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Foreword

Evolutionary multi-objective optimization (EMO) has established itself as a major
area of research and application within the broad field of Evolutionary Computation
(EC). EMO uses natural evolutionary principles in a computer algorithm to solve
various practical problems involving multiple conflicting criteria and finds a set of
alternative optimal solutions. The concept is attractive, as it allows human decision
makers to analyze these alternative high-performance solutions to pick a preferred
solution for implementation, rather thanmaking the overall multi-objective problem-
solving approach completely automated. Over the past three decades, EMO has
taken the idea of EC outside the realm of computer science and engineering and
enabled multi-objective problem solving of various scientific, financial, and societal
problems, including problems in astronomy, biology, economics, and medicine.

Machine learning (ML) is one of the most engaging research and application
areas within computer science today. Its ability to find patterns, clusters, and hidden
knowledge from data has allowed us to understand, model, and predict behaviors of
complex systems that are difficult to analyze using conventional methods.

This book, entitled Machine Learning Assisted Evolutionary Multi- and Many-
Objective Optimization by Dhish Kumar Saxena, Sukrit Mittal, Kalyanmoy Deb,
and Erik D. Goodman, brings together two emerging fields of computation—EMO
and ML. If seen from the point of view of ML, EMO algorithms produce promising
datasets in the form of populations across multiple generations, each comprising of
high-performance solutions characterized by their decision variables, objective, and
constraint values. The authors, through their years of collaboration, have employed
contemporaryMLmethods to analyze suchEMOpopulationdata to better understand
the problem structure; understand as to what makes the solutions optimal; and to
create new and often superior solutions by enhancing and balancing convergence
and diversity properties. Besides compiling such contributions in a coherent manner,
this book also sheds light on the potential ML-assisted enhancements to various
operations of an EMO algorithm, as yet unexplored, providing many interesting
ideas for future research.

The book is self-contained and written for both novices and experts in these fields.
The topics are discussed in a clear and simple manner with illustrative graphs and
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vi Foreword

tables, references, and other details, so that the readers can find relevant past studies
and simultaneously get introduced to several new directions of research combining
ML and EMO ideas in a single coherent framework.

I am particularly excited about the timing of this book. At a time when top EC
conferences and journals are increasingly dedicating special tracks and special issues
to the topics themed aroundML-EMO collaborative research, this bookmay serve as
an important resource for setting the foundation of this important EMO-ML intersec-
tion. While the book is mostly aimed at enhanced EMO research and applications,
ML researchers may find EMO a fertile area for ML applications. In my opinion, the
book shouldmotivate everyone working in EMO and EC tomake their methodsmore
effective and efficient and those working in ML to discover a new and promising
area to apply their future research.

Una-May O’Reilly
MIT Computer Science and Artificial

Intelligence Lab
Boston, MA, USA



Preface

Single-objective optimization algorithms had a monopolistic prevalence for decades
until optimization problems with multiple conflicting objectives, such as cost and
quality, started receiving greater interest in the 1970s. Most of the initial efforts to
address these problems involved scalarization, where a single objective was formu-
lated, allowing the use of a single-objective optimization algorithm. The downside of
this approach was that it needed several runs of a single-objective optimization algo-
rithm, each with a different weight vector for the objectives, before the objectives’
trade-off could be witnessed. In the early 1990s, population-based evolutionary opti-
mization algorithms were extended to solve multi-objective optimization problems.
These algorithms soon became popular due to their ability to find and store multiple
trade-off solutions in a single run. Their popularity is clearly evident through the large
number of citations for evolutionary multi-objective optimization (EMO) papers in
leading journals of evolutionary computation, a larger number of Ph.D. theses in the
domain, and the emergence of a number of commercial EMO software.

Machine learning (ML) methods have gained prominence over the past three
decades or so for various computational intelligence tasks, including classification,
clustering, pattern recognition, modeling, prediction, autonomous detection, intelli-
gent control, and other data analytics. Over the years, they have demonstrated their
ability to extract and capture the inherent relationships between the input and output
of a systemby processing available data. So far, research and applications in the EMO
and ML domains have been to a great extent independent of each other. However,
some recent studies have begun to use one to complement the other; particularly there
has been a rise in research in the ‘evolutionary machine learning’ in which evolu-
tionary computation methods are employed to benefit MLmethods and applications.
The scope for EMO-based enhancements inMLmethods is also natural and intuitive,
since ML methods usually have to cater to conflicting goals. For instance, feature
selection seeks to minimize the number of features, while maximizing their quality;
model selection is driven by the trade-off between model complexity and approxi-
mation/classification accuracy; and the generation of a diverse set of Pareto-optimal
models is desired for constructing ensembles. In comparison, though the efforts
toward ML-assisted EMO in the last two decades or so have only been sporadic, its
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viii Preface

immense potential is increasingly being recognized lately. This book focuses on this
latter aspect highlighting the use of ML methods in improving the performance of
EMO algorithms and applications.

This book is an outcome of the SPARC project, funded by the Government of
India, between the Indian Institute of Technology Roorkee, India, and Michigan
State University, East Lansing, MI, USA. This project was envisioned to explore the
immense potential for ML-based enhancements in the EMO domain. The motivation
for this project was rooted in the recognition that an EMO algorithm can be viewed
as a time-varying process in which a population of solutions, starting at random
regions in the search space, gradually migrates toward the optimal regions. Hence,
the chronological populations of solution vectors can be considered as time-series
data which, if analyzed through ML methods, can help to capture efficient search
directions, which in turn could be utilized to improve the search efficiency of an
EMO algorithm. Notably, the successful accomplishment of the SPARC project’s
goals paved the way for this book, in that, the project’s key deliverables constitute
some of the core chapters in this book. Toward a more holistic perspective, and wider
appeal to both the novice in the EMO domain, and the experienced researchers and
practitioners, this book discusses the fundamental concepts associated with opti-
mization (problem and algorithm types) sufficiently and includes existing studies
beyond the project, including some of the preceding and most recent ones. In doing
so, the chapters in this book cover ML interventions in all three phases related to the
use of an EMO algorithm, namely the search phase, the post-optimality phase, and
the decision-making phase.

This book is not intended to provide a comprehensive survey of ML-assisted
EMO. Instead, it aims to highlight some of the key existing studies in a structured
manner and to provide perspectives that may potentially trigger more interest in ML-
EMO collaboration, toward the mutual benefit of both domains. The recent launch
of ACM Transactions on Evolutionary Learning and Optimization augurs well for
collaborative research across different subdomains of evolutionary computation and
ML, toward effective and efficient practical problem solving.

Roorkee, India
East Lansing, MI, USA
February 2024

Dhish Kumar Saxena
Sukrit Mittal

Kalyanmoy Deb
Erik D. Goodman
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Chapter 1
Introduction

1.1 Overview of Multi-and Many-objective Optimization

The formulation of an optimization problem, in generic terms, can be given byEq.1.1.

Minimize F(X) = { f1(X), f2(X), . . . fM(X)}T ,

where X ≡ {x1, x2, . . . , xn} ∈ X .
(1.1)

Here, M denotes the number of objectives; n denotes the number of decision vari-
ables; X represents a solution constituted by specific values of the n variables;
X ⊆ R

n represents the permissible variable (decision) space; andZ ≡ F(X ) ⊆ R
M

represents the permissible objective space. A given problem is referred to as a single-
objective problem, an SOP, if M = 1; a multi-objective problem, an MOP, if M = 2
or 3; and a many-objective problem, an MaOP, if M ≥ 4. The genesis for the dis-
tinction between MOPs and MaOPs is highlighted later in this section.

In the case of an SOP, a single solution can offer the best possible objective
function value, and such a solution can be described as the global best solution or
optimum. In the case of MOPs and MaOPs, unless all the objective functions are
correlated (increase or decrease together), no single solution can offer the best value
for all the objective functions simultaneously. However, a set of solutions can offer
the best possible trade-offs among the objectives. Such a set, in which one objective
cannot be improved without worsening at least one other objective, constitutes the
Pareto-optimal set (PS), and the image of this set in the Z space is referred to as the
Pareto-optimal front, or simply the Pareto front (PF). It is worth noting here that the
multi-criterion decision-making (MCDM) literature refers the image of set Z as the
efficient set.

Optimization refers to the task of finding the global best solution or the Pareto-
optimal set, depending on the number of objectives involved. Research in the field
of optimization started with the development of mathematical-programming-based
algorithms [29] pertaining to SOPs. Such algorithms are predominantly point-based,
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that is, they rely on the use of a single solution which is updated in each iteration,
eventually leading to the global best solution. In particular, if MOPs are to be tackled
using point-based algorithms, then multiple scalarizations [27] become essential.
Here, scalarization implies the formulation of an SOP such that its optimum cor-
responds to one of the Pareto-optimal solutions of the MOP. In that situation, the
use of different parameters for the scalarization produces different Pareto-optimal
solutions for the MOP. However, the utility of this approach is marred by some chal-
lenges. In many real-world problems, the identification of scalarization parameters
(which directly or indirectly represent preferences between different objectives) that
are agreeable to a diverse set of stakeholders is quite a challenge. Furthermore, the
identification of scalarization parameters that can lead to a uniformly distributed
PF-approximation is a non-trivial task.

