
Chapter 9
Learning to Analyze the Pareto-Optimal
Front

Asmentioned in the previous chapters, evolutionary multi- and many-objective opti-
mization algorithms (EMâOAs) attempt to find a set of well-converged and well-
diversified solutions to approximate the true Pareto front (PF). In general, a uniform
distribution of solutions across PF is desired.However, this cannot be guaranteed due
to the stochasticity involved in EMâOAs. In a contrasting scenario, even a biased dis-
tribution of solutions across PF , with a higher concentration of solutions in specific
parts of PF , may be desired by the decision maker for a subsequent multi-criterion
decision-making (MCDM) task. indexMulti-criterion decision-making (MCDM)
To meet such requirements, this chapter presents a machine learning (ML)-based
approach, which treats a given PF-approximation as input and trains an ML model
to capture the relationship between pseudo-weight vectors derived from the objec-
tive vectors in the PF-approximation (F inZ), and their underlying variable vectors
(X in X ). Subsequently, the trained ML model is applied to predict the solution’s X
vector for any desired pseudo-weight vector. In other words, the trained ML model
is used to create new non-dominated solutions in any desired region of the obtained
PF-approximation. Such new solutions could be created to fill apparent gaps in
the input PF-approximation toward a more uniform distribution or to enhance the
concentration of solutions as desired by the decision maker. The working and useful-
ness of the above post-optimality analysis basis approach have been demonstrated
over several problem instances. However, this approach also has the potential to be
integrated within an EMâOA to arrive at the desired distribution.

In principle, the proposed approach, summarized above, conforms with any con-
ventional ML approach in which input–output relationships are learned from the
training-dataset, and the resulting ML model is used to predict the output from
an unseen given input. In the current context, the training-dataset is based on non-
dominated solutions obtained by the EMâOA, in which the input is a unique indicator
of a solution (in the objective space or Z space) and the output is the X vector of the
solution. In that scenario, the pseudo-weight vectors [2], denoted by W , have been
used as the unique indicator. An advantage of using a pseudo-weight vector is that

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
D. K. Saxena et al.,Machine Learning Assisted Evolutionary Multi- and Many-Objective
Optimization, Genetic and Evolutionary Computation,
https://doi.org/10.1007/978-981-99-2096-9_9

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-2096-9_9&domain=pdf
https://doi.org/10.1007/978-981-99-2096-9_9


218 9 Learning to Analyze the Pareto-Optimal Front

each component lies in the [0, 1] range and therefore does not require normalization.
Once the ML model is trained, any new pseudo-weight vector can be used as input,
to find the corresponding solution’s X vector. Subsequently, its F vector can be com-
puted using the objective formulations stated in the given multi- or many-objective
optimization problem (MOP/MaOP).

The remainder of this chapter is organized as follows. The ML-based procedure
for the post-optimal PF analysis is described in Sect. 9.1. The results on multi-
and many-objective test problems (constrained and unconstrained) and real-world
problems are presented in Sect. 9.2. Finally, Sect. 9.4 summarizes the findings.

9.1 ML-Based PF Analysis: Proposition and Validation

As discussed in previous chapters, using an EMâOA with N population members to
solve an MOP/MaOP can lead to N potentially non-dominated solutions X (k) ∈ R

n ,
for k = 1, 2, . . . , N , along with their respective objective vectors F(X (k)) ∈ R

M , for
k = 1, 2, . . . , N . In the Z space, these objective vectors are referred to as the PF-
approximation. From the position of each objective vector on the PF-approximation,

the corresponding pseudo-weight vectorW (k) =
(
w

(k)
1 , w

(k)
2 , . . . , w

(k)
M

)
;W (k) ∈ R

M

can be computed as follows [2]:

w
(k)
i =

(
f max
i − fi (X (k))

) / (
f max
i − f min

i

)
∑M

j=1

(
f max
j − f j (X (k))

) / (
f max
j − f min

j

) , (9.1)

where f max
i and f min

i are the maximum and minimum values in the i th objective,
among all the non-dominated solutions in the PF-approximation. The pseudo-weight
(W ) vector for any solution can be viewed as a representative identity on the obtained
PF-approximation. For example, given a two-objective problem, the best solution
in f1 would correspond to a vector W of (1, 0), which means that the solution is of
100% importance with respect to f1, and of no importance with respect to f2.

