
Natural Hydrogels as Wound Dressing 
for Skin Wound-Healing Applications 15 
Gabriela Fletes-Vargas , Sergio Yair Rodríguez-Preciado , 
Mariana Díaz-Zaragoza , and Rogelio Rodríguez-Rodríguez 

Abstract 

Natural polymers are widely used to produce hydrogels for skin wound-healing 
applications. Hydrogels possess porosity, water absorption and water retention 
capability, mechanical properties, and biocompatibility. Also, bioactive 
molecules and metal nanoparticles can be added into hydrogels to improve 
antimicrobial and wound-healing properties, which are necessary for dressing. 
This chapter reviews the main physicochemical and biological properties of the 
natural hydrogels used as a wound dressing. The different natural polymers such 
as chitosan, alginate, cellulose, and gelatin and fabrication methods to produce 
hydrogels are described. This chapter will contribute to a better understanding of 
natural hydrogels as a potential dressing for skin wound-healing applications. 
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15.1 Introduction 

Hydrogels are porous hydrophilic biomaterials with a tridimensional cross-linked 
network structure capable of absorbing and retaining considerable water into a 
polymer structure (Tang et al. 2022; Xiao et al. 2022). A cross-linker agent is a 
molecule that interconnects polymer chains via functional groups such as amine, 
carboxyl, or hydroxyl. The cross-linking process increases molecular weight, 
provides higher mechanical properties, improves stability, and impacts the 
hydrogels’ physical properties (Zainal et al. 2021). Hydrogels can expand and 
absorb several folds of water into their structures without disintegrating, providing 
a favorable environment for the survival of various cells and mimicking the natural 
tissue (Saravanan et al. 2019; Xiao et al. 2022; Xu et al. 2022a). Also, hydrogels 
possess exciting properties such as sol-gel behavior in response to stimuli from the 
external environment, biocompatibility, nontoxicity, and biodegradability (Do et al. 
2022; Xu et al. 2022a). The interaction between polymeric chain networks and water 
or biological fluids occurs through different phenomena: capillary, osmotic, and 
hydration forces, which are counterbalanced, causing the expansion of polymer 
chain networks (Varaprasad et al. 2017). The hydrogels can respond to several 
stimuli, such as temperature, pressure, pH, ionic charge, or antigens, with changes 
in specific characteristics. Then, when the stimulus finishes, hydrogels can return to 
their original structure. This class of hydrogels is denominated as “smart” materials 
(Stan et al. 2021). 

Hydrogels possess significant benefits for wound dressing applications due to 
their mild processing conditions and ability to combine bioactive agents that help the 
healing process. The molecules added to hydrogels can be delivered with more 
accurate and progressive control than the topical or dermal application (Fan et al. 
2021). For example, hydrogels can deliver specific molecules, i.e., antiseptics, 
antibiotics, anti-inflammatories, and antioxidants (Stan et al. 2021). 

15.2 Wound Healing 

15.2.1 Skin: Structure and Function 

The skin is considered the largest organ and the physical barrier of the human body. 
It accomplishes many critical functions, such as protecting internal organs from 
mechanical damage and ultraviolet radiation, preventing fluid loss and controlling 
the body temperature, and protecting the host from microbial infections (Rodrigues 
et al. 2019; Nguyen and Soulika 2019). The skin is formed of three layers: epidermis, 
dermis, and hypodermis. The epidermis is the outermost layer formed by 
corneocytes and keratinocytes, providing barrier protection from environmental 
conditions (Vig et al. 2017). Furthermore, the epidermis is constantly renewed due 
to the proliferation of keratinocytes, which lose their nuclei and migrate from the 
basement membrane to the surface skin, creating the cornified stratum (Chu 2012). 
The dermis is located below the epidermis and contains nerve endings,



microvascular vessels, and higher content of proteins such as proteoglycans and 
collagen fibers (Rippa et al. 2019). The cells that conform to the dermis are 
myofibroblasts, resident immune cells such as macrophages, Langerhans cells, 
dendritic cells, and fibroblasts (Woodley 2017). The fibroblasts are abundant cells 
capable of synthesizing collagen type I and supporting the remodeling of the 
extracellular matrix (ECM) (Sorrell and Caplan 2009). Subjacent to the dermis, we 
could find the hypodermis or subcutaneous fat tissue, abundant fibrocytes, and 
adipocytes whose principal functions are storing energy as fatty acids, thermal 
isolation, and endocrine, regulating glucose and lipid metabolism (Tavakoli and 
Klar 2020). Additionally, the subcutaneous fat tissue includes copious blood vessels 
and lymph vessels and produces crucial mediators such as growth factors, 
adipokines, and cytokines (Cildir et al. 2013). 
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15.2.2 Wound-Healing Process 

Wound healing is a dynamic and complex process that coordinates the cells in the 
different skin layers to restore homeostasis. It consists of four phases that overlap in 
time and space (Fig. 15.1): hemostasis, inflammation, proliferation, and tissue 
remodeling (Tavakoli and Klar 2020). 

Fig. 15.1 Scheme of the wound-healing process. (Reprinted from Abazari et al. 2022, copyright 
2022, with permission of Elsevier)
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15.2.2.1 Hemostasis 
After the vascular damage, the subendothelial matrix is disrupted and exposed. 
Platelets initiate the vasoconstriction process attached to vessel walls and aggregate 
with each other to form the blood clot and stop the bleeding (Rumbaut and 
Thiagarajan 2010). Also, the activated platelets release growth factors and cytokines 
that act as mediators, such as transforming growth factor-β (TGF-β), epidermal 
growth factor (EGF), and vascular endothelial growth factor (VEGF), even 7 days 
after injury (Qing 2017). Following this, the coagulation cascade activation converts 
the fibrinogen into a fibrin mesh to form the thrombus as a temporal scaffold for 
critical cells for wound healing. 

15.2.2.2 Inflammation 
During the inflammatory phase, the neutrophils are the predominant immunity cells 
during the first 48 h after the damage. Neutrophils phagocyte dead cells and destroy 
bacteria, release chemokines, and attract macrophages to the wound site. Also, the 
circulating monocytes migrate and maturate into tissue macrophages (Pereira et al. 
2017). 

15.2.2.3 Proliferation 
The proliferation phase happens about 2–10 days after the insult and is characterized 
by fibroblasts proliferating in the wound area, forming the granulation tissue, and 
depositing new ECM proteins like collagen. The granulation tissue will be subse-
quently replaced by connective tissue. Growth factors such as VEGF induce the 
development of new blood vessel or angiogenesis. Neovascularization provides the 
keratinocytes maturation and the restoration of the epithelial barrier (Desjardins-Park 
et al. 2018; Gurtner et al. 2008). 