Plausibly, the above limitations of point-based algorithms motivated the devel-
opment of several metaheuristics [34], among which Evolutionary Algorithms [19]
havebeenquite popular, paving theway for evolutionarymulti-objective optimization
algorithms (EMOAs) [7, 9]. In general, EMOAs iteratively evolve a randomly initial-
ized population (a set of solutions), using the principles of natural evolution, namely
variation and selection, toward a good PF-approximation. In such algorithms, while
variation seeks to create new solutions from the existing ones by imitating the nat-
ural capability of living beings via recombination and mutation, selection seeks to
promote solutions with higher fitness by mimicking the competition for reproduc-
tion and resources among living beings. The fact that EMOAs are population-based
makes them naturally suitable for solving MOPs, as a reasonable PF-approximation
could be achieved by a single algorithmic run of an EMOA.

The Vector Evaluated Genetic Algorithm (VEGA) [32], proposed in the mid-
1980s, is credited as the first EMOA. This was followed by the proposal of the key
concept of Pareto-dominance-based ranking, to guide selection [19]. This paved
the way for EMOAs such as MOGA [17], NSGA [33], and NPGA [21]. In the late
1990s, the importance of the notion of elitism (retaining the best solutions through-
out the sequential generations of an EMOA) was recognized and SPEA [38] and
NSGA-II [12] were proposed. After the predominance of Pareto-ranking-based
EMOAs for more than a decade, two new philosophies for EMOAs were launched
around the mid-2000s. One of them sought to incorporate a performance indicator
into the selection mechanism [37], while the other relied on the use of decompo-
sition [36] to transform an MOP into several SOPs, whose solutions approximate
PF of the original problem. Several versions of indicator-based and decomposition-
based EMOAs have been proposed since then. A wider coverage of EMOAs can be
found in [6].

Another significant trend in the last two decades or so pertains to the develop-
ment of evolutionary many-objective optimization algorithms (EMaOAs). Here, the
termmany-objective indicates problemswith four ormore objectives. The distinction
between multi- and many-objective problems became imperative owing to the stag-
gering revelations, between 2000 and 2005, that the performance ofmostwell-known
Pareto-dominance-/ranking-based EMOAs severely deteriorates when the number
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of objectives scales up beyond three. This was attributed to the fact that in such
problems, a significant proportion of the entire population becomes non-dominated
from the early generations [14]. Given this, the selection pressure for convergence
ceases to exist (referred to as dominance resistance), and the density-based diver-
sity preservation tends to worsen the performance by further diversifying poorly
converged solutions (referred to as active diversity promotion) [28]. In a notable
contribution, the authors in [16] argued that—when dealing with many-objective
problems—Pareto-dominance is often inefficient in modeling and incorporating
human decision-making (HDM) elements. In that situation, when comparing two
solutions, Pareto-dominance fails to account for: (a) number of improved objectives,
(b) extent of improvements, and (c) relative preferences among the objectives.

Recognizing the above challenges, three broad research directions emerged. The
first approach, called the objective reduction approach [5, 22, 30], discriminates
between the number of objectives in a given problem and the number of objec-
tives that are essential to define the complete PF . The second approach seeks to
counter the adverse impact of active diversity promotion, as in NSGA-II/DM1 [1]
and SPEA2+SDE [25] by revising the density criterion; and NSGA-III [11, 23] by
adopting a reference vector (RV)-based framework. The third approach seeks to
counter the challenge of dominance resistance by inducing a preference-order over
the non-dominated solutions. This includes the proposition of (nearly two dozen)
dominance principles other than Pareto-dominance, such that the area dominated
by a solution gets enlarged, and its chances of being non-dominated with another
solution reduce. However, none of these alternative principles could overcome the
fundamental challenges highlighted in [16]. An exception to this trend is the recently
proposed high-fidelity-dominance (hf -dominance) [31], since it successfully incor-
porates all the HDM elements, explicitly and simultaneously, and without requiring
tuning of any parameter. Notably, hf -dominance has been implemented in an RV-
based framework, leading to an efficient EMâOA, namely LHFiD [31].

For the benefit of the readers, the terminology used for the various subdomains of
evolutionary optimization and the corresponding algorithms is reiterated in Table1.1:

• The terms EMO and EMaO are used discretionarily whenever it is necessary to
distinguish between features of the underlying multi- and many-objective prob-
lems. When such a distinction is not necessary, the subdomains of evolutionary
multi- and many-objective optimization are collectively referred to as EMâO.

• Since algorithms designed with the ability to handle many-objective problems are
expected (by default) to handle multi-objective problems as well, the more generic
term EMâOA has been used to denote an evolutionary multi- and many-objective
optimization algorithm.
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Table 1.1 Terminology of different subdomains of evolutionary optimization

Domain Abbreviation for

Domain Corresponding
algorithm(s)

Evolutionary Multi-objective Optimization EMO EMOA(s)

Evolutionary Many-objective Optimization EMaO EMâOA(s)

Evolutionary Multi- and Many-objective
Optimization

EMâO

1.2 Overview of Machine Learning

Machine learning (ML) is a field under the umbrella of artificial intelligence, devoted
to understanding and building methods that learn—that is, methods that leverage the
available data to improve performance in a given set of tasks. At a higher level, ML
methods build a model based on sample data, called a training-dataset, which is
used to make decisions or predictions without explicitly programming them. Some
well-known ML methods include artificial neural network (ANN) [20], random
forest (RF) [4], k-nearest neighbors (kNN) [8], and principal component analysis
(PCA) [24]. These methods are used in a wide variety of applications, including
medicine, text mining, speech recognition, and computer vision.

Typically, the use of an ML model for any application consists of three steps:
constructing a training-dataset, training the ML model on that dataset, and using
the trained model to make decisions or predictions [15]. Most of these ML meth-
ods require some user-defined parameters pertaining to the model training, which
directly affect the model’s accuracy. For example, training an ANN requires several
parameters to be defined, including the number of layers, the number of nodes in
each layer, the activation function, the learning rate, and the loss function. Despite
this, the quality of the training-dataset primarily affects the accuracy of the trained
ML model.

ML methods can generally be divided into supervised and unsupervised learn-
ing [2]. The fundamental difference between the two is that in supervised learning,
each sample in the training-dataset consists of an input and a desired output, whereas
in unsupervised learning, each sample consists of only an input. While the former is
suitable for tasks such as classification and regression, the latter is mainly used for
tasks like clustering, as described below.

• Classification: When the desired output in each sample of the training-dataset is
part of a set with a finite number of outputs, it is known as a classification task. An
example could be the use of an ML method to determine whether a given solution
is Pareto-optimal or not. Here, in each sample, the input would be the variable
vector of a solution, while the output can have only two possible values, that is,
‘Pareto-optimal’ or ‘Non-Pareto-optimal’.
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• Regression: When the desired output in each sample of the training-dataset can
be any numerical value, it is known as a regression task. An example could be the
use of an ML method to determine the objective value of a given solution. Here,
in each sample, the input would be the variable vector of a solution, while the
output would be its corresponding objective value, which can possibly be any real
number.

• Clustering: When the samples in the training-dataset need to be divided into
different clusters, but the cluster properties are not known beforehand, the task
is called clustering. An example could be the use of an ML method to detect
outliers in a given dataset. Here, the ML method would group the meaningful
samples together and the ungrouped samples would be marked as outliers. Such
an approach is often used to reduce noise in the ML training-dataset.

It is critical to note that some ML methods, including RF and kNN, have classifi-
cation and regression variants [26, 35]. Therefore, depending on the need, these ML
methods can be used for either of the tasks.

1.3 Scope of the Book

This book reinforces the fact that the availability of multiple sets of solutions over
successive generations of EMâOAs makes them amenable to the application of ML,
for different pursuits. To this end, this book attempts to present and discuss several
instances of ML-assisted EMâO. The structure of the remaining book is highlighted
below.

Chapter2 begins by highlighting some of the practical problem domains in which
the role of optimization is critical. Then the different problem types (uni-modal
SOPs,multi-modal SOPs,MOPs, andMaOPs) and different algorithm classes (point-
based and population-based) are discussed.Here, the suitability of different algorithm
classes for different problem types is also highlighted through examples. From a
realistic point of view, this chapter concludes by discussing no-free-lunch (NFL)
theorem, asserting that no single algorithm could be the best for solving all classes
of optimization problems. That is, the superior performance of some algorithms for
specific problem classes shall be accompanied by their inferior performance on some
other problem classes. This calls for customized optimization algorithms for routine
applications to specific problem classes.

Chapter3 highlights foundational studies on ML-based enhancements in the
domain of evolutionary multi-objective optimization. These studies relate to the
notion of innovization and online innovization leading up to innovized repair of
offspring populations; construction of appropriate surrogate models; and design of
efficient mutation operators. It may be noted that the notion of online innovization—
learning effective features from the trade-off solutions across the intermediate gener-
ations of an EMOA run, and propagating these features in subsequent generations—
forms the basis for Chaps. 5–7.
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Chapter4 focuses on learning to understand the optimization problem structure.
To this end, an ML-based objective reduction approach is discussed. It enables
the identification of redundant objectives (not essential to define the true PF) and
preference ranking of the essential objectives. Such knowledge discovery may facil-
itate a better understanding of the physics of the problem, in addition to reducing its
complexity and promising higher search efficiency for EMâOAs. This knowledge is
shown to offer decision support by revealing: (i) the smallest subset of objectives,
ensuring that the error associated with the omission of the remaining objectives does
not exceed a user-defined δ, and (ii) the subset of k objectives (for a user-defined
k) ensuring that the error associated with the omission of the remaining objectives
is the minimum, compared to any other possible combination of k objectives. The
implementation and benefits of this approach are demonstrated in several real-world
and test problems.

Chapters5–7 present the authors’ most recent and more direct efforts toward
ML-based performance enhancement for RV-based EMâOAs, abbreviated as RV-
EMâOAs. Although future efforts will seek to demonstrate the applicability and
efficacy of such enhancements for EMâOAs of arbitrary form, RV-EMâOAs have
been chosen initially, since they offer better tractability of solutions along and across
the RVs. The hallmark of the proposed enhancements is that they are guided by
the overarching considerations of convergence–diversity balance, ML-based risk–
reward trade-off, and avoidance of extra solution evaluations. Thus, these chapters
could provide a template for further research in this direction. After this background,
the individual contributions of these three chapters are as highlighted below.

• Chapter5 focuses on learning to better converge, toward which the Innovized
Progress 2 (IP2) operator is discussed. In any intermediate generation of an RV-
EMâOArun, the IP2operator relies on the use of anMLmethod to learnmeaningful
search directions in theX space, based on a suitablemapping of inter-generational
solutions for each RV, which implies a mapping of previous generation solutions
(in the X space) to the current generation solution (in the X space) for each RV.
The learned MLmodel is then used to create pro-convergence offspring solutions,
eventually improving the quality and/or rate of convergence to PF . The utility of
the IP2 operator is demonstrated through proof-of-concept results.

• Chapter6 focuses on learning to better diversify, toward which the Innovized
Progress 3 (IP3) operator is discussed. In any intermediate generation of an
RV-EMâOA run, the IP3 operator relies on the use of an ML method to learn
meaningful search directions in X space, based on a suitable mapping of intra-
generational solutions, across different RVs. It implies a judicious mapping of
the same (current) generation solutions that are associated with different RVs.
The learned ML model is then used to create pro-diversity offspring solutions,
eventually improving the diversity (both coverage and uniformity) of solutions in
the obtained PF-approximation. The utility of the IP3 operator is demonstrated
through proof-of-concept results.

• Chapter7 focuses on learning to simultaneously converge and diversify better,
toward which theUnified Innovized Progress (UIP) operator is discussed. The UIP
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operator integrates the capabilities of the pro-convergence IP2 and pro-diversity
IP3 operators, in a manner that is generic—applicable to different RV-EMâOAs;
and practicable—not requiring any extra solution evaluations over the base RV-
EMâOA. The utility of the UIP operator is demonstrated on a wide range of test
MOPs and MaOPs.

Chapter8 focuses on investigating the sensitivity of the performance of innovized
progress operators (IP2, IP3, and UIP), vis-à-vis the underlying ML methods. It
covers a comprehensive set of eight ML methods from different classes, including
linear methods, trees, boosting algorithms, and nonlinear methods. The performance
sensitivity, in terms of the solution’s quality and computational run-time, has been
analyzed across a wide range of MOPs and MaOPs.

Chapter9 introduces an approach based on post-optimality analysis that can facil-
itate contrasting features as per the requirement—a more uniform distribution of
solutions across PF , and also a biased distribution across PF (higher concentration
in specific parts) as may be desired by the decision maker. Given a PF approxima-
tion by an EMâOA, this approach relies on training an ML model to capture the
relationship between pseudo-weight vectors derived from objective vectors in the
PF-approximation (F in Z), and their underlying variable vectors (X in X ). Subse-
quently, the trained ML model is used to create new non-dominated solutions in any
desired region of the obtained PF-approximation. The results of some test problems
are presented to demonstrate the utility of this approach. This chapter is adapted from
a recent paper by Deb and his students [10].

Chapter10 contains concluding remarks about this book. Notably, the seeds of
ML-assisted EMâO had been laid by two of the authors more than 15 years ago
through an ML-based objective reduction study [13] in 2006. This was further prop-
agated over the timeline through automated innovization [3] starting in 2010 and
online innovization [18] starting in 2017. However, the authors’ motivation for more
direct and dedicated efforts forML-based enhancements in EMâOwas stimulated by
the SPARC project. The authors believe that the success of chronological advances
portrayed in this book is inspiring and marks only the tip of the iceberg. The authors
are confident that the template laid down in this book, structured around the key con-
siderations of convergence–diversity balance, ML-based risk–reward trade-off, and
avoidance of extra solution evaluations, will guide further research in this direction.
Toward it, Chap. 10 also lists a number of potential future research directions per-
taining to ML-assisted EMâO, which must be taken up by EMO-ML researchers to
unveil a comprehensive potential ofMLmethods in improvingEMâO’s performance.

The authors hope that this book will stimulate greater interest among EMâO
researchers and practitioners to exploit the natural synergy that exists with the ML
domain, toward solving challenging real-world problems computationally quickly
and more efficiently.
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Chapter 2
Optimization Problems and Algorithms

This chapter starts by highlighting some domains of practical problems where opti-
mization is or can be commonly applied. Then, the focus is shifted to different prob-
lem classes based on the number of objectives, and also on the popular point- and
population-based optimization algorithms. Finally, to contextualize the suitability
of different optimization algorithms for different problem types, the No-free-lunch
(NFL) theorem is discussed.

2.1 Optimization Problems

Optimization problems are omnipresent. In the following, we list a few problem
domains that optimization algorithms are routinely used to solve.

• Design and manufacturing.
• Modeling.
• Prediction.
• Inverse problems.
• Design of experiments.
• Scheduling and resource allocation problems.
• Control systems.
• Machine learning problems.

The lion’s share of optimization problems come from the domain of design and
manufacturing. In design-related problems, the key design parameters are usually
considered as variables that can be changed to create new designs; the key per-
formance indicators (KPIs) of the design are used as objectives; and those KPIs
which must be strictly met for the design to be acceptable are used as constraints. In
manufacturing-related problems, the keyparameters of themanufacturing process are
considered as variables; the qualities of the final product are used as objectives; and
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the resource restrictions and/or certain process-related KPIs are used as constraints.
Often, these problems require a time-dependent simulation process to acquire the
objective and constraint values.

Modeling a systemor process is important to understand its dynamics. Themodels
can be derived either from empirical data or from more fundamental relationships
(first principles, physics-based) that rely on knowledge of the system/process. In
practice, a combination of both approaches is often used. In that, the forms of the
equations are developed from the fundamental principles, while the unknown or
uncertain parameters are adjusted to fit the empirical data. This fitting entails opti-
mization, where a common objective is to minimize the sum of squared error, which
penalizes deviation of the fundamental model from the data. Here, constraints may
ensure satisfaction of the important or essential characteristics of the system. In this
context, the task of finding regression models can be viewed as an optimization task.
Alternatively, modeling can also be achieved using neural networks, where a sys-
tem’s input–output relationships are available. This, too, involves optimization. In
that, the network’s architecture and the connection weights can be considered as vari-
ables; restrictions on the complexity of the architecture and weight values can serve
as constraints; and the objective can pertain to minimization of back-propagation
error (error between the network’s and true system’s output). Furthermore, the mod-
eling of time-series data may eventually lead to the prediction of critical quantities
of the system. From past data, the error between predicted and true values of critical
quantities can be minimized to make a better prediction model.

Many practical problems demand that inputs be found for desired outputs, while
the forward process of achieving output from input is known. For example, inmaterial
discovery problems, themanufacturing process parameters (inputs) should be known
to achieve certain desired material properties (outputs). Such inverse problems are
difficult to solve for multiple reasons, and optimization is one way to achieve this
task. In these problems, the inputs serve as variables, and the objective relates to
the minimization of the error between the predicted output (obtained by the forward
computation or simulation based on the input) and the desired output. Depending on
the problem, simplicity or the principle of Occam’s razor is used as a constraint, so
that the resulting input solution is not too complex.

In many expensive and time-consuming processes for data acquisition, a method
called design of experiments is often used. Since it is not possible to evaluate all
possible feature combinations, an optimizationmethodology canprovide information
on the nextmost appropriate set of experimental setups, given the experiments already
performed. The variables in such an optimization problem would be a sequence of
combinations of input features for the next set of experiments, and the objective
function could be to maximize an ‘information gain’ estimated from the execution
of the experiments.

Scheduling and resource allocation problems are an important class of problems
related to efficient resource management, where optimization plays a key role. In
such problems, resources and/or schedules serve as variables; the tardiness, cost,
throughput, or other performance-related indicators are pursued as objectives; and
certain resource limits are portrayed as constraints. Such problems are often formu-
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lated as linear programming problems, for which structured optimization algorithms
in the operations research domain are available. However, these problems could be
quite challenging, particularly when they are large-scale or when their solutions are
desired in real-time.

Optimal control problems require identifying time-varying or spatial variations
of control parameters so that the underlying system becomes stable as quickly as
possible. In these problems, variables are usually temporal or spatial functions, rather
than fixed values, and a simulation process is needed to construct the objective and
constraint values.

Finally, most machine learningmethods use an optimization algorithm at the core.
Most often, machine learning researchers resort to the use of a standard hill-climbing
method, despite the fact that it works only if there is a single peak—no local peaks,
no plateaus, and no ridges. Hence, a more efficient approach could be to use other
local search algorithms such as stochastic hill climbing, randomwalks, and simulated
annealing or more sophisticated nonlinear optimization algorithms toward finding
the true optimal solution. The discussions in this chapter may produce interesting
future studies to settle the pros and cons of such approaches.

It is clear from the above discussions that optimization lies at the core of practical
problem solving, acrossmultiple important domains.When formulating an optimiza-
tion problem, the following four ingredients must be identified:

1. Parameters: The problem parameters refer to all those quantities whose values
are fixed before starting the optimization process.