Clearly, Eq. 9.1 indicates that the W vectors are linearly derived from the F
vectors. If the solutions are sorted according to their F vectors, the respective W
vectors also are sorted accordingly. Previous studies on the concept of innovization
(Chap. 3) have revealed that a set of Pareto-optimal solutions usually possesses certain
patterns or constancy with respect to certain variables. Since a W vector is derived
from an F vector that bears an exact relationship with its underlying X vector, it
is fair to assume a linkage between a W vector and the corresponding X vector.
In this context, this study captures the relationships between the derived W vectors
and corresponding X vectors from a PF-approximation, using an MLmethod. Once
these patterns, if any, are captured, the desired W̄ vectors can be used to obtain the
X̄ vectors of new (potentially non-dominated) solutions. Figure9.1 illustrates the



9.1 ML-Based PF Analysis: Proposition and Validation 219

Fig. 9.1 Training data generation and test-data to create a new potentially Pareto-optimal solution
(taken from [3])

underlying ML training and testing procedure, as required, which is detailed in the
following steps:

Step 1: From each solution in the obtained PF-approximation, compute the W
vectors using Eq.9.1.

Step 2: Construct the training-dataset [W (k), X (k)] ∀ k = 1, 2, . . . , N , with W (k)

as input and X (k) as the corresponding target.
Step 3: Train an ML model using the training-dataset.
Step 4: Use the trained ML model to find X̄ for any specific desired W̄ vector.

Then, compute F̄ from X̄ using the original objectives’ formulation, where
F̄ = F(X̄).

The resulting trained ML model can then be used for several different tasks, as
summarized below.

Task 1: Gap-filling: The trainedMLmodel can be used to find new and potentially
non-dominated solutions, so that the apparent gaps in the obtained PF-
approximation can be filled. This could be realized by creating new W
vectors in those gaps and then applying the trained ML model to create
new (non-dominated) solutions.

Task 2: Gap-validation: The trained ML model can be used to determine whether
or not an apparent gap in the PF-approximation is a natural gap in the
true PF . This could be realized by first creating new W vectors in the
apparent gaps; obtaining the corresponding X vectors through the trained
ML model; evaluating these X vectors to obtain the corresponding F
vectors; and investigating whether or not these F vectors are dominated
by any solution in the existing PF-approximation. If any such F vector



220 9 Learning to Analyze the Pareto-Optimal Front

stands dominated, it implies that the apparent gap for which the W vector
was created happens to be a natural gap in the true PF .

Task 3: Preferred solution-density propagation: The trained ML model can be
used to populate new non-dominated solutions in any preferred region of
the PF-approximation, toward ease of visualization and decision-making.
This could be achieved by creating suitable W vectors in the region of
interest and then using the trained ML model to find new and potentially
non-dominated solutions in that region.

Task 4: Efficient offspring creation: The trained ML model can be used within
an EMâOA run, to create new offspring solutions. This could be realized
by first training an ML model using the non-dominated solutions from
the parent population; selecting the W vectors in the less dense areas;
and applying the trained ML model to create new offspring solutions (one
solution per W vector).

The scope of this proof-of-concept study has been restricted to the first three tasks
mentioned above since the last task requires the development of a new EMâOA.

9.1.1 Chosen ML Methods

In this section, details of the ML methods utilized in this study are discussed. The
problem statement at hand is the task of predicting an n-dimensional X vector from
a given M-dimensionalW vector. Since, in general, M � n, developing an accurate
ML model with few input parameters and a large number of output parameters is a
challenging task. Two different ML methods have been used for this task, namely
deep neural network (DNN) [6] and Gaussian process regression (GPR) [13]. In both
the DNN-based and the GPR-based approaches, the X vectors of the solutions are
normalized to zero mean and unit variance a priori, as required by the ML methods.
As mentioned at the beginning of this chapter, the W vectors are already within the
[0, 1] range and therefore do not require normalization.