15.2.2.4 Tissue Remodeling 
In the last phase of wound healing, cells implicated in skin repair suffer 
apoptosis about 2–3 weeks after damage. In this stage, the dermal ECM is actively 
remodeled by enzymes secreted by fibroblast and begins the wound contraction. The 
result is scar tissue that has 80% of the strength of the uninjured skin (Bowden et al. 
2016; Wang et al. 2018). 

15.2.3 Types of Wounds 

Wounds cause the loss of anatomic structure or function of the skin and can be 
classified according to the repair process as acute and chronic wounds (Lazarus et al. 
1994). Acute wounds are injuries caused by mechanical damage or friction with the 
skin surface and surgical incision and close quickly at 8–12 weeks with insignificant 
scarring due to highly coordinated biological events. Moreover, alterations in cellu-
lar signaling and excessive inflammation in the wound-healing process (Berman 
et al. 2017) can induce abnormalities such as excessive scarring or wounds that do



not heal, even after 12 weeks. These injuries are classified as chronic wounds 
(Lindholm and Searle 2016; Wilkinson and Hardman 2020). 
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15.2.4 Causes of Chronic Wounds 

Chronic wounds heal poorly and are associated with underlying pathological 
conditions such as hemoglobinopathies, diabetes, vascular disease, cancer, and 
malnutrition (Han and Ceilley 2017). Studies have shown that inflammatory 
environments of chronic wounds are related to high expression of reactive oxygen 
species (ROS) interrupting the cellular redox balance, associated with metabolic 
disorder and compromising the integrity of blood vessels, and avoiding the normal 
transition between the inflammatory to proliferation phases (Malone-Povolny et al. 
2019; Xu et al. 2020). Also, this offers a proper natural environment for bacterial 
infections, which prolongs the damage and hypoxic conditions (Tandara and Mustoe 
2004). 

15.2.4.1 Diabetic Wounds 
Diabetes mellitus is a chronic metabolic disease linked to hyperglycemia and foot 
ulcers that do not heal. Among the physiological complications of diabetic foot 
ulcers include (1) infection and barrier injury, (2) excessive oxidative stress, (3) neu-
ropathy, (4) microvascular difficulties, and chronic inflammation (Burgess et al. 
2021). Generally it initiates as foot deformity, and consequently, the nerves are 
damaged, reducing skin sensitivity. These alterations exacerbate vascular injury 
causing gangrene, arterial obstruction, and ischemia (Blanco-Fernandez et al. 2020). 

15.2.4.2 Pressure Ulcers 
Wound pressure is an injury caused by the localized destruction of skin integrity or 
underlying tissue because a body area constantly interacts with an external surface 
driving to pressure damage or ulcers. Pressure ulcers typically happen in 
old/paralyzed patients and are favored by devices such as nasal cannulas and 
nasogastric tubes (Maaz Arif et al. 2021; Bowers and Franco 2020). Pressure ulcers 
not treated can harm deep soft tissue and develop complications such as osteomyeli-
tis. The pathophysiological components accompanying pressure ulcers are ischemia-
reperfusion wounds, inadequate lymphatic drainage, cellular apoptosis, and failure 
to heal (Niemiec et al. 2020). 

15.3 The Bacterial Population on Wounds 

15.3.1 Skin Microbiota 

Microorganisms can be found in many environments (e.g., water, soil, and the 
atmosphere), including animals, plants, and humans (Ederveen et al. 2020). Within 
humans, microorganisms can colonize different areas such as the nose, throat,



mouth, vagina, intestine, and skin, giving rise to a bacterial community that is part of 
the human microbiota (Da Silva and Domingues 2017). The microbiota located on 
the skin is made up of bacteria from four main phyla: Actinobacteria (51.8%), 
Bacteroidetes (6.3%), Firmicutes (24.4%), and Proteobacteria (16.5%); however, 
the presence of these bacteria will differ throughout the skin. For example, Strepto-
coccus is one of the bacteria in higher proportion in the forehead and behind the ears, 
while Corynebacterium is present in the armpits. In the moist areas of the skin, the 
most abundant species are Staphylococcus and Corynebacterium, and in the seba-
ceous sites, some Propionibacterium has been reported (Gao et al. 2010; Sanford 
and Gallo 2013). In addition to bacteria, commensal fungi and viruses are part of the 
skin microbiota. For example, Aspergillus, Rhodotorula, Cryptococcus, and 
Epicoccum are some fungi species that are part of this microbiota and have been 
found mainly in the foot area (Adamczyk et al. 2020). 
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15.3.2 The Role of the Microbiota in the Skin 

The skin microbiota plays an essential role in maintaining homeostasis, producing 
proteases that participate in the desquamation and renewal of the stratum corneum. 
In addition, they retain a slightly acidic pH, reducing triglyceride levels in sebaceous 
areas and favoring the production of fatty acids. The microbiota’s generation of 
antimicrobial compounds inhibits opportunistic microorganisms’ growth, thus 
preventing the onset of infectious processes (Boxberger et al. 2021; Gribbon et al. 
1993). On the other hand, the microbiota interacts with the host’s immune system, 
generating an innate and adaptive immune response, thus reinforcing itself due to the 
detection process of the various bacterial populations (Park and Lee 2018). Studies 
have reported that this interaction with the immune system favors wound repair (Lai 
et al. 2009; Linehan et al. 2018). However, other reports mention the opposite effect, 
where the absence of the microbiota in the skin tends to the healing process; 
therefore, more research is necessary to understand the role of the microbiota in 
the wound repair process (Canesso et al. 2014). For example, C. striatum generates a 
factor that inhibits the Agr gene regulatory system, which controls the virulence 
factors of S. aureus, thus avoiding infections by this bacterium (Ramsey et al. 2016). 

15.3.3 Factors That Modify the Skin Microbiota 

The microbiota can be altered by a wide variety of intrinsic and extrinsic factors to 
which the human being is exposed; these changes will also depend on the time of 
exposure to these factors (Moskovicz et al. 2020). Within the intrinsic factors, we 
find the area of the skin. As mentioned above, the microbiota will depend on the 
conditions of the skin being colonized (e.g., moist, dry, or sebaceous sites) (Grice 
et al. 2009). Another factor is ethnicity; Li et al. (2019) found that the microbiota of 
East Asians is different from that of Caucasian and Latino populations (Li et al. 
2019). In another study conducted by Perez Perez et al. (2016), the skin microbiota



n

of African Americans differed from other population groups (Latinos, Caucasians, 
and Asians) (Perez Perez et al. 2016). 
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Other factors that contribute to variations in the microbiota are gender and age. 
Regarding gender, the most abundant bacteria in men are Enhydrobacter, 
Cutibacterium, Corynebacterium amycolatum, and Corynebacterium 
kroppenstedtii, while in sebaceous sites are Epicoccum and Cryptococcus. I  
women, the most abundant microbiota are Staphylococcus, Streptococcus, 
Enterobacteriales, Moraxellaceae, Lactobacillaceae, Corynebacterium 
urealyticum, Corynebacterium variabile, and Pseudomonadaceae, while in seba-
ceous sites, there is a more significant presence of Malassezia (Callewaert et al. 
2013; Fierer et al. 2008; Jo et al. 2016; Leung et al. 2015; Prohic et al. 2014; Shami 
et al. 2019; Zhai et al. 2018). Even though it has been seen that the presence of 
bacteria does not vary with age, the amount of microorganisms does decrease as age 
advances (Jo et al. 2016; Dimitriu et al. 2019). 

