
Bioinspired Materials Inherited 
with Antimicrobial Properties for Tissue 
Engineering 

8 

Touseef Amna , Ke Shang , Faheem A. Sheikh , Rasha Alnefaie, 
Jun-Feng Zhang , Abdullah A. A. Alghamdi , 
Somia Abd Alla Mohammed El Hassan, and M. Shamshi Hassan 

Abstract 

The advancement in the preparation of biomaterials that possess tissue engineer-
ing applications has predominantly concerted on developing biomimetic 
materials inherited with the properties of designing new tissue and very definite 
in cellular responses. The tissue generation is owed by identifying specific 
biomolecules which can be influenced by changing the microenvironment. Tissue 
engineering scaffolds and drug delivery systems are gaining huge interest these 
days. However, one of the common threats associated with the insertion of an 
implant is the colonization of pathogenic microbes and the development of 
bacterial/fungal or mixed biofilms in the implant. Theoretically, biomimetic 
materials mimic the functions of extracellular matrix (ECM) in tissues; therefore, 
biomimetic scaffolds can offer biological signals for cell-matrix interactions to 
promote tissue growth. Various biodegradable polymers are used as a base for
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local drug delivery or temporary sustenance for tissue regeneration. These 
polymers are disintegrated nonenzymatically through hydrolysis or by particular 
enzymes. Excellent biocompatibility marks them as competent material for vari-
ous medical purposes. Nevertheless, the renewal of living tissue and the capabil-
ity to preclude microbial colonization should be considered while fabricating 
materials for implant construction. This chapter gives insight into the background 
and applications of biomaterials with antimicrobial properties and the prospects 
of bioinspired materials.

198 T. Amna et al.

Keywords 

Antimicrobial activity · Cells · Biomaterials · Tissue engineering · Implants 

8.1 Introduction 

Nanomaterials possess outstanding properties, such as distinctive optical, magnetic, 
and electrical characteristics, and these materials have dimensions in the nanoscale 
(1–100 nm). These nanotextured materials are utilized as healing medicines and for 
designing devices (Ali et al. 2021). As their dimensions are reduced to the nanoscale, 
they exhibit plentiful exceptional properties, making these materials distinct from 
customary macromolecules. Representative characteristics commonly inherited by 
nanomaterials are high surface-to-volume ratio, enhanced electrical conductivity, 
superparamagnetic behavior, the spectral shift of optical absorption, and distinctive 
fluorescence characteristics. 

Considering the versatility of nanotextured materials, they have been extensively 
utilized in the medical field, such as the use of nanomaterials in drug transference, 
well-ordered discharge systems, etc. Their amplified penetrability permits crossing 
biological barriers and enhances biocompatibility (Cheng et al. 2021). The interest-
ing topological features and nanorange dimensions of nanomaterials have boosted 
permeability and retention effects, thus facilitating the achievement of additional 
entry to the cubicles of cells and tissues. Various parameters such as dimension, 
morphology, and surface chemistry of nanotextured materials can be automated 
using physiochemical tools, therefore, can provide exciting features such as the 
potency of nanomaterials to design many arrangements, including particles, fibers, 
and porous sponges. These aforementioned nanotextured materials are being utilized 
as scaffolds for application in medicines and the healthcare system (Zhang and 
Wang 2019). Furthermore, nanomaterials have been proven to demonstrate auspi-
cious potential in crucial industries, specifically in nanomedicine, pharmacology, 
and the biomedical field (Albalawi et al. 2021). Profitable funding has been invested 
in nanotechnology research, and by the year 2024, the global nanotechnology 
market is expected to surpass USD 124 billion, with ~50% of the market falling in 
Asia Pacific states (Pinto et al. 2020).
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8.2 Outline and Background of Nanomaterials and Nanofibers 

Electrospun fibers are frequently described as nanofibers with dimensions roughly as 
thin as 500 nm. These e-spin nanofibers were primarily employed in the Soviet 
Union in 1938 to construct air filters to trap aerosol particles. In 1939, this effort 
managed to project a factory for engineering smoke filters, with nanofiber-based 
mats as gas masks. Throughout this period, a mechanistic understanding of 
electrospinning was gradually established. During 1964–1969, Geoffrey Taylor 
handed out several revolutionary articles, presenting mathematical models that 
indicate the spherical to conical silhouette alteration of polymer solutions under 
the impact of a robust electric current (Xue et al. 2019). Precisely, as the strength of 
the electric field was amplified up to a specific dire limit, the spherical droplet would 
progressively change into a cone (denoted as Taylor cone) and spring as a liquid jet. 
Later on, it would take 20 years to develop the electrospinning technique, and during 
this period, it did not get considerable attention from academia or industry. This 
inactive period was due to a lack of characterization tools; however, researchers were 
gifted with tools capable of measuring dimensions down to the submicrometer 
assortment. However, an assortment of useful applications was projected for 
e-spin fibers throughout this era, counting their prospective usage as wound dressing 
materials demonstrated by a patent (filed in 1977). During the initial 1980s period, 
Donaldson Co. Inc., headquartered in the United States, started to construct and sell 
filters consisting of e-spin fibers for air filtration. However, the company kept the 
manufacturing strategy of goods confidential. 

Many research teams, particularly those led by Darrell Reneker and Gregory 
Rutledge (early 1990s), rediscovered this technique with the aid of electron 
microscopes possessing resolving capabilities down to the nanometer range. These 
scientists established that diverse organic polymers could be electrospun into 
nanofibers, and the term electrospinning was propagated for unfolding this practice. 
These investigations conveyed innovative connotations about electrospinning, and 
this technique ultimately converted into the method of choice for manufacturing 
extended and incessant fibers having dimensions down to the nanometer range. 

Nevertheless, by now the electrospinning has begun to achieve accumulative 
consideration by designing novel materials and formulations, such as the construc-
tion of composite as well as ceramic nanofibers (Larsen et al. 2003). These unique 
fibers have innovative applications in various fields, such as catalysis, energy 
harvesting, conversion, and storage, which were previously dominated by 
nanoparticles. On the other hand, innovative approaches have been established to 
manage the assembly and arrangement of electrospun nanofibers. Nonetheless, these 
fascinating nanofibers flagged huge opportunities in energy-related and biomedical 
applications. A lot of approaches have been made for aligning the nanofibers, such as 
the possibility of diverse syndicate characteristics originating from size, structure, 
composition, morphology, porosity, and assembly of nanofibers. At the same period, 
coaxial electrospinning was settled to harvest continuous core-shell and hollow 
nanofibers and yarns of electrospun nanofibers. Currently, industrial production of 
electrospun nanofibers has been implemented by numerous companies throughout



the globe to produce nanofibers in huge volumes, approving downstream commer-
cial products. Nowadays, these electrospun nanofibers are extensively utilized for 
water purification, air filtration, wound dressings, implants, etc. (Fig. 8.1). Figure 8.1 
demonstrates the basic design of electrospinnig set up. 
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Fig. 8.1 Schematic representation of an electrospinning arrangement for nanofiber fabrication 

8.3 Bioinspired Nanomaterials 

Nanotextured materials possess essential features, such as reduced size and shape, 
which are useful in various fields and trades. Nanoparticles and nanomaterials are 
manufactured on a considerable gauge and are necessary for several industries. This 
fact has supported research in various disciplines of science such as biochemistry, 
biophysics, and biochemical engineering and of course, the applications. The com-
bination of nanotechnology and other disciplines has resulted in the fabrication of 
novel and interesting nanomaterials utilized for diagnostic tools, drug delivery 
systems, energy storage materials, and conservational and food processing 
(Barhoum et al. 2022). These nanotextured materials are diverse in size, silhouette, 
magnitude, configuration, permeability, stage, and consistency. Therefore, various 
classifications have been utilized to categorize them. Moreover, nanomaterials can 
be classified as natural, incidental, bioinspired, and engineered, depending on their 
origin and functionality. Nevertheless, it has been documented that the naturally 
occurring nanomaterials form all through natural physiological procedures. On the 
other hand, the incidental nanomaterials, also known as anthropogenic or waste 
particles, transpire due to simulated industrial procedures. Similarly, engineered 
nanomaterials are prepared in the laboratory/or in industries to attain materials 
with definite topography. However, bioinspired materials are nanomaterials that



resemble/or imitators of those natural nanomaterials or living stuff. Nowadays 
engineered and bioinspired nanomaterials are attaining huge consideration compared 
to natural materials due to variability. 
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Thus expanding the progressive nanofabrication tools, various bioinspired 
nanomaterials with exact functions can be fabricated by curbing their configurations 
(Lee et al. 2017). For instance, mechanochromic elastomers have been developed 
that mimic the photonic structure of chameleon iridophore cells (Rasouli et al. 2018). 
In these sensors, rigid silica nanocrystals are rooted in an elastomer’s background to 
form non-close-packed crystals. These sensors exhibit a color shift from red to blue 
during stretching and red to green during compression. Conclusively, biomimetic 
synthesis is aimed either by mimicking functions of natural materials, structures or 
the biological processes and are classified as functional biomimetic synthesis and 
biomimetic process synthesis (Zan and Wu 2016). Up till now, numerous 
bionanomaterials have been styled (Table 8.1), and many more will be established. 

However, despite their particular possessions, only insufficient engineered and 
bioinspired nanomaterials have been permitted and utilized in the industry due to the 
limitations of risk assessment practices. In this chapter, our primary focus will be on 
novel bioinspired materials possessing antimicrobial properties, which are used in 
tissue engineering and other medical and biomedical fields. 

8.4 Overview of Tissue Engineering 

Precisely tissue engineering is an up-and-coming biotechnological field that 
syndicates different features of medicine, cell, and molecular biology, materials 
science and engineering with the aim of regeneration, restoring and substituting 
ailing tissues. The term tissue engineering was formally devised by Fung in October 
1987 at National Science Foundation Workshop in Washington, D.C. and since the 
preceding epoch, this field has progressed from scientific narration to science 
statement possessing research-based acceptance. Tissue engineering necessitates 
inclusive determinations to conglomerate engineering and physical sciences with 
life sciences, with the objectives of repairing, interchanging, and refining the 
functions of impaired tissues and organs (Shafiee and Atala 2017). Tissue and 
organ failure due to injury or disease has been reflected as the main healthcare trials. 
Until the second half of the twentieth century, there were no appropriate therapies for 
patients with dysfunctional organs. However, in 1954, Joseph Murray, Nobel Lau-
reate in Medicine during the 1990s, completed the first successful organ transplant, 
transferring a healthy kidney donated by Ronald Herrick to his identical twin 
brother, Richard (Renal homotransplantation in identical twins 2001). The process 
was guaranteed as risk-free as the donor and recipient were both genetically alike. 
Later on, almost after 5 years, Murray executed the world’s first successful organ 
transplant among genetically non-identical individuals. Through his pioneering 
operations, many lives have been saved with organ transplantation. Meanwhile, 
the high number of people waiting for transplants, the scarcity of organ donors, 
and the massive aging population demand the progression of innovative approaches



to repair the functions of impaired organs (Atala 2012). According to the US 
Department of Health and Human Services (https://optn.transplant.hrsa.gov), statis-
tics indicate that in the United States, a new individual is added every 10 min to the 
National Transplant Waiting List and that 22 individuals pass away every day 
waiting for a transplant. Indeed, tissue engineering aims to alleviate the life-
threatening unavailability of donor organs using in vitro production of biologically 
functional assemblies. To sum up, in tissue engineering, rudimentary design tactics 
comprise simply cell assemblies, cells and scaffolds, and solitary scaffolds. Unam-
biguously, autografts, allografts, and xenografts are biological paradigms 
constructed from a patient’s cells, from other genetically non-identical organisms, 
as well as even non-human animal species, respectively. Alternatively, the scaffolds
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Table 8.1 Summary of some of the recently developed bioinspired-material-based scaffolds and 
their respective applications published by various researchers 

S. No. Bioinspired scaffolds Applications Reference 

1. Pd-Ag-HAP on protruded TiO2 Dental implant Jang et al. (2018) 

2. Anodized titanium Dental implant Mühl et al. 
(2022) 

3. Triphasic calcium-based implant (AGNI) Bone implant Shaul et al. 
(2022) 

4. Zirconia-containing biphasic calcium 
phosphate 

Bone implant Youness et al. 
(2022) 

5. Poly(L-lactic acid)/mesoporous bioactive 
glass composite 

Bone implant Pant et al. (2022) 

6. Poly(xylitol-dodecanedioic acid)–co-
polylactic acid 

Tissue engineering Sotoudeh et al. 
(2021) 

7. Hydroxyapatite nanowhisker-reinforced poly 
(lactic acid) composites 

Bone implant Xu et al. (2022) 

8. Chitosan/gelatin/polycaprolactone Bone scaffold Wulin et al. 
(2022) 

9. Polyurethane (PU)/chitosan (Cs)/carbon 
nanotubes (CNT) 

Cardiac tissue 
engineering 

Ahmadi et al. 
(2021) 

10. composite alginate-gelatin hydrogels 
incorporating PRGF 

Human dental pulp 
and cell 
proliferation 

Anitua et al. 
(2022) 

11. Curcumin-loaded mesoporous silica 
nanoparticles/nanofiber composites 

Stem cell 
proliferation 

Mashayekhi et al. 
(2020) 

12. Folic acid.MgO:ZnO/chitosan hybrid 
particles 

Fibroblast cell 
proliferation 

Rafie and 
Meshkini (2021) 

13. Chitosan/aloe vera hydrogel Wound dressings Movaffagh et al. 
(2022) 

14. Spinacia oleracea extract incorporated 
alginate/carboxymethyl cellulose 
microporous scaffold 

Bone tissue 
engineering 

Sharmila et al. 
(2020) 

15. Cellulose nanofiber scaffold Bone tissue 
engineering 

Chakraborty 
et al. (2019)

https://optn.transplant.hrsa.gov
https://pubmed.ncbi.nlm.nih.gov/34935182/


are developed from natural (e.g., collagen, decellularized matrices) or synthetic 
materials and are intended to reproduce a natural three-dimensional 
(3D) environment, i.e., the extracellular matrix (ECM) in order to make the cells 
and tissues to flourish and establish into organs that can conserve their specific 
conformations and topographies. Additionally, these scaffolds should be compatible 
with the tissue-specific cells and the preferred indigenous atmosphere within the 
human frame (Langer 2009). Consequently, diverse engineered tissues or/organs 
require distinctive preparations and constituents. Furthermore, synthetic scaffolds 
must be synthesized, considering important features such as pore dimension, geom-
etry, penetrability, and spatial dissemination (Khademhosseini et al. 2006). It has 
been well documented that the bulk and exterior physiognomies of scaffold materials 
can also influence cellular performance (Khademhosseini et al. 2006). Finally, the 
degradation of the scaffold must be attuned to the construction of ECM by cells 
(Fig. 8.2).
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Fig. 8.2 The stepladders and biomimetic/or bioinspired materials in the tissue engineering process. 
Different levels of processes that can be used for biomimetic synthesis are compiled. The current 
progress of bioinspired/biomimetic synthesis is systematically summarized according to the fol-
lowing perspectives: motivation, inspiration, stimulation, imitation, and the fusion of science and 
technology
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8.5 Tissue Engineering and Regenerative Medicine 

Current progress in scaffold fabrication has boosted the arena of tissue engineering 
toward sophisticated objectives. A reasonably novel approach in scaffold-free tissue 
engineering has been presented that allows cells to yield their own ECM and self-
assemble to build 3D biological configurations. Tissue engineering is one of the 
main subjects in regenerative medicine. For instance, the stem cell discipline, gene 
remedy, soluble molecules, and reprogramming of cell and tissue types are crossing 
points between tissue engineering and regenerative medicine. During the past 
20 years, numerous accomplishments in the assembly of functional tissues and 
organs have aided in upgrading the quality of life of ailing individuals. The prepara-
tion of tissues and organs can be grouped into four main stages. The first and the least 
complex stage involves flat tissues and organs, such as the skin; the second stage 
includes the construction of tubular organs, for example, blood vessels and tracheas. 
Hollow nontubular organ assemblies such as the bladder are the second utmost 
organs to construct and the most multifarious structures are solid organs, such as the 
heart, kidney, liver, etc. Several research scientists all over the globe with different 
disciplines and specialties are occupied to fulfill the projected demands and encoun-
ter the challenges in this area. The initial challenge in engineering a tissue/organ is 
the discovery of suitable cell sources and a sufficient number of cells. The next 
important step is to provide refined biomaterials and scaffolds to permit all cell types 
in an organ to make an effort to organize in coordination in order to shape their own 
ECM (Atala 2009). 

Significant progress in stem cell therapies, biomaterials science, and the design of 
delivery systems able to mimic the production of growth factors will possibly aid 
treatment breakthroughs for various deadly ailments. Nevertheless, encouraging 
outcomes of in vitro and in vivo investigations cannot always be of practical use 
in clinical situations. Consequently, these situations remind us to sidestep the naive 
interpretations as well as exaggerated optimism concerning innovative technologies 
(Hassanzadeh et al. 2018). In addition to scaffold and cell-centered approaches, 
tissue engineering also includes other methodologies to enable the repair of organs 
and restore their purposes (Naughton 2002). Furthermore, it has also been accredited 
that the usage of polymer matrix offers stability as well as an organized release 
profile for proteins as well as for important growth factors (Langer and Moses 1991). 
Tissue engineering implants are also cherished devices comprising bioactive 
ingredients (Blanquer et al. 2012). The fabrication of practicable constructs requires 
the supply of easy-to-harvest cells proficient in differentiation into particular cells 
which lack immunogenic properties. For instance, the mesenchymal stem cells 
captured in penetrable biomaterial capsules have revealed anti-osteoarthritis chattels 
allocated to their regenerative effects (Stock and Vacanti 2001). On the other hand, 
polymers (e.g., polylactic acid (PLA), polylactic-co-glycolic acid (PLGA), hydrogel, 
etc.) have already been utilized for the design of 3D tumor models. Meanwhile, the 
progress of in vitro models proficient to reconstruct the process of tumor progression 
is a challenging issue in cancer research (Loessner et al. 2010). However, the use of 
3D cultures offers the opportunity for improvement in capturing the construction of 
tumors, cellular imaging as well as high quantity screening.
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8.6 Tissue Engineering in Healthcare Systems 

As aforementioned, tissue engineering is quickly growing scientific area that utilizes 
the principles and methods of physical sciences, life sciences, and engineering to 
apprehend physiological and pathological methods to improve current therapeutic 
systems. Currently, tissue/organ transplantation, surgical operation, and dialysis are 
common cures in most countries. But still, limitations associated with these 
procedures have resulted in amplified awareness in the field of tissue engineering 
(Lee et al. 2010). In this regard, categories such as autologous or allogeneic cells can 
be cast off. Alternatively, some other reports have suggested the use of exogenous 
cell-oriented and endogenous cell approaches (Li et al. 2017), such as the adminis-
tration of chemokines as signals potentiate cell homing in an anti-inflammatory 
microenvironment (Aibibu et al. 2016; Andreas et al. 2014). More to the point, 
cells may be genetically or epigenetically reformed (Sheyn et al. 2010) to augment 
the efficacy of tissue regeneration. The shortage of in vitro engineered tissues is 
partly owing to the inability to create engineered blood vessel systems (Lovett et al. 
2009). Interestingly, in certain cases, such as in tissues like the skin, cartilage, or 
cornea, cells can be delivered through diffusion from distant blood vessels. The 
engagement of endothelial cells for neoangiogenesis and revascularization by 
biomolecules parenthetically is a common tactic. 

The inference from the aforementioned reports is that tissue engineering has the 
prospective future to transform approaches of health care systems to mend for the 
excellence of life. Additionally, it will deliver an economical and long-lasting 
solution to numerous age-related illnesses. Moreover, the engineered tissues may 
lessen the requirement for an organ transplant (Fig. 8.3). 

Fig. 8.3 The schematic illustration of probable steps of the tissue engineering procedure
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8.7 Antimicrobial Bioinspired Materials 

Undeniably a significant number of novel biomaterials and scaffolding structures are 
designed to exploit them in medical and biomedical areas possessing augmented 
healthiness potency (Spałek et al. 2022). These biomaterials are being utilized in 
implantable procedures or drug delivery systems that have noteworthy influences on 
the quality of life of diseased individuals. Conversely, their continuing exploitation 
and usage can cause invasion and multiplication of microbes, which may result in 
biofilms and consequential elicit cytotoxic reactions. These pathogenic microbial 
infections ultimately result in the failure of implants. Furthermore, they can hamper 
the distribution of drugs, thus rendering them ineffective. Numerous substitutes have 
been suggested over the years to avoid such complications, such as the practice of 
disinfectants, and antibiotics as well as the amendment of posturing lines of bioma-
terial, amalgamation of biomolecules. In this regard, various stimulating 
functionalization and alteration procedures have been engaged to encounter oppor-
tunist as well as pathogenic microbes (Spałek et al. 2022; Teixeira et al. 2021, 2022; 
Felgueiras 2021, 2022; Felgueiras et al. 2021; Miranda et al. 2020). Similarly, a 
report has been published in which collagen-constructed biomaterials fixed with 
nano clay depicted excellent antimicrobial potential and has been utilized for skin 
rejuvenation applications (Marin et al. 2021). Likewise, well-characterized skin 
derivative human defensins antimicrobial peptides have been investigated and 
their impact on the oozing of angiogenin, (a persuasive angiogenic factor) has 
been depicted. They discovered that numerous human defensins could arouse the 
delivery of angiogenin despite sustaining their antimicrobial and other immunomod-
ulatory features (Umehara et al. 2022). Conclusively, it has been comprehended 
those various strategies, such as understanding of the antimicrobial activity of 
specific biomaterials and introduction of novel surface amendments, incorporation 
of bioactive molecules, formation of organic-inorganic composites, etc., can be 
adapted for the control and complete elimination of microbial infections from the 
designed implants for successful operations and functionality. Figure 8.4 depicts the 
schematic illustration of probable steps of the tissue engineering procedure. 

8.8 Future of Bioinspired Materials 

From the aforementioned discussions and literature scan, it has been agreed and 
implied that bioinspired nanomaterials are novel choices for various diseases, such 
as cardiovascular ailment (Bose et al. 2021). Subsequently, Bountiful research 
conducted during the decades have resulted in the outcomes in which it looks like 
numerous materials are overcoming their performance limits (Wegst et al. 2015). 
The fusion of 2D nanotextured materials and the idea of bioinspiration has 
stimulated the establishment of innovative materials and techniques (Zhang et al. 
2020). Contrariwise, there are up now loads of trials and challenges to be resolved 
that bound the progress of bioinspired nanomaterials/technologies beyond 2D



bioinspired materials. Yearly, lots of investigations are being conducted to achieve 
success in clinical applications, and development is continuous, with the nice 
cooperation between researchers, clinicians, scientists, as well as engineers (Langer 
and Vacanti 2016). Nevertheless, bio-artificial tissue engineering has emerged as an 
indispensable trial. A variety of cells, growth factors, scaffolds, and stratagems are 
accessible and the amalgamation of these factors under in vitro and in vivo 
conditions is producing fruitful results. Additionally, the assortment of suitable 
approaches for cell stimulation, scaffold synthesis, and tissue transplantation 
performs a conclusive role in efficacious tissue engineering (Bakhshandeh et al. 
2017). Interestingly, stem cell co-culture arrangements are remarkable and 
prevailing tools owing to their exceptional properties. On top, the feedback opinions 
and outcomes have revealed upshots success in engineering tissues (Paschos et al. 
2015). However, scientists and researchers with different specializations ought to 
coordinate together to encourage the development of tissue engineering and regen-
erative medicine for practical uses. 
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Fig. 8.4 Diagrammatic representation of antimicrobial scaffolds and bactericidal activity 

8.9 Conclusion 

The objective of tissue engineering is to generate functional and patient-specific 
tissues for transplantation. Diverse scientific disciplines, such as molecular biology, 
microbiology, cell biology, engineering, pharmacology, and medicine, as well as 
cellular and developmental biology, etc., have come together to work on engineering 
tissues with the aim of implant preparation. Virtually, almost all tissues of the human 
body have been investigated for the likelihood of replacement with living tissues and



engineered structures. However, suitable resources of cells for tissue engineering are 
prerequisites and must be inevitability recognized. Additionally, several stimulating 
functionalization and alteration procedures are being adopted to control the growth 
and expansion of opportunist as well as pathogenic microbes. Screening of appro-
priate scaffolds for ECMs is indeed a huge and far-reaching task. Nevertheless, the 
optimization of delivery time and the total price of laboratory-cultivated organs are 
other big tasks to be considered in recruiting a marketplace for engineered organs. 
Currently, under in vitro conditions, engineered tissues such as skin and cartilage are 
being utilized in clinics in various countries. Nevertheless, tissue engineering has 
emerged as a swiftly growing interdisciplinary area, in which practitioners attempt to 
fix organ failure by implanting natural, synthetic, or semi-synthetic tissues/organs 
that mimic the original one. 
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Although tissue engineering has delivered prospective ways to overcome inade-
quate conventional transplantation methods, the future goal is to fabricate individual 
organs. 

Accordingly, the progress in this auspicious field crests an innovative arrange-
ment for the improvement of the healthcare system of the present society. 
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