For each problem considered here, PF is approximated using NSGA-III, with the
population size given by N = (110M + 10). These population sizes were selected
based on a trial-and-error study. From these N solutions, randomly selected 100M
solutions are used as the training-dataset, and the other 10M solutions are used as
the test-dataset. Subsequently, the remaining 10 solutions are used as the validation-
dataset as required by the DNN, but are discarded in the case of GPR, since GPR
does not require a validation step. The validation-dataset is uniformly sampled from
the PF-approximation for appropriate model selection in the case of DNN. Notably,
the same population size has been used for both to maintain the similarity of the
training-dataset size. Furthermore, this approach is not conditional on the source of
the training-dataset. Therefore, the training-dataset obtained from the non-dominated
solutions of the PF-approximation can be replaced by the non-dominated solutions
at the end of any intermediate generation of an EMâOA run.



9.1 ML-Based PF Analysis: Proposition and Validation 221

9.1.1.1 DNN-Based Approach

For the DNN-based approach, multi-layer perceptrons have been implemented using
the PyTorch library [12], with W vectors as inputs and their underlying X vec-
tors as respective targets, and the corresponding hyper-parameters are tuned using
Optuna [1]. Due to the proof-of-concept nature of the study, DNNs with hidden lay-
ers ranging from 1 to 6 are used with ‘ReLU’ as activation function, and ‘Adam’ [9]
as optimizer. The complexity of the DNN architecture and granularity of hyper-
parameters can be further increased for handling more complicated problems.

9.1.1.2 GPR-Based Approach

An approach similar to surrogate modeling is used to train the GPR model. In that
approach, each component of the target—that is, xi ∈ X—ismodeled independently.
A diverse set of kernels, mean functions, and other hyper-parameters is considered
in a grid-search for finding the most suitable setting.

9.1.2 Handling Variable Bounds and Constraints

In anyMOP/MaOP, the variables are usually restricted within the pre-specified lower
and upper bounds. Since a DNN or GPR model usually does not restrict its output
values (X vector) within any bounds by default, the resulting output values for any
test-dataset can be outside of those bounds, if specific steps are not taken. Hence,
the target values in the training-dataset have also been normalized. Subsequently, the
output X vector from the trained ML model is denormalized and clipped to within
the specified lower and upper bounds.

Furthermore, constraint satisfaction is also a strict requirement in solving a con-
strainedMOP/MaOP. In such a scenario, the resulting X vectors from the trainedML
model may not guarantee the constraint satisfaction by default. Hence, the infeasible
solutions (if created by the ML model) are simply discarded; but a more sophisti-
cated constraint handling method can be used during the ML training. For instance,
the constraint value of each constraint can be included as an additional output in
the training-dataset. During testing, if anyW vector (input) produces a positive con-
straint value (meaning a constraint violation), the solution can simply be ignored. To
implement such constraint handling, the training-dataset must contain some infeasi-
ble solutions that are non-dominated to the feasible non-dominated solution set, to
effect a better learning. In this study, such a tailored constraint handling approach
has not been included.



222 9 Learning to Analyze the Pareto-Optimal Front

9.1.3 Test Suite

For validation of ML models and analysis of different tasks (mentioned earlier in
Sect. 9.1), several test and real-world problems have been used, including the fol-
lowing:

• Two-objective unconstrained ZDT [16], and constrained OSY [11] and BNH [15]
problems.

• Three-objective unconstrained DTLZ [4] and WFG [7] problems.
• Many-objective unconstrained DTLZ [4] and constrained C-DTLZ [8] problems.
• Real-world Carside [5] and Crashworthiness [10] problems.

9.2 Validation of ML Models

This section focuses on the validation of the trained ML model. Recall that given
a PF-approximation with N = 110M + 10 solutions, the training-data was con-
stituted by randomly chosen 100M solutions. Of the remaining ones, the randomly
picked 10M solutions constitute the test-data and are referred to asRandom test-data.
Once the W vectors for these test solutions are subjected to the trained ML model
(DNN or GPR-based), it yields the X vectors (referred to as model-based X vectors)
which on evaluation offer the corresponding model-based F vectors. Since the origi-
nal X and F vectors of these test solutions are available from the PF-approximation,
the mean absolute error (MAE) between the original and model-based X vectors
(normalized using the variable bounds), and the original and model-based F vectors
(normalized using ideal and nadir points) can be computed and referred to as MAEX

and MAEF , respectively.
For validation of the ML model, a range of problems is considered, and 11 inde-

pendently seeded runs of NSGA-III are performed for each problem. The MAEX

resulting from each of the 11 runs can be processed, leading to their respective mean
and standard deviation, namely μ(MAEX ) and σ(MAEX ), respectively. Similarly,
using theMAEF values over the 11 runs, the correspondingμ(MAEF ) andσ(MAEF )

can be obtained. Table9.1 presents the above indicators for a range of two-objective
problems, for both DNN- and GPR-based approaches. Evidently:

• Low values of μ(MAEX ) and σ(MAEX ) indicate that the actual and the ML
model-based approximated X vectors are reasonably close to each other. The same
applies to the actual and approximated F vectors. These observations validate the
underlying ML models. A visual evidence for this claim is presented for a sample
problem, namely ZDT1, in Fig. 9.2.

• Compared to the DNN-based approach, the GPR-based approach offers lower val-
ues for each of μ(MAEX ) and σ(MAEX ), also μ(MAEF ) and σ(MAEF ). Hence,
the GPR-based approach is seemingly better than the DNN-based approach.



9.3 ML-Based PF Analysis for Different Tasks 223

Table 9.1 Comparison of DNN and GPR, with Random test-data on two-objective problems

Problem M Model μ(MAEX ) μ(MAEF ) σ(MAEX ) σ(MAEF )

ZDT1 2 DNN 4.606E-04 6.918E-03 2.575E-04 3.689E-03

GPR 5.525E-09 3.462E-06 3.064E-09 7.511E-06

ZDT2 2 DNN 7.260E-04 1.387E-02 4.065E-04 6.786E-03

GPR 1.398E-05 4.200E-04 1.946E-05 6.093E-04

ZDT3 2 DNN 4.619E-04 1.757E-02 2.591E-04 1.434E-02

GPR 3.659E-06 3.098E-04 4.985E-06 8.355E-04

OSY 2 DNN 7.833E-03 3.607E-02 3.323E-02 3.521E+00

GPR 1.491E-03 1.273E-03 1.146E-02 3.407E-01

(a) DNN-based approach (b) GPR-based approach

Fig. 9.2 DNN- and GPR-based approaches on Random test-dataset for the ZDT1 problem (taken
from [3])

The scope of ML-model validation is expanded by including some two-objective
(constrained), three-objective, and many-objective problems. However, for experi-
ments, only the GPR-based approach which performed better on the unconstrained
two-objective problems has been considered. The results are presented in Table9.2
along side some self-explanatory representative plots in Figs. 9.3 and 9.4.

9.3 ML-Based PF Analysis for Different Tasks

This section presents the application of the ML-based PF analysis toward the first
three tasks highlighted in Sect. 9.1. As a pre-requisite, the use of the different test-data
types as defined below must be noted.

• Edge test-data: It implies that the test solutions representing the gap belong to one
of the extreme regions of the PF-approximation.

• Continuous test-data: It implies that the test solutions representing the gap are
bounded by continuous regions in the PF-approximation.



224 9 Learning to Analyze the Pareto-Optimal Front

Table 9.2 Performance of GPR-based approach on two-objective (constrained), three-objective,
and many-objective problems, for Random test-dataset

Problem M μ(MAEX ) μ(MAEF ) σ(MAEX ) μ(MAEF )

BNH 2 1.890E-03 2.073E-04 3.004E-03 9.670E-03

DTLZ2 3 3.419E-03 1.153E-02 2.494E-03 7.168E-03

WFG2 3 4.773E-02 4.922E-02 1.220E-01 1.732E-01

Carside 3 1.171E-02 3.957E-03 9.080E-03 1.471E-02

DTLZ2 5 9.887E-03 1.382E-02 9.155E-03 8.668E-03

10 4.582E-02 1.418E-02 3.716E-02 8.500E-03

C2-DTLZ2 5 1.020E-02 1.323E-02 1.028E-02 7.448E-03

10 4.532E-02 1.418E-02 3.552E-02 9.490E-03

(a) BNH (b) DTLZ2

Fig. 9.3 GPR-based approach on Random test-dataset constrained two-objective (BNH) and three-
objective (DTLZ2) problems (taken from [3])

9.3.1 Task 1: Gap-Filling

This section focuses on the validation of Task 1, i.e., the gap-filling task. Unlike in
Sect. 9.2 where Random test-data was used, here Edge test-data has first been used,
followed by the Continuous test-data. The rest of the procedure is the same as used
for validation of the ML model in Sect. 9.2.

Table9.3 shows theMAEX andMAEF indicators on some two-objective problems
with Edge test-data, for both DNN- and GPR-based approaches. In that, compared to
the DNN-based approach, the GPR-based approach offers lower values for each of
μ(MAEX ) and σ(MAEX ), and also μ(MAEF ) and σ(MAEF ). This implies that the
GPR-based approach is better for finding edge gap solutions. For a visual represen-
tation, Fig. 9.5 shows the edge gap solutions produced using DNN- and GPR-based
approaches on the ZDT1 problem. As can be observed, while both approaches seem



9.3 ML-Based PF Analysis for Different Tasks 225

(a) 5-objective DTLZ2

(b) 10-objective C2-DTLZ2

Fig. 9.4 Parallel Coordinate Plots showing that the GPR-based F vectors conform with the F
vectors in the PF-approximation (Randomly picked), for five- and 10-objective DTLZ2 problems
(taken from [3])

Table 9.3 Comparison of DNN and GPR, with Edge test-data on two-objective problems

Problem M Model μ(MAEX ) μ(MAEF ) σ(MAEX ) σ(MAEF )

ZDT1 2 DNN 2.012E-03 1.864E-02 4.350E-04 4.332E-03

GPR 1.086E-06 2.447E-05 8.081E-07 1.820E-05

ZDT2 2 DNN 1.313E-03 3.986E-02 1.207E-04 3.680E-03

GPR 8.651E-04 3.811E-02 2.308E-04 1.023E-02



226 9 Learning to Analyze the Pareto-Optimal Front

(a) DNN-based approach (b) GPR-based approach

Fig. 9.5 DNN- and GPR-based approaches on Edge test-dataset for the ZDT1 problem (taken
from [3])

Table 9.4 Comparison of DNN and GPR, with Continuous test-data on two-objective problems

Problem M Model μ(MAEX ) μ(MAEF ) σ(MAEX ) σ(MAEF )

ZDT1 2 DNN 6.281E-04 9.264E-03 1.051E-04 1.374E-03

GPR 2.625E-08 8.466E-08 5.694E-08 1.806E-07

ZDT2 2 DNN 7.387E-04 1.321E-02 1.242E-04 2.357E-03

GPR 1.083E-04 3.633E-03 3.903E-05 1.320E-03

ZDT3 2 DNN 1.026E-03 3.948E-02 2.030E-04 1.994E-02

GPR 3.182E-05 3.365E-03 9.706E-06 2.015E-03

BNH 2 DNN 3.701E-03 2.760E-03 4.185E-03 5.378E-02

GPR 2.343E-03 1.274E-04 3.054E-03 2.224E-03

OSY 2 DNN 2.172E-03 2.720E-02 3.685E-03 6.518E-01

GPR 1.471E-03 1.243E-03 4.562E-03 5.371E-02

efficient in finding edge gap solutions, the GPR-based approach produces slightly
better (more converged) solutions.

Extending the above analysis to Continuous test-data, Table9.4 shows the MAEX

and MAEF indicators on some two-objective problems, for both DNN- and GPR-
based approaches. As evident, compared to the DNN-based approach, the GPR-
based approach offers lower values for each of μ(MAEX ) and σ(MAEX ), and
also μ(MAEF ) and σ(MAEF ). This implies that the GPR-based approach is bet-
ter for finding continuous gap solutions as well. For a visual representation, Fig. 9.6
shows the continuous gap solutions produced using the better performingGPR-based
approach.



9.3 ML-Based PF Analysis for Different Tasks 227

(a) ZDT2 (b) ZDT3

(c) OSY (d) DTLZ2

Fig. 9.6 GPR-based approach on Continuous test-dataset two-objective (ZDT2 and ZDT3), con-
strained two-objective (OSY) and three-objective (DTLZ2) problems (taken from [3])

9.3.2 Task 2: Gap-Validation

This section focuses on the validation of Task 2, i.e., the gap-validation task. For this
task, it is imperative to select a problem which has natural gaps in its true PF , so that
it can be validated. Hence, the ZDT3 problem has been used for validating this task.
Toward it, a sample set of 200 uniformly distributedW vectors has been created across
the obtained PF-approximation; the trainedMLmodels have been applied to find the
respective X vectors; and their corresponding F vectors are computed. The resulting
F vectors are shown in Fig. 9.7 (in red color), along with the originally obtained
PF approximation (in blue color), for both DNN- and GPR-based approaches. It
is evident that the W vectors corresponding to the true gaps produce dominated
solutions, but those corresponding to parts of the true PF result in non-dominated
solutions. Therefore, this procedure can also be used to testify whether the apparent
gaps in the PF-approximation offered by an EMâOA are natural gaps or not.



228 9 Learning to Analyze the Pareto-Optimal Front

(a) DNN on ZDT3 (b) GPR on ZDT3

Fig. 9.7 Pseudo-weights on true gaps produce dominated solutions, but pseudo-weights on true
PF produce non-dominated solutions, demonstrating Task 2 (taken from [3])

9.3.3 Task 3: Preferred Solution-Density Propagation

This section focuses on validation of Task 3, i.e., preferred solution-density propa-
gation. In other words, the aim of this task is to improve the density of low-density
regions of a given PF-approximation. In order to simulate a scenario in which an
EMâOA produces a non-uniformly distributed PF-approximation, some solutions
are removed from a specific region of a uniformly distributed PF-approximation.
In such a scenario, a GPR model can still be trained, and W vectors from the low-
density region of the PF-approximation can be used to produce new solutions in that
region. Figure9.8 reveals that the GPR-based approach can provide additional solu-
tions in such low-density regions for three-objective test (DTLZ2) and real-world
(crashworthiness) problems.

9.4 Summary

In this chapter, it has been demonstrated thatMLmodels can be used to learn patterns
between pseudo-weight vectors and corresponding variable vectors and generate
new points on the PF-approximation without doing any additional optimization
tasks. Furthermore, it has also been demonstrated that this approach can scale up
well to handle many-objective test problems, and also real-world problems. This
proof-of-concept study and a recent extended study [14] have paved the way for
encapsulation of this approach as an additional operator in an EMâOA, to achieve
a better distributed PF-approximation. Owing to the fact that the ML models are
conditioned on the pseudo-weight vectors, this approach can be readily used for
decision-making by the user without the need for further optimization.

In the future, it would be interesting to compare this approach with optimization-
based gap-filling methods, including preference-based EMâOAs. Applications to



References 229

(a) DTLZ2 (b) Crashworthiness

Fig. 9.8 Additional solutions are supplied by the GPR-based approach for two three-objective
problems in regions of low density of solutions, demonstrating Task 3. A few blue points were
found by EMâOA on a part of the PF-approximation, but this ML approach has nicely replenished
them (taken from [3])

more complex real-world problems will further shed light on the potential of this
approach. Furthermore, suchmodeling approaches can be improved to include learn-
ing of constraint violation and variable bounds during the training process itself. For
example, specific activation functions (such as ReLU) can be used for the output
layer of DNNs to restrict the output within the variable bounds. Although constraint
satisfaction has always occurred in the results here, it would be a challenging task
to include constraint satisfaction in the training process, since all obtained solutions
(training-dataset) are expected to be feasible. Nevertheless, this proof-of-concept
study opens up a unique use of ML methods in assisting multi- and many-objective
optimization.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperpa-
rameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’19, pp. 2623–2631. Associa-
tion for ComputingMachinery, NewYork, NY, USA (2019). https://doi.org/10.1145/3292500.
3330701

2. Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. Wiley, Chichester, UK
(2001)

3. Deb, K., Gondkar, A., Anirudh, S.: Learning to predict Pareto-optimal solutions from pseudo-
weights. In: Emmerich, M., Deutz, A., Wang, H., Kononova, A.V., Naujoks, B., Li, K., Mietti-
nen, K., Yevseyeva, I. (eds.) Evolutionary Multi-criterion Optimization, pp. 191–204. Springer
Nature Switzerland, Cham (2023)

4. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary mul-
tiobjective optimization. In: Evolutionary Multiobjective Optimization: Theoretical Advances

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701


230 9 Learning to Analyze the Pareto-Optimal Front

and Applications, pp. 105–145. Springer London, London (2005). https://doi.org/10.1007/1-
84628-137-7_6

5. Gu, L., Yang, R.J., Tho, C.H., Makowski, L., Faruque, O., Li, Y.: Optimization and robustness
for crashworthiness of side impact. Int. J. Veh. Des. 26(4) (2001)

6. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural
Comput. 18(7), 1527–1554 (2006). https://doi.org/10.1162/neco.2006.18.7.1527

7. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and
a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

8. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-
point based nondominated sorting approach, Part II: handling constraints and extending to
an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014). https://doi.org/10.
1109/TEVC.2013.2281534

9. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio, Y., LeCun, Y.
(eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, 7–9 May 2015, Conference Track Proceedings (2015). arxiv:abs/1412.6980

10. Liao, X., Li, Q., Zhang, W., Yang, X.: Multiobjective optimization for crash safety design of
vehicle using stepwise regression model. Struct. Multidiscip. Optim. 35, 561–569 (2008)

11. Osyczka,A.,Kundu, S.:Anewmethod to solve generalizedmulticriteria optimization problems
using the simple genetic algorithm. Struct. Optim. 10, 94–99 (1995). https://doi.org/10.1007/
BF01743536

12. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style,
high-performance deep learning library. In: Advances in Neural Information Processing Sys-
tems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

13. Rasmussen, C.E.: Gaussian Processes in Machine Learning, pp. 63–71. Springer, Berlin Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4

14. Suresh, A., Deb, K.: Machine learning based prediction of new Pareto-optimal solutions from
pseudo-weights. IEEE Trans. Evol. Comput. (in press)

15. To, T.B., Korn, B.: Mobes: A multiobjective evolution strategy for constrained optimiza-
tion problems. In: Proceedings of the Third International Conference on Genetic Algorithms
(MENDEL97), pp. 176–182 (1997)

16. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empir-
ical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.1162/106365600568202

https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1109/TEVC.2013.2281534
https://doi.org/10.1109/TEVC.2013.2281534
http://arxiv.org/1412.6980
https://doi.org/10.1007/BF01743536
https://doi.org/10.1007/BF01743536
https://doi.org/10.1007/978-3-540-28650-9_4
https://doi.org/10.1162/106365600568202

	9 Learning to Analyze the Pareto-Optimal Front
	9.1 ML-Based PF Analysis: Proposition and Validation
	9.1.1 Chosen ML Methods
	9.1.2 Handling Variable Bounds and Constraints
	9.1.3 Test Suite

	9.2 Validation of ML Models
	9.3 ML-Based PF Analysis for Different Tasks
	9.3.1 Task 1: Gap-Filling
	9.3.2 Task 2: Gap-Validation
	9.3.3 Task 3: Preferred Solution-Density Propagation

	9.4 Summary
	References