2. Variables: The variables refer to all those quantities whose values are varied
during the optimization process. These variables, also known as design/decision
variables, are denoted by a n-dimensional vector X (where n is the number of
variables). Since each xi ∈ X varies during optimization, its range can be specified
by its lower bound x (L)

i and its upper bound x (U )
i . If such bounds are available for

all the variables, they constitute a hyperbox within which the search is restricted.
However, if such bounds are not available and the feasible search space (defined
below) is not bounded, then the optimization process may not terminate in a finite
number of iterations. Since the search takes place in an n-dimensional space,
efforts to reduce the number of variables are always helpful for an optimization
task.

3. Constraints: The constraints refer to the restrictions on the search space and
influence whether any given solution is permissible or not. There are two types of
constraints. Each inequality constraint (g j (X) ≤ 0, for j = 1, . . . , J ) divides the
search space into a feasible and an infeasible region. In doing so, each inequality
constraint reduces the permissible search space to a subset of the original space.
Each equality constraint (hk(X) = 0, for k = 1, . . . , K ) imposes stricter restric-
tions, as only the solutions that belong to the constraint boundary are acceptable.
In doing so, each equality constraint reduces the dimensionality of the search
space. All the equality and inequality constraints together constitute the feasible
search space X (used in Eq. 1.1), which could be defined as follows:
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X =
{

X
∣∣ (g j (X) ≤ 0, ∀ j

) ∧ (hk(X) = 0, ∀k) ∧
(

x (L)
i ≤ xi ≤ x (U )

i , ∀i
)}

.

(2.1)
It is needless to assert that the optimal solution to the problem must satisfy the
above equation. Also, in certain problems, some constraints can be declared soft,
which means that a small violation (within ε j ) of these constraints is allowed,
that is, g j (X) ≤ −ε j . Constraints that cannot be violated are known as hard con-
straints.

4. Objectives: The objectives refer to the performance metrics that must be mini-
mized or maximized, and their set is denoted as F (Eq. 1.1). While the catego-
rization of problems into single-, multi-, and many-objective problems has been
introduced in Chap. 1 alongside their salient features, this chapter discusses them
in more detail below.

2.1.1 Single-objective Optimization Problems

Traditionally, most optimization problems were posed as single-objective problems
(SOPs), as given by Eq. 2.2.

Minimize f (X),

subject to g j (X) ≤ 0, j = 1, 2, . . . , J ;
hk(X) = 0, k = 1, 2, . . . , K ;
x (L)

i ≤ xi ≤ x (U )
i , i = 1, 2, . . . , n.

(2.2)

The variables in the above formulation are denoted by the vector X . The param-
eters within the description of objective and constraint functions and the variable
bounds (x (L)

i and x (U )
i ) are parameters of the problem and are kept fixed during an

optimization run. A maximization problem, in which the objective function f (X)

is to be maximized, can be aligned with the above formulation, by pre-multiplying
the objective by −1. In other words, Max . f (X) is equivalent to Min. − f (X) in
terms of their optimal solutions, irrespective of whether the problem is constrained
or unconstrained. Similarly, if a constraint is given in the form g j (X) ≥ 0, it can be
aligned with the above as −g j (X) ≤ 0. In some problems, a strict inequality con-
straint g j (X) < 0 means that the feasible search space does not contain the boundary
g j (X) = 0. Although theoretically an optimal solution in the limit can be defined,
practically (while working with finite-precision computing platforms) the optimal
solution can only be found approximately for such constraints. For such reasons,
strict inequality constraints have not been considered in this book.

A problem modeled as above may have one or more optimal solution(s) X∗. The
role of an optimization algorithm (discussed in the next section) is to search the n-
dimensional space and find the exact optimal solution(s) or near-optimal solution(s)
with as few solution evaluations as possible. A solution evaluation is a complete
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evaluation (objective and constraint functions) of a solution X . For practical prob-
lems, the evaluation of one solution can be computationally expensive, taking a few
minutes or even several hours.

For an illustration of some key concepts, consider the problem defined by Eq. 2.3.
Its two-variable search space is depicted in Fig. 2.1a. In that, the feasible region is
bounded by the curve (nonlinear constraint) and the straight line (linear constraint).
Furthermore, the objective contours shown in this figure highlight the fact that it is
a uni-modal problem, where both constraints are inactive at the optimal solution,
implying that the same optimal solution will result even if the constraints were not
considered.

Minimize f (x1, x2) = (x2
1 − x2 − 11)2 + (x1 + x2

2 − 7)2,
subject to g1(x1, x2) = (x1 − 5)2 + x2

2 − 26 ≤ 0,
g2(x1, x2) = 4x1 + x2 − 20 ≤ 0,
0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 5.

(2.3)

Now consider a variant of the above problem, where f , g1, and g2 remain the
same, but the new variable bounds are given by −5 ≤ x1 ≤ 5 and −5 ≤ x2 ≤ 5.
Figure 2.1b highlights the fact that with a change in the variable bounds, the problem
becomes a multi-modal problem, with four optimal solutions, of which only two
are feasible. With regard to modality, the following are not clearly defined in the
literature but may be noted:

• In a multi-modal problem, not all optimal solutions may have the same objective
values. Those offering the best objective value are called global optimal solutions,
while those offering inferior objective value(s) are called local optimal solutions.
If the user is interested in finding multiple optima, then the task is referred to as
multi-modal optimization.

• Even for a multi-modal problem, if the user wants to find only a single optimum
(global optimum or one of the global optima, as the case may be), then the task is
referred to as uni-modal optimization or global optimization.

• Optimization algorithms aiming at multi-modal optimization need to have inbuilt
mechanisms that can drive the search tomultiple optimal solutions. In other words,
the design of optimization algorithms for multi-modal optimization ought to be
different from those designed for uni-modal optimization. Hence, the choice of
algorithm by a user should depend on the user’s goal, despite addressing the same
problem.

It is implicit in the problem definition itself that every optimal solution X∗ must
be feasible, that is, it should satisfy all the constraints, including the variable bounds.
Furthermore, X∗ must satisfy several optimality and constraint qualification condi-
tions, a discussion of which is beyond the scope of this book. Interested readers may
refer to the theoretical optimization literature [1, 20].

It may be noted that the generic formulation given by Eq. 2.3 may lead to more
structured problems [38] under specific conditions, as highlighted below:
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Fig. 2.1 Feasible search space with single and multiple optimal solutions for a two-variable and
two-constraint problem. The region between the circle and straight line is feasible. Contours of the
objective function are shown
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• If the objective function is a convex function and the feasible search space consti-
tutes a convex region, then the resulting problem constitutes a convex programming
problem (CPP). For a CPP, every local optimum is also a global optimum. Hence,
a CPP may have one or more global optimal solutions.

• If the objective and constraints are all linear functions of the variables, the resulting
problem is called a linear programming problem (LPP). LPPs are a special case
of CPPs, and hence, they may have one or more global optimal solutions.

• If the objective function is quadratic and all the constraints are linear functions of
the variables, the resulting problem is called a quadratic programming problem
(QPP). For a bounded feasible space, a QPP always has a single optimal solution.

If the objective function and/or any of the constraint functions do not meet the
above conditions, the resulting problem is called a nonlinear programming (NLP)
problem.There does not exist, and arguably there cannot exist due to theNFL theorem
[51], a single optimization algorithm that is most efficient in finding the optimal
solution(s) for all NLP problems (Sect. 2.2.3). However, it may be possible to develop
an efficient optimization algorithm for a specific class of problems.

2.1.2 Multi-objective Optimization Problems

A multi-objective optimization problem (MOP), as given by Eq. 2.4, involves a
number of conflicting objective functions (meaning that optima of all objectives are
not identical and produce trade-offs among objectives) that are to be minimized or
maximized subject to a number of constraints and variable bounds. Note that despite
objectives being non-conflicting, certain constraints can produce trade-off optimal
solutions, thereby leading to a multi-objective optimization problem.

Minimize F(X) = { f1(X), f2(X), . . . fM(X)}T ,

subject to g j (X) ≤ 0, j = 1, 2, . . . , J,

hk(X) = 0, k = 1, 2, . . . , K ,

x (L)
i ≤ xi ≤ x (U )

i , i = 1, 2, . . . , n.

(2.4)

The functions to maximize can be converted to minimization functions by mul-
tiplying by −1. For any feasible solution X in X (satisfies Eq. 2.1), there exists its
image, given by z = F(X) = ( f1, f2, . . . , fM)T ∈ Z (the set of all feasible objective
values). Optimal solutions in the context of MOPs can be defined through a mathe-
matical concept of partial ordering [43], implemented through thePareto-dominance
principle [8, 34], as highlighted below.

Definition 2.1 A solution X (1) is said to Pareto-dominate another solution X (2), if
both the conditions are true:

1. The solution X (1) is not worse than X (2) in all objectives, that is, no component
of z(1) is worse than the corresponding component of z(2).
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Fig. 2.2 A set of solutions and the first non-dominated front are shown in the objective space (taken
from [8] and edited)

2. The solution X (1) is strictly better than X (2) in at least one objective, that is, at
least one component of z(1) is strictly better than the corresponding component
of z(2).

To appreciate how the dominance principle helps to define optimal solutions in
the context ofMOPs, consider Fig. 2.2, pertaining to a two-objective problem, where
f1 is to be maximized and f2 is to be minimized. It represents the objective vectors
(Z vectors) of six solutions X (1) to X (6), given by z(1) to z(6), respectively. However,
these Z vectors have been referred to as 1 to 6 to avoid clutter in the figure. To
help visualize the application of the dominance principle in all solutions, Fig. 2.2a
highlights the individual objective components of each Z vector by dashed lines. In
that, the larger the f1 component and the smaller the f2 component, the better. In
this context, 3 can be said to dominate 1, since: (i) 3 is not worse than 1 in any of the
two objective components, and (ii) 3 is strictly better than 1 in at least one objective
component (in fact, 3 is strictly better than 1 in both objective components). A similar
dominance check can be applied to every solutionwith respect to every other solution.
Finally, solutions such as 3, 5, and 6 that are not dominated by any other solution are
called non-dominated or efficient solutions and together constitute what is referred
to as the Pareto front (PF). This front is characterized by an interesting trade-off
property, in that, a traversal from one constituent solution to another is marked by a
gain in some objective(s) and a loss in some other objective(s). Notably, the solutions
in X space underlying the solutions inZ space are optimal solutions to an MOP and
are said to constitute the Pareto-optimal set (PS). There are more mathematically
elegant definitions of Pareto-optimality, which the interested readers may refer to
[29, 34]. The computational complexity associated with the determination of non-
dominated solutions in a given set of N solutions is O(N log N ) for M = 2 and
3. However, for M > 3, the complexity increases toO(N logM−2 N ) [33], implying
that the procedure is not so efficient even for a moderately high number of objectives.
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Fig. 2.3 Cantilever beam design problem: depicting the feasible variable space (X ) and the corre-
sponding feasible objective space (Z); Pareto set and Pareto front (taken from [8] and edited)

To familiarize the readerswith the key terminology introduced so far, Equation 2.5
gives a two-objective, two-variable (d, l), and two-constraint cantilever beam design
optimization problem, originally introduced in [8].

Minimize f1(d, l) = ρπd2

4 l,

Minimize f2(d, l) = δ = 64Pl3

3Eπd4 ,

subject to g1(d, l) = 32Pl
πd3 − Sy ≤ 0,

g2(d, l) = δ − δmax ≤ 0,
10 ≤ d ≤ 50, 200 ≤ l ≤ 1000.

with parameters ρ = 7800 kg/m3, P = 1 kN, E = 207 GPa,
Sy = 300 MPa, δmax = 5 mm.

(2.5)

The plot on the left in Fig. 2.3 shows that the feasible decision space is only a
subset of the overall decision space (X space) bounded by 10 ≤ d ≤ 50 and 200 ≤
l ≤ 1000. Furthermore, the figure depicts the mapping of a feasible solution X ∈ X
to a feasible solution z ∈ Z; the PF in Z space; and the PS in X space which
corresponds to l = 200, 18.94 ≤ d ≤ 50.

2.1.3 Many-objective Optimization Problems

Many-objective optimization problems (MaOPs) refer to problems with more than
three objectives. Their formulation remains the same as that of MOPs (Eq. 2.4),
just that M ≥ 3. As highlighted in Chap. 1, this distinction in terminology became
imperative between 2000–2005, considering that some of the most well-known
Pareto-dominance/ranking-based evolutionary multi-objective optimization algo-
rithms (EMOAs) reportedly showed poor scalability with the number of objectives.
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With each increase in M , MaOPs pose additional challenges with regard to: (i) search
efficiency, (ii) the need for an exponentially increasing population size and number
of scalarizations, for EMOAs and point-based algorithms, respectively, and (iii) dif-
ficulty in visualization (necessitating Parallel coordinate plots, Radial visualization,
etc. [34, 48]).

2.2 Optimization Algorithms

Optimization algorithms can be broadly classified into point-based and population-
based algorithms, which are discussed next.

2.2.1 Point-Based Optimization Algorithms

Point-based algorithms start their search with a single solution Xt (often a randomly
chosen solution) and create a single new solution Yt using an update process: Yt =
N (Xt ).At first, the iteration counter is t = 0. IfYt isbetter than Xt , thenYt is accepted
and used to define the starting solution for the next iteration, that is, Xt+1 = Yt ,
otherwise Xt+1 = Xt . If a termination condition is not satisfied, the iteration counter
t is incremented by one and the above procedure is repeated. The superiority of a
solution is determined by a composite functionL(X), which combines objective and
constraint function values in a way to prefer smaller f (X) values for minimization
problems and smaller overall constraint violations. A pseudo-code for the same is
presented in Algorithm 2.1.

Algorithm 2.1: Point_Optimization(N , X (0), tmax)

Input: A composite function L(X), Neighborhood operator N , initial point X (0),
maximum iterations tmax

Output: Optimized solution X (tmax)

1 t ← 0
2 for t = 0 to (tmax − 1) do
3 Yt = N (Xt )

4 if L(Yt ) < L(Xt ) then
5 Xt+1 ← Yt

6 else
7 Xt+1 ← Xt

8 t ← t + 1

The main crux of an optimization algorithm is to design an appropriate update
procedureN (Xt ). It can simply be a neighborhood operator in which the new point
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can be created using a Gaussian probability distribution around Xt with a predefined
fixed or adaptive covariance matrix [25]. In gradient-based optimization algorithms,
the new solution is created along the negative of the gradient vector ∇ f (Xt ) [6].
In the presence of constraints, more sophisticated direct or gradient-based update
methods of L are used [6, 39].

In addition to the choice of update procedure N (Xt ), comparison of solutions
Xt and Xt+1 is another important aspect. It depends on whether the problem being
solved is constrained or not, and whether it involves a single objective or multiple
objectives, as discussed below.

2.2.1.1 Point-Based Algorithms for Single-objective Problems

For unconstrained SOPs without constraints, the comparison of Xt and Xt+1 can
simply be made based on the objective function value (L(X) = f (X)). However, for
constrained SOPs, a hierarchical comparison is proposed that first checks the feasi-
bility of solutions and then the objective values [7]. Inmore sophisticated algorithms,
the update operator itself factors in the constraints to ensure that the newly created
Xt+1 is always better, in the combined sense of objective and constraints.

For illustration, the constrained problem introduced earlier (Eq. 2.3) is consid-
ered here, and the search trajectory or the progress path of a point-based algorithm
(fmincon()MATLAB software), starting with the solution X (0) = (0, 5)T , lead-
ing to the optimal solution X∗ = (3, 2)T is shown in Fig. 2.4. Intermittent solutions
are marked by blue circles.
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Fig. 2.4 Iteration-wise progress of a point-based optimization algorithm toward the optimum
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Fig. 2.5 Iteration-wise progress of a point-based optimization algorithm toward two optimal solu-
tions starting with different initial solutions

To further illustrate the performance of fmincon() on an SOP with multi-
modality, the earlier introduced variant of Problem 2.3 (with −5 ≤ x1 ≤ 5 and
−5 ≤ x2 ≤ 5) is also considered here. Figure 2.5 reveals that the choice of X (0) =
(−5,−5)T leads to one of the two (feasible) optimal solutions. Since the goal is to
find another optimal solution, fmincon() is invoked again but with a significantly
different X (0) = (0,−5)T , in the hope of a different search trajectory. As evident in
the figure, the new starting solution indeed follows a different path to the second (fea-
sible) optimal solution. In essence, invoking a point-based algorithm with different
starting solutions can be seen to lead to different optimal solutions in a multi-modal
problem.

2.2.1.2 Point-Based Algorithms for Multi-objective Problems

To address MOPs, point-based optimization algorithms scalarize multiple objectives
into a single aggregate function. One common approach is to minimize the weighted
sum of objectives, as defined in Eq. 2.6.

Minimize F(X) =
M∑

m=1
wm fm(X),

subject to X ∈ X .

(2.6)
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Ideally, this requires that each objective be normalized to have a similar range
of values in the feasible search space and then use a specific weight vector W =
(w1, w2, . . . , wM), where wm ≥ 0 for each m ∈ [1, M], and often satisfies∑M

m=1 wm = 1, to solve the SOP in Eq. 2.6. It can be proven that the resulting solution
X∗

W is a member of PS, and the corresponding objective vector, F(X∗
W ), is a mem-

ber of PF . Notably, this approach suffers from multiple challenges, as highlighted
below:

• PF-approximation with a limited number of uniformly distributed solutions
requires multiple invocations of a point-based algorithm, each time with a dif-
ferent weight vector. However, even a uniformly distributed set of weight vectors
need not ensure a uniformly distribution of resulting solutions on the PF .

• A large computational effort is required due to independent applications of a point-
based algorithm, particularly when no learning is derived from multiple runs to
help enhance the search efficacy in any run.

• It reportedly fails to offer solutions on the non-convex parts of the PF .

While the first two limitations cited above remain common to the different scalar-
ization approaches to tackle MOPs, the third limitation pertaining to non-convex PF
can be alleviated. One such approach is the epsilon-constraint approach, as defined
in Eq. 2.7.

Minimize fμ(X),

subject to fm(X) ≤ εm, for m = 1, 2, . . . , M , m 
= μ,

X ∈ X .

(2.7)

In that, one particular objective is minimized at a time, say fμ(X), while all the
remaining objectives are converted into constraints using a pre-specified ε vector, rep-
resenting an upper bound on each of these objectives. The resulting optimal solution
X∗

ε has been proven to be a member of PS, and the corresponding objective vector,
F(X∗

ε), is a member of PF . It has also been proven that all Pareto-optimal solutions
can be achieved using different combinations of (μ, ε). Notably, the choice of the ε
vector must be within the ideal and nadir values of each objective, and this requires
additional effort. Finding the ideal (best) value of an objective is relatively straight-
forward since it can be obtained byminimizing the objective independently subject to
the original constraints and variable bounds. However, finding the nadir value (worst
value among all Pareto-optimal solutions) of an objective is quite challenging, since
it cannot be obtained without knowing the entire set of critical Pareto-optimal solu-
tions.

There exist various other scalarization approaches, which interested readers can
find in [3, 8, 34, 46]. However, one other scalarization approach which is quite
commonly used for tackling MOPs is covered here. It pertains to the minimization
of an achievement scalarization function (ASF) [50], as defined in Eq. 2.8.
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Fig. 2.6 Depicting the
procedure for finding a
Pareto-optimal solution
using ASF

Minimize ASF(X) = M
max
m=1

fm (X)−zr
m

wm
,

subject to X ∈ X .
(2.8)

The formulation requires two M-dimensional vectors: (i) the reference point zr ,
and (ii) the weight vector W , in the objective space (Z space). For any solution
X in the X space, its Z space representation is referred to as F(X). Given F(X)

and a weight vector W , a1 = ( f1(X) − z1)/w1 and a2 = ( f2(X) − z2)/w2 can be
calculated, and the larger of the two quantities is chosen as the ASF value for the
solution X . Figure 2.6 shows the contours of the ASF function for a specific z (iden-
tical to the ideal point) and W = (w1, w2)

T in a two-objective space. To appreciate
it, consider that the line represented by W has an angle θ with the horizontal axis,
which implies tan(θ) = w2/w1. Furthermore, consider a point G belonging to the
line given by W . Clearly, tan(θ) = w2/w1 = ( f2 − z2)/( f1 − z1), which implies
a2 = ( f2 − z2)/w2 = a1 = ( f1 − z1)/w1. For the solutions lying on the line that
joins G and H, a1 remains constant while a2 reduces, that is, a1 = ASFG > a2. Simi-
larly, for the solutions lying on the line that joinsG andK, a1 reduceswhile a2 remains
the same, that is, a1 < ASFG = a2. Therefore, the iso-ASF contour for any solution
can be given as a set of two lines (one horizontal and one vertical), intersecting the
vector W emanating from z. Based on this argument, Fig. 2.6 also shows, through
dashed lines, the iso-ASF contours for two different points A and B. Since at least
one of the F(X) components for point A is larger than those of G, ASFA > ASFG.
Similarly, ASFB > ASFA. Considering that the goal is to minimize the ASF value
(Eq. 2.8), solution G is considered to be better than A, which is better than B. In
this context, for given z and W , the point O will offer a minimum value ASF and
therefore its underlying X while being the optimum (X∗

ASF) for this ASF problem
would be a member of PS.
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It is intuitive that by keeping the reference point zr fixed and simply changing
the weight vector, the entire PF can be approximated. Notably, the ASF function
is non-differentiable due to the max operator. However, the smooth version given
by Eq. 2.9, involving an additional variable, can be optimized so that ASF(X∗) =
ASF smooth(X∗) = x∗

n+1.

Minimize ASF smooth(X) = xn+1,

subject to fm (X)−zr
m

wm
≤ xn+1, for m = 1, 2, . . . , M; and X ∈ X (2.9)

Minimize f1(x1, x2) = 4x2
1 + 4x2

2 ,

Minimize f2(x1, x2) = (x1 − 5)2 + (x2 − 5)2,
subject to g1(x1, x2) = (x1 − 5)2 + x2

2 ≤ 25,
g2(x1, x2) = (x1 − 8)2 + (x2 + 3)2 ≥ 7.7,
0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 3.

(2.10)

To illustrate the functioning of ASF-based scalarization approach, the problem
defined in Eq. 2.10 is considered, and the SOP resulting from ASF smooth has been
solved through thefmincon() routine ofMATLAB. Figure 2.7(a) shows 11 differ-
ent Pareto-optimal solutions, corresponding to 11 uniformly spaced weight vectors
((1, 0), (0.9, 0.1), . . . , (0, 1)). For the particular choice of W = (0.5, 0.5), it also
shows the search trajectory leading to one of the Pareto-optimal solutions. Further-
more, Fig. 2.7b makes it evident that the images of 11 solutions in the Z space
coincide with the true PF shown by a curve.

Finally, the salient features of point-based optimization algorithms may be noted:

• They are usually theoretically motivated and thus usually provide a convergence
to at least local optimal solution, though they are vulnerable to remaining stuck at
such solutions.

• Owing to their basis in theory (optimality conditions), they are quite rigid and not
amenable to customization or incorporation of any problem-knowledge.

• For uni-modal SOPs, they happen to be computationally efficient and also require
little memory.

• For MOPs or even multi-modal SOPs, they are not computationally efficient due
to the need for multiple invocations for a reasonable PF-approximation.

• Since each Pareto-optimal solution is obtained one at a time, it is difficult to find
a well-distributed set of solutions on the Pareto front, particularly for more than
three-objective problems.
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(a) Variable space plot for W = (0.5,0.5). Contour plot of the
ASF function is drawn with a penalty function
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2.2.2 Population-Based Optimization Algorithms

Unlike point-based algorithms, population-based algorithms work with a set of solu-
tions that are improved iteratively, in pursuit of Pareto-optimal solutions, in a single
run/invocation.

Algorithm 2.2: Evolutionary_Optimization(Operators,P0,tmax)
Input: Selection operator, Recombination operator, Mutation operator, P0, maximum

iterations tmax
Output: Optimized solution P(tmax)

1 t ← 0
2 Evaluate(Pt )
3 for t = 0 to (tmax − 1) do
4 Pmating = Selection(Pt )

5 Qt = Recombination(Pmating)

6 Qt = Mutation(Qt )

7 Evaluate(Qt )
8 Pt+1 = Survivor(Pt , Qt )

9 t ← t + 1

A pseudo-code for a population-based evolutionary optimization (EO) algorithm
is presented inAlgorithm 2.2. Notably, it starts with a population of randomly created
initial solutions (P0) of size N . After evaluating the solutions, EO moves into a loop
of iterations in which Pt is modified to a new population Pt+1 by (i) selecting good
solutions of Pt using a mating selection procedure to create a mating pool Pmating,
(ii) using Pmating to create a new offspring population Qt sized N using genetically
motivated variation operators, such as recombination and mutation, and (iii) then
selecting N best solutions from a combined parent–offspring population (Pt ∪ Qt )
of size 2N in a survival selection operator. Iterations are continued until a termination
criterion is met.While several variations of the above procedure can be implemented,
the creation of new solutions by utilizing properties of good existing solutions is the
hallmark of an EO algorithm. For example, an EO algorithm can be modified by
customizing any of its following components:

• Supply of initial population: The knowledge of any existing good solution(s) can
be used to create the initial population. Local perturbation of existing solutions
can be made to fill the initial population from a few known solutions.

• Choice of the mating selection operator: Usually, a tournament selection oper-
ator is used, in which two population members compete, and the one with better
fitness is chosen. Such a process with replacement results allows the selection
of good solutions from the population to form the mating pool. Alternatively, a
probabilistic tournament selection [27] or multi-membered tournament selection
operator [24] can also be used, depending on the desired degree to which good
solutions are to be emphasized.
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• Choice of variation operators:Usually, two types of variation operators are used
in EO studies, namely recombination and mutation. The recombination operator is
applied over two ormore parent solutions to create one ormore offspring solutions.
The recombination operators can be classified, on the basis of their application, into
variable- and vector-wise operators. In variable-wise operators, such as simulated
binary crossover (SBX) [10], the recombination is applied separately on each
variable, so that the mathematical operation on one variable does not affect the
operation on other variables. In contrast, in vector-wise operators, such as parent-
centric crossover (PCX) [11] or differential evolution [36], the recombination is
applied on the vector of the variable itself, so the same operation is applied to each
constituent variable. The general form to create a new offspring solution from κ
population members of Pmating (κ-parent recombination) is as follows:

Y = Recombination (X (i), i = 1, 2, . . . ,κ). (2.11)

One of the simplest recombination operators would be to take an average of κ
parent solutions (selected from Pmating). However, recombination operators can
be more sophisticated, which may be applied to current and past parent solutions
(from previous generations), as demonstrated in [31].
While a recombination operator involves two or more solutions to create the off-
spring solution(s), a mutation operator involves only a single solution. Similarly
to recombination, mutation can be applied in a variable-wise manner, as in the
polynomial mutation operator [13], or in a vector-wise manner, as in multivariate
Gaussian operator [44]. If carefully considered, the mutation complements the
tasks that recombination operators cannot perform. When certain variables lose
diversity among all population members while the population has not yet con-
verged to the optimum, the recombination operators cannot improve their diver-
sity significantly. The only way to improve diversity is to apply mutation operators
to modify the values of such variables. There can be other ways to apply muta-
tion, such as using a local search operation or creating problem-specific mutation
operators [19].

• Choice of survival Operator: The goal of the survival operator is to choose the
best set of solutions from the combined current and newly created offspring pop-
ulations. This operator also ensures that the previously obtained elite solutions
survive from generation to generation. The survival operator can bring in other
selection criteria, such as age-related selection and selection of a diverse popula-
tion.

• Choice of termination condition: Most EO studies are terminated after a pre-
defined number of iterations have elapsed or a predefined number of solution
evaluations have been completed. But other termination criterion, such as search-
stabilization [40, 42], achievement of a target solution quality, or satisfaction of
certain optimality conditions [9], can also be used.



2.2 Optimization Algorithms 29

In general, EO algorithms offer a few advantages, as highlighted here:

• Being population-based, such algorithms are naturally suited for multi-modal
SOPs and MOPs.

• Since population members can be compared against each other in a relative sense
at each iteration, they allow for an iteration-independent evaluation scheme, if
desired, in certain problems.

• Any normalization procedure can also be easily applied within a population of
solutions, instead of finding normalization constants for the entire search space.

• The members of the population can be classified according to their objective and
constraint values, and their effective recombination (or blending) can be executed
to obtain new solutions. This process can enable implicit parallel search [8], which
point-based algorithms cannot offer.

In addition to a number of EO algorithms, such as, binary and real-coded genetic
algorithms [8, 23, 28], which closely follow Algorithm 2.2, there exists a number of
other population-based optimization algorithms, such as differential evolution [47]
and particle swarm optimization [31], which follow a slightly different procedure,
but making an implicit algorithmic similarity [16, 35] with Algorithm 2.2.

2.2.2.1 Population-Based Algorithms for Single-objective Problems

At first glance, the use of population-based EO algorithms to solve uni-modal SOPs
may seem like an overkill. However, even for such problems, their usage promises
several advantages. First, a population can quickly lead to the optimal region through
its implicit parallel search process compared to serially traversing the search space
with a single solution. Second, the population provides a better global perspective
for the algorithm in finding better optimal solutions. Third, the presence of a popu-
lation of solutions in each iteration allows for any objective normalization, a relative
comparison of solutions, or other derived properties of the search space.

For multi-modal SOPs, EO algorithms are naturally suited, owing to their ability
to find and store multiple optimal solutions in a single application. However, in such
problems, the selection operator should not compare two solutions that have more
than a threshold distance (niching distance) in theX space. This way, two population
members lying on distinct optimal basins will not be compared against each other,
and both will co-survive in the population. Such an approach is expected to be more
computationally effective than finding a single optimal solution at a time using a
point-based algorithm.

Asmentioned earlier, both mating and survival selection operators favor solutions
with better fitness. Fitness in unconstrained problems can be directly indicated by
the objective function value. However, in the case of constrained problems, the con-
straint violations also need to be factored in, besides the objective function value.
To determine the extent of constraint violations by a solution X , the constraints are
first normalized and an aggregate constraint violation value is calculated according
to Eq. 2.12.
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CV(X) =
J∑

j=1

〈ḡ j (X)〉 +
K∑

k=1

|h̄k(X)|. (2.12)

In that, the bracket operator 〈 〉 is such that 〈α〉 = α, if α > 0; zero, otherwise.
Thus, for a solution X̄ violating the j-th constraint g j (X̄) ≤ 0, 〈g j (X̄)〉 takes a pos-
itive value, making CV(X ) non-zero. To balance the contribution of each constraint,
each constraint violation is normalized by dividing it by the largest violation of that
constraint in the population (P), which can be expressed as follows [45]:

〈ḡ j (X)〉 = 〈g j (X)〉
max
X∈P

g j (X)
, and |h̄k(X)| = |hk(X)|

max
X∈P

|hk(X)| . (2.13)

Notably, CV(X) = 0 shall imply that X is a feasible solution that satisfies all
equality and inequality constraints. Any X for which CV(X) > 0 is considered
infeasible. In this context, the relative fitness of two solutions, say X and Y , can
be assessed as follows [7]:

• If X is feasible, that is, CV(X) = 0, and Y is infeasible, that is, CV(Y ) > 0, then
feasibility is given preference, and X is chosen over Y .

• If both X and Y are infeasible, and CV(X) < CV(Y ), then lower constraint vio-
lation is given preference, and X is chosen over Y .

• If both X and Y are feasible, then much like the unconstrained case, fitness is
indicated by the objective function value, and the solution with the better objective
value is chosen. That is, if both X and Y are feasible and f (X) < f (Y ), then X
is chosen over Y for minimization problems.

To demonstrate the working of a population-based EO algorithm, both the uni-
modal SOP in Eq. 2.3 and its multi-modal variant emanating from adapted variable
bounds (−5 ≤ x1 ≤ 5 and −5 ≤ x2 ≤ 5) are considered. In that:

• For the uni-modal problem: The real-parameter genetic algorithm (RGA) with
binary tournament selection, SBX operator (distribution index of 2), and polyno-
mial mutation (distribution index of 50) is chosen as the EO algorithm. Working
with a population size of 20, the performance of RGA up to 50 iterations is pre-
sented in Fig. 2.8. It can be seen that the initial population contained both feasible
and infeasible solutions; however, the population quickly became feasible and
clustered around the optimal solution in merely 10 iterations. Then, after a few
more iterations, the entire population converged very close to the optimal solution,
visually showing no difference among the solutions.

• For the multi-modal problem: The same RGA is used, but with a niching-based
selection operator (with a niching parameter of 0.1). Its performance captured in
Fig. 2.9 reveals that it is able to quickly make the population members feasible
and find sub-populations around two or more optimal solutions simultaneously, in
a single run.
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Fig. 2.8 Populations at iteration zero (blue circles), 10 (red squares), and 50 (green diagonals)
are shown for the uni-modal problem, indicating the population-based optimization algorithm can
converge to the uni-modal optimum with iterations
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Fig. 2.9 Populations at iteration zero (blue circles), 20 (red squares), and 50 (green diagonals)
are shown for the multi-modal problem, indicating the population-based EO can converge to the
multiple optimal solutions simultaneously with iterations
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2.2.2.2 Population-Based Algorithms for Multi-objective Problems

It is intuitive that population-based EO algorithms are naturally suited to handle
MOPs, since they are capable of arriving at a PF-approximation in a single algo-
rithmic run. EO algorithms that are designed for handling MOPs are referred to as
EMOAs. It has been highlighted earlier in Chap. 1 that EMOAs iteratively evolve
a randomly initialized population (a set of solutions), using the principles of natu-
ral evolution, namely variation and selection, toward a good PF-approximation. As
shown in Fig. 2.10, a good PF-approximation requires (i) convergence: close prox-
imity of the population to the true PF , and (ii) diversity: complete coverage of the
true PF by the population and uniform distribution of population members across
that spread, as much as possible. It has also been highlighted in Chap. 1 that most
existing EMOAs are Pareto-dominance-based, indicator-based, or decomposition-
based. While a detailed discussion on each of these EMOA classes is beyond the
purview of this book, some fundamental concepts pertaining to Pareto-dominance-
based EMOAs are presented here. In general, such EMOAs pursue convergence
by utilizing the notion of Pareto-dominance, and diversity by employing a density
criterion that seeks to favor less crowded solutions.

More details are presented here, in reference to one of the most popular EMOAs,
namely NSGA-II [17]. For convergence, NSGA-II applies the notion of Pareto-
dominance to categorize the populationmembers into different non-domination ranks
and sorts these categories in descending order of importance, so that the (mating
and survival) selection operators can attach higher fitness to population members
occupying better non-domination ranks. If the selection operators need to distinguish
between populationmembers occupying the same non-domination rank, thenNSGA-
II employs crowding distance as the density criterion and attaches relatively higher
fitness to population members that are less crowded. The crowding distance for any
solution reflects on its distance from its neighboring solutions, collectively. In other
words, it indicates the size of the void that would be created if that solution were to
be eliminated. With this background, reference may be made to NSGA-II’s pseudo-

Fig. 2.10 A symbolic
depiction of the two goals of
EMOAs: convergence
(proximity to the true PF)
and diversity (complete
spread and uniform
distribution within that
spread)
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Algorithm 2.3: Iteration t of NSGA-II(Pt ,Rt , CDt )
Input: Population Pt , non-domination rank of population members Rt , crowding distance

of population members CDt
Output: Population Pt+1, rank Rt+1, crowding distance CDt+1

1 N = |Pt |
2 Pt+1 = ∅
3 Qt = Mutation (Recombination (Selection (Pt , Rt ,CDt )))

4 Evaluate(Qt )

5 St = Pt ∪ Qt
6 [Z1,Z2, . . .] = Non-Dominated-Sorting(St )

7 k = 1
8 while |Pt+1| ≤ N do
9 Pt+1 = Pt+1 ∪ Zk

10 RZk
t+1 = k

11 Evaluate CD(Zk)

12 k = k + 1

13 Pt+1 = Pt+1/Zk−1

14 Zdiv
k−1 = Sorted (Zk−1(1 : (N − |Pt+1|), ‘Descending CD’)

15 Pt+1 = Pt+1 ∪ Zdiv
k−1

code given in Algorithm 2.3. It can be seen that environmental selection involves
sorting the combined population (2N members) into increasing domination ranks.
Then, starting with the selection of the best-rank members (rank-one), the poorer-
rank members (rank-two onward) are selected until the total number of selected
solutions does not exceed the population size N . Then, members of the last rank that
take the number of selected solutions more than N are evaluated for their crowding
distance values. The ones having the highest crowding distance value are chosen to
fill up the population size. In doing so, the extreme members are always included,
since they are assigned infinite crowding distance (under considerations of achieving
a larger spread). For ease of interpretation, Fig. 2.11 illustrates theNSGA-II selection
procedure, with reference to a combined population, sized 12, of which the six fittest
members are to be selected for the next generation. In that, Fig. 2.11a shows that these
12 members are categorized into three non-domination ranks. S1, S2, and S3 qualify
for rank-one (R1), since they do not get dominated by any other population member.
Clearly, they represent the best/elite members of the population. By temporarily
discounting these three solutions, S4 to S7 qualify as rank-two (R2) solutions, and
the remaining as rank-three (R3) solutions. Then, for the next generation’s population,
all the R1 solutions qualify, and R2 becomes the last rank including whose solutions
exceed the desired population size of 6. Hence, only three solutions from R2 can be
selected. In that, S4 and S7 being extreme solutions get selected, and among S5 and
S6, the one with higher crowding distance needs to be selected. The bounding boxes
around S5 and S6 in Fig. 2.11b, indicative of their respective crowding distances,
help select S6. Its larger crowding distance suggests that eliminating it would leave
a larger void, and retaining it promises a more uniform distribution of solutions.
Hence Pt+1 = {S1, S2, S3, S4, S6, S7}. Interestingly, the same procedure holds for
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(a) Non-domination ranking (b) Crowding distance for S5 and S6

Fig. 2.11 Depicting NSGA-II’s selection procedure: convergence based on non-domination rank-
ing, and diversity based on crowding distance

Fig. 2.12 Constrained
dominance principle
implying an altered
non-domination-ranking

mating selection. In that, if one of the two competing solutions belongs to a higher
rank, it is selected. If both belong to the same rank, then the one with the larger
crowding distance is selected.

As in the case of SOPs, the selection procedure discussed above also needs
to be adapted for constrained MOPs. Toward this, the Pareto-dominance princi-
ple is replaced by constrained dominance principle [17]. A solution X is said to
constrained-dominate Y , if any one of the following is true:

1. Both X and Y are feasible; X Pareto-dominates Y .
2. X is feasible; Y is infeasible.
3. Both X and Y are infeasible; X has a smaller constraint violation than Y .

Under the constrained dominance principle, the non-domination ranking of the solu-
tions in Fig. 2.11a gets altered, and the revised ranking is shown in Fig. 2.12. In
that, the Z space is shown to be split into feasible and infeasible regions through
a constraint boundary (depicted by the vertical dashed line), such that any dis-
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Fig. 2.13 NSGA-II’s
progress from generation
zero to 50 with 20 members

tance to the right of this boundary marks the degree of infeasibility. Since feasi-
ble solutions are prioritized and ranked using Pareto-dominance, {S1, S2} ∈ R1 and
{S4, S5} ∈ R2. All remaining solutions, which are infeasible, are ranked according
to their respective violations of the constraints, as shown by r1 to r6. Therefore,
Pt+1 = {S1, S2, S4, S5, S6, S8}.

It is well-known that NSGA-II is fast andworks extremelywell for two- and three-
objective problems. For a sample illustration, its performance in the two-objective
problem given by Eq. 2.10 is shown in Fig. 2.13. It can be seen that, starting with 20
random initial solutions, NSGA-II could offer a widely distributed set of solutions
close to the true PF in just 50 generations.

2.2.2.3 Population-Based Algorithms for Many-objective Problems

As highlighted in Chap. 1, 2000–2005 marked an unsettling phase for EMO
researchers, because with an increase in the number of objectives beyond three,
the otherwise very effective notion of Pareto-dominance ceased to induce selection
pressure for convergence, and the density criterion favoring less crowded solutions
turned counterproductive. In that:

• The efficacy of Pareto-dominance wasmarred by dominance resistance [37], plau-
sibly due to its inability to account for the critical human decision-making (HDM)
elements [22]: (i) the number of improved objectives, (ii) the extent of improve-
ments, and (iii) objectives’ relative preferences.

• The density-based diversity preservation worsened the performance by diversify-
ing poorly converged solutions, an undesired feature, referred to as active diversity
promotion [37].

Recognizing that a free-formed evolution of widely spread and well-converged
Pareto-optimal solutions is quite challenging, the focus shifted to the development
of reference vector (RV)-based evolutionary multi- and many-objective optimiza-
tion algorithms, namely RV-EMâOAs. As depicted for a two-objective instance in
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Fig. 2.14 Depicting the Z
space decomposition by
RV-EMâOAs

Fig. 2.14, RV-EMâOAs decompose the Z space through a uniformly distributed set
of RVs, so that a Pareto-optimal solution can be found along each RV. Clearly, the
role of RV generation in the positive orthant of an M-dimensionalZ space, with uni-
formity, is critical. In addition to structured methods [5], recent Riesz-energy-based
methods are used to create an arbitrary number of RVs [12]. Since RV generation
methods do not account for feasible/infeasible regions or the shape of the true PF ,
one Pareto-optimal solution per RV may not be possible, which implies that the
number of Pareto-optimal solutions could be lesser than the number of RVs. Recent
computationally efficient methods re-adjust RVs to produce exactly the same number
of Pareto-optimal solutions as the number of RVs [18].

One of the most popular RV-EMâOAs is NSGA-III [14]. The pseudo-code for
any generation t of NSGA-III is presented in Algorithm 2.4. Unlike NSGA-II, there
is no mating selection operator in NSGA-III since the population size is chosen
identical to the number of RVs. In addition, environmental selection involves an
RV-based selection process. The non-dominated ranking and selection of a few best
non-dominated front members to Pt+1 is identical to that in NSGA-II. However, for
the last non-dominated rank members (front Zk−1 in Algorithm 2.4) which could
not be accepted in total for Pt+1, an RV-based selection process is applied to pick
the remaining Nrem members from Zk−1, rather than using the crowding distance
operator. In the RV-based process, first, the ideal and nadir points are updated based
on the extreme objective values of the solutions in Zk−1. Then, these points are used
to normalize the solutions in Zk−1 (in the Z space). Subsequently, each solution in
Zk−1 is associatedwith a specific RV based on its minimumorthogonal distance from
the RVs (in normalized Z space). Finally, for each RV, the closest member in terms
of orthogonal distance is selected in the niching operator to fill the Pt+1 population.
Since there are at most N RVs, this process will end with the choice of a maximum
of N members for Pt+1. If certain RVs have empty members, then the second closest
member for each RV is chosen until N members are selected, and so forth. Since the
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constrained dominance principle is used to sort the non-dominated ranks, NSGA-III
works well for constrained problems as well [30].

Algorithm 2.4: Iteration t of NSGA-III(Pt ,R, Z ideal, Znadir)

Input: Population Pt , Reference set R, Ideal point Z ideal, Nadir point Znadir

Output: Population Pt+1, Updated ideal point Z ideal, Updated nadir point Znadir

1 N = |Pt |
2 Pt+1 = ∅
3 Qt = Mutation (Recombination (Pt ))

4 Evaluate(Qt )

5 St = Pt ∪ Qt
6 [Z1,Z2, . . .] = Non-Dominated-Sorting(St )

7 k = 1
8 while |Pt+1| ≤ N do
9 Pt+1 = Pt+1 ∪ Zk

10 k = k + 1

11 Pt+1 = Pt+1/Zk−1

12
(
Z ideal, Znadir

) = Update
(
Z ideal, Znadir,Zk−1

)
13 Znorm

k−1 = Normalize
(Zk−1, Z ideal, Znadir

)
14 Zasso

k−1 = Associate
(Znorm

k−1 ,R)
/* niching operator fills population Pt+1 */

15 r = 1
16 while |Pt+1| < N do
17 if r > |R| then
18 r = 1

19 z = orthogonally_closest
(Zasso

k−1,Rr
)
/* z may be empty */

20 r = r + 1
21 Zasso

k−1 = Zasso
k−1/z

22 Pt+1 = Pt+1 ∪ z

It is important to note that NSGA-III remedied the challenges associated with
density-based diversity preservation by use of an RV-based architecture, but did not
address the key challenge of dominance resistance, and continued to rely on the use
of Pareto-dominance-based ranking, which is known to be ineffective for MaOPs.
In this context, the recently proposed LHFiD by the authors [41] is noteworthy.
While it takes care of diversity by employing an RV-based architecture, it resolves
the root cause of dominance resistance by replacing Pareto-dominance with hf -
dominance [41]. A solution X is said to hf-dominate another solution Y , denoted as
X �h f Y , if both the following conditions are met:

• X is better in more than or equal number of objectives than Y , implying, nX
b ≥ nY

b .• For X , the weighted gain in objectives exceeds the weighted loss in objec-
tives, compared to Y . If pm is the relative preference for the mth objective, and
Δ fm = f X

m − f Y
m , then for a minimization problem, the above can be described

by ΔFX,Y = ∑M
m=1 pm · Δ fm < 0.
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It is critical to note that hf -dominance is able to account for the number of improved
objectives (nb) and the size of improvements (Δ fm), without involving a new param-
eter, since these could be determined directly from the objective vectors of the solu-
tions being compared. If the decision maker preferences for the objectives (pm) are
available, hf -dominance also provides the scope to account for them.

Based on extensive experiments, LHFiD has been shown to perform significantly
better than other RV-EMâOAs based on different architectures, including: (i) RV-
based NSGA-III, θ-DEA [52], and RPD-NSGA-II [21], (ii) decomposition-based
MOEA/D-LWS [49], and (iii) dominance-based multiGPO [53]. The performance
of LHFiD could largely be attributed to its underlying hf -dominance, which, for the

Algorithm 2.5: Generation t of LHFiD(Pt ,R, Z ideal, Znadir)

Input: Population Pt , RV set R, ideal point Z ideal, nadir point Znadir

Output: Population Pt+1, updated ideal point Z ideal, updated nadir point Znadir

1 begin
2 Qt ← Mutation(Recombination(Pt ))
3 Evaluate Qt
4 St ← Pt ∪ Qt

5 Z ideal ← Update(Z ideal, St )
6 if Z N 
= ∅ then
7 S̃t ← Normalize(St , Z ideal, Znadir)
8 else
9 S̃t ← Translate(St , Z ideal)

10 S ← ∅, SL ← