilizing NIR emitting QDs and other interesting Au-NPs and tripods for 
bioimaging and therapy. Drug carriers such as iron oxide NPs, silica-, graphene-, 
graphene oxide- based nanocarriers, peptides or polymer mediated delivery vehi-
cles, and liposomes for targeted delivery are discussed. Metallic nanostructures 
and plasmonic bimetallic nanocrystals and core–shell nanocomposites for combined 
photothermal-/chemo- or radio-/chemo-therapy are delineated. 

Keywords Cancer · Bioimaging · Therapy · Nanoparticles · Nanomedicine ·
Targeted delivery · Diagnostics · Photothermal therapy 

Cancer is one of the leading causes of human death throughout the globe. Toward 
combating cancer, tremendous efforts put forward in recent years in drug discovery 
and pharmacological research. However, a complete cure is beyond the reality. As a 
thumb rule, prevention is better than cure. Despite the fact that the Food and Drug 
Administration (FDA) have approved several drugs, cisplatin and derivatives are still 
considered as one of the promising therapeutic strategies for cancer (Ruiz-Ceja and 
Chirino 2017). Although the drugs are capable of targeting the epidermal growth 
factor receptor (EGFR), none of the pharmacological treatments succeeded in the 
complete cure of cancer even in combination with radiation and surgery. Therefore, 
the early detection of cancer biomarkers is mandatory, for which nanotechnology 
is an interesting approach. Here, a plethora of questions arises: How do we achieve 
early diagnosis? How do we deliver approved drugs more specifically to cancer cells? 
What are their side effects? Would they affect normal, non-cancerous cells? 

In drug discovery and pharmacological research, thiazolo[4,5-d]pyrimidines 
emerge as immune-modulators, anticancer, anti-Parkinson’s, antibacterial, antiviral, 
and antifungal agents (Kuppast and Fahmy 2016). Furthermore, several drug candi-
dates such as pyrazole based compounds with lesser side effects and improved 
efficacy are being explored (Ganguly and Jacob 2017). Microtubule-stabilizing 
agents/drugs have attracted interest in clinical drug discovery, cancer therapy studies 
(Zhao et al. 2016), and neurodegenerative diseases (Brunden et al. 2017).
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The interplay between nanotechnology and medicinal chemistry has created new 
avenues in the nanocarrier formulations (Sunoqrot et al. 2017). Various drug delivery 
vehicles based on nanocarrier formulations such as polymeric micelles (Nasongkla 
et al. 2006; Gong et al. 2012; Kataoka et al. 2012), liposomes (Hwang et al. 2016; 
Malinge et al. 2017; Man et al. 2019), and polymer/inorganic NPs for anticancer 
drug/siRNA delivery (Zhang et al. 2011; Meng et al. 2013; Qu et al.  2019) have been 
explored to increase the drug solubility, and bioavailability. 

Cancer nanomedicine has advanced significantly in recent years (Ali et al. 
2017; Komatsu 2023). Molecular imaging has advanced cancer nanomedicine by 
integrating different multimodality techniques such as MRI, near-infrared optical 
imaging, positron emission topography (PET), computed tomography (CT), etc. 
(Pratt et al. 2016; Dearling and Packard 2017; Liu et al. 2017a; Miller et al. 2017). 

2.1 Emerging QDs and NPs as Bioimaging Probes 

Both CdSe/ZnS—based QDs and iron oxide (Fe3O4 or Fe2O3) NPs dominated the 
bioimaging arena especially in optical and MR imaging, respectively. Although 
CdSe/ZnS QDs have been used extensively as cell labelling probes, the presence 
of heavy metals poses issues related to toxicity. 

This section deals with the emergence of silver based QDs (Ag2S, Ag2Se), up-
conversion NPs (UCNPs), Au-NPs, and their fabrication as either bimodal or trimodal 
agents for biosensing and imaging. 

2.1.1 NIR Emitting QDs for Deep-Tissue Bimodal Imaging 

Bioimaging probes in the near-infrared window II (NIR-II, 1000–1700 nm) are highly 
promising for in vivo imaging with enhanced resolution and deeper tissue penetration. 
Earlier, Ag2Se QDs synthesized in the size regime of 2–3 nm exhibited the emission 
wavelengths in the range of 700–820 nm, depending on the size (Gu et al. 2011). This 
work also elucidated the promise of these less toxic NIR emitting Ag2Se QDs for 
deep-tissue in vivo imaging of a nude mouse after abdominal injection and detection 
on its backside. 

In another interesting work, similar Ag2Se QDs have demonstrated their potentials 
in trimodality imaging, encompassing fluorescence, MRI, and PET (Tian et al. 2019). 
This work further suggested that a high tumor-to-muscle ratio of nine in PET imaging 
achieved after conjugation of the particles with a targeting peptide. Finally, the QDs 
excreted within 12 h from the body by the kidneys. Alternatively, Ag2S QDs can be 
used as sensors for fluoride ions detection in living cells (Hong et al. 2012; Hong et al. 
2017). These NIR emitting Ag2S QDs (emission at 795 nm) showed good sensitivity 
for F− detection with a detection limit of 1.5 μM (Ding et al. 2017).
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Very recently multifunctional NPs combining photoluminescent PbS/CdS QDs 
(emitting in the second biological window of 1000–1350 nm; 14 mm deep-tissue 
imaging) and superparamagnetic Fe3O4 NPs (higher T2 relaxivity, 282 mM–1 s–1) 
have been developed for in vivo bimodal imaging (MR and optical), and bimodal 
therapy (based on magneto-, and photo-thermal heating) (Yang et al. 2019). 

2.1.2 Au-NPs and Tripods for Bioimaging and Therapy 

Au-NPs can act as QDs when they exist in the form of clusters (Yahia-Ammar et al. 
2016; Khandelwal and Poddar 2017). Such Au22 clusters were synthesized, thanks to 
the facile thiol conjugation chemistry (Yu et al. 2014; Pyo et al. 2015). Ultra-bright 
Au22 clusters functionalized with thiolate ligands such as glutathione yielded high 
photoluminescence (PL) quantum yield (QY) (> 60%) in toluene after rigidifying the 
Au-shell with tetraoctylammonium (TOA) cations. However, transferring the clusters 
back to water decreased the PL-QY to < 10. This method warranted a facile phase 
transfer approach to retain the high PL-QY. Interestingly, the same group reported 
folate-functionalized Au22 clusters (Au22-FA) with a PL-QY of 42%, enabling them 
for imaging of HeLa cancer cells (Pyo et al. 2017). Essentially, gold nanoclusters 
(Au NCs) provide several key features such as non-toxicity, high renal clearance 
(Chen et al. 2016), passive tumor targeting (Liu et al. 2013), light induced cell death 
(Zhang et al. 2015), drug delivery carriers (Yahia-Ammar et al. 2016), and optical 
sensing and biodetection (Shang et al. 2013), making them more useful for cancer 
nanomedicine. 

Earlier, Xing et al. developed an intriguing trimodal nanoprobe, 
consisting of up-conversion NPs, and Au-NPs encapsulated within silica 
(NaY(Gd)F4:Yb3+/Er3+/Tm3+@SiO2-Au) for multimodality imaging (fluores-
cence, MR and CT) of tumor bearing mice in vivo (Xing et al. 2012). This approach 
enabled for ameliorating contrast effects necessary for in vivo optical, MR and CT 
imaging, owing to the presence of up-conversion NPs for optical, Gd ions for T1 
MR contrast, and Au NPs for CT. 

Nano Au tripods have been studied for molecular imaging of living subjects, 
utilizing positron emission tomography (PET) and photoacoustic (PA) imaging 
modalities (Cheng et al. 2014). We have recently developed Cu–Au tripods for 
photothermal anticancer therapy (Nanda et al. 2019) Some of the typical examples of 
NPs serving as bioimaging probes are shown in Fig. 2.1. In our group, bifunctional 
NPs (MNP@Dye-Pol) consisting of magnetic iron oxide NPs (MNPs) and IR-820 
dye functionalized with an amphiphilic polymer, poly-(isobutylene-alt-maleic anhy-
dride) for NIR cell imaging and MR animal imaging have been developed (Fig. 2.1a) 
(Yen et al. 2013). Conversely, tripod Au NPs have been used for PET and PA animal 
imaging (Fig. 2.1b) (Cheng et al. 2014). Therapeutic applications employing NPs of 
different shapes (e.g. tripods, (Nanda et al. 2019) and nanoprisms (Pérez-Hernández
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Fig. 2.1 Schematic representation of nanoparticles (NPs) used in cell labelling, animal imaging, 
and therapeutic application. a Bimodality imaging of NIR-dye@polymer—conjugated magnetic 
NPs for optical and magnetic resonance imaging. Reproduced with permission (Yen et al. 2013). 
Copyright 2013, ACS. b Au-tripod for PET and PA imaging. Reproduced with permission (Cheng 
et al. 2014). Copyright 2014, ACS. c Photothermal conversion efficiency endowed by Cu–Au 
tripod nanocrystals. Reproduced with permission (Nanda et al. 2019). Copyright 2019, ACS. d 
Au-nanoprisms for NIR-assisted cancer therapy. Reproduced with permission (Pérez-Hernández 
et al. 2015). Copyright 2015, ACS. e A cartoon depicting the interplay of NPs from cell/animal 
imaging to therapy. Inset: TEM of Cu-doped ZnS NPs. Reproduced with permission (Ang et al. 
2016). Copyright 2016, Wiley–VCH 

et al. 2014; Zhou et al. 2014a). Pérez-Hernández et al. (2015) have been demon-
strated (Fig. 2.1c, d). The interplay of NPs between imaging and therapy is depicted 
in a cartoon (Fig. 2.1e). 

Some of the recent advancements of cancer nanomedicine include QD/Au NRs 
for imaging (Wu et al. 2015), NIR-responsive NPs for two or more combination 
therapy of cancer (Duan et al. 2017), and ultrasensitive fluorescence or magnetic 
based immunoassays for detection of folic acid (Li and Chen 2016) and C-reaction 
protein in clinical samples (Huang et al. 2018). 

2.2 NPs as Drug Carriers 

Although cancer nanomedicine has progressed rapidly over the years, it elicits chal-
lenges to combat toxicology issues (Chen et al. 2017; Shi et al. 2017; Youn and Bae 
2018). Yet again, the targeted drug delivery is of paramount importance (Rosenblum 
et al. 2018).
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2.2.1 Iron Oxide NPs 

The intracellular uptake of superparamagnetic iron oxide NPs (SPIONs) is dictated 
by the ligands on their surface, thus facilitating drug delivery for cancer therapy 
(Huang et al. 2016; Luchini et al. 2017; Han et al. 2019). It has been found that 
phospholipids such as 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) func-
tionalized SPIONs are easily taken up by the PC-12 cells in larger amounts, compared 
to SPIONs modified with poly(ethylene glycol) (PEG) and polyethyleneimine (PEI) 
(Su et al. 2017). This study has concluded that DMPC-SPIONs can serve as potential 
drug carriers. 

How do we suppress tumor growth? Several methods reported in the literature to 
address this issue. Once the designed NPs penetrate the tumor, they can suppress the 
breast tumor growth. Iron oxide NPs conjugated to p32 binding peptides with the 
sequence (AKRGARSTA) have been demonstrated to be most effective in treating 
breast cancer in mice via better tumor homing and penetration of the nanosystem 
(Sharma et al. 2017). In another interesting work, ultrafine iron oxide NPs (3.5 nm 
core size) have been shown to improve the delivery and intratumoral distribution and 
retention of NPs (Wang et al. 2017b). These small sized NPs in comparison with 
their large sized counterparts were found to be extravasated easily from the tumor 
vasculature, and diffused readily into the tumor tissue. In vivo MRI studies revealed 
that the ultrafine iron oxide NPs exhibited bright T1 contrast and dark T2 contrast 
in the tumor vasculature after 1 and 24 h of intravenous administration, respectively. 
The ultrafine iron oxide NPs with initial T1 contrast aggregated into larger clusters 
and exhibited T2 contrast. 

2.2.2 Silica-Based Carriers 

Functionalized mesoporous silica-based NPs and hollow materials emerged as trans-
porters for targeted drug delivery (Tang et al. 2012; Zhang et al. 2012a; Li et al.  2017; 
Hai et al.  2018; Park and Ha 2018; Kesse et al. 2019). Multifunctional mesoporous 
silica NPs encompassing magnetic NPs and an anticancer drug (camptothecin) func-
tionalized with TAT peptides and folic acid grafted chitosan have been designed to 
enable targeted drug delivery and MR imaging (Fig. 2.2a, b). This nanoassembly 
approach showed an enhanced anticancer effect, via the nucleus delivery of the 
DNA-toxin drug, inhibiting topoisomerase I and inducing cell apoptosis (Li et al. 
2014).

Mesoporous silica NPs (core size of ~ 47–87 nm) modified with a crosslinked 
cationic polymer, polyethyleneimine–polyethylene-glycol copolymer, (PEI–PEG) 
was employed for efficient delivery of siRNA to HER2+ breast cancer (Ngamcherd-
trakul et al. 2015). Polymer coated mesoporous silica NPs carried siRNA against 
the human epidermal growth factor (h-EGF) receptor type 2 (HER2) oncogene. This
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Fig. 2.2 Mesoporous silica NPs for cancer therapy. a TEM image of magnetic mesoporous silica 
NPs. b Cartoon depicting the magnetic assisted delivery and camptothecin (CPT) release into the 
nucleus by means of charge conversion polymer and lysosomal escape rendered by TAT peptides, 
and folic acid and citraconic anhydride grafted chitosan. Reproduced with permission (Li et al. 
2014). Copyright 2014, Wiley–VCH. c TEM image of mesoporous silica NP (average particle size 
of 87 nm). d In vivo HER2 reduction and growth inhibition of orthotopic HCC1954 tumors. Tumor 
growth in mice bearing orthotopic HCC1954 tumor xenografts (n = 5/group) receiving the same 
treatments as (A) but multiple doses (days of injection are indicated by arrows). Reproduced with 
permission (Ngamcherdtrakul et al. 2015). Copyright 2014, Wiley–VCH

construct then coupled to anti-HER2 monoclonal antibody (trastuzumab). A scram-
bled siRNA (siSCR) and a siRNA against HER2 (siHER2) cross-linked with 10-kDa 
PEI, and coupled with trastuzumab, denoted as T–siSCR–NP 10C and T–siHER2–NP 
10C, respectively (Fig. 2.2d). These trastuzumab-targeted siRNAs carrying meso-
porous silica NPs could easily target the cancer cells that overexpress the HER2 
protein. 

2.2.3 Graphene and Graphene Oxide as Carriers 

Graphene has superior qualities such as large surface area, low toxicity, good stability, 
and large drug loading capacity, and therefore proposed as a carrier for improved 
delivery of anticancer drug, doxorubicin (DOX) (Wang et al. 2014; Orecchioni et al. 
2015). Graphene integrated with fluorescent QDs can act as reporters to monitor the
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Fig. 2.3 Grafting of ZnS:Mn doped nanocrystal and anticancer drug onto graphene oxide for 
delivery and cell labelling. Reproduced with permission (Dinda et al. 2016). Copyright 2016, 
Wiley–VCH 

drug delivery. To achieve specific targeting, a transferrin ligand (Trf) attached to the 
surface of the graphene sheet (Chen et al. 2013b). 

Graphene oxide can act not only as a drug delivery vehicle but also as a substrate 
for the attachment of nanocrystals (Zhang et al. 2010; Zhou et al. 2014b). Very 
recently, we have reported the grafting of ZnS:Mn doped nanocrystal and anticancer 
drug onto graphene oxide for cancer cells labelling (Fig. 2.3) (Dinda et al. 2016). 
High drug entrapment efficiency, slow drug release, better cancer cell labelling and 
killing efficiency are the traits of this novel system. This demands further work for 
in-vivo animal imaging and targeted drug delivery. Besides, carbon nanodots have 
been exploited for the delivery of another anticancer drug, paclitaxel (PTX) (Gomez 
et al. 2018). 

2.2.4 Peptide/Polymer Mediated Delivery 

The efficient delivery of anticancer drugs (i.e., therapeutic efficacy) is an impor-
tant goal in cancer nanomedicine. Towards this goal, an intra-nuclear drug delivery 
approach using dexamethasone-conjugated micelle has been developed (Wang et al. 
2017a). Cell and tumor penetrating peptides have been designed for improved 
drug delivery (Ruoslahti 2017). Our group has developed QD-peptide bioconju-
gates for nuclear targeting of human mesenchymal stem cells (hMSCs) (Narayanan 
et al. 2013). To avoid the intracellular degradation of drugs in lysosomes and poor 
delivery to the nucleus, drugs can be encapsulated in copolymer micelles that are 
composed of N-(2-hydroxypropyl) methacrylamide (HPMA) (Zhou et al. 2017). The 
HA2 membrane fusion peptide grafted onto HPMA copolymers disrupted lysosome 
membranes. This work also illustrated that the micelles containing nucleus-targeting 
retinoic acid and the drug cargo (H1 peptide), efficiently evaded the lysosomes and
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targeted the nucleus of MCF-7 breast cancer cells, and further inhibited the tumor 
growth in mice. 

Oligonucleotides possessing high immune-stimulatory activity such as cytosine-
phosphate-guanine (CpG) conjugated to bifunctional NPs encompassing MnO2– 
AgNCs–DOX conjugate can be used for enhanced cancer immunotherapy (Wang 
et al. 2017c). Here, MnO2 sheets acted as unique support for the integration of 
chemotherapy drug DOX and the immunotherapeutic agent CpG-AgNCs. Further-
more, transport of NPs and drug mediated by DNA enabled endosomal escape and 
intracellular delivery (Muro 2014). A γ-glutamyl transpeptidase-responsive camp-
tothecin–polymer conjugate for efficient suppression of solid tumors has been devel-
oped (Zhou et al. 2019). This conjugate also prolonged the survival of pancreatic 
tumour-bearing mice, compared to the chemotherapeutic drug gemcitabine. 

2.2.5 Liposomes for Targeted Delivery 

Liposomes are one of the emerging nanoscale drug delivery systems (Torchilin 2014; 
Zhao and Feng 2015; Vahed et al. 2017). They offer benefits such as low clear-
ance rate, and improved targeting abilities. The potential target for siRNA-based 
cancer treatment is Bmi1 gene, which is overexpressed in various human tumors. 
Although siRNA-based therapy has potential merits in cancer treatment, it suffers 
from limited delivery targeting Bmi1 gene, low bioavailability and reduced effi-
cacy. Liposome assisted co-delivery of folate-doxorubicin, and Bmi1 siRNA showed 
advantages in inhibiting the tumor growth via silencing the expression of Bmi1 gene 
and high targeting efficiency by folate receptor (Yang et al. 2014). Studies have shown 
that the anticancer drug, DOX did not respond to M109 lung tumors. However, a 
nanoassembly comprising of DOX with squalene, a natural lipid precursor for the 
biosynthesis of cholesterol, dramatically improved the anticancer efficacy, inhibiting 
the tumor by 90% (Maksimenko et al. 2014). This squalene-DOX nanomedicine 
reduced the cardiac toxicity induced by the drug and hence improved the therapeutic 
index of the drug. 

PEGylated liposomal doxorubicin (PLD) is the first FDA-approved nanomedicine 
(Bobo et al. 2016) for cancer therapy of breast, ovarian, multiple myeloma, and 
Kaposi sarcoma (Gabizon et al. 2016). However, PLD has not replaced the conven-
tional doxorubicin for the treatment of breast cancer, and its clinical application is not 
widespread. By exploiting the selective biodistribution and homing potential of PLD 
to tumors, and pharmaceutical nanotechnology with advanced theranostic platforms, 
will have great impact on future clinical applications.
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2.3 Photothermal Therapy 

Photothermal therapy (PTT) utilizes the NPs that can generate heat upon laser irradia-
tion to induce apoptosis of cancer cells (Melamed et al. 2015). A wide variety of plas-
monic materials such as Au, Ag, Cu, CuSe, graphene, carbon nanotubes have been 
exploited for photothermal cancer therapy. These plasmonic nanomaterials exhibit 
heat upon excitation to NIR light and less absorption by biological tissues. 

Metallic nanostructures such as gold nanorods (Au-NRs) (Zhou et al. 2014a; Chen 
et al. 2013a), Au nanocages (Yavuz et al. 2009), Au–Cu alloy nanocrystals (He et al. 
2014; Xia et al. 2017) exhibit absorption in the near-infrared (ca. 800–1200 nm) that 
allows for the excitation at this wavelength, thereby enabling photothermal effects, 
and photothermal therapy of cancer. Due to their large absorption cross sections in 
NIR region, Au-NRs (Zhang et al. 2012b), Au-prisms (Pérez-Hernández et al. 2014; 
Pelaz et al. 2012), Au-cages (Yavuz et al. 2009) and Au-nanostars (Yuan et al. 2012; 
Liu et al. 2015b; Liu et al. 2017b) have shown great potentials in photothermal therapy 
of cancer. All these Au-NRs, Au-prisms and Au-cages can act as nanoheaters under 
NIR illumination, exhibiting promising photothermal application in nanomedicine. 
Besides Au nanostructures, bismuth sulfide nanorods (Liu et al. 2015a), and Te-NRs 
(decorated by polysaccharide–protein complex) (Huang et al. 2017) have been used 
for combined chemo and photothermal therapy. 

Recent work has demonstrated the photothermal therapy of PTW-Te-NRs (PTW: 
extracted from Pleurotus tuber-reguim) (Huang et al. 2017). The effects of Te-NPs 
and PTW-Te-NRs on HepG2 cells after laser irradiation for different time intervals 
captured by IR camera indicated a sharp rise in temperature with the maximum of 
68.2 °C (Fig. 2.4a, b). The fact that the reduction in cell number and rounded cell 
shape for both Te-NPs and PTW-TeNRs with laser treated cells clearly indicated 
the apoptosis of cancer cells (Fig. 2.4c). The fluorescence staining (live and dead 
cell assays) with calcein acetoxymethyl (green) and propidium iodide (red) further 
supported the above observation (Fig. 2.4d). This study demonstrated the potential 
of these Te-NRs for chemo-photothermal combination therapy of cancer (Fig. 2.4e).

Other potential NP systems are plasmonic bimetallic Au–Cu nanocrystals for 
combined chemo and PTT (He et al. 2014; Nanda et al. 2019), core–shell Au–Se 
nanocomposites for radio- and chemo-therapy (Chang et al. 2017), and targeted 
combination therapy of cancer using NIR dye (ICG: indocyanine green)—bovine 
serum albumin nanocomplex as photothermal agent and DOX as chemotherapy drug, 
co-encapsulated into engineered red blood cells (RBCs) carriers (Sun et al. 2015). 
In the later system, RBCs heated up due to NIR irradiation, resulting in a burst drug 
release (ca. 80%) within 5 min. 

In conclusion, cancer nanomedicine shows promises in early diagnostics and 
preoperative therapeutics, neoadjuvant radiotherapy, chemotherapy, phototherapy, 
and immunotherapy (Qu et al. 2023).
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Fig. 2.4 Tellurium nanorods (Te-NRs) for PTT. a IR camera captured thermal images of HepG2 
cells incubated with either Te-NPs or PTW-Te-NRs with specified concentrations upon NIR light 
irradiation for 5 min. b Temperature profiles of NPs and NRs (20 mg L−1) exposed HepG2 cells 
recorded at 1, 3 and 5 min of irradiation (808 nm, 3 W cm−2). c Bright-field images of HepG2 cells 
with control groups (PBS, laser only, free TeNPs, free PTW − TeNRs) and laser irradiated cells 
(TeNPs + Laser, and PTW − TeNRs + Laser). d Fluorescence images of HepG2 cells treated with 
TeNPs or PTW-TeNRs, and stained with calcein AM (green) and PI (red). e In vivo photothermal 
therapy (PTT) and MRI of TeNRs (PTW−TeNRs+Laser) treated mice after 21 days of observation. 
Reproduced with permission (Huang et al. 2017). Copyright 2017, Wiley–VCH
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Liu T-M, Conde J, Lipiński T, Bednarkiewicz A, Huang C-C (2017a) Smart NIR linear and nonlinear 
optical nanomaterials for cancer theranostics: prospects in photomedicine. Prog Mater Sci 
88:89–135 

Liu Y, Maccarini P, Palmer GM, Etienne W, Zhao Y, Lee C-T, Ma X, Inman BA, Vo-Dinh T (2017b) 
Synergistic immuno photothermal nanotherapy (SYMPHONY) for the treatment of unresectable 
and metastatic cancers. Sci Rep 7(1):8606 

Luchini A, Gerelli Y, Fragneto G, Nylander T, Pálsson GK, Appavou M-S, Paduano L (2017) 
Neutron reflectometry reveals the interaction between functionalized SPIONs and the surface 
of lipid bilayers. Colloids Surf, B 151:76–87 

Maksimenko A, Dosio F, Mougin J, Ferrero A, Wack S, Reddy LH, Weyn A-A, Lepeltier 
E, Bourgaux C, Stella B (2014) A unique squalenoylated and nonpegylated doxorubicin 
nanomedicine with systemic long-circulating properties and anticancer activity. Proc Natl Acad 
Sci 111(2):E217–E226 

Malinge J, Géraudie B, Savel P, Nataf V, Prignon A, Provost C, Zhang Y, Ou P, Kerrou K, Talbot 
J-N (2017) Liposomes for PET and MR imaging and for dual targeting (magnetic field/glucose 
moiety): synthesis, properties, and in vivo studies. Mol Pharm 14(2):406–414 

Man F, Gawne PJ, de Rosales RT (2019) Nuclear imaging of liposomal drug delivery systems: a 
critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv 
Rev 

Melamed JR, Edelstein RS, Day ES (2015) Elucidating the fundamental mechanisms of cell death 
triggered by photothermal therapy. ACS Nano 9(1):6–11 

Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S, Wang X, Zhao Y, Ji Z, Zink JI (2013) Codelivery 
of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug 
resistance in breast cancer in vitro and in vivo. ACS Nano 7(2):994–1005



References 29

Miller MA, Chandra R, Cuccarese MF, Pfirschke C, Engblom C, Stapleton S, Adhikary U, Kohler 
RH, Mohan JF, Pittet MJ (2017) Radiation therapy primes tumors for nanotherapeutic delivery 
via macrophage-mediated vascular bursts. Sci Transl Med 9(392):eaal0225 

Muro S (2014) A DNA device that mediates selective endosomal escape and intracellular delivery 
of drugs and biologicals. Adv Func Mater 24(19):2899–2906 

Nanda SS, Hembram K, Lee J-K, Kim K, Selvan ST, Yi DK (2019) Experimental and theoretical 
structural characterization of Cu–Au tripods for photothermal anticancer therapy. ACS Appl 
Nano Materr 2(6):3735–3742 

Narayanan K, Yen SK, Dou Q, Padmanabhan P, Sudhaharan T, Ahmed S, Ying JY, Selvan ST 
(2013) Mimicking cellular transport mechanism in stem cells through endosomal escape of new 
peptide-coated quantum dots. Sci Rep 3:2184 

Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin S-F, Sherry AD, Boothman DA, 
Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug 
delivery systems. Nano Lett 6(11):2427–2430 

Ngamcherdtrakul W, Morry J, Gu S, Castro DJ, Goodyear SM, Sangvanich T, Reda MM, Lee R, 
Mihelic SA, Beckman BL (2015) Cationic polymer modified mesoporous silica nanoparticles 
for targeted siRNA delivery to HER2+ breast cancer. Adv Func Mater 25(18):2646–2659 

Orecchioni M, Cabizza R, Bianco A, Delogu LG (2015) Graphene as cancer theranostic tool: 
progress and future challenges. Theranostics 5(7):710 

Park SS, Ha CS (2018) Hollow mesoporous functional hybrid materials: fascinating platforms for 
advanced applications. Adv Func Mater 28(27):1703814 

Pelaz B, Grazu V, Ibarra A, Magen C, del Pino P, de la Fuente JM (2012) Tailoring the synthesis 
and heating ability of gold nanoprisms for bioapplications. Langmuir 28(24):8965–8970 

Pérez-Hernández M, del Pino P, Mitchell SG, Moros M, Stepien G, Pelaz B, Parak WJ, Gálvez 
EM, Pardo J, de la Fuente JM (2014) Dissecting the molecular mechanism of apoptosis during 
photothermal therapy using gold nanoprisms. ACS nano 9(1):52–61 

Pérez-Hernández M, del Pino P, Mitchell SG, Moros M, Stepien G, Pelaz B, Parak WJ, Gálvez 
EM, Pardo J, de la Fuente JM (2015) Dissecting the molecular mechanism of apoptosis during 
photothermal therapy using gold nanoprisms. ACS Nano 9(1):52–61 

Pratt EC, Shaffer TM, Grimm J (2016) Nanoparticles and radiotracers: advances toward radio-
nanomedicine. Wiley Interdisc Rev: Nanomed Nanobiotechnol 8(6):872–890 

Pyo K, Thanthirige VD, Kwak K, Pandurangan P, Ramakrishna G, Lee D (2015) Ultrabright 
luminescence from gold nanoclusters: rigidifying the Au (I)–thiolate shell. J Am Chem Soc 
137(25):8244–8250 

Pyo K, Ly NH, Yoon SY, Shen Y, Choi SY, Lee SY, Joo SW, Lee D (2017) Highly luminescent 
folate-functionalized Au22 nanoclusters for bioimaging. Adv Healthcare Mater 6(16):1700203 

Qu X, Hu Y, Wang H, Song H, Young M, Xu F, Liu Y, Cheng G (2019) Biomimetic dextran-peptide 
vectors for efficient and safe siRNA delivery. ACS Appl Bio Mater 2(4):1456–1463 

Qu X, Zhou D, Lu J, Qin D, Zhou J, Liu H-J (2023) Cancer nanomedicine in preoperative thera-
peutics: nanotechnology-enabled neoadjuvant chemotherapy, radiotherapy, immunotherapy, and 
phototherapy. Bioact Mater 24:136–152 

Rosenblum D, Joshi N, Tao W, Karp JM, Peer D (2018) Progress and challenges towards targeted 
delivery of cancer therapeutics. Nat Commun 9(1):1410 

Ruiz-Ceja KA, Chirino YI (2017) Current FDA-approved treatments for non-small cell lung cancer 
and potential biomarkers for its detection. Biomed Pharmacother 90:24–37 

Ruoslahti E (2017) Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 
110:3–12 

Shang L, Stockmar F, Azadfar N, Nienhaus GU (2013) Intracellular thermometry by using 
fluorescent gold nanoclusters. Angew Chem Int Ed 52(42):11154–11157 

Sharma S, Kotamraju VR, Mölder T, Tobi A, Teesalu T, Ruoslahti E (2017) Tumor-penetrating 
nanosystem strongly suppresses breast tumor growth. Nano Lett 17(3):1356–1364 

Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges 
and opportunities. Nat Rev Cancer 17(1):20



30 2 Cancer Nanomedicine

Su L, Zhang B, Huang Y, Fan Z, Zhao Y (2017) Enhanced cellular uptake of iron oxide nanoparticles 
modified with 1, 2-dimyristoyl-sn-glycero-3-phosphocholine. RSC Adv 7(60):38001–38007 

Sun X, Wang C, Gao M, Hu A, Liu Z (2015) Remotely controlled red blood cell carriers for 
cancer targeting and near-infrared light-triggered drug release in combined photothermal-
chemotherapy. Adv Func Mater 25(16):2386–2394 

Sunoqrot S, Hamed R, Abdel-Halim H, Tarawneh O (2017) Synergistic interplay of medicinal 
chemistry and formulation strategies in nanotechnology-from drug discovery to nanocarrier 
design and development. Curr Top Med Chem 17(13):1451–1468 

Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug 
delivery. Adv Mater 24(12):1504–1534 

Tian R, Shen Z, Zhou Z, Munasinghe J, Zhang X, Jacobson O, Zhang M, Niu G, Pang DW, 
Cui R (2019) Ultrasmall quantum dots with broad-spectrum metal doping ability for trimodal 
molecular imaging. Adv Funct Mater 1901671 

Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. 
Nat Rev Drug Discov 13(11):813 

Vahed SZ, Salehi R, Davaran S, Sharifi S (2017) Liposome-based drug co-delivery systems in cancer 
cells. Mater Sci Eng, C 71:1327–1341 

Wang X, Sun X, Lao J, He H, Cheng T, Wang M, Wang S, Huang F (2014) Multifunctional graphene 
quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf, B 
122:638–644 

Wang H, Li Y, Bai H, Shen J, Chen X, Ping Y, Tang G (2017a) A cooperative dimensional strategy 
for enhanced nucleus-targeted delivery of anticancer drugs. Adv Func Mater 27(24):1700339 

Wang L, Huang J, Chen H, Wu H, Xu Y, Li Y, Yi H, Wang YA, Yang L, Mao H (2017b) Exerting 
enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles 
with T 1–T 2 switchable magnetic resonance imaging contrast. ACS Nano 11(5):4582–4592 

Wang Z, Zhang Y, Liu Z, Dong K, Liu C, Ran X, Pu F, Ju E, Ren J, Qu X (2017c) A bifunctional 
nanomodulator for boosting CpG-mediated cancer immunotherapy. Nanoscale 9(37):14236– 
14247 

Wu Q, Chen L, Huang L, Wang J, Liu J, Hu C, Han H (2015) Quantum dots decorated gold nanorod 
as fluorescent-plasmonic dual-modal contrasts agent for cancer imaging. Biosens Bioelectron 
74:16–23 

Xia Y, Gilroy KD, Peng HC, Xia X (2017) Seed-mediated growth of colloidal metal nanocrystals. 
Angew Chem Int Ed 56(1):60–95 

Xing H, Bu W, Zhang S, Zheng X, Li M, Chen F, He Q, Zhou L, Peng W, Hua Y (2012) Multifunc-
tional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 
33(4):1079–1089 

Yahia-Ammar A, Sierra D, Mérola F, Hildebrandt N, Le Guével X (2016) Self-assembled 
gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano 
10(2):2591–2599 

Yang T, Li B, Qi S, Liu Y, Gai Y, Ye P, Yang G, Zhang W, Zhang P, He X (2014) Co-delivery of 
doxorubicin and Bmi1 siRNA by folate receptor targeted liposomes exhibits enhanced anti-tumor 
effects in vitro and in vivo. Theranostics 4(11):1096 

Yang F, Skripka A, Tabatabaei MS, Hong SH, Ren F, Benayas A, Oh JK, Martel S, Liu X, Vetrone 
F (2019) Multifunctional self-assembled supernanoparticles for deep-tissue bimodal imaging 
and amplified dual-mode heating treatment. ACS Nano 13(1):408–420 

Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz 
AG (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared 
light. Nat Mater 8(12):935 

Yen SK, Janczewski D, Lakshmi JL, Dolmanan SB, Tripathy S, Ho VH, Vijayaragavan V, Hariharan 
A, Padmanabhan P, Bhakoo KK (2013) Design and synthesis of polymer-functionalized NIR 
fluorescent dyes–magnetic nanoparticles for bioimaging. ACS Nano 7(8):6796–6805 

Youn YS, Bae YH (2018) Perspectives on the past, present, and future of cancer nanomedicine. 
Adv Drug Deliv Rev 130:3–11



References 31

Yu Y, Luo Z, Chevrier DM, Leong DT, Zhang P, Jiang D-E, Xie J (2014) Identification of a highly 
luminescent Au22(SG)18 nanocluster. J Am Chem Soc 136(4):1246–1249 

Yuan H, Fales AM, Vo-Dinh T (2012) TAT peptide-functionalized gold nanostars: enhanced intra-
cellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem 
Soc 134(28):11358–11361 

Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for 
controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544 

Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z (2011) Enhanced chemotherapy efficacy by 
sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 
7(4):460–464 

Zhang Q, Liu F, Nguyen KT, Ma X, Wang X, Xing B, Zhao Y (2012a) Multifunctional meso-
porous silica nanoparticles for cancer-targeted and controlled drug delivery. Adv Func Mater 
22(24):5144–5156 

Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C (2012b) Mesoporous 
silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer 
treatment. Adv Mater 24(11):1418–1423 

Zhang C, Li C, Liu Y, Zhang J, Bao C, Liang S, Wang Q, Yang Y, Fu H, Wang K (2015) Gold 
nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photody-
namic therapy with superior penetration and retention behavior in tumors. Adv Func Mater 
25(8):1314–1325 

Zhao J, Feng S-S (2015) Nanocarriers for delivery of siRNA and co-delivery of siRNA and other 
therapeutic agents. Nanomedicine 10(14):2199–2228 

Zhao Y, Mu X, Du G (2016) Microtubule-stabilizing agents: new drug discovery and cancer therapy. 
Pharmacol Ther 162:134–143 

Zhou T, Yu M, Zhang B, Wang L, Wu X, Zhou H, Du Y, Hao J, Tu Y, Chen C (2014a) Inhibition 
of cancer cell migration by gold nanorods: molecular mechanisms and implications for cancer 
therapy. Adv Func Mater 24(44):6922–6932 

Zhou T, Zhou X, Xing D (2014b) Controlled release of doxorubicin from graphene oxide based 
charge-reversal nanocarrier. Biomaterials 35(13):4185–4194 

Zhou Z, Liu Y, Wu L, Li L, Huang Y (2017) Enhanced nuclear delivery of anti-cancer drugs using 
micelles containing releasable membrane fusion peptide and nuclear-targeting retinoic acid. J 
Mater Chem B 5(34):7175–7185 

Zhou Q, Shao S, Wang J, Xu C, Xiang J, Piao Y, Zhou Z, Yu Q, Tang J, Liu X (2019) Enzyme-
activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat 
Nanotechnol 14(8):799–809



Chapter 3 
Nanomedicine for Neurodegenerative 
Diseases 

Abstract This chapter deals with the design of organic NPs (e.g., curcumin, green 
tea polyphenol—EGCG), and inorganic NPs (e.g., Au, ZnO, CeO2) in decreasing 
or inhibiting the amyloid aggregation and tau hyperphosphorylation associated with 
the Alzheimer’s disease (AD). Different NP-based drug delivery approaches (e.g., 
apolipoprotein, peptides, dendrimers) to the delivery of CNS drugs across the blood– 
brain barrier (BBB) are discussed. 

Keywords Ceria nanoparticles · ROS scavengers · Nanomedicine · Targeted 
delivery · Diagnostics · Neurodegenerative diseases · Alzheimer’s disease ·
Parkinson’s disease · Biosensors 

The most common neurodegenerative diseases are Alzheimer’s disease (AD) and 
Parkinson’s disease (PD). Other common neurological disorders are acute spinal cord 
injury, epilepsy and seizures, migraines, multiple sclerosis, brain tumors, and stroke. 
Some of these degenerative nerve diseases are genetic, and they affect the activities 
of our body such as balance, movement, talking, breathing, and heart function. The 
main causes of the above neurodegenerative diseases are mostly unknown; however, 
it could originate from a medical condition (e.g., stroke, tumor or alcoholism), or 
toxins, and viruses. Importantly, although brain, spinal cord, and nerves (central 
nervous system, CNS) are safeguarded by the meninges, serious bacterial, viral, or 
fungal infection in the brain can cause life-threatening diseases such as meningitis. 

It is highly indispensable that the CNS drugs should pass through the blood–brain 
barrier (BBB). Engineered nanostructures and nanomaterials hold great promise for 
both diagnosis and therapeutic applications. They can also be useful for combating 
microbial drug resistance, due to their high surface area and innate antibacterial 
activity. Several nanoparticle-based approaches have been delineated to enhance the 
CNS delivery of drugs across BBB (Tamil Selvan et al. 2020). 

In the United States itself, over 6.2 million people suffered from AD in 2022, 
according to a report from the Alzheimer’s Disease Association. Neurodegenera-
tive AD correlates closely to the aggregation of amyloid beta (Aβ) proteins and 
hyper-phosphorylated tau protein, neurofibrillary tangles (NFTs). However, the
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Fig. 3.1 The interplay of ligands in the design of tracers for imaging, and organic/inorganic NPs for 
therapeutic applications of AD. Reproduced with permission (Tamil Selvan et al. 2021) Copyright 
2021, Elsevier 

amyloid aggregation is the early event in AD, and its progression (memory cognitive 
impairment, MCI) is associated to the tau NFTs. 

Importantly, nanomaterials pave their way to combat the protein amyloid aggre-
gation (Wang et al. 2017). For instance, maghemite iron oxide NPs coated with 
dextran polymer inhibited the amyloid fibrillogenesis of human insulin (Lu et al. 
2018). Nanomedicine for neurodegenerative diseases has been emerging with an 
aim to ameliorate the neuroprotection and combat the difficulties associated with the 
passage of neuro-protecting agents through the blood–brain-barrier (BBB). Recently, 
different nano-based systems for enhancing the neuroprotective efficacy have been 
developed. In a recent review, we have discussed the effects of coordination ligands on 
the surface of organic NPs such as flavonoids (e.g., curcumin, green tea polyphenol— 
EGCG,), and inorganic NPs (e.g., Au, ZnO, CeO2) in decreasing or inhibiting the 
amyloid aggregation and tau hyperphosphorylation (Fig. 3.1) (Tamil Selvan et al. 
2021). 

3.1 Design of NPs for Inhibiting Protein Aggregation 

The new term “nano-neuroscience” is an emerging paradigm, which bridges two 
burgeoning fields of nano- and neuro-science (Kumar, Tan et al. 2017). The probe 
development with the advent of nanotechnology opens up new avenues for diag-
nosing and treating neurodegenerative diseases. Nanostructures with binding ability
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to aggregated Aβ proteins and permeability to the BBB are useful nanomedicine 
platforms (Goldsmith et al. 2014; Huang et al. 2015; Aparicio-Blanco et al. 2016). 

3.1.1 Au NPs 

Several NP-based strategies have been designed to prevent the tau protein hyper-
phosphorylation, so that apoptosis and neurodegeneration can be inhibited. The 
anthocyanin-loaded PEG-Au NPs prevented the hyper-phosphorylation of tau 
protein, thereby enhancing the neuroprotection in an Aβ1–42 mouse model of 
Alzheimer’s disease (AD) (Ali et al. 2017). This is considered as one of the promising 
nanomedicine strategies in preventing neurodegenerative diseases. Another study 
suggested that anthocyanins act as effective anti-oxidant neuroprotective agent in 
combating oxidative stress, thus improving memory impairments (Ali et al. 2018). 
Such Au NPs are good candidate systems for traversing the BBB to probe the 
brain-tumor surgery (Gao et al. 2017). 

Conjugation of two peptide inhibitors (VVIA and LPFFD) onto Au-NPs reduced 
the cytotoxicity caused by Aβ aggregation (Xiong et al. 2017). Jana and co-workers 
have found that water-soluble curcumin-functionalized Au-NPs (Au-curcumin) 
could inhibit amyloid fibrillation and disintegrate or dissolve amyloid fibrils. This 
is a promising therapeutic approach to the neurodegenerative diseases (Palmal et al. 
2014). In vitro inhibition of Aβ peptide aggregation into fibrils by noble metal Au 
and Pt NPs indicated clearly their binding affinity to amyloids (Streich et al. 2016). 

3.1.2 Ceria NPs 

Cerium oxide or ceria (CeO2) NPs emerge as an effective antioxidant for 
various neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases, 
ischemic stroke, and multiple sclerosis (Naz et al. 2017). Surface-functionalized 
ceria NPs have mitigated the mitochondrial oxidative stress and suppressed tau 
hyper-phosphorylation (Chen et al. 2018). The nanocomposite was fabricated by 
assembling ceria (CeNC) and iron oxide nanocrystals (IONC) onto mesoporous 
silica NPs. The addition of preformed NOTA-T807 (NOTA: 1,4,7-triazacyclononane-
1,4,7-triacetic acid; T807: tau PET tracer) and methylene blue (MB) completed the 
formation of multifunctional (CeNC/IONC/MSN-T807-MB) nanocomposite. The 
nanocomposite labelled with 68Ga and NOTA-T807 allowed for active targeting and 
imaging of hyper-phosphorylated tau by PET and MRI, and combinational therapy 
of ROS scavenging and MB release (Fig. 3.2). This work sheds light in preventing 
mitochondrial oxidative stress induced hyper-phosphorylation of tau (Chen et al. 
2018).

In another interesting work, ceria NPs were employed for scavenging intra- and 
extra-cellular and mitochondrial ROS in PD model mice (Fig. 3.3) (Kwon et al. 2018).



36 3 Nanomedicine for Neurodegenerative Diseases

Fig. 3.2 Ceria NPs for the scavenging of ROS in mitigating oxidative stress in AD. Design of 
multifunctional NPs (CeNC/IONC/MSN-T807-MB) for targeting hyper-phosphorylated tau and 
combinational therapy of ROS scavenging and methylene blue release. Reproduced with permission 
(Chen et al. 2018). Copyright 2018, ACS

The ability of ceria NPs in scavenging ROS redox reactions (switching between 
Ce3+ and Ce4+ ions) is based on the enzymatic (SOD and catalase) mimetic activity 
(Fig. 3.3A). However, the cell uptake is dependent on the particle size, surface coating 
and charge. Ceria NPs possessing negative charge labelled SH-SY5Y cells cyto-
plasm, but those coated with triphenylphosphonium (TPP) and PEG labelled the 
mitochondria, as inferred from confocal images (Fig. 3.3B).

Immunohistochemistry (IHC) and fluorescence of the brain sections visualized the 
distribution of tyrosine hydroxylase (TH) and showed higher levels in in the striatal 
regions of the PD for ceria NP-treated groups (Fig. 3.3C). This work demonstrated 
the usefulness of ceria NPs in inhibiting the microglial activation and lipid peroxi-
dation via the scavenging of intracellular or mitochondrial ROS, and in protecting 
the tyrosine hydroxylase in the striatal of regions of the PD mice. 

Importantly, ceria NPs showed excellent antioxidant properties to combat reactive 
oxygen species (ROS) induced oxidative stress by targeting mitochondria in AD 
(Kwon et al. 2016), protection against ischemic stroke (Kim et al. 2012), and for 
selective scavenging of mitochondrial ROS in Parkinson’s disease (Kwon et al. 2018). 
Furthermore, bimodal ceria/magnetite (Kim et al. 2019), and Ce/MnMoS4 (Guan 
et al. 2016) core–shell NPs have been developed for addressing multiple facets of AD. 
Conversely, ceria NPs served as neuroprotection agents (Rzigalinski et al. 2017), and 
used to ameliorate the neurochemical impairments (induced by hydroxydopamine) 
in PD rats (Hegazy et al. 2017).
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(A) 

(B) 

(C) 

Fig. 3.3 A Schematic illustration of ceria NP in ROS scavenging reactions based on the antioxi-
dant enzymes—super oxide dismutase (SOD) and catalase. B Confocal images of SH-SY5Y cells 
labelled with ceria NPs (blue: lysosomes; red: mitochondria, green: FITC-conjugated NPs). Scale 
bars are 10 μm. C Tyrosine hydroxylase (TH) expression in the control and MPTP-induced PD mice 
brains: (a) immunohistochemistry (IHC) images; (b) IHC-fluorescence (IHF) images; (c) Confocal 
images showing the distributions of ceria NPs in each group. Scale bars: 1 mm. MPTP: 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine. Reproduced with permission (Kwon et al. 2018). Copyright 
2018, Wiley–VCH

3.2 NP-Based Drug Delivery Carriers 

The delivery of drugs to the central nervous system (CNS) is highly indispensable 
and a key challenge in the development of drugs (Dong 2018; Terstappen et al. 2021). 
Several technologies have been developed to deliver therapeutics or biopharmaceuti-
cals such as monoclonal antibodies to the CNS, some of which have entered clinical
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trials. To achieve the best and sufficient delivery of drugs across the brain, all physio-
logical barriers (e.g., cellular uptake barrier, BBB, endosomal/lysosomal barrier, and 
controlled drug release) have to be overcome (Banks 2016; Arvanitis et al. 2020). 
Different NP based designs for overcoming the above biological barriers to drug 
delivery has been delineated earlier (Blanco et al. 2015). 

Drug delivery vectors such as polymeric NPs, lipid-based NPs, inorganic NPs, 
extracellular vesicles, and exosomes have been widely developed for the delivery of 
nucleic acid drugs to the brain (Blanco et al. 2015; Lu et al.  2023). A shuttle peptide, 
Angiopep-2 that can cross the BBB, has been found to improve the delivery of gold 
nanorods (Au-NRs) functionalized with PEG to the brain parenchyma (Velasco-
Aguirre et al. 2017). 

Mesoporous silica NPs were also used as carriers for the co-delivery of plasmid 
DNA and siRNA for enhancing the generation of dopaminergic neurons from induced 
pluripotent stem cells (iPSCs) (Chang et al. 2017). Mesoporous silica NPs loaded 
with ultrasmall cerium oxide have been used as an ROS-responsive and -scavenging 
nanomedicine for the application of targeted drug delivery system combined with 
antioxidant therapy (Purikova et al. 2022). 

3.2.1 Apolipoprotein 

Nanostructured lipid carriers have been widely employed as carriers for different 
neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, brain 
cancer, ischemic stroke, and multiple sclerosis (Tapeinos et al. 2017). High-density 
lipoproteins have been regarded as nature’s multifunctional NPs, opening new 
avenues in drug delivery strategies (Kuai et al. 2016). High-density apolipoprotein 
(ApoE3-rHDL)-based nanostructures have been designed to bind to Aβ monomers 
and oligomers with high affinity and degrade them by glial and liver cells (Song 
et al. 2014). The in vivo AD animal model study showed the attenuated amyloid 
deposition and microgliosis, and revival of memory loss. 

3.2.2 Dendrimers, Peptides, and Inorganic NPs 

Dendrimers have been explored as powerful building blocks of nanomaterials for 
crossing BBB and neuronal cells uptake in the CNS disease (Leiro et al. 2018; Santos 
et al. 2018). Phosphorus dendrimers have been regarded as drugs for neurodegen-
erative diseases (Caminade 2017). Polymer NPs such as N-isopropylacrylamide: 
N-tert-butylacrylamide (NiPAM:BAM) showed both drug delivery capability and 
anti-amyloid properties (Cabaleiro-Lago et al. 2009; Shcharbin et al. 2017). 

Finally, nanotechnology enables for traversing the BBB, thereby allowing brain 
cancer theranostics (Tang et al. 2019). Some of the other notable findings include 
benzylamide based anti-inflammatory drug conjugates for CNS delivery (Eden et al.
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Fig. 3.4 Schematic illustration of lipoprotein-inspired nanoscavenger for modulation of neuroin-
flammation in Alzheimer’s Disease (AD) therapy (Zhang et al. 2022). Copyright 2022 ACS 

2019), peptide mediated brain delivery of NPs (McCully et al. 2018), AuNR–peptide– 
siRNA complex (Vio et al. 2018), fluorescent carbon dots for the targeting of brain 
cancer cells (Zheng et al. 2015), biodegradable Cu2–xSe NPs for monitoring BBB 
(Zhang et al. 2018), and stapled RGD peptide for glioma-targeted drug delivery 
(Ruan et al. 2017). 

In a recent interesting work, a lipoprotein-inspired nanoscavenger has been 
designed to attenuate the inflammatory dysfunction of microglia resulting from 
excess amyloid-β peptide (Aβ) in Alzheimer’s disease (AD) (Zhang et al. 2022). 
The design consisted of a phosphatidic acid-functionalized high-density lipoprotein 
(pHDL), curcumin, and β-site APP cleavage enzyme 1 targeted siRNA (siBACE1) 
to modulate microglial dysfunction, by mimicking the natural lipoprotein transport 
pathway (Fig. 3.4). 

The benefits of this strategy include promoted Aβ clearance (via the pHDL 
penetration of BBB and sequential targeting of Aβ plaque, an antibody-like Aβ 
binding affinity), a normalized microglial dysfunction (through blocking of the NF-
κB pathway), and reduced Aβ production (via gene silencing, 44%). This method 
enabled for the reversal of the memory deficit and neuroinflammation in treated mice. 

3.3 NP-Based Biosensors for AD Diagnosis 

Although therapeutic strategies are important, it is more important to diagnose the AD 
patients in an early stage using biomarkers (Amen et al. 2022; Oh et al.  2022; Zheng 
et al. 2023). However, it is a challenge to detect AD blood protein biomarkers owing
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Fig. 3.5 Schematic illustration of a carbon nanotube (CNT) field-effect transistor (FET) biosensor 
for the selective detection of the AD human serum biomarkers of Aβ42 and Aβ40 peptides in 
sub-femtomolar detection range (Chen et al. 2022). Copyright 2022, ACS 

to a low abundance of biomarkers in a complex serum environment. To obviate these 
difficulties, recently a nanomaterial-based semiconducting carbon nanotube (CNT) 
field-effect transistor (FET) biosensor has been designed (Chen et al. 2022). First, thin 
films of CNT were mass produced and combined with oligonucleotide aptamers to 
achieve highly sensitive and selective detection of the AD human serum biomarkers 
of Aβ42 and Aβ40 peptides in sub-femtomolar detection range. The benefits of this 
approach include the selectivity ratios of up to 730–800% (for Aβ40 and Aβ42), 
rapid response time (within several minutes), a large dynamic range (> 104), and 
low-cost point of care diagnostic test (Fig. 3.5). 

Some of the recent advancement in early diagnosis of AD biomarkers include 
electrochemical aptasensor based on Y probe for the specific molecular recognition 
of β-amyloid oligomer (Zheng et al. 2023), and several nanotechnology-mediated 
approaches for both AD and dementia diagnostics and therapy (Leszek et al. 2017; 
Hettiarachchi et al. 2019; Kumari et al. 2023; Shao et al. 2023). 

In conclusion, we have provided a comprehensive overview of the recent devel-
opments of nanomedicine assisted strategies (e.g., organic/inorganic NP-based diag-
nostics and protein-based drug delivery) for inhibiting the amyloid aggregation and 
tau hyperphosphorylation associated with the Alzheimer’s disease (AD), and carbon 
nanotube-based biosensor strategies for selective detection of the AD human serum 
biomarkers.
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Chapter 4 
Nanomedicine for Orthopaedics 

Abstract This chapter discusses the usefulness of different nanocomposites for 
the promotion of angiogenesis, osteogenesis, and bone regeneration. Typical exam-
ples include graphene oxide–collagen nanocomposite, polylactic acid (PLA)— 
carbon nanotubes, dexamethasone-loaded calcium phosphate—collagen nanocom-
posites, nanofiber scaffolds (e.g., chitosan/poly-ethylene oxide), porous hydroxyap-
atite (HA) and reduced graphene oxide (rGO) nanocomposite scaffold, and injectable 
bone cement reinforced with Au NPs decorated HA/rGO nanocomposites for bone 
regeneration. 

Keywords Nanomedicine · Bone regeneration · Graphene oxide/collagen 
nanocomposite · Chitosan/poly-ethylene oxide scaffolds · Porous 
hydroxyapatite/graphene oxide scaffolds · Hydrogel scaffolds · Tissue 
engineering · Orthopaedics 

Nanomedicine and tissue engineering approaches have manifested great promise in 
orthopaedic trauma, including high bacterial infection risk, low bony reconstruc-
tion and bone-healing (Behzadi et al. 2017). The emergence of novel nanocom-
posite materials provide great platforms in addressing these issues by exhibiting not 
only antibacterial properties, but also offer mechanical, biochemical, physicochem-
ical properties, and facilitate osteogenesis/angiogenesis necessary to accelerate the 
healing process in bone regeneration (Sullivan et al. 2014). 

4.1 Nanoscale Materials for Bone Tissue Regeneration 

Nanoscale materials such as hydroxyapatite (HA) and calcium phosphate NPs can 
integrate easily with the bone since they are the main constituent of the natural 
bone. β-tricalcium phosphate (β-TCP) has both osteo-conductive, osteo-inductive, 
and cell-mediated resorption properties that promotes the new bone formation due 
to its excellent biodegradability (degradation into calcium and phosphate ions) in the 
body (Park et al. 2018).
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4.1.1 Natural Polymers Based Scaffolds for Bone 
Regeneration 

Several β-TCP based scaffolds combined with natural polymers, such as 
chitosan/gelatin (Serra et al. 2015), and dextran (Ghaffari et al. 2020), and inter-
connected porous scaffolds (Wang et al. 2019a, b) have been demonstrated to be 
useful for bone tissue regeneration. These scaffolds promoted cell migration, prolif-
eration, and angiogenesis. Similarly, β-TCP based scaffolds combined with graphene 
oxide (GO) nanoparticles showed great potential in bone tissue engineering (Liu et al. 
2020). 

Studies have demonstrated the applications of nanocomposites such as poly-
lactic acid (PLA)—carbon nanotubes for enhanced osteoblast adhesion and prolifer-
ation (Mazaheri et al. 2015), dexamethasone-loaded calcium phosphate—collagen 
nanocomposites for the promotion of angiogenesis and osteogenesis (Chen et al. 
2018), and nanofiber scaffolds (e.g. chitosan/poly-ethylene oxide) for bone regener-
ation (Christenson et al. 2007). 

Although hydrogels such as type I collagen (COL) has active role in bone tissue 
repair, it suffers from poor mechanical strength. Addition of graphene oxide (GO) 
nanosheets greatly enhance the mechanical strength. This has been recently demon-
strated in curing the cranial defects in rats by incorporating GO-COL into cultured 
osteo-differentiated (OiECM) bone marrow mesenchymal stem cells (BMSCs) 
(Fig. 4.1) (Liu et al.  2018). This approach ameliorated the osteogenic ability, mechan-
ical strength, and biocompatibility of the GO-COL hydrogels. In another recent study, 
mesoporous silica bioactive glass—graphene oxide scaffold demonstrated its poten-
tial in promoting vascular ingrowth, thereby repairing bone defects in a rat cranial 
model (Wang et al. 2019a, b). 

Fig. 4.1 Application of graphene oxide–collagen-I nanocomposite along with osteo-inductive 
ECM in curing the cranial defect in rat. Reproduced with permission (Liu et al. 2018). Copyright 
2018, ACS
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4.1.2 Hydroxyapatite and Graphene Oxide Scaffolds 
for Bone Regeneration 

Three-dimensional porous hydroxyapatite and reduced graphene oxide HA/rGO 
scaffolds with ordered pore structure enabled beneficial cell adhesion and ingrowth, 
promoting the osteogenic differentiation of BMSCs (Fig. 4.2) (Zhou et al. 2019). The 
HA/rGO-6/0.3 scaffolds did not show cytotoxicity, but promoted the cell prolifera-
tion of BMSCs. This study also confirmed that newly formed bones filled inside the 
scaffold. With many new bone formations, the scaffold cracked slowly and exposed 
rGO for further proliferation of stem cells. Finally, the cracked scaffold degraded 
and wrapped by the new bone. These implants accelerated bone ingrowth and repair 
of fractured sites. In another interesting work, injectable bone cement was reinforced 
with Au NPs decorated HA/rGO nanocomposites to strengthen bone regeneration 
(Chopra et al. 2023). 

Other recent work for bone regeneration and anti-infection demonstrated 
the preparation of nano-HA scaffold loaded with glycopeptide antibiotics (e.g., 
vancomycin) and its sustained release from the composite polylactic acid (PLA) and 
poly (lactic acid-glycolic acid) scaffold microspheres (Li et al. 2023). These scaffolds 
showed excellent biomechanical and biocompatible properties, thereby effectively 
inhibiting the growth of Staphylococcus aureus, and repairing bone defects.

Fig. 4.2 Flow-chart representation of the application of porous scaffold made of hydroxyapatite and 
reduced graphene oxide nanocomposite for bone ingrowth and repair. Reproduced with permission 
(Zhou et al. 2019). Copyright 2019, ACS 
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4.1.3 Antibacterial Nanoparticles Coated Orthopaedic 
Implants 

In orthopaedic implants, NPs have been used especially as coating materials to 
combat bacterial infections. The drug resistant bacterial infections (e.g., Methicillin-
resistant Staphylococcus aureus, Staphylococcus epidermidis) are serious in trau-
matic injury patients who stay longer in intensive care units. The selenium (Se) 
NP (with the size of 30–70 nm) coatings on titanium implants strongly inhibited 
the biofilm formation, caused by the aforementioned drug resistant bacteria in an 
infected femur model rats (Tran et al. 2019). 

Chitosan scaffolds with Ag or Se NPs served effectively as antibacterial implants 
for wound dressing application (Biswas et al. 2018). Although both Ag and Se 
NPs showed their antibacterial effects to three bacterial strains (S. aureus, MRSA 
and E. coli), Ag caused cytotoxicity to mouse fibroblast cells, whereas Se NPs 
did not. Conversely, Au-NPs owing to their anti-inflammatory property, exhibited 
promising therapeutic effects to iontophoresis, which is a therapeutic treatment of 
injury. The Au-NPs enhanced the effect of a nonsteroidal anti-inflammatory drug, 
diclofenac diethylammonium, while reducing inflammatory cytokines in treating 
traumatic Achilles tendinitis (Dohnert et al. 2012). These three combinations (Au-
NP, drug, iontophoresis) lowered the levels of inflammatory cytokines in treated rats, 
compared to untreated control groups. 

The focal skeletal malignant osteolysis is another serious problem. Polymer based 
NPs such as polylactide formulations loaded with DOX, coated with bone-seeking 
pamidronate, have been used for the targeted therapy of malignant skeletal tumors 
(Yin et al. 2016). This nanoformulation attenuated the focal skeletal malignant 
osteolysis progression in a murine model, compared to the control, non-targeted 
DOX-NPs. 

4.2 Hydrogel Scaffolds for Osteogenic Differentiation 
of Stem Cells 

Novel zwitterionic Chitosan/β-tricalcium phosphate hydrogel/GO scaffolds have also 
been used for bone tissue engineering (Wang et al. 2023). These scaffolds displayed 
improved osteogenic differentiation of bone mesenchymal stem cells (Fig. 4.3). The 
porosity of these scaffolds reported to be increased with an increase in GO concen-
tration. Both swelling and degradation percentage of the scaffolds decreased with 
increasing GO concentration.

Alternatively, calcium silicate (CS) bioceramics has attracted a great deal of atten-
tion, owing to their excellent capability to stimulate osteogenesis (Zhou et al. 2021). 
This work has demonstrated a significant enhancement of the osteogenic differen-
tiation of bone marrow mesenchymal stem cells (BMSCs) via the stimulation of a 
macrophage conditioned medium pre-treated with CS extracts. Compared to β-TCP
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Fig. 4.3 a Optical images of different hydrogels. Z-CS/β-CTP: Zwitterionic Chitosan/β-tricalcium 
phosphate; GO: graphene oxide. The color gets intensified with an increase of GO (GO-1 to GO-4). 
b Porosity of corresponding scaffolds as in (a) increased with an increase in GO concentration. c 
SEM images of those scaffolds with different GO concentrations. Lower panels are enlarged images 
of those red dotted boxes in the upper panels. d Swelling percentage and e Degradation percentage 
of scaffolds with different GO concentrations (Wang et al. 2023)

implants, CS scaffolds promoted the osteogenesis due to the presence of oncostatin-
M (OSM) protein in the macrophage-conditioned medium, thereby accelerating the 
new bone formation at defective sites in the femoral bone defects in rats. Micro-CT 
3D reconstruction images, and the percentage calculation of bone mineral density 
(BMD), and bone volume relative to its total tissue volume (BV/TV) confirmed the 
superiority of CS scaffolds implants over β-TCP implants (Fig. 4.4).
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Fig. 4.4 a Micro-CT 3D reconstruction (coronal section) of bone regeneration in the femoral bone 
defect in animals; white, yellow, and blue refer to the original bone, new bone, and implanted 
material, respectively. b Bone mineral density (BMD) versus time in weeks. c Percentage of new 
bone formation, relative to its total tissue volume (BV/TV) (n = 10 rats/batch) (Zhou et al. 2021) 

4.2.1 Polymer/Stem Cells Implanted Hydrogels for Cartilage 
Regeneration 

Very recently, an innovative articular cartilage (ARTiCAR) implant combining 
nanofibrous poly-ε-caprolactone (PCL) and BMSCs in alginate/hyaluronic acid 
hydrogel has been reported for osteoarticular regeneration (OAR) (Keller et al. 2019). 
The preclinical safety evaluation of the NanoM1-BMP2 bone wound dressing implant 
in vitro and BMSCs mixed in alginate/hyaluronic acid hydrogel in vivo have been 
carried out for subchondral bone and cartilage regeneration (Fig. 4.5).
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Fig. 4.5 a Scheme depicting the combined advanced therapy medicinal product (ATMP) ARTiCAR 
(ARTicular CArtilage and subchondRal bone implant) involving subchondral bone (compartment 1) 
and articular cartilage (compartment 2) regenerations. The composite combines an FDA-approved 
synthetic polymer poly-ε-caprolactone (PCL) and bone marrow-derived mesenchymal stem cells 
(BMSCs) embedded in alginate/hyaluronic acid hydrogel. The NanoM1-BMP2 refers to the nanofi-
brous PCL functionalized with bone morphogenetic protein 2 and tested for in vitro cytotoxicity 
(step 1). The whole ARTiCAR tested for in vivo toxicity, biodistribution studies in an osteochondral 
defect nude rat model (step 2) and for feasibility, non-invasive monitoring (step 3) in a sheep intra-
articular model. b Cartoon depicting the usefulness of The ARTiCAR for simultaneous regeneration 
of the articular cartilage and the subchondral bone. In the first step, the NanoM1-BMP2 is applied 
to the injured subchondral bone. In the second step, the harvested BMSCs from the patient is mixed 
with the hydrogel and applied to fill the osteoarticular defect. Reproduced with permission (Keller 
et al. 2019). Copyright 2019, Nature Publishing Group
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4.3 Nanomedicine for Controlled Orthopaedic Drug 
Delivery 

To avoid the complications such as infections associated with post-operative 
orthopaedic surgery, nanomedicine based controlled drug delivery of antibiotics 
would be beneficial. Plant based polysaccharides have emerged as potential candidate 
systems for orthopaedic drug delivery and treatment (Hormozi 2023). 

Three-dimensional (3D) printing technology is a powerful technique for the 
preparation of tissue engineering scaffolds (Adarkwa et al. 2023; Mo et al.  2023; 
Samie et al. 2023; Song et al. 2023). For instance, polylactic acid (PLA)/nano-
hydroxyapatite (nHA) scaffolds (with high porosity and interconnected 3D networks) 
were loaded with vancomycin (Van)-based chitosan (CS) hydrogel (CS-Van). The 
resulting PLA/nHA/CS-Van composite scaffold showed enhanced mechanical and 
biocompatible properties, hydrophilicity, sustained release of the drug in vitro 
(> 8 weeks). Furthermore, the composite scaffold inhibited the growth of Staphylo-
coccus aureus (S. aureus) effectively, demonstrating its efficacy for treating infected 
bone defects (Fig. 4.6) (Gao et al.  2023).

In conclusion, nanomedicine and tissue engineering approaches have shown great 
promises in orthopaedics. In recent years, 3D bioprinting of bone mimicking scaffolds 
comprised of polymer (e.g., polylactic acid, polycaprolactone), and inorganic NPs 
(e.g., reduced graphene oxide, hydroxyapatite/chitosan) have emerged as potential 
candidate systems for bone tissue engineering (Seyedsalehi et al. 2020; Zhang et al. 
2021). This chapter covered the applicability of these scaffolds in promoting scaffold 
fidelity, osteogenic differentiation and mineralization.
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Fig. 4.6 a SEM images of CS-Van, b the standard curve of Van, c In vitro release profiles of CS-Van, 
S3 and S4, d antibacterial test, e inhibition zone diameter for S. aureus with (a) PLA/nHA vertical 
orthogonal scaffold (S1), (b) PLA/nHA staggered orthogonal scaffold (S2), (c) PLA/nHA/CS-Van 
vertical orthogonal scaffold (S3) and (d) PLA/nHA/CS-Van staggered orthogonal scaffold (S4) 
(Gao et al. 2023) Copyright 2023, RSC
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Chapter 5 
Nanomedicine for Cardiac Diseases 

Abstract Nanomedicine is a rapidly developing field with the potential to transform 
the treatment of cardiac diseases. It entails the use of nanoscale materials and devices 
to diagnose, treat, and prevent a variety of cardiovascular diseases. The development 
of nanocarriers for drug delivery is a key application of nanomedicine in cardiology. 
This chapter delineates the applications of nanomedicine in diagnostics and treatment 
of cardiovascular diseases. 

Keywords Nanomedicine · Cardiovascular diseases · Dual drug delivery ·
Dextran NPs · Cardiac tissue repair · Nanoparticle/composite patch · Exosomes ·
Stem cells · Cardiac regeneration 

Cardiovascular diseases or disorders (CVDs) are one of the leading causes of signif-
icant morbidity and mortality. The increasing mortality rate is often attributed to 
hypertension, a key factor for the onset of CVDs such as myocardial infarction, 
atherosclerosis, thrombosis, and restenosis. Among these CVDs, atherosclerosis 
(thickening of the arterial vessel wall due to build-up of fats, cholesterol), myocar-
dial infarction (heart attack), coronary artery disease, and arrhythmias (irregular 
heartbeat) are considered as the main causes of heart failure. This requires the 
development of novel diagnostic and therapeutic methods for chronic heart failure 
(Haeck et al. 2012). Although considerable progress has been made over the years 
in imaging modalities such as magnetic resonance imaging (MRI) and computed 
tomography (CT), diagnostic nanomedicine aims to improve the early detection by 
using nanoparticle-based contrast agents for better visualization of the heart and 
blood vessels. 

5.1 Nanomedicine for Diagnostics and Therapeutics 
of CVDs 

Nanomedicine has a great potential for the diagnostics and treatment of CVDs. 
Nanomedicine based therapeutics and molecular imaging methods emerge as novel
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strategies in addressing the morbidity and mortality associated with myocardial 
infarction (Ferreira et al. 2015). Nanomedicine enables controlled delivery of active 
drugs encapsulated in nanocarriers for targeted delivery into the vascular site. This 
targeted nanomedicine approach is increasingly used for the treatment of CVDs like 
the dissolution of atherosclerotic plaques accumulated in the coronary arteries walls 
(Kleinstreuer et al. 2018). 

5.1.1 Nanomedicine for Cardiac Tissue Repair 
and Reinforcement 

Importantly, nano/biomaterials combined with stem cells offer great promises for 
cardiac tissue repair and reinforcement (Hasan et al. 2016; Tariq et al. 2022). Direct 
delivery of cardioprotective drugs (e.g., adenosine) into the ischemic-reperfused 
myocardium poses great challenges. Biodegradable silica nanoparticles have been 
used as carriers for the delivery of adenosine into ischemic-reperfused heart tissue 
(Galagudza et al. 2012). 

Recently, several reviews focused on addressing novel nanoparticles (NPs) and 
nanomedicine approaches for early disease diagnosis (e.g., molecular imaging) 
and advanced therapeutic (e.g., drug eluting stents) applications of CVDs such as 
restenosis, atherosclerosis, and MI (Godin et al. 2010; Chopra et al. 2022; Mohamed 
et al. 2022; Ouyang et al. 2022; Saeed et al. 2023). 

Oxidative stress induced free radicals are closely associated with atherosclerosis 
and many other heart diseases. Polymeric PLGA NPs loaded with an antioxidant drug 
quercetin, improved the bioavailability of the drug, and prevented the atherosclerosis 
(Giannouli et al. 2018). Biodegradable porous silicon NPs functionalized with atrial 
natriuretic peptide and loaded with a cardioprotective small molecule reduced the 
hypertrophic signaling in the endocardium, demonstrating the targeted delivery of 
drug to the injured region of the myocardium (Ferreira et al. 2017). 

5.1.2 Nanocarriers for Cardiac Delivery of Drugs 
and MicroRNA 

Calcium phosphate NPs have been emerged as therapeutic vehicles for cardiac 
delivery of MicroRNAs (Di Mauro et al. 2016). Studies have shown that calcium 
phosphate NPs can be internalized and delivered microRNAs efficiently into cardiac 
cells (cardiomyocytes) both in vitro and in vivo. 

Interestingly, NPs have also been used as protective agents to minimize the cardiac 
toxicity and disorders associated with oxidative stress. For instance, cerium oxide 
NPs showed a promising ameliorative and prophylactic toxicity effect, compared to 
the reference drug, Captopril (El Shaer et al. 2017). Vesicles such as exosomes (< 100
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nm) could serve as vehicles for lipids, proteins, DNA and RNAs, and therefore, offers 
new insights into personalized nanomedicine for acute cardiac, lung, and kidney 
injury (Terrasini and Lionetti 2017). 

Nanotechnology-based diagnostics and therapeutics using mesoporous silica NPs 
have been used to study the heart failure in cardiac tissue of a murine heart failure 
model. After intravenous administration, these nanovectors were found to be inter-
nalized and accumulated in failing myocardium, through the labelling of perinuclear 
region of cardiomyocytes in vivo (Ruiz-Esparza et al. 2016). 

Other diseases and their treatment methods are closely associated to heart failure. 
For instance, anticancer drugs are prone to exhibit toxicity to cardiac cells. However, 
when DOX is encapsulated within exosomes, no cardiac toxicity observed from 
in vivo studies, resulting in about 40% of accumulation of exosome-DOX in the 
heart (Toffoli et al. 2015). The detoxifying action of liposomes was demonstrated in 
a mouse cardiovascular model (Bertrand et al. 2010). 

Nanomedicine offers great potential in cardiac catheterization via targeted drug 
delivery, while preventing the endothelial dysfunction or damage of cells by reduced 
inflammation or increased nitric oxide bioavailability (Sobolewski and El Fray 
2015). The sustained delivery of cardiac therapeutics [Pyr1]-apelin-13 polypep-
tide in vivo for treating heart injuries was achieved by PEG-conjugated liposomal 
NPs. The cardiac dysfunction was prevented by this approach through the sustained 
bioavailability of cardio-protective therapeutics (Serpooshan et al. 2015). 

5.2 Nanotechnology Assisted Cardiac Regenerative 
Medicine 

Cardiac regenerative medicine is an emerging paradigm. Carbon nanotubes (CNTs) 
have received considerable interest in cardiovascular system, owing to its remarkable 
characteristics in promoting in vitro growth of cardiac cells and improving prolifera-
tion, maturation, and electrical behaviour of cardiomyocytes (Martinelli et al. 2013). 
Myocardial tissues cultured on the CNT–GelMA (gelatin methacrylate) hydrogel 
scaffold showed high mechanical strength and electro-activity with spontaneous 
synchronous beating rates, compared to those cardiac tissues cultured on pristine 
GelMA hydrogels (Shin et al. 2013). 

Magnetic bifunctional NPs conjugated with antibodies were used for treating acute 
myocardial infarction through the targeting of CD45 expressing stem cells (exoge-
nous bone marrow-derived) or CD34-positive cells (endogenous injured cardiomy-
ocytes) (Cheng et al. 2014). Methacrylated gelatin biocompatible hydrogel was used 
as a delivery vehicle to deliver polyethylenimine (PEI) functionalized graphene oxide 
nanosheets complexed with a pro-angiogenic gene—vascular endothelial growth 
factor (VEGF) for myocardial therapy (Paul et al. 2014). This nanocomposite 
approach showed significant cardiac performance in echocardiography after 14 days
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of post-injection. The nanocomposite treated infarcted hearts showed a reduction in 
scar area. 

Early allograft acute rejection in heart transplantation is a big problem. Simulta-
neous diagnosis by non-invasive MRI and gene therapy (mediating gene transfection 
in T cells) by multifunctional polymeric nanocarriers provided a great relief in heart-
transplanted rats (Guo et al. 2012). Nanopatterned (nanofibrous electro-spun) cardiac 
patches prevented defective electro-coupling and improved the therapeutic efficacy 
of myocardial infarction, thereby opening avenues in translational myocardial tissue 
engineering and nanomedicine (Lin et al. 2014). 

Cobalt protoporphyrin encapsulated amine-functionalized mesoporous silica NPs 
(CoPP@aMSNs)—labelled bone marrow stromal cells (BMSCs) have been synthe-
sized (Fig. 5.1) and exhibited photoacoustic imaging (PA) enhancement—guided cell 
delivery and antioxidant protection of stem cells. (Yao et al. 2018) The drug, CoPP 
released upon MSN degradation, and endowed the labelled BMSCs with persistent 
antioxidant activity. 

The mouse myocardium implanted with NPs -labelled BMSCs using an insulin 
needle and analysed by both ultrasound and photoacoustic imaging (Fig. 5.2a–d). 
The photoacoustic imaging observed at the laser excitation of 680 nm revealed 
clearly the implanted stem cells (Fig. 5.2a, b). The histological hematoxylin and 
eosin (H&E) staining of the dissected myocardium after 24 h post-injection showed 
the engrafted BMSCs corresponding to the enhanced photoacoustic signal region 
(Fig. 5.2c). Nevertheless, the photoacoustic imaging (Fig. 5.2e, f) showed the 
leakage of implanted BMSCs into pericardial cavity, indicating the unsuccessful 
intra-myocardial implantation.

Fig. 5.1 Schematic representation of cobalt protoporphyrin encapsulated mesoporous silica NPs 
(CoPP@aMSNs)-labelled BMSCs for implantation and cell protected therapy guided by photoa-
coustic (PA) imaging. TAT peptide facilitates the cell internalization. Reproduced with permission 
(Yao et al. 2018). Copyright 2018, Wiley-VCH 
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Fig. 5.2 The ultrasound and photoacoustic images of the cardiac structure before (a) and  after  
(b) intra-myocardial injection of BMSCs. The white curves in the ultrasound images denote the 
outline of the myocardium, whereas the yellow arrow indicates the strengthened photoacoustic 
signal from the injected particles. The line patterns at the bottom show the ECG and respiratory 
coupling signals of nude mouse. c Haemotoxylin and Eosin (H&E) stained microscopic image 
of the BMSCs (blue) in the myocardium. d The ultrasound image process of the intramyocardial 
injection using 30 G needle. e, f The long-axis view of cardiac structures before (e) and  after  
(f) intramyocardial injection of the labelled BMSCs with the signal (dotted circle, f) corresponding 
to the leaked BMSCs in the pericardial cavity. The H&E staining of different organ sections of 
nude mice for the control (g: Matrigel/saline solution) and labelled BMSCs (h) taken on day 28. 
Reproduced with permission (Yao et al. 2018). Copyright 2018, Wiley-VCH
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On a positive note, CoPP@aMSNs-labelled BMSCs did not cause any acute toxi-
city and pathological abnormalities to all major organs (liver, spleen, heart, lung and 
kidney) after 4 weeks of intra-myocardial injection, indicting the biosafety of this 
nanomedicine strategy (Fig. 5.2g, h). 

5.2.1 Dextran NPs Assisted Dual Drug Delivery for Cardiac 
Regeneration 

Cardiac regeneration holds great promise in restoring the full functionality of 
a damaged heart. However, it remains a challenge as the injured or damaged 
heart contains a vast number of fibroblasts and myofibroblasts. To replenish the 
lost cardiomyocytes, a direct fibroblast cell reprogramming into cardiomyocytes 
is regarded as an attractive therapeutic option. For this purpose, two small drug 
molecules, CHIR99021 (aminopyrimidine derivative for glycogen synthase kinase, 
enzyme GSK-3 inhibitor) and SB-431542 (a drug developed by GlaxoSmithKline 
for activin receptor-like kinase, ALK5, ALK4 and ALK7 inhibitor) were encapsu-
lated into dextran NPs (functionalized with polyethylene glycol and atrial natri-
uretic peptide for pH-triggered drug delivery into the affected areas for direct 
reprogramming of fibroblast into cardiomyocytes (Ferreira et al. 2018). 

5.2.2 Nanotherapeutic Approach for Alleviating Cardiac 
Brain Injury 

Another important issue is cardiac arrest/cardiopulmonary resuscitation (CA/CPR)-
induced brain injury, which necessitates feasible therapeutic options. To address 
this, a nanotherapeutic approach based on octanoic acid (OA) and a neutrophil 
membrane expressing RVG29, RVG29-H-NP-OA has recently been developed for 
ameliorating the CA/CPR-induced brain injury (Yang et al. 2023). Peptide (RVG29-
rabies virus glycoprotein) conjugated OA-NP traversed BBB and targeted the injured 
brain. Due to their antioxidant, mitochondria stability and anti-inflammatory effects 
of OA, RVG29-H-NP-OA significantly improved the survival rate and neurological 
functions of CA/CPR model rats from 40% to 100% over 24 h (Fig. 5.3).
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Fig. 5.3 A schematic representation of brain injury relay targeting nanotherapeutic approach based 
on octanoic acid (OA) and a neutrophil membrane expressing RVG29 peptides for improving the 
cardiac arrest/cardiopulmonary resuscitation-induced brain injury (Yang et al. 2023). Copyright 
2023, ACS 

5.2.3 Nanoparticle-Based Composite Patch for Myocardial 
Infarction 

Myocardial infarction, generally identified as heart attack, occurs when blood flow to 
one or more areas of the heart muscle is blocked. Coronary artery disease is the main 
cause of myocardial infarction. Cardiac delivery of therapeutic agent may serve as 
a promising platform for the treatment of heart diseases. Toward this end, nanocar-
riers have been developed for efficient delivery of therapeutic agents to target the 
heart. Earlier, porous silicon-based nanomaterials have been used for both diagnostic 
and therapeutic applications (Li et al. 2018; Tieu et al. 2019). Although biocompat-
ible porous silicon based multifunctional drug delivery systems (DDS) have been 
widely used for cancer therapy (Zhang et al. 2019), their application in cardiac 
tissue engineering is limited. Porous silicon micro and nanoparticles showed in vivo 
biocompatibility to the heart tissue (Tölli et al. 2014). 

Recently, a biodegradable polymer (polyglycerol sebacate) nanoparticle conduc-
tive composite patch loaded with a small molecule (3i-1000) drug, has been developed 
for treating myocardial infarction (Zanjanizadeh Ezazi et al. 2020). This nanocom-
posite contained collagen type I to promote cell attachment, and polypyrrole for 
inducing electrical conductivity and cell signaling (Fig. 5.4).

Cardiomyoblast cell attachment and morphology on the surface of cardiac patches 
were observed using a scanning electron microscope (SEM) (Fig. 5.5). High infiltra-
tion and attachment of cardiomyoblast cells were found on the collagen-containing 
patches (0.5C–5P) within 24 h.
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Fig. 5.4 A schematic representation of the synthesis of elastic biodegradable and conductive 
cardiac patches. Polycondensation of sebacic acid and glycerol was used to prepare polyglyc-
erol sebacate (PGS). Natural polymer (collagen type I) and conductive polymer (polypyrrole PPy) 
were added. The composite polymer was cured at high temperature under vacuum, resulting in a 
conductive biodegradable heart patch (Zanjanizadeh Ezazi et al. 2020). Copyright 2020, ACS

The in vitro experiments confirmed that a high density of cardiac myoblast cells 
was attached on the patches, which remained viable for > 1 month. Conductive 
patches showed high drug release with no cytotoxic effect upon degradation of the 
patches, and cell proliferation was induced by the small molecule drug. 

A recent work on magnetic-guided accumulation of exosomes suggested that the 
antibody-conjugated magnetic NPs can be used to capture and deliver circulating 
CD63-expressing exosomes in infarcted heart tissue, leading to reductions in infarct 
size as well as improved angiogenesis in rat models of myocardial infarction (Liu 
et al. 2020). 

In conclusion, this chapter reviewed the recent developments of nano/biomaterials 
having the attributes of mechanical, conductive, and biological requirements for a 
successful cardiac treatment.
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Fig. 5.5 SEM images of cardiomyoblast morphology upon cell attachment on the surface of a 0C– 
0P, b 0C–1P, c 0.5C–0P, and d 0.5C–5P patches on the control (non-conductive) and conductive 
samples during 24 h. Collagen-containing patches showed high infiltration and attachment on 0.5C– 
5P patches within 24 h. Scale bar: 100 µm (Zanjanizadeh Ezazi et al. 2020). Copyright 2020, 
ACS
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Chapter 6 
Conclusions and Perspectives 

Abstract This chapter summarises the applications of nanomedicine in diagnostics 
and therapeutic approaches for cancer, neurodegenerative diseases, cardiovascular 
diseases, and orthopaedics related bone tissue engineering. 

Keywords Nanomedicine · Cancer · Cardiovascular diseases · Orthopaedics ·
Neurodegenerative diseases · Drug delivery · Nanomaterials · Combination 
immunotherapy ·Multifunctional nanoparticles · Liposomes · Targeted delivery 

In this Brief, we have extensively covered different types of emerging nanoma-
terials and nanoparticles (NPs) as theranostic tools for cancer, neurodegenerative, 
orthopaedic, and cardiac diseases. Over the years, there have been enormous research 
efforts in nanomaterials, aiming to create new scientific fields with interdisciplinary 
approaches covering chemistry, physics, bioengineering, and medicine. However, 
the field of nanomedicine is still in its infancy state, which necessitates active collab-
oration with different fraternities with diverse expertise to tackle the challenges of 
these burgeoning diseases. 

Cancer remains an elusive disease and therefore it is a major health chal-
lenge worldwide. Nanomedicine has greatly contributed to cancer in the form of 
imaging agents, and drug delivery carriers. However, there are many challenges to 
be addressed. The tumor microenvironment is a key factor which helps the cancer 
cells proliferate, invade with metastasis and drug resistance. This evades the cancer 
cell to be killed by the common treatments such as chemotherapy, radiotherapy, and 
surgery. This necessitates the development of a cancer therapy resistance especially 
in solid tumors. Recently, cancer nanomedicine offers a great advantage in targeting 
the tumor microenvironment and treating drug resistance through the advancements 
in NPs (Sa et al. 2023). 

Importantly, NP-based delivery systems have been developed for cancer 
immunotherapy. Combination immunotherapy is a growing field, which uses the NP-
assisted therapies (photothermal, photodynamic and radiotherapy) for targeting and 
controlling the immunosuppressive cells (including T-cells, dendritic cells, tumour-
associated macrophages, etc.) in the tumour microenvironment (Nam et al. 2019;
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Yoon et al. 2018). Mesoporous silica NP still emerges as a potential platform for incor-
porating MEK inhibitor (MEK: mitogen-activated protein kinase enzyme) and anti-
PD-1 antibody (PD: programmed cell death protein; checkpoint protein on immune 
T cells) for combined targeted therapy and immune checkpoint blockade (Liu et al. 
2019). 

Novel genetic nanomedicines based on a multifunctional nanodevice (lipid NPs, 
GALA peptide and siRNA) enabled selective lung targeting by the judicious control 
of lipid NP composition, and improved lung endothelium CD31 gene silencing, 
thereby achieving efficient therapy for metastatic lung cancer (Abd Elwakil et al. 
2019). 

The MRI is a powerful non-invasive tool for early and accurate diagnosis of 
Alzheimer’s disease (AD) with behavioural changes and cognitive impairment. 
Recent years have witnessed significant research activities in the development of NP-
based contrast agents functionalized with antibodies, peptides or small molecules for 
brain MRI (Azria et al. 2017). The ability to target amyloid plaques depends on the 
size, composition of NPs and their ability to cross the blood–brain-barrier (BBB). 

Another emerging nanomaterial is black phosphorus. It can serve not only as a 
carrier for drugs but also as a neuroprotective agent for neurodegenerative diseases 
(Ge et al. 2019). Besides brain biomarkers, peripheral blood and skin tissues emerge 
as potential prognostic biomarkers for probing the disease pathology in neurode-
generative diseases. The application of nanomedicine in the form of scaffolds, drug 
delivery and imaging systems has effectively improved the neural stem cell-based 
treatments for neurodegenerative diseases. 

As regards orthopaedic and cardiac diseases, nanomedicine-assisted stem cell 
therapy is an interesting paradigm. One of the notable findings in bone regeneration is 
the demonstration of articular cartilage implant for osteoarticular regeneration, which 
utilises nanofibrous poly-ε-caprolactone (PCL) and BMSCs in alginate/hyaluronic 
acid hydrogel (Keller et al. 2019). This work may enter into phase I clinical trials 
with the potential of treatment for osteochondral defects, tendon degeneration and 
age-related musculoskeletal degenerative issues. 

Nanomedicine provides advantages in imaging-guided stem cell transplantation 
and therapy. A notable work is on a multifunctional nanoplatform encompassing 
mesoporous silica NP and cobalt protoporphyrin (antioxidant drug) for photoacoustic 
imaging-guided cell delivery and antioxidant protection of stem cells (Yao et al. 
2018). This method allows for monitoring specific labelling and delivery of stem 
cells in myocardial tissues with the advent of photoacoustic imaging. 

Current gene editing technology based on engineered nucleases such as clustered 
regularly interspaced short palindromic repeat (CRISPR)–Cas nucleases combined 
with Au NPs paves a safer way in treating numerous diseases associated with stem and 
progenitor cells (Shahbazi et al. 2019) This combined nano/gene editing approach 
obviates the difficulties associated with the current cellular entries such as electro-
poration, and virus transduction. Nanotechnology mediated gene editing emerges as 
an efficient delivery vehicle for CRISPR nucleases of therapeutic interest. 

Although nanomaterials provide numerous benefits, we cannot rule out their disad-
vantages. For instance, a recent study cautioned the negative side of carbon nanotubes
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(CNTs). When multiwall CNTs (MWCNTs) introduced into the CNS, they induced 
higher expression of neuronal nitric oxide synthase in cardiovascular medulla, atten-
uating sympathetic nerve activity and causing hypotension (low blood pressure and 
heart rate) (Ma et al. 2018). On the other hand, black phosphorus nanosheets can be 
used to protect neuronal cell from damage by harvesting Cu2+ ions with their strong 
binding, thereby reducing the cytotoxic ROS generation and copper dyshomeostatis 
(Ge et al. 2019). 

Nanomedicine has attracted widespread interest in recent years, thanks to the 
emergence of novel nano/biomaterials. Some of the recent advancements include 
2D nanomaterials for photothermal therapy (Lin et al. 2017; Cheng et al. 2020; 
Liu et al. 2020a, b, c), multifunctional Au-based nanomaterials for enhanced cancer 
radiotherapy (Zhang et al. 2018; Wang et al. 2023), chemo/photothermal synergistic 
cancer therapy (Liu et al. 2020a, b, c; Chang et al. 2022; Ouyang et al. 2023), and 
synergistic hyperthermia/immunotherapy (Chang et al. 2021). 

A brief introduction (Chap. 1) is given to nanomedicine, an emerging paradigm 
intersecting two burgeoning fields of nanotechnology and medicine. Different func-
tional nanomaterials, nanocomposites and nanostructures are discussed for diag-
nostics and therapeutic applications of cancer, cardiovascular, orthopaedics, and 
neurodegenerative disorders. 

In Chap. 2, we have delineated various multifunctional QDs, magnetic NPs and 
Au-based nanostructures for bioimaging and therapy. Inorganic NPs or organic 
polymer mediated drug delivery vehicles and liposomes for targeted delivery are 
discussed. We have also discussed cancer nanomedicine and their promises in preop-
erative therapeutics, neoadjuvant radiotherapy, chemotherapy, phototherapy, and 
immunotherapy. 

In Chap. 3, we have discussed different nanomedicine approaches for neurode-
generative diseases such as Alzheimer’s disease (AD). Several NP-based strategies 
(e.g., Au-curcumin, PEG-Au NPs,) are addressed to prevent amyloid fibrillation and 
tau protein hyper-phosphorylation, so that apoptosis and neurodegeneration can be 
inhibited. Cerium oxide or ceria (CeO2) NPs can be used as an effective antioxi-
dant for various neurodegenerative diseases including Alzheimer’s and Parkinson’s 
diseases, ischemic stroke, and multiple sclerosis. 

In Chap. 4, we have discussed the emerging applications of nanomedicine and 
tissue engineering approaches in orthopaedics. Bone mimicking scaffolds composed 
of biocompatible and biodegradable polymers such as polylactic acid and polycapro-
lactone, and inorganic NPs (e.g., reduced graphene oxide, hydroxyapatite/chitosan) 
have shown great promises in bone tissue engineering by enhancing scaffold fidelity, 
osteogenic differentiation, and mineralization. 

In Chap. 5, we have discussed the applications of nanomedicine in diagnos-
tics and treatment of cardiovascular diseases (CVDs). Notably, antibody-conjugated 
magnetic NPs have been used to capture and deliver circulating CD63-expressing 
exosomes to the infarcted heart tissue in rat models of myocardial infarction (Liu 
et al. 2020a, b, c) This magnetic-guided accumulation of exosomes in infarcted tissue 
led to reductions in infarct size as well as improved angiogenesis.
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Although nanomaterials have great potential for the diagnosis of cancer, cardiac 
and neurodegenerative diseases, their therapeutic potential is a big question mark 
owing to their unknown toxicity concerns in the end. Nevertheless, numerous in-
vivo studies demonstrated that they are safe and cleared from the body. Compared to 
inorganic nanomaterials, organic based liposomes, lipids, and biodegradable chitosan 
NPs and FDA-approved polymers are quite safe to unravel the mysteries of the 
biological world. 

Interestingly, polysaccharide-based drug delivery systems have been utilized for 
orthopaedic treatments and controlled delivery of anticancer drugs (Hormozi 2023) 
Furthermore, naturally occurring biocompatible NPs and polymers can be used to 
deliver anticancer drugs, proteins, peptides, and other genetic materials such as 
miRNA, siRNA, etc. (Ahmad et al. 2022). 

Despite the promise of nanomedicine for the treatment of cardiac diseases, there 
are also challenges that must be overcome. For example, the potential toxicity of NPs 
must be carefully evaluated, and the long-term effects of nanomedicine treatments 
must be thoroughly studied. 
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