The extrinsic factors influencing the first type of microbiota composition are the 
type of childbirth, the postpartum environment, and the health staff. However, this 
microbiota is temporary, as it will later be influenced by other extrinsic factors 
described below (Chu et al. 2017; Dominguez-Bello et al. 2010). 

Lifestyle, hygiene, and cosmetics are factors that also influence the skin 
microbiota. Reports have indicated that makeup inhibits the growth of S. aureus 
and C. acne, whereas the use of emulsifiers favors the growth of S. aureus (Gannesen 
et al. 2019; Nielsen et al. 2016; Staudinger et al. 2011). Other factors that affect the 
microbiota on the skin are geographic location, climate, seasonality, and air pollu-
tion, the latter of which has been seen to degrade the diversity of the microbial 
population (Boxberger et al. 2021). 

15.3.4 Skin Diseases Caused by Microorganisms 

Although the microbiota confers various benefits to the host, changes in the 
microbiota alter host-microbiome interactions, resulting in multiple diseases 
(Schommer and Gallo 2013). These alterations in the microbiota generate dysbiosis, 
defined as the loss of balance in the composition of the microbiota or changes in the 
metabolic activities of the microbiota (Degruttola et al. 2016). Some diseases that are 
generated when the balance is lost are mentioned below. Acne vulgaris is a disease 
due to Propionibacterium acnes and Cutibacterium acnes; these bacteria colonize 
the sebaceous follicles producing enzymes, such as hyaluronidases, lipases, and 
proteases, causing local injuries and inflammations (Byrd et al. 2018; Flowers and 
Grice 2020; Schommer and Gallo 2013). Rosacea is a chronic skin condition 
involving the central part of the face with transient or persistent erythema, 
telangiectasias, inflammatory papules and pustules, or connective tissue hyperplasia 
(Oge’ et al. 2015). The presence of different microorganisms, such as Staphylococ-
cus epidermidis, Helicobacter pylori, Chlamydophila pneumonia, and Demodex 
folliculorum, has been associated with this disease (Murillo et al. 2014).



446 G. Fletes-Vargas et al.

Atopic dermatitis is a chronic and highly pruritic inflammatory skin disease 
(Kapur et al. 2018). People with this disease are susceptible to infections by 
Staphylococcus aureus and the herpes virus; this is attributed to the decrease in 
antimicrobial proteins. The severity of the disease is also associated with the loss of 
diversity of the microbiota, so one of the most effective treatments is the increase in 
the presence of bacteria of Corynebacterium, Streptococcus, and Propionibacterium 
genus (Sanford and Gallo 2013; Schommer and Gallo 2013). 

Psoriasis is a chronic proliferative and inflammatory dermatosis of the skin in 
which firmicutes have been found to be predominant. Another study also reports a 
high presence of Corynebacterium and a reduction of Staphylococcus and 
Cutibacterium. However, it is unknown if the changes in the microbiome are caused 
by the disease or vice versa (Loesche et al. 2018; Schommer and Gallo 2013). The 
infections due to opportunistic pathogens occur mainly in people with primary 
immunodeficiency. These individuals are more susceptible to fungal infections 
such as Candida spp. and Aspergillus spp. and bacteria such as Serratia marcescens 
(Byrd et al. 2018). Lastly, many of the bacteria in the normal microbiota can 
eventually cause infection in nonhealing or poorly healing wounds (diabetic foot 
ulcers, postsurgical wounds, or decubitus ulcers), occurring more frequently in 
elderly or diabetic people (Sanford and Gallo 2013). Bacteria such as Staphylococ-
cus aureus and S. epidermis have been isolated from superficial wounds, while 
bacteria such as P. aeruginosa, Finegoldia, Peptoniphilus, and Peptostrptococcus 
have been found in deeper wounds and with longer healing time (Ederveen et al. 
2020). Infections due to Staphylococcus spp. and Streptococcus spp. have been 
reported in the wounds of diabetics (Gardner et al. 2013) in addition to opportunistic 
fungal infections such as Cladosporium spp. and Candida spp. (Swaney and Kalan 
2021). In wounds caused by burns, the presence of infections caused by thermophilic 
bacteria (Aeribacillus, Caldalkalibacillus, Nesterenkonia, and  Halomonas) and a 
decrease in commensal bacteria of the genus Cutibacterium and Corynebacterium 
have been reported (Rensburg et al. 2015). 

15.3.5 Conventional Antimicrobial Agents 

The skin is the human body’s largest organ and forms an integral part of the immune 
system. In this sense, the skin is the first line of defense against microbial infections. 
One strategy that may reduce the risk of bacterial infection is applying an 
antibacterial dressing (Yang et al. 2022c). Antibiotics are antimicrobial compounds 
used to kill bacteria and fight bacterial infections, for instance, tetracycline, cipro-
floxacin, gentamicin, and sulfadiazine (Hauser et al. 2016). However, there are other 
compounds with an antimicrobial effect used for the treatment of bacterial 
infections, such as nanoparticles (Mussin et al. 2021) and natural products such as 
honey, essential oils, and chitosan (Yang et al. 2022c) (Simões et al. 2018). These 
materials have shown promising antibacterial activities following their application 
after a wound surgery and provided the potential ability to reduce wound infections 
(Yang et al. 2022c).
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15.3.5.1 Silver Nanoparticles 
Silver is a metal with a long history in traditional medicine because it has a high 
antimicrobial activity and low toxicity in animal cells (Rai et al. 2009, 2012). These 
nanoparticles may be toxic in humans, but effects can be attenuated when silver is 
used to form nanoparticles (Ferdous and Nemmar 2020). Some silver compounds 
(e.g., silver nitrate and silver sulfadiazine) have been used to treat burns, wounds, 
and several bacterial infections to reduce skin infections. In recent years, research 
has increased on the antimicrobial effect of silver nanoparticles in treating wounds 
and skin infections (Mussin et al. 2021). It has been reported that these nanoparticles 
have antimicrobial activity against different bacterial species such as Escherichia 
coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, and 
Streptococcus mutans (Brunauer et al. 2021; Bruna et al. 2021; Yin et al. 2020). 

