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Abstract

Cells, mainly stem cells, possess immense potential in regenerative medicine.
Stem cells (SCs) can also play a crucial role in treating diseases due to their
remarkable ability of self-renewal, proliferation, and differentiation into germ
layers or gastrula (i.e., internal layer (ectoderm), middle layer (mesoderm), and
outer layer (endoderm)). In this regard, pluripotent stem cells like induced
pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) can differentiate
into all three germ layers. However, targeted cellular differentiation is not possi-
ble without a suitable induction environment, microenvironment, or substrate.
Based on the reports, the group of polymers or biopolymers, bioactive
compounds, and biomaterials can provide such a microenvironment or substrate
and lead to an increase in the interactions of cell-to-cell and cell-to-substrate,
better differentiation, and secretion of growth factors to accelerate tissue regener-
ation. These materials can synthesize by living organisms such as animals,
bacteria, fungi or algae, and plants. In this field, polysaccharides (such as
hyaluronic acid, galactans, poly-galactosamine, chitosan, etc.) and proteins
(such as silk fibroin, silk sericin, collagen, etc.) are known as natural biomaterials
or biopolymers. Moreover, polyphenols, flavonoids, mucilage, pectin, apigenin,
quercetin, galangin, curcumin, etc. obtained from medicinal herbs are

A. 1. Aghmiuni (<) - A. A. Khiyavi
Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
e-mail: azimakbarzadeh @pasteur.ac.ir

A. Ghadi
Department of Chemical Engineering, Islamic Azad University, Ayatollah Amoli Branch, Amol,
Iran

M. Asadi
Department of Sport Physiology, Islamic Azad University, Sari Branch, Sari, Iran

© The Author(s), under exclusive license to Springer Nature Singapore Pte 365
Ltd. 2023

F. A. Sheikh et al. (eds.), Interaction of Nanomaterials With Living Cells,
https://doi.org/10.1007/978-981-99-2119-5_13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-2119-5_13&domain=pdf
https://orcid.org/0000-0002-5136-0335
https://orcid.org/0000-0002-2273-369X
https://orcid.org/0000-0002-0457-4031
https://orcid.org/0000-0003-4925-1874
mailto:azimakbarzadeh@pasteur.ac.ir
https://doi.org/10.1007/978-981-99-2119-5_13#DOI

366 A. . Aghmiuni et al.

phytochemicals and bioactive compounds which can be led to an increase in
cellular proliferation and differentiation, induction of cellular signaling, promo-
tion of regeneration rate, and immunomodulation. Hence, the present chapter is
aimed to study the applications and consequences of bioactive compounds and
biomaterials on stem cell proliferation and differentiation, as well as to highlight
their role in tissue regeneration.

Keywords

Stem cells - Regenerative medicine - Biopolymers - Bioactive compounds -
Biomaterials

13.1 Introduction

Stem cells are known as precursor biological cells that can be classified into totipo-
tent,’ pluripotent,” multipotent,” oligopotent,* and unipotent’ stem cells, depending
upon the differentiation capacities. These cells possess a high potential for self-
renewal and differentiation into other cells, and as a promising resource for medi-
cine, applications can play an important role in regenerative medicine or tissue
engineering and cellular therapies (Chagastelles and Nardi 2011). However, apply-
ing stem cells to treat diseases and regenerate damaged tissues will be successful
when suitable conditions are available to improve cellular interaction control and
differentiate into the target cells (Izadyari Aghmiuni et al. 2021). Indeed, the creation
of environments for therapeutic cloning that can well control cellular behavior can be
the main factor in this regard (Fig. 13.1). Based on the reports, the use of
biomaterials or biopolymers and bioactive compounds obtained from medicinal
plants is considered a fundamental strategy for this purpose, due to their excellent
bioactivity and role in the improvement of cellular biological response as well as in
mimicking functional and structural properties of the target tissues (Yu et al. 2019).
Such that, recent efforts in the design of biomaterial-based scaffolds, hydrogels,
substrates, etc. (Chaudhari et al. 2016; Shafei et al. 2017; Ahmed 2013; Talebian
et al. 2019; Zhao et al. 2020; Wang et al. 2018a) have provided significant
opportunities to use these materials in regenerative medicine and generate novel

!"Totipotent is embryonic stem cells of 1-3 days (e.g., zygotes)—differentiation into any cell types.
ZPluripotent is embryonic stem cells of 5—14 days (e.g., blastula) and induced pluripotent stem cells
(iPSCs)—differentiation into cells from any of the three germ layers.

*Multipotent is adult stem cells—differentiation into a limited range of cell types such as neural
stem cells, epithelial stem cells, hematopoietic stem cells, etc.

“Oligopotent is adult stem cells—differentiation into a limited number of cell types such as neural
progenitor cells, myeloid stem cells, lymphoid stem cells, etc.

SUnipotent is adult stem cells—differentiation into single cell type such as gut cell, erythrocytes,
neurons, etc.
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Fig. 13.1 The effective materials for the proliferation and differentiation of stem cells

substitutes for tissue engineering applications (Ramalingam et al. 2019; Aghmiuni
et al. 2020).

There are biomaterials or bioactive materials with different natures which seem to
be effective in targeting cell differentiation and tissue regeneration. Medicinal herbs
are one of these bioactive materials gaining significant attention among researchers
and scientific communities due to the promotion of cell proliferation and controlled
differentiation (Izadyari Aghmiuni et al. 2020; Dey et al. 2010). The biopolymers
similar to signaling molecules such as glycoproteins, proteoglycans, and
glycosaminoglycans which exist in the network of the tissue extracellular matrix
(ECM) are other samples from these biomaterials that can promote cell-cell signaling
on the engineered substrates to modulate cellular functions (i.e., adhesion, prolifera-
tion, differentiation, and morphogenesis). Silk fibers (SF) are one of the biomaterials
in this matter that owing to the amino acids of alanine and glycine can mimic the
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Fig. 13.2 Potential applications of stem cells

proteoglycans’ behavior in the tissue ECMs (Omenetto and Kaplan 2010). More-
over, hyaluronic acid (HA), as a linear polysaccharide and signaling molecule, can
act like glycosaminoglycans of the ECM (Kogan et al. 2006; Volpi et al. 2009;
Petrey and de la Motte 2014) and play a crucial role in cell-cell and cell-substrate
interactions via communication between cell-surface receptors (Volpi et al. 2009;
Lam et al. 2014; Dicker et al. 2014). According to the importance of subject and
attention to personalized therapies in tissue engineering or regenerative medicine,
the present chapter is aimed to assess the association of bioactive materials and
biomaterials with cellular functions (such as cell signaling, proliferation, differentia-
tion, migration, etc.) and their role in increasing effectiveness and safety of thera-
peutic methods and regenerating damaged tissues.

13.2 Proliferation and Differentiation Potential of Stem Cells

Stem cells are known as cells with extensive biological functions to differentiate into
cell types, as well as to enable the growth, healing, or replacement of cells (Fig. 13.2)
(Zakrzewski et al. 2019). These cells are found both in embryos (uncontrolled range
of differentiation) and adult or somatic cells. Although adult stem cells possess a
restricted range of differentiation, however, it is possible to reprogram these cells
back to their pluripotent states or improve their capacity of self-renewal (Wu et al.
2018). Therefore, to be useful in therapy and be converted into target cells, as well as
avoid teratoma formation, the creation of similar body conditions or imitation of the
extracellular microenvironments plays an important role in controlling cell behavior
(cellular interaction, proliferation, and differentiation). In this regard, understanding
signaling pathways and identifying effective substances to improve these pathways
are also the main factors in successful regenerative medicine. In the following, the
different materials that can bring us closer to this aim, as well as their role in
inducting cell signaling and improving proliferation and differentiation, have been
mentioned.
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13.3 Herbal Bioactive Compounds to Induce Differentiation
of Stem Cells

The tremendous differentiation of stem cells is one of the desirable properties of
these cells. However, this property can act as a double-edged sword, which means an
increase in the risk of tumorigenicity. Thus, therapeutic strategies which led to the
complete and irreversible differentiation of stem cells play an important role in
controlling differentiation.

One of these strategies includes the use of biomaterials or bioactive materials to
design scaffolds, substrates, or tissue substitutes (Izadyari Aghmiuni and Heidari
Keshel 2022; Aghmiuni et al. 2022). This approach can provide suitable
physicomechanical properties to differentiate stem cells and lead to a sustained
delivery and local of bioactive molecules for tissue regeneration. Indeed, bioactive
compounds or biomaterials play the main role in providing the cell differentiation
microenvironment, so that they can control cellular functions and interactions via
creating an ideal substrate. In this matter, [zadyari Aghmiuni’s research has shown
that the phytochemical materials in herbs possess high therapeutic and regenerative
effects (Izadyari Aghmiuni et al. 2020). However, their physical forms like gel,
mucilage, and the extract or essential oil from different parts of the plants cannot be
applied on damaged tissue (such as the bone, skin, cartilage, blood vessels, nerve,
cornea, tendon, etc.) directly. This research team showed that quince seed mucilage
is one of the bioactive components that can turn an engineered scaffold into a smart
biological substrate. They stated that this herbal bioactive material is classified into
the group of polysaccharide and composed of xylose(glucuronoxylan) and
glucuronic acid; however, swell in water due to the existence of hydrophilic groups
(i.e., amino, hydroxyl, amide, and carboxylic acid), unlike some of the
polysaccharides such as chitosan which suspended in the acidic solvent. The results
of this study indicated that quince seed mucilage-based hybrid scaffolds can create a
better porous network compared to chitosan-based scaffolds. Moreover, these
scaffolds support the proliferation of dermal fibroblasts and provide high water
absorption capacity for the scaffold. Based on this research, the combination of
quince seed mucilage and PEG leads to an increase in the transduction of mechanical
force-induced signals and improves the biological signals to induce stem cell
differentiation (with the same differentiation patterns) into targeted cells such as
keratinocytes.

Another study in this regard is Aloe vera-based scaffolds that possess wide
applications in biomedical and pharmaceutical sciences. The popularity of these
herbal polysaccharides is inducted by their bioactive components (i.e.,
anthraquinones, anthrones, carbohydrates, proteins, vitamins, etc.) that lead to
antimicrobial, anti-inflammatory, and antiviral properties, antioxidant effects, as
well as immunomodulatory, neo-angiogenesis, and tissue repair effects (Darzi
et al. 2021; Rahman et al. 2017). In this regard, Kallyanashis Paul et al. reported
that Aloe vera-based hydrogel could alleviate maternal birth injuries (Paul et al.
2021). Based on this study, Aloe vera-alginate hydrogels can be an immediate
treatment by delivering stem cells to regenerate damaged tissue. The results of this
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research team showed that local injection of hydrogel with/without stem cells can be
significantly effective in repairing birth injuries, so that it leads to the improvement
of elastin content and smooth muscle. They stated that such hydrogels can be a
suitable therapeutic strategy for preventing pelvic organ prolapse or healing birth
injuries.

The electrospun mesh of Aloe vera is another sample that can act as a transdermal
therapeutic factor. Suganya et al. showed that fibers of poly(caprolactone) containing
Aloe vera powder (10 wt%) possess better hydrophilic properties along with higher
tensile strength (6.28 MPa) and elastic modulus similar to skin tissue, as well as
more desirable cell proliferation, secretion of collagen, and expression of F-actin
compared to polycaprolactone-collagen fibers (Suganya et al. 2014a). Based on the
reports of Tahmasebi et al., nanofibrous scaffolds of poly(3-hydroxybutyrate-co-3-
hydroxy valerate) blended with Aloe vera gel can be also useful for applications of
bone tissue engineering (Tahmasebi et al. 2020). The results of this study indicated
the higher biocompatibility of the mentioned nanofibrous scaffold when blended
with Aloe vera. Moreover, alkaline phosphatase activity, amount of mineralization,
and expression of bone-related genes or proteins increase compared to Aloe vera-
free nanofibrous scaffold. They stated that Aloe vera gel possesses the
osteoinductive potential and can be used for acceleration of bone regeneration as a
bio-implant.

According to the reports, the use of Aloe vera, along with other herbal bioactive
compounds, can accelerate wound healing processes. In this matter can mention to
hybrid nanofibrous scaffolds based on Aloe vera and curcumin were designed by
Ezhilarasu et al. to increase their synergistic effects on the proliferation of fibroblasts
and antimicrobial activities (Ezhilarasu et al. 2019).

The study of Oryan et al. demonstrates that adipose-derived stem cell-loaded Aloe
vera hydrogels can be also effective in the burn wound models (Oryan et al. 2019).
The results of this study showed that hydrogels containing Aloe vera and stem cells
can significantly increase the rate of burn wound healing, lead to improvement of
angiogenesis and reepithelialization, as well as decrease TGF-p,° and interleukin-1p
levels. Urtica dioica L. (nettle) is one of the other herbs in this matter that can be led
to osteogenic differentiation when blended with biomaterials such as silk fibroin.
Zadegan et al. indicated that silk fibroin-nettle nano-fiber possesses better water
uptake and cellular attachment as well as higher cellular proliferation than that of silk
fibroin nano-fiber. Moreover, nettle-based nano-fibers can express both early and
late markers of osteoblast differentiation (Zadegan et al. 2019).

Urtica dioica, along with ZnO nanoparticles, can also provide the synergy effects
for the increase of antibacterial activities in the electrospun scaffolds. Ghiyasi et al.
stated that incorporation of Urtica dioica and ZnO nanoparticles to poly
(caprolactone) scaffolds can be led to an increase in the tensile strength up to
2.54 MPa and improvement of water uptake ability and promotion of fibroblast
L.929 cell proliferation (Ghiyasi et al. 2021). Another study relates to the induction of

STransforming growth factor-p;.
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periosteal cell differentiation and proliferation by Urtica dioica extract. According to
the report of Bing et al., the extract of this herb led to an increase in alkaline
phosphatase and calcium nodule levels, as well as induction of osteoblast differenti-
ation and proliferation on the polyclonal lactone scaffolds (Xu and Liu 2018).

Moreover, the study of Hajiali et al. showed that nanofibrous dressings based on
sodium alginate-lavender essential oil possess high efficacy for the treatment of
UVB-induced skin burns with antibacterial activities (Hajiali et al. 2016). These
dressings are also able to decrease and control the inflammatory responses induced
in the skin fibroblasts due to UVB exposure. Some reports showed animal fats could
also increase the differentiation and proliferation of stem cells. In this regard, the
design of emu oil-based electrospun nanofibrous by Pilehvar-Soltanahmadi et al.
illustrates that emu oil not only promotes differentiation and proliferation of adipose
tissue-derived stem cells into keratinocytes but also can lead to increase in cell
adherence and cytoprotection (Pilehvar-Soltanahmadi et al. 2017). Such that, it can
be a suitable candidate to fabricate wound dressings and/or bio-engineered
substitutes containing stem cells for skin tissue repair.

There are many studies on this matter and some examples are listed in Table 13.1.

Specifically, studies on herbal bioactive compounds have illustrated that herb-
derived materials not only can increase the proliferation and differentiation of adult
stem cells but also inhibit the proliferation of cancer cells (Saud et al. 2019;
Olatunbosun et al. 2012; Kornicka et al. 2017; Potu et al. 2009; Gao et al. 2013).
However, studies have shown that the proliferation and/or differentiation ability of
stem cells is influenced by the doses of the stimulant compounds. It means that a
specific dose of herbal extracts can promote stem cell proliferation and induce its
differentiation into the targeted cell. In this regard, we can refer to Zhang’s study on
the effects of naringin on human bone mesenchymal stem cell proliferation and
osteogenic differentiation (Zhang et al. 2009a). Zhang et al. showed that 1-100 pg/
mL concentrations of extract from this citrus lead to an increase in the proliferation
of human BM-MSCs and their osteogenic differentiation, while, 200 pg/mL con-
centration can decrease the growth of these cells. Similar research in this field is
related to the study of Yu et al. They showed that naringin in 50 pg/mL concentration
can activate the Notch signaling pathway and lead to stimulation of osteogenic
differentiation of BMSCs.” However, higher concentrations than 100 pg/mL can
suppress the proliferation rate of these cells (Yu et al. 2016).

Zhang et al. also reported that naringin can induce osteogenic activity and
differentiation of canine bone marrow stromal cells (Zhang et al. 2021). To this
end, they added different concentrations of this bioactive to the mentioned cells.
Their results showed that the 10~® mol/L concentration can promote cell prolifera-
tion and be led to an increase in cellular proliferation and calcium nodules, as well as
induction of bone marrow stromal cell differentiation into osteoblasts.

7Bone marrow stromal cells.
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Table 13.1 Herbs-based scaffolds, substrates, or gels for improvement of cellular interactions and

functions

Herb
Curcumin

Scaffolds, substrates,
or gels

Collagen-alginate
scaffold containing
curcumin-loaded
chitosan nanoparticles

Poly(e-caprolactone)
nano-fibers loaded by
curcumin

Electrospun poly
(e-caprolactone)-poly
(ethylene glycol)-poly
(e-caprolactone)
fibrous mat containing
curcumin

The thermosensitive
hydrogel containing
encapsulated curcumin

Function Reference

Acceleration in wound Venkata et al.
closure; the complete (2016)
epithelialization along

with the formation of

thick granulation

tissue; the decrease of

inflammation;

regeneration of diabetic

wounds

More than 70% Merrell et al.
viability on human (2009)
foreskin fibroblast

cells; anti-

inflammatory property;

high antioxidant

activity; the decrease of

oxidative stress and

IL-6 release; wound

healing capability by

increasing rate of

wound closure in a

diabetic mice model

induced by

streptozotocin

Improvement of Fu et al. (2014)
antioxidant properties

and low cytotoxicity;

the increase of wound

closure; suitable

candidate for wound

dressings

Biodegradable gel with | Gong et al.
suitable tissue (2013)
adhesiveness for

release of curcumin

along with antioxidant

and anti-inflammatory

properties; accelerating

agent in wound closure;
improvement of

collagen content,

granulation, and wound

maturity; reduction of

superoxide dismutase;

the higher thicker

epidermis and tensile

strength in regenerated

skin; suitable for

(continued)
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Table 13.1 (continued)

Herb

Scaffolds, substrates,
or gels

Nano-graphene oxide
reinforced fish scale
collagen-based 3D
scaffold containing
curcumin

Chitosan-gelatin
composite sponge
containing curcumin

Collagen matrix
incorporated by
curcumin

Curcumin-treated
pluronic F-127 gel
(25%) and curcumin
(0.3%) in pluronic gel

Function

wound healing as a
wound dressing

No toxicity against
NIH 3T3 fibroblast
cells; suitable
antimicrobial
properties against the
growth of gram-
positive and gram-
negative bacteria;
acceleration of wound
healing; suitable for
skin tissue engineering
applications

Sponge possessed a
high capacity for water
absorption,
antibacterial activity,
and drug release; the
increase of wound
closure on rabbit
wound model; suitable
for wound healing
applications

Increase of cellular
proliferation and
wound healing;
efficient free radical
inhibiting and decrease
of oxidative stress;
suitable for supporting
dermal wound healing

Increase of the wound
contraction; reduction
in the expressions of
inflammatory cytokines
or enzymes such as
TNF-o®, IL-1p®, and
MMP-9%; increase in
the level of anti-
inflammatory cytokines
such as IL-10 and
antioxidant enzymes
(like dismutase,
catalase superoxide,
and glutathione
peroxidase); promotion
of fibroblast
proliferation and

373

Reference

Mitra et al.
(2015)

Nguyen et al.
(2013)

Gopinath et al.
(2004)

Kant et al.
(2014)

(continued)
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Table 13.1 (continued)

Herb

Aloe vera

Scaffolds, substrates,
or gels

Electrospun
polycaprolactone mat
incorporated with Aloe
vera

Electrospun silk
fibroin-hydroxyapatite
scaffold containing
Aloe vera

Electrospun
polycaprolactone-silk
fibroin nanofibrous
scaffolds containing
Aloe vera

Bacterial nano-
cellulose-Aloe vera
composites

Function

improvement of
collagen deposition;
covering wound via
creating a layer of thick
epithelial and diabetic
wound healing

The control of scaffold
degradation rate;
improvement of
wettability behavior
and increase of
hydrophilicity of the
substrate; promotion of
fibroblast proliferation
The creation of
biomimicry similar to
the natural bone
constitution in scaffold;
enhancement of
osteocalcin expression
and osteogenesis;
increase in proliferation
of human mesenchymal
stem cells, mineral
deposition, and
osteogenic
differentiation

The increase of
adipose-derived stem
cell proliferation on
scaffolds; promotion in
the expression of
osteogenic markers
such as osteocalcin and
alkaline phosphatase;
enhancement of
osteogenic
differentiation and
mineralization; suitable
for bone tissue
regeneration
applications
Improvement of
mechanical properties,
suitable for biomedical
application, design of
engineered scaffolds or
substitutes, and cell

A. |. Aghmiuni et al.

Reference

Agnes Mary and
Giri Dev (2015)

Suganya et al.
(2014b)

Shanmugavel
et al. (2014)

Godinho et al.
(2016)

(continued)
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Table 13.1 (continued)

Herb

Azadirachta indica,
Indigofera
aspalathoides,
Mbyristica
andamanica, and
Memecylon edule

Cissus
quadrangularis

Scaffolds, substrates,
or gels

Eye drops derived
from Aloe vera gel

Nanofibrous poly (L-
lactic acid)-collagen
scaffold coated with
Aloe vera gel and
chitosan

Core-shell electrospun
mat containing Aloe
vera extract

Electrospun
polycaprolactone
nanofibrous scaffolds
containing herbal
extracts

Polycaprolactone
nanofibrous scaffold
containing
hydroxyapatite and
Cissus quadrangularis

Function

culture substrate
applications

The decrease of the
corneal epithelial defect
area; no developed
hypersensitivity
reaction, corneal
perforation or
descemetocele, and
limbal ischemia;
control of inflammatory
responses

The improvement of
mouse fibroblast
(L929) behaviors
(adhesion, viability,
and proliferation) on
the scaffold and
physicomechanical
properties of the
substrate; suitable for
skin tissue engineering
The improvement of
mechanical and
physicochemical
properties in the
substrate; the increase
of cellular adhesion and
growth on the mat; high
potential for wound
healing

The promotion of
human dermal
fibroblast proliferation;
induction of epidermal
differentiation of
adipose-derived stem
cells (both early and
intermediate stages of
differentiation),
suitable for skin tissue
engineering

The increase in
osteogenic activity and
bone tissue
regeneration,
promotion of cell

375
Reference
Rezaei
Moghadam et al.
(2020)

Salehi et al.
(2016)

Zahedi et al.
(2019)

Jin et al. (2013)

Suganya et al.
(2014c¢)

(continued)
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Table 13.1 (continued)

Herb

Xylan (natural
polysaccharide in
plants)

Althea officinalis

Arnebia euchroma

Spinacia oleracea

Scaffolds, substrates,
or gels

Polyvinyl alcohol
nano-fibers containing
xylan

Electrospun poly
(e-caprolactone)-
gelatin scaffold
containing Althea
officinalis

The nanofibrous
scaffold of
polycaprolactone-
chitosan-polyethylene
oxide containing
Arnebia euchroma

Alginate-
carboxymethyl
cellulose scaffold
incorporated with

Function

proliferation, and
mineralization

Promotion of fibroblast

proliferation on the

nanofibrous scaffold;
the improvement of
mechanical properties

and increase in the

natural biodegradable

rate of the scaffold;
enhancement of
fibroblast adhesion;

better interactions of

cell-to-matrix to

regenerate skin tissue

Expedition of the

therapy duration and
acceleration of wound
healing; the increase of
anti-inflammatory and

antimicrobial
properties of the

scaffold; improvement

of mechanical and
physicochemical
properties of the

scaffold; promotion of
cellular proliferation
Scaffolds possess high
potential in burn wound

healing; control of

biodegradation rate of

the scaffold;
improvement of
swelling and

mechanical properties
of the scaffold; increase
of antibacterial activity

and human dermal
fibroblast cell

proliferation; suitable

for skin tissue
engineering
applications
The mechanical

stability of the scaffold;

improvement of
biocompatibility of
scaffold; control of

A. |. Aghmiuni et al.

Reference

Krishnan et al.
(2012)

Ghaseminezhad
et al. (2020)

Asghari et al.
(2022)

Sharmila et al.
(2020)

(continued)
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Table 13.1 (continued)

Herb

Angiogenin and
curcumin

Gum tragacanth

Scaffolds, substrates,
or gels

Spinacia oleracea
extract

Polyethyleneimine-
carboxymethyl
chitosan-poly (D, L-
lactic-co-glycolic
acid)-cellulose
nanocrystal
electrospun nano-fiber
containing angiogenin
and curcumin

Gum tragacanth-poly
(e-caprolactone)
electrospun nano-fiber
containing curcumin

# Tumor necrosis factor-alpha

® Interleukin-1beta

¢ Matrix metalloproteinase-9

Function

biodegradation rate;
promotion of MG-63
human osteosarcoma
cell proliferation;
suitable for bone tissue
engineering
applications
Nano-fibers possessed
excellent
biocompatibility, anti-
infection, and
angiogenesis
properties; suitable for
skin regeneration

High antibacterial
properties against
gram-positive and
gram-negative bacteria;
reduction of the
epithelial gap; fast
wound closure along
with the formation of
granulation tissue, hair
follicles, and sweat
glands; proliferation of
fibroblasts; creation of
collagen deposition and
the layer of early
regenerated epithelial
completely; increase of
angiogenesis number

377

Reference

Mo et al. (2017)

Ranjbar-
Mohammadi
et al. (2016)

Beom Su Kim et al. indicated that the extract of brown algae Laminaria japonica
(fucoidan) in 0.1-10 pg/mL concentrations can lead to JNK- and ERK®-dependent
BMP2°-Smad 1/5/8 signaling and induces osteoblast differentiation of human
mesenchymal stem cells (Kim et al. 2015). They also found that this osteogenesis
bioactive can increase ALP activities and accumulation of calcium and leads to the
expression of the osteoblast-specific gene.

8Extracellular signal-regulated protein.

°Bone morphogenetic protein.
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Moreover, MariaSatué et al. reported that some flavonoids lead to the stimulation
of MC3T3-El cell differentiation into osteoblast and inhibition of osteoclastogenesis
in RAW 264.7 cells (Satué et al. 2013). The results of this study illustrated that doses
greater than 100 pM of diosmetin, galangin, and chrysin, as well as 500 pM doses of
taxifolin, possess a toxic effect on cells. However, quercitrin with safe doses of
200 and 500 pM and taxifolin in safe doses of 100 and 200 uM can induce
osteocalcin mRNA and bone sialoprotein expression and lead to higher osteocalcin
levels. Fei Li et al. also showed that the echinacoside as phenylethanoid glycosides
can promote bioactivities of cell line MC3T3-E1 (i.e., proliferation, differentiation,
and mineralization of osteoblastic) (Li et al. 2012). To this end, this bioactive
component isolated from Cistanches Herba stems and the amount of the secretion
of osteoprotegerin, osteocalcin, and collagen I were evaluated. Based on this study’s
results, concentrations between 0.01 and 10 nmol/L can significantly promote cell
proliferation, osteocalcin levels, and collagen I content can lead to an increase in the
mineralization of osteoblastic. They stated that echinacoside possesses a stimulatory
effect on the formation of osteoblastic bone and can potentially be effective against
0steoporosis.

Likewise, Hui-HuiXiao et al. observed that vanillic acid isolated from Sambucus
williamsii Hance possesses estrogen-like activity in the rat UMR 106 cells that can
be due to MAP' kinase (MEK/ERK)-mediated specific estrogen receptor
(ER) antagonist signaling pathways (Xiao et al. 2014). The results of this study
showed that this phenolic acid stimulates the mentioned cell proliferation and
alkaline phosphatase (ALP) activity. Vanillic acid can also increase Runx2,'!
osteocalcin, and the ratio of osteoprotegerin-receptor activator of nuclear factor kB
ligand [i.e., OPG-RANKL] mRNA expression.

Kim’s study is one of the other samples hereof (Kim et al. 2014). Kim et al.
illustrated that kirenol extracted from Herba Siegesbeckia can promote osteoblast
differentiation via activation of the BMPs and Wnt/p-catenin signaling pathways in
MC3T3-E1l cells. Moreover, this natural diterpenoid compound can lead to the
promotion of mineralization and ALP activity, as well as the increase in osteopontin,
collagen I, and expression of OPG/RANKL. Puerarin and phytoestrogens isolated
from Pueraria mirifica are the other bioactive compounds in this field that can lead
to an increase in cellular proliferation and the expression of osteoblastic differentia-
tion markers in osteoblast-like UMR106 cells (Tiyasatkulkovit et al. 2012). Such
that, Tiyasatkulkovit et al. indicated that puerarin can increase the mRNA expression
of ALP, as well as lead to a decrease in the mRNA expression of RANKL and
induction of bone gain via increasing osteoblast differentiation in rat osteoblast-like
UMRI106 cells and suppressing osteoclast functions. They stated that puerarin can
induce the differentiation of osteoblast rather than the proliferation of osteoblast in
the estrogen receptor-dependent manner; hence, it can be the appropriate option to
prevent and treat postmenopausal osteoporosis. Choi et al. stated that honokiol

1"Mitogen-activated protein.
""Runt-related transcription factor 2.
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isolated from the bark of Magnolia officinalis not only can stimulate osteoblast
MC3T3-E1 cell function (i.e. increase in cell growth, improvement of ATP activity,
promotion of collagen synthesis and glutathione content, and release of
osteoprotegerin in the cells) but also decrease or inhibit the production of bone-
resorbing mediators. They suggested that this phenolic compound can be effective in
natural therapies for osteoporosis (Choi 2011).

There are many studies on stem cell differentiation into the progenitor cells of
endothelial or vascular, cardiomyocyte, neuronal, osteogenic, neurogenic, etc. that
their stimulation factor is bioactive components extracted from herbs. Indeed, these
bioactive components can not only promote cellular proliferation and differentiation
but also decrease the time required for tissue regeneration. Table 13.2 illustrates
some effective herbs in this regard.

13.4 Biomaterials and Their Characteristic to Design Ideal
Substrates and Induce Cell Differentiation

The ideal substrates possess different characteristics which originate from their
materials and lead to the targeted differentiation of stem cells (Discher et al. 2005).

Regardless of the tissue type, some of the key characteristics of bio- or active
material-based substrates when designing and determining the suitability of the
scaffolds for regenerative medicine applications include biocompatibility, mechani-
cal properties, biodegradability, the architecture of the scaffold, and manufacturing
technology. One of the requirements of a scaffold to regenerate tissue is biocompati-
ble properties; according to Williams, “The biocompatibility of a scaffold or matrix
for a tissue engineering product refers to the ability to perform as a substrate that will
support the appropriate cellular activity” (Williams 2008). Indeed, the scaffold
structure must possess suitable stimuli or recognizable stimuli by cells to colonize
scaffolds and regenerate (Parisi et al. 2018). In other words, the cells must first
adhere to the scaffold, proliferate, differentiate, and then migrate onto the surface of
the scaffold. Finally, differentiated cells should proliferate on the scaffold to create a
new matrix (Fig. 13.3).

In this regard, natural polymers are considered one of the main candidates that not
only can increase cell biological activities on the scaffold (i.e., adhesion or attach-
ment, spreading, proliferation, differentiation, and migration) but also imitate the
structure and function of the native extracellular matrix (ECM) and lead to controlled
induction of cell functions (Izadyari Aghmiuni et al. 2020; Izadyari Aghmiuni and
Heidari Keshel 2022). Indeed, biomaterials are agents that can provide an ideal
microenvironment with suitable physicomechanical and physicochemical properties
to mimic the structure of the ECM network and functions of targeted cells and tissues
(Izadyari Aghmiuni et al. 2021; Izadyari Aghmiuni and Heidari Keshel 2022).
Collagen is one of these biopolymers that is found in most soft and hard tissues
such as the blood vessels, nerves, cornea, skin, tendon, cartilage, bone, etc. Given
that, this biomaterial leads to maintaining the structural and biological integrity of
the native ECM network and can help in the physiological functions of the
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Fig. 13.3 The cellular interaction on the scaffold

engineered scaffolds as dynamic material (Barnes et al. 2007; Sell et al. 2010).
Moreover, low antigenicity, low cytotoxic and inflammatory response, and biode-
gradability are other properties of this biomaterial (Farach-Carson et al. 2007; Sell
et al. 2007, 2009). The study of Shih et al. indicates that electrospun collagen fibrous
mat can promote growth, proliferation, adhesion, motility, and osteogenic differen-
tiation of human MSCs'? (Mano et al. 2007).

Many reports have shown that the blends of collagen with other biomaterials can
increase the proliferation rate of cells and be used for regeneration templates in
different tissues (Aghmiuni et al. 2020; Izadyari Aghmiuni et al. 2020). In this
matter, Zhong et al. showed that collagen glycosaminoglycan (GAG)-based blended
scaffolds can be led to an increase in the proliferation of dermal fibroblasts
(FB) (Zhong et al. 2005). Moreover, the substrates based on chondroitin sulfate-
collagen, collagen-nanohydroxyapatite, as well as aggrecan (chondroitin sulfate,
dermatan sulfate, keratin sulfate)-collagen can be applied in the regenerating skin,
bone, and cartilage, respectively (Choi et al. 2004; Thomas et al. 2007). Based on
Chen’s report, scaffolds of collagen/chitosan-PEO (as wound dressing) possessed
good in vitro biocompatibility and led to the promotion of 3T3 FBs (Chen et al.
2008). In another study, collagen-chitosan scaffolds also illustrated an increase in the
proliferation of smooth muscle cells (SMCs) and endothelial cells (ECs) (Chen et al.
2010). Indeed, mixing collagen with other biopolymers can lead to a decrease in
the dimensions of the fibers or an increase in the porosity and tensile strength of the
scaffold and consequently promotion of cellular attachment or adhesion on the
scaffold surface (Barnes et al. 2007).

2Bone marrow-derived mesenchymal stem cells.



396 A. |. Aghmiuni et al.

Gelatin also is known as an attractive biopolymer for tissue engineering
applications due to its biological and biomechanical similarities to collagen
(Zhang et al. 2005, 2009b; Heydarkhan-Hagvall et al. 2008). Although fibers of
this biopolymer possess higher tensile moduli compared to collagen fibers, however,
its gelation at room temperature and dissolution as colloidal-sol at 37 °C or > are
major drawbacks of this biomaterial which is often solved via combining with other
natural or synthetic polymers (Sell et al. 2010). Given the gelatin’s similarity to
collagen, electrospun gelatin-based blended scaffolds have been developed to apply
in regenerative medicine (Zhang et al. 2005, 2009b; Heydarkhan-Hagvall et al.
2008; Li et al. 2005, 2006a; Gauthaman et al. 2009; Gupta et al. 2009a, b;
Songchotikunpan et al. 2008; Song et al. 2008; Gui-Bo et al. 2010). The electrospun
gelatin-polyurethane and poly (e-caprolactone)-gelatin scaffolds are the samples of
these substrates that can be used in wound healing and skin regeneration (Chong
et al. 2007; Kim et al. 2009). Based on the reports, such scaffolds can lead to better
migration of fibroblasts and decrease therapeutic costs. Poly(e-caprolactone)-gelatin
scaffolds can also act as a positive factor for supporting neurite outgrowth and nerve
differentiation, proliferation, and nerve regeneration (Ghasemi-Mobarakeh et al.
2008). Likewise, conductive nanofibrous scaffold of polyaniline-poly(e-
-caprolactone)/gelatin can lead to nerve stem cell attachment and proliferation, as
well as neurite outgrowth via electrical stimulation of scaffold (Ghasemi-Mobarakeh
etal. 2009). Moreover, an electrospun composite based on the synthetic polypeptide-
gelatin can lead to the induction of calcium phosphate mineralization and be used as
dental biomaterials or a biocompatible substitute for the regeneration of the hard
tissue ECM (Ohkawa et al. 2009). Nanohydroxyapatite-gelatin nanofibrous
scaffolds are one of the other substrates that are capable of imitation of natural
ECM of bone tissue along with effective mineralization, the proliferation of
osteoblasts, and successful bone regeneration (Francis et al. 2010).

Indeed, electrospun gelatin or gelatin-based scaffolds can be also used in the
regeneration of cardiac tissue. According to the study of Li et al., the combination of
gelatin with conductive polymers such as polyaniline leads to the improvement of
cardiac myoblast attachment or adhesion, spreading, and migration, as well as an
increase in cellular proliferation on the scaffold, modulus, and tensile strength
(Li et al. 2006b). Studies have shown that blended gelatin with natural and synthetic
polymers can significantly improve mechanical properties and facilitate the excellent
proliferation of cardiac myoblasts. In this field, Li et al. indicated that gelatin
composites composed of poly(lactic-co-glycolic acid) and a-elastin can be effective
in soft tissue engineering applications, such as heart, blood vessels, and lung
(Li et al. 2006¢). Such composites possess low average diameters; however, upon
hydration of the scaffold, the average diameter increases due to the swelling of
fibers, without disintegrating the scaffold.

Elastin is one of the main biomaterials in this regard that naturally is found in the
wall of many tissues such as vessel walls; hence, the use of fibrous structures of this
biopolymer in tissue engineering applications can be favorable (Daamen et al. 2007;
Bailey et al. 2003; Deborde et al. 2016). Based on the studies, elastin or elastin-like
polypeptides can be effective in the regeneration of cartilage, heart valves, and skin
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tissues (Neuenschwander and Hoerstrup 2004; Nettles et al. 2010; McHale et al.
2005; Betre et al. 2002). Wang et al. showed that collagen and elastin as the main
components of ECM in tissues can improve the proliferation of valve interstitial
cells, when used as the engineered 2D or 3D substrates (Wang et al. 2018b).
Moreover, such substrates constitute effective tools to engineer 3D tissues and
increase endothelial-mesenchymal transition. Chen et al. also illustrated that bilayer
collagen-elastin scaffolds play an important role in mimicking the mechanical and
biological activities of heart valves (Chen et al. 2013b). Chitosan/y-poly(glutamic
acid) scaffolds modified by albumin, elastin, and poly-L-lysine are another sample of
elastin-based scaffold application in cartilage tissue engineering (Kuo et al. 2017).
The study of Kuo et al. shows that such a scaffold can provide an effective approach
to inhibition of chondrocyte apoptosis and lead to promotion in the growth of
chondrocytes, secretion of ECM, and improvement of cartilaginous tissue regenera-
tion. Moreover, the existence of single bond -NH;" and single bond -COO™ in the
structure of this scaffold plays an important role in its porous morphology and
interconnected network, as well as the mechanical properties of the scaffold.

Chitosan is one of the important polysaccharides in the design of tissue-
engineered scaffolds due to the structural similarity to the glycosaminoglycans
(GAGs) of ECM of tissues (Huang et al. 2015¢). The functional groups of hydroxyl
(—OH) and amine (—-NH) in this biopolymer can link to other materials to make a new
scaffold (He et al. 2011; Du et al. 2016). In this regard, Izadyari Aghmiuni et al.
stated that polyethylene glycol-chitosan-poly(e-caprolactone) copolymers
containing collagen can be considered as base bio-composites for the design of
dermal substrates. Such substrates can imitate dermis properties and lead to the
induction of keratinocyte differentiation from stem cells (Izadyari Aghmiuni et al.
2021; Aghmiuni et al. 2020). The design of injectable chitosan-based hydrogels is
another example in this field that can be used in cartilage tissue regeneration (Jin
et al. 2009). Jin et al. showed that the hydrogels of chitosan-glycolic acid/phloretic
acid that are designed via enzymatic crosslinking can increase chondrocyte prolifer-
ation and then be degraded by a hydrolytic enzyme such as lysozyme. Likewise,
chitosan hydrogels modified by cartilaginous ECM are another type of hydrogel that
can be used in cartilage tissue engineering applications (Choi et al. 2014). Mori et al.
also stated that spongelike dressings containing chitosan and sericin can treat chronic
skin ulcers. Such a substrate possesses suitable mechanical resistance and high
hydration, along with cellular proliferation and antioxidant activities on human
fibroblast cells (Mori et al. 2016).

Hyaluronic acid (HA) also is a linear polysaccharide and is classified in the group
of glycosaminoglycans of native ECMs and can maintain the structural integrity of
tissue ECMs when used in the structure of engineered scaffolds (Izadyari Aghmiuni
et al. 2021; Kogan et al. 2006; Volpi et al. 2009; Petrey and de la Motte 2014). This
biomaterial possesses various biological activities (like modulation of immune cell
function, synthesis of proteoglycan, reduction of pro-inflammatory cytokine
activities, etc.) and can act as the signaling factor for improvement of cell-to-cell
and cell-to-scaffold interactions and acceleration of tissue regeneration (Izadyari
Aghmiuni et al. 2021; Lam et al. 2014; Li et al. 2018). Based on the study of Shirzaei
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Sani et al., HA/elastin-like polypeptide-based hydrogels can act as antimicrobial
substrates for tissue engineering applications (Shirzaei Sani et al. 2018). This study
illustrated that these hydrogels possess high adhesive strength to attach to the tissue
and can support cellular spreading, growth, and proliferation. Izadyari et al. also
demonstrated that control of HA content can provide a microporous environment
along with higher tensile strength and modulus (Izadyari Aghmiuni et al. 2021).
According to the reports, given that hyaluronic acid plays an important role in
osmotic balance and regulation of tissue hydration, HA-based substrates can signifi-
cantly mimic the physical and mechanical properties of ECM (Chan and Tayama
2002).

Silk fibroin (SF) is another biopolymer that can play an important role in cell
attachment and spreading when mixed with collagen (Yeo et al. 2008). This bioma-
terial also possesses high elasticity, resistance to failure (under compression), mini-
mal inflammatory response, slow degradation rate, as well as high biocompatibility,
toughness, and strength (Pérez-Rigueiro et al. 2001; Liu et al. 2007; Zhang et al.
2009c¢). Notably, the existence of hydrophobic domains in the protein’s random coil
network of this biomaterial has led to the formation of a f-sheet structure, which is
responsible for the elastic properties and tensile strength of SF (Aghmiuni et al.
2020; Zhang et al. 2009c¢). This property plays a crucial role in the scaffold structure
and improves the module and stress strain of scaffolds (Zhang et al. 2010). More-
over, the B-sheet structures of SF can affect the biodegradation rate of the scaffold, so
that the biodegradation rate of the scaffold matches with the rate of tissue repair
(Izadyari Aghmiuni et al. 2021; Sell et al. 2010; Alessandrino et al. 2008; Bayraktar
et al. 2005; Liu et al. 2008; Silva et al. 2008). Hence, silk-based scaffolds can be
designed for the ligament, bone, and vascular skin applications (Izadyari Aghmiuni
et al. 2020, 2021).

Generally, in our opinion, the features of these biomaterials and other bio- or
active materials can provide an exciting opportunity to design engineered hybrid/
composite substrates with a high ability to differentiate stem cells and regenerate
tissue.

13.5 Future Prospective and Conclusion

Nowadays, the advancement in the field of phyto-sciences, technologies, and the
development of studies on herbal extracts have revealed their excellent repairing
properties and role in regenerative medicine. Based on the studies, herbal bioactive
compounds or active ingredients can play a crucial role in the process of tissue
regeneration. Such that, the cellular and molecular researches on herbal extracts
indicate that herbs possess positive effects on the promotion, proliferation, and
differentiation of types of stem cells. It can be due to the existence of flavonoids;
coumarins; glycosides; terpenoids such as mono-terpenoids, sesquiterpenoids, and
diterpenoids; as well as anthraquinones, phenolic acids, diarylheptanoids, phenols,
and tetrameric stilbene. Hence, if protocols or methods can be created via the use of
herbal extracts to proliferate and differentiate stem cells into targeted cells in
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damaged tissues, it will offer hope to cure many incurable diseases. In this field,
knowledge of herbs and the effects of their extracts and therapeutic doses can play a
crucial role in the determination of suitable therapeutic methods, such as the design
of substrates, encapsulation, gel, etc. Moreover, the studies of tissue engineering
demonstrate that a combination of modern and traditional medicine (i.e., use of
biomaterials along with herbal bioactive compounds) can provide new developments
in the fields of regenerative tissue techniques and stem cell differentiation into
targeted tissue cells. This not only can decrease the therapeutic economic burden
and healthcare problems but also develop new drugs or methods with easier avail-
ability and least/no side effect.
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