15.3.5.2 Essential Oils 
Essential oils are secondary metabolites, volatile, natural, complex compounds 
characterized by a strong odor produced by aromatic plants. They have been widely 
used for antioxidant, virucidal, fungicidal, antiparasitic, insecticidal, medicinal, and 
bactericidal applications. The biological activity of the oils is compared with syn-
thetic pharmaceutical compounds (Hamdy 2020). Essential oils possess antibacterial 
properties, e.g., terpenes and terpenoids show inhibitory activity against Staphylo-
coccus aureus (Safaei-Ghomi and Ahd 2010), carvacrol has specific effects on 
S. aureus and Staphylococcus epidermidis, and perilla oil suppresses the expression 
of α-toxin of Staphylococcus enterotoxin A and B and toxic shock syndrome toxin. 
By last, geraniol shows promising activity in modulating drug resistance in several 
gram-negative species (Ning Chen 2021; Solórzano-Santos and Miranda-Novales 
2012). 

Reports indicate that essential oils have antibacterial properties against many 
bacterial strains, such as Listeria monocytogenes, L. innocua, Salmonella 
typhimurium, Escherichia coli, Shigella dysenteria, Bacillus cereus, Staphylococcus 
aureus, and Salmonella typhimurium (Chouhan et al. 2017; Man et al. 2019). The 
mechanism of action of essential oils of plants includes attacking the cell membrane, 
disrupting enzyme systems, damaging the bacteria’s genetic material, and forming 
fatty acid hydroperoxides caused by the oxygenation of unsaturated fatty acids 
(Turgis et al. 2009). With high antimicrobial activity, these essential oils are natural 
phenolics used as antibacterial ingredients in hydrogel dressing (Ning Chen 2021). 

15.4 Natural Hydrogels as a Wound Dressing 

Natural polymers, including polysaccharides and proteins, are the most used for 
producing hydrogels since they are biocompatible and can be obtained easily from 
natural resources, e.g., polysaccharides from plants, algae, and microorganisms like 
fungi and bacteria (Raina et al. 2022). Moreover, polysaccharides possess abundant 
functional groups, such as hydroxyl, carboxyl, and amine groups, for chemical 
modification and induce the high-water retention property (Stan et al. 2021).
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Fig. 15.2 Classification and molecular structure of different skin and wound dressing materials. 
(Reprinted from Peng et al. 2022, copyright 2022, with permission of Elsevier) 

Wound dressings are classified into two classes: passive and interactive. Passive 
dressings act only to protect the wound area but they do not directly affect the wound 
(Prasathkumar and Sadhasivam 2021). Traditional dressings such as medical 
skimmed cotton gauze, cotton pads, and Vaseline gauze are the most widely used 
for skin wounds in clinical practice. Traditional dressings are still commonly used in 
skin wounds due to their low price, relatively simple manufacturing process, ease of 
use, and protective effect on wound healing. However, traditional dressings also 
have obvious shortcomings (Fig. 15.2) (Xu et al. 2022a). Interactive dressings are 
the most modern dressing products as they interact with the wound surface area to 
produce an optimum environment at the dressing interface (Prasathkumar and 
Sadhasivam 2021). 

Wound dressings are required to provide a barrier between the wound and the 
external environment. The “ideal” hydrogel for wound management should (1) have 
antibacterial activity, (2) absorb all excess exudate and toxins on the wound surface, 
(3) keep good moisture between the wound and the dressing, (4) offer mechanical 
protection, (5) preserve the wound from external sources of infection, (6) prevent 
excess heat at the wound, (7) have good permeability to gases, (8) be easy to remove 
after healing without further trauma to the wound, (9) be sterile, (10) be biocompati-
ble, and (11) be nonallergenic (Fig. 15.3) (Rodríguez-Rodríguez et al. 2020; Stan 
et al. 2021). Due to their high moisture content, these dressings also provide a 
cooling, soothing effect and reduce the pain associated with dressing changes. In 
addition, the limited adhesion of hydrogels means that they can be easily removed



from the wound without causing further trauma to the healing tissue. The transparent 
nature of some hydrogel dressings also allows clinical assessment of the healing 
process without the need to remove the dressing (Gupta et al. 2019). 
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Fig. 15.3 Properties of multifunctional hydrogels for wound healing: antioxidant effects, 
antibacterial activities, tissue adhesiveness, and mechanical properties. (Reprinted from Asadi 
et al. 2021, copyright 2022, with permission of Elsevier) 

Thus, the physicochemical properties of the hydrogels, such as mechanical, 
rheological, swelling, moisturizing, and heat absorption properties, are relevant for 
their applicability (Cui et al. 2022). Table 15.1 displays the advances in natural 
hydrogels used for wound-healing applications. In literature, hydrogels have been 
widely used as a polymer dressing. Bioactive molecules, metal nanoparticles, or 
other compounds can be added to hydrogels to improve their properties (Koehler 
et al. 2018; Raina et al. 2022; Zhang et al. 2020). 

15.4.1 Chitosan Hydrogels as a Wound Dressing 

Chitosan is a cationic linear polysaccharide composed of β-(l-4)-2-amino-2-deoxy-
D-glucopyranose structure obtained from chitin, the second most prevalent natural 
polysaccharide in nature (Ji et al. 2022). Chitosan can be processed using various 
methods such as casting, fiber spinning, supercritical fluid processing, and 
electrospinning to produce different forms like films, microparticles, or nanofibers



(Kou et al. 2022). The molecular weight and acetylation degree influence several 
critical properties of chitosan for biomedical applications. For example, the acetyla-
tion degree affects the antimicrobial properties of chitosan by increasing its solubil-
ity and positive charge (Matica et al. 2019). Chitosan has interesting properties such 
as biocompatibility, biodegradability, antibacterial, hemostasis, anti-inflammatory, 
good absorption of exudate, and tissue regeneration and skin collagen fiber growth 
(Xu et al. 2022a). 
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Table 15.1 Advances in chitosan hydrogels for wound healing applications 

Fabrication 
method 

Polymer/bioactive 
molecules additional Wound dressing properties References 

Neutralization N/A Biodegradable with 
antibacterial properties 

Kong et al. 
(2020) 

3D 
bioprinting 

Pectin, lidocaine 
hydrochloride 

High swelling behavior, 
suitable drug release, self-
adhesion to skin. 

Long et al. 
(2019) 

Stimuli-
responsive 

H2O2-loaded polylactic 
acid 
Zn-doped whitlockite 
nanoparticles 

Nontoxic, cell growth, cell 
adhesion, and low hemolysis 

Dadkhah 
Tehrani et al. 
(2022), Yang 
et al. (2022a) 

Gelification in 
situ 

Oxidized quaternized 
guar gum 

Nontoxic with antibacterial, 
self-healing, injectability, and 
hemostatic properties 

Yu et al. (2022) 

Tannic acid Injectable, self-healing, and 
adhesive properties 
Biocompatible, antibacterial, 
antioxidant, and hemostatic 
properties 

Guo et al. 
(2022b) 

Tannic acid/Fe(III) Self-healing, injectability, 
antioxidant, anti-
inflammatory, hemostasis, 
biocompatibility, and wound 
healing ability 

Guo et al. 
(2022c) 

N/A Biocompatibility and wound-
healing properties 

Luo et al. 
(2022) 

Carboxymethyl chitosan, 
heparin 

Cell migration and 
proliferation 
Deposition of collagen fibers 
and the formation of blood 
vessels 

Chang et al. 
(2022) 

Adenine Self-healing, biocompatibility, 
and hemostatic 

Deng et al. 
(2022b) 

Photo-cross-
linking 

F127/chlorhexidine NPs Antibacterial, antioxidant, and 
anti-inflammatory properties 

Xu et al. 
(2022b) 

Double-cross-
linking 
GA/CaCl2 

Alginate/ 
curcumin-β-cyclodextrin 
inclusion 

Antibacterial properties and 
nontoxicity 

Kiti and 
Suwantong 
(2020) 

Freezing/ 
thawing 

PVA and silver 
nanoparticles 

Antibacterial properties and 
nontoxicity 

Nešović et al. 
(2019)
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The solubility, viscosity, biocompatibility, antimicrobial, analgesic, antioxidant, 
hemostatic, and mucoadhesive properties of chitosan increase with decreasing 
degree acetylation, while crystallinity and biodegradability increase with increasing 
degree of acetylation (Matica et al. 2019). In this sense, chitosan exerts its wound-
healing effect by promoting hemostasis, antimicrobial activity, and free radical 
scavenging activity and regulating the inflammatory response (Loo et al. 2022). 
However, chitosan has disadvantages as dressings, including moisture sensitivity, 
poor mechanical performance, and insolubility in water and solvents (Ji et al. 2022). 
Chitosan hydrogels can be produced commonly by physical or chemical cross-
linking. Physical hydrogels involve the formation of electrostatic, hydrophobic, 
and hydrogen bonding forces between polymer chains. In this sense, chitosan can 
form a hydrogel without adding any additive. For example, chitosan hydrogel can be 
produced using a neutralization process of their amino groups, which prevents 
repulsion between the polymer chains and hydrogen bonds; hydrophobic 
interactions and chitosan crystallites are formed (Rodríguez-Rodríguez et al. 2020; 
Pita-López et al. 2021). Chemical cross-linking leads to hydrogels with improved 
mechanical properties and chemical stability. To create these hydrogels, the polymer 
chains are covalently bonded by small cross-linker molecules, secondary 
polymerizations, or irradiation (Rodríguez-Rodríguez et al. 2020). Table 15.1 
displays the significant advances of chitosan hydrogels for wound-healing 
applications. Long et al. (2019) developed 3D-printed chitosan-pectin hydrogel 
incorporating lidocaine. The hydrogels produced displayed suitable printability 
and structural integrity. Also, hydrogels swelled quickly and reached an equilibrium 
between 2 and 4 h. The hydrogels showed adhesive strength between 0.85 and 
1.24 N, similar to commercial wound dressings fabricated of silicone, polyurethane, 
and acrylate. In this sense, a model wound dressing should be self-adhesive, easily 
detachable, and painless. The authors described that appropriate adherence and 
easily removable dressings could protect the wound against trauma and prevent 
tissue harm. 

Dadkhah Tehrani et al. (2022) produced thermosensitive chitosan hydrogels 
covered with a decellularized human amniotic membrane and H2O2-loaded 
polylactic acid microparticles. The porous hydrogel displayed low hemolysis (5%) 
and was nontoxic, favoring cell growth and adhesion for fibroblasts. Similar results 
were reported by Yang et al. (2022a) on multifunctional methacrylate anhydride 
quaternized chitosan hydrogel incorporating Zn-doped whitlockite nanoparticles. 
The hydrogels displayed antibacterial activity against Staphylococcus aureus and 
Escherichia coli (Fig. 15.4). 

Guo et al. (2022b) developed a porous multifunctional injectable quaternary 
ammonium chitosan hydrogel for wound-healing applications. The chitosan 
hydrogels were obtained using tannic acid as an ionic cross-linker agent. For the 
gelation time of 8 and 21 min, water content of chitosan hydrogels decreases with 
increasing tannic acid concentrations (1.25, 2.5, and 5 wt%). In contrast, mechanical 
properties increased with the cross-linking degree. The authors related these results 
with the cross-linking degree. The adhesive property of hydrogels is an important 
parameter that helps to adhere and seal wounds, preventing bacterial infection. The
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Fig. 15.4 Antibacterial property and cell compatibility of hydrogels on agar plates after contact 
with hydrogels using S. aureus (a) and E. coli (b). The antibacterial rate of hydrogels to S. aureus 
(c) and E. coli (d) by direct contact method. (e) The OD value of L929 cells was obtained by direct 
contact method for 1 day, 3 days, and 5 days. (f) Live/dead staining of L929 cells after coculture 
with hydrogels for 3 days. Scale bar: 100 μm. (g) HUVECs cell migration at different times (0, 12, 
and 24 h). Scale bar: 200 μm. (Reprinted from Yang et al. 2022a, copyright 2022, with permission 
of Elsevier)



chitosan hydrogels produced in this study displayed an adhesive strength that 
increased with tannic acid concentration. Also, chitosan hydrogels killed more 
than 99% of S. aureus and E. coli using the surface antibacterial activity and the 
zone of inhibition test after interacting with chitosan hydrogels for 2 h. On the other 
hand, hydrogels displayed low hemolysis ratios (<5%) and high cell viability 
(>70%).
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Similar results were reported by Guo et al. (2022c). They developed a multifunc-
tional chitosan hydrogel using a one-step free radical polymerization reaction. 
Tannic acid and different concentrations of FeCl3-6H2O were added (0, 9, 18, and 
36 mM). The hydrogels displayed a porous structure with high water content (92%), 
which would help the adsorption of tissue exudates and the exchange of nutrients 
and gases through the wound. Also, the increase of Fe(III) concentration decreased 
the elastic behavior of the chitosan hydrogels, which can be related to the decrease in 
cross-linking degree. Interestingly, chitosan hydrogels displayed suitable adhesive-
ness in different biological tissues (heart, liver, spleen, lung, kidney, skin) and 
non-biological materials (wood, iron, plastic, glass, and rubber). The hydrogels 
showed excellent antibacterial properties against Escherichia coli and Staphylococ-
cus aureus, with mortality values of 95%. 

Luo et al. (2022) produced physical chitosan hydrogels using an alkaline aqueous 
solution (7% NaOH and 12% urea), followed by thermal gelling and solvent change. 
The transparent chitosan solutions gelled at temperatures higher than ~40 °C. The 
chitosan hydrogels display a translucent appearance, interconnected porous struc-
ture, and elastic behavior. Compared with hydrogels produced using the acid 
method, the hydrogels made using the alkaline methods displayed higher mechanical 
properties (tensile strength, Young’s modulus, and elongation). The leaching 
solutions from the chitosan hydrogels did not show cytotoxicity for L929 fibroblasts. 
The cells were seeded into chitosan hydrogels, demonstrating that chitosan 
hydrogels were noncytotoxic. The chitosan hydrogels induced a faster wound 
closure than gauze and improved reepithelialization and granulation tissue 
formation. 

Xu et al. (2022b) produced a chitosan methacrylate-gallic acid hydrogel loaded 
with nanoparticles with antioxidant and antimicrobial activity. The porous hydrogels 
displayed a suitable water vapor transmission property similar to those obtained for 
normal skin, a critical property as a wound dressing. The NIH 3T3 cells exhibited 
excellent biocompatibility using chitosan hydrogel extracts, while hydrogels support 
cell adhesion. For wound dressing applications, chitosan hydrogels displayed 
antibacterial properties. The chitosan hydrogels containing higher NP concentrations 
(F127/chlorhexidine) showed the highest bactericidal efficiency against S. aureus 
and E. coli (99.9%). 

15.4.2 Cellulose Hydrogels as a Wound Dressing 

Cellulose is the most abundant bioavailable and cost-effective polymer on Earth, 
mainly produced from various agricultural wastes (Thivya et al. 2022). Cellulose



represents about 40% of the concentration of carbon in plants, providing their 
mechanical and structural integrity (Liu et al. 2022a). Wood pulps (85–88%) and 
cotton linter represent the primary source of cellulose (Wong et al. 2021). Also, 
cellulose is nontoxic and biodegradable and is a biocompatible polymer with a stable 
structure (Liu et al. 2022a). Cellulose is a linear polymer composed of a long chain of 
basic monomeric units of D-glucose joined together through β-(1,4) glycosidic 
linkages (Wong et al. 2021). Cellulose possesses numerous hydroxyl groups, 
which can form polymer networks linked by hydrogen bonds. Thus, hydrogels can 
be produced by establishing intermolecular hydrogen bonding within the polymer 
chains and/or covalent bonding with functionalized cross-linkers (Wong et al. 2021). 
Conversely, cellulose is insoluble in common solvents and thus poses a significant 
threat in the preparation of hydrogels. In this sense, cellulose can be chemically 
modified to break hydrogen bonds and improve hydrophilicity, increasing their 
solubility (Liu et al. 2022a). Cellulose cannot be used naturally due to its high 
concentration of hydroxyl groups. Commonly, cellulose is modified using different 
chemical reactions to form cellulose hydrogel (Kundu et al. 2022). Also, cellulose 
did not possess antimicrobial properties (Table 15.2). 
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Deng et al. (2022a) developed cellulose composite hydrogels with chitosan by 
covalent self-cross-linking through Schiff base reaction. Hydrogels displayed excel-
lent biocompatibility with higher than 90% cell viability values. The hydrogels 
showed a homogeneous tridimensional polymer structure with a surface roughness 
favorable for cell adhesion, high water absorption properties, and equilibrium 
swelling ratios above 1000%. In this sense, hydrogels should have good adsorption 
to guarantee the appropriate absorption of additional liquid on the wound surface. 
Similarly, hydrogels must generate a humid atmosphere to avoid hydrogel adherence 
to the wound (Song et al. 2021). The author describes that the antibacterial activity of 
hydrogels is a critical property as a suitable wound dressing, preventing wound 
infection and favoring the healing process (Deng et al. 2022a). Hydrogels containing 
cellulose and chitosan displayed suitable antibacterial properties with an efficient 
killing rate between 75.8% and 96%. 

Silver nanoparticles have been used in biomedical applications because of their 
antimicrobial properties, which can be incorporated into cellulose hydrogels (Song 
et al. 2021; Gupta et al. 2020). Cellulose hydrogels with silver nanoparticles 
displayed antimicrobial activity, while that of cellulose hydrogels containing 
curcumin did not exhibit activity. Forero-Doria et al. (2020) produced cellulose 
hydrogels with multiwalled carbon nanotubes and bioactive compounds enhancing 
antimicrobial and wound-healing properties. Similar results were reported by 
Koneru et al. (2020) and Dharmalingam and Anandalakshmi (2020) using grapefruit 
seed extract. 

Yang et al. (2022b) developed resveratrol-cellulose nanofibrils with PVA-borax. 
The porous hydrogel displayed suitable healing ability, where it can be strained to 
more than ten times its original length. This property was corroborated using a strain 
amplitude sweep. Similar to chitosan hydrogels previously revised, cellulose-based 
hydrogel showed excellent adhesion to wood, metal, plastic, and glass. Also, 
cellulose hydrogels showed intense tissue-adhesive activity, allowing them to be



directly attached to the human skin. Also, they displayed high water vapor perme-
ability, the critical parameter that maintains the equilibrium between fluids on the 
wound site. Lastly, cellulose-based hydrogels did not show cytotoxicity using L929 
cells, wound closure capabilities, and antioxidant and antibacterial properties against 
S. aureus as a bacteria model.Loh et al. (2018) developed bacterial cellulose/acrylic
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Table 15.2 Advances in cellulose hydrogels for wound-healing applications 

Fabrication 
method 

Polymer/bioactive 
molecules additional Wound dressing properties References 

Schiff base 
reaction 

Quaternized chitosan 
Carboxymethyl 
chitosan 

Water retention capacity, 
cell proliferation, cell 
spreading, self-healing, and 
antibacterial properties 
Hemostatic effects 

Deng et al. (2022a), 
Yin et al. (2022) 

Dual light-
responsive 

Prussian blue 
nanoparticles and 
Pluronic® F127 

Hemostatic effects and 
antibacterial properties 

Shi et al. (2022) 

Coagulation Rifampicin Healing and antibacterial 
properties, cell proliferation 

Zhang et al. (2022) 

Freeze-
thawing 
process 

Polyvinyl alcohol, 
silver nanoparticles 

Antibacterial, wound-
healing, and 
biocompatibility properties 

Song et al. (2021) 

Chalcone 
cross-linking 

Allantoin, 
dexpanthenol, 
resveratrol, and 
linezolid 
Multiwalled carbon 
nanotubes, chalcone 

Wound-healing and 
antibacterial properties 

Forero-Doria et al. 
(2020) 

Solvent 
casting 

Grapefruit seed extract 
nanoparticles 
Zinc oxide 
nanoparticles 

Antimicrobial activity Koneru et al. 
(2020), 
Dharmalingam and 
Anandalakshmi 
(2020) 

Reduced graphene 
oxide 

Antibacterial properties and 
low citotoxicity 

Ali et al. (2019) 

Tungsten oxide Anti-inflammatory and 
antibacterial properties 

El Fawal et al. 
(2018) 

Ionic cross-
linking 

Collagen Cell adhesion and 
proliferation. Wound 
healing properties 

Basu et al. (2018) 

Gelation in 
situ 

Resveratrol-
polyethylene glycol-
cellulose nanofibril 
conjugate, PVA, Borax 

Antibacterial, antioxidante, 
self-healing properties 

Yang et al. (2022b) 

Electron beam 
irradiation and 
neutralization 

Acrylic acid Cell adhesion and 
biocompatibility 

Loh et al. (2018) 

Derivatization 
process 

N/A Biocompatibility and 
antibacterial properties 

Orlando et al. 
(2020)



acid hydrogels as cell carriers for wound healing applications. Dermal cells (dermal 
fibroblasts and epidermal keratinocytes) attached to cellulose hydrogels increase the 
number of cells with time. Also, cellulose-based hydrogels induced high cell viabil-
ity and low cytotoxicity at 1 and 3 days of cell culture. The use of the cellulose 
hydrogels reduced the animal wound area over time, while the healing rate was 
different. On day 13, the wound treated with cells was reepithelialized and healed 
wholly compared to other groups.
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Orlando et al. (2020) synthesized bacterial cellulose using a derivatization pro-
cess to add active functional groups through covalent attachment to the polymer 
structure. The modified bacterial cellulose films did not have cytotoxicity for 
keratinocytes. At the same time, cell morphology on monolayer culture was pre-
served, demonstrating that the cellulose hydrogels maintained cell growth and cell 
proliferation. Also, cellulose hydrogels displayed higher antibacterial ability against 
Escherichia coli and Staphylococcus aureus than those for unmodified bacterial 
cellulose. The modified cellulose films decreased at 53% the bacterial cells growing 
by more than half as compared to the unmodified bacterial cellulose films. 

Several authors have reported cellulose hydrogels adding inorganic molecules 
such as graphene oxide (Ali et al. 2019) and tungsten oxide (El Fawal et al. 2018). 
For example, El Fawal et al. (2018) developed hydroxyethyl cellulose films with 
tungsten oxide for wound treatment. The films displayed a sponge-like structure with 
high porosity and high swelling capacity. Also, cells seeded on the films did not 
show morphological changes. The addition of tungsten oxide (0.04%) favored the 
cell migration toward the scratched area to almost closure of the wound. The results 
displayed that the cellulose membranes had an anti-inflammatory and antibacterial 
efficacy against Salmonella sp., P. aeruginosa, and E. coli. 

15.4.3 Alginate Hydrogels as a Wound Dressing 

Alginate is an anionic biopolymer composed of β-L-guluronic acid (G) and (1–4) 
related α-D-mannuronic acid (M), commercially isolated from the marine brown 
algae class of Phaeophyceae such as Ascophyllum nodosum, Macrocystis pyrifera, 
Laminaria digitata,  and  Laminaria hyperborea. Wound dressings developed from 
alginate are characterized by nontoxicity, biocompatibility, reduced wound odor and 
pain, oxygen permeability, and hemostatic and antimicrobial properties, which are 
significant roles for acute and chronic wound healing such as surgical infection 
wounds, pressure sores, and leg ulcers (Prasathkumar and Sadhasivam 2021). 
Table 15.3 displays the significant advances of alginate hydrogels for wound-healing 
applications. Alginate is a polymer that can be readily cross-linked using calcium 
ions to produce physical hydrogels. Li et al. (2022a) fabricated alginate hydrogels 
loaded with deferoxamine and copper nanoparticles. The hydrogels were 
noncytotoxic and demonstrated their effectiveness against E. coli and S. aureus. 
Also, adding deferoxamine and copper nanoparticles into hydrogels accelerated the 
wound-healing activity compared with the control, reducing the wound area after 
10 days using in vivo model.
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Table 15.3 Advances in alginate hydrogels for wound-healing applications 

Fabrication 
method 

Polymer/bioactive 
molecules additional Wound dressing properties References 

Ionic cross-
linking 

Deferoxamine and 
copper nanoparticles 

Nontoxic, cell migration and 
proliferation with antibacterial 
and wound-healing activity 

Li et al. 
(2022a) 

Platelet-rich plasma 
fibrin 

Nontoxic, wound-healing 
properties 

Gao et al. 
(2022) 

Vitamin D3, D-
glucono-δ-lactone 

Hemo- and cytocompatible, 
wound-healing properties, 
reepithelialization and granular 
tissue formation 

Ehterami 
et al. 
(2020) 

Ionic cross-
linking, 3D 
printing 

ZnO Nontoxic, antibacterial properties Cleetus 
et al. 
(2020) 

Solvent cast Chlorogenic acid, 
Eucommia ulmoides 
rubber 

Wound-healing and antibacterial 
properties 

Guo et al. 
(2022a) 

Oxidation 
cross-linking 

Dopamine Nontoxic, wound-healing 
properties 

Chi et al. 
(2022) 

Solvent casting 
method 

Amikacin, poloxamer 
407, pluronic F127, and 
polyvinyl alcohol 

Antibacterial properties and 
wound-healing capacity 

Abbasi 
et al. 
(2020) 

Complexation 
and ionic 
gelation 
(CaCl2) 

Carboxymethyl chitosan, 
hyaluronic aldehyde 
acid, ZnCl2 

In vivo biodegradation, wound-
healing properties 

Yan et al. 
(2022) 

Chitosan, Aloe vera, 
honey 

Cell adhesion, antibacterial 
properties 

Saberian 
et al. 
(2021) 

Gelation in situ Chitosan oligosaccharide 
and zinc oxide 
nanoparticles 

Biocompatible with antibacterial 
and wound-healing activity 

Zhang 
et al. 
(2021) 

Gelation in situ Aldehyde alginate and 
polyetherimide, 
strontium-ion-doped 

Self-adhesion wound-healing 
properties 

Lu et al. 
(2020) 

Zhang et al. (2021) developed sodium alginate-chitosan oligosaccharide 
hydrogels containing zinc oxide nanoparticles by spontaneous Schiff base reaction. 
The porous hydrogels with high swelling degree displayed antibacterials activity 
against four microorganisms: Escherichia coli, Staphylococcus aureus, Candida 
albicans, and Bacillus subtilis. These hydrogels display low hemolysis with hemo-
lysis rates of 1.3–2.4%, comparable to the negative control PBS group. The authors 
described that the hemolysis rate is directly associated with the blood compatibility 
of polymer hydrogels. Also, the results demonstrated that hydrogels enhanced the 
wound-healing process due to the synergistic effects of zinc oxide nanoparticles and 
chitosan oligosaccharide and the water retention properties of alginate hydrogel. 

Saberian et al. (2021) produced alginate hydrogels with chitosan (2%), Aloe vera 
(2.5%), and honey (20%) and their different blends. The porous alginate hydrogels



displayed suitable water vapor transmission and high hydrophilicity. Also, compos-
ite hydrogels showed excellent antibacterial properties against Staphylococcus 
aureus and Pseudomonas aeroginosa with an inhibitory zone of 23 mm and 
14 mm, respectively. The extracts from the hydrogels did not show cytotoxicity at 
7 days of incubation, while hemolytic activity (red blood cells) was lower than 5%, 
which is acceptable. Ehterami et al. (2020) produced alginate hydrogels cross-linked 
with calcium carbonate/D-glucono-δ-lactone loaded with vitamin D. Alginate 
hydrogels displayed a highly interconnected and porous structure. The addition of 
vitamin D increased the porosity of the alginate hydrogels reaching values of 91%. 
The alginate-vitamin D hydrogels displayed low hemolysis values compared with 
the control group. Also, hydrogels loaded with vitamin D induced a high prolifera-
tion rate of L929 cells at 24 and 72 h of cell culture. The hydrogels displayed suitable 
properties of wound closure compared with the negative control (gauze-treated 
wound). The authors described that these results are related to the proliferation 
rate of the cells seeded on alginate hydrogels. 
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The addition of nanoparticles has been reported to improve the wound-healing 
properties of hydrogels. For example, Cleetus et al. (2020) added zinc and titanium 
nanoparticles into 3D-alginate hydrogels. The 3D-alginate hydrogels loaded with 
zinc nanoparticles (ZnO, 0.5% and 1%) displayed antibacterial properties against 
S. epidermidis, similar to the erythromycin activity. However, alginate hydrogels 
loaded with titanium nanoparticles did not show antibacterial activity. Lastly, algi-
nate hydrogels were noncytotoxic using fibroblasts. 

Lu et al. (2020) produced multifunctional alginate hydrogels with self-healing 
properties. Also, strontium ions were incorporated into the alginate hydrogel to favor 
tissue repair. The authors reported excellent self-healing properties using a continu-
ous step strain test. The hydrogels immediately recovered their original values after 
the strain returned from 60% to 1%. Also, the hydrogels loaded with strontium ions 
showed proliferation cell capacity and chemotactic effect, favoring the migration of 
vascular endothelial cells. 

15.4.4 Gelatin Hydrogels as a Wound Dressing 

Gelatin is a biopolymer protein obtained from collagen thermal denaturation, the 
primary component of connective tissue (Prasathkumar and Sadhasivam 2021). 
Since gelatin is a collagen derivative, it possesses similar properties (Naomi et al. 
2021). Gelatin is used in tissue engineering to produce biomaterials since it has 
excellent biological properties, including high biocompatibility, low antigenicity, 
biodegradability, and the ability to enhance cell attachment. Gelatin contains repeat-
ing amino acid sequences of Gly-X-Y, where X and Y are mainly proline and 
hydroxyproline (Prasathkumar and Sadhasivam 2021). Table 15.4 displays the 
significant advances of gelatin hydrogels for wound healing applications. Thi et al. 
(2020) produced an injectable hydrogel composed of gallic acid-conjugated gelatin. 
The porous gelatin hydrogels displayed pore sizes from 50 to 150 μm and antioxi-
dant properties. The authors evaluated the effect of the gelatin hydrogels on the



inhibition of the reactive oxygen species. The authors found that the antioxidant 
capacity of gelatin hydrogel was improved after the conjugation with antioxidant 
molecules. The results were related to cell survival, obtaining values of about 86% 
on cells cultured with 0.75 mM H2O2 into gallic acid-conjugated gelatin hydrogels. 
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Table 15.4 Advances in gelatin hydrogels for wound-healing applications 

Fabrication 
method 

Polymer/bioactive 
molecules additional Wound dressing properties References 

Gelation in situ Horseradish peroxidase, 
H2O2 

Wound-healing activity Thi et al. 
(2020) 

Poly (γ-glutamic acid) Cell adhesion and 
proliferation 

Dou et al. 
(2022) 

Tannic acid, gellan gum Antibacterial properties and 
wound-healing activity 

Zheng et al. 
(2018) 

Schiff base and 
chelating with 
Fe3 

+ ions 

2-(4′-aldehydephenyl)-4-
(2′,3′,4′-trihydroxyphenyl)-
2,3-phthalazine-1(2H)-one 

Tissue adhesion and self-
healing properties. 
biocompatibility, 
hemostatic, antibacterial 
activity, and wound healing 

Li et al. 
(2022b) 

Solvent cast PVA, ginger Wound-healing properties Khan et al. 
(2020) 

Electrospinning 
and photo-
cross-linking 

Dopamine Cell growth and wound-
healing activity 

Liu et al. 
(2022b) 

Chemical cross-
linking 

E. adenophorum emulsion 
(Pluronic F68® ) 

Antibacterial activity Chuysinuan 
et al. (2019) 

Dou et al. (2022) developed a porous and transparent physical gelatin hydrogel 
containing a covalently cross-linked poly (γ-glutamic acid) network. The hydrogels 
displayed self-healing properties since both sections were re-bonded after cutting 
them. After 30, 60, and 120 min of healing, the tensile strength of hydrogel was 0.08, 
0.13, and 0.14 MPa, respectively. These values were similar to those obtained for the 
original hydrogel (0.23 MPa). Lastly, the gelatin hydrogels displayed excellent 
biocompatibility for L929 cells. The cells were viable after 3 days of incubation, 
demonstrating that the cells had good activity. The in vivo evaluation for 
accelerating wound healing showed that the wound area of rats treated with gelatin 
hydrogels was less than that of those treated with gauze. 

15.5 Conclusions 

The hydrogels produced from natural polymers are potential candidates for skin 
wound-healing applications. The physicochemical, mechanical, and biological 
properties of hydrogels stimulate the wound-healing process. Also, the incorporation 
of bioactive molecules and nanoparticles in hydrogels enhances these properties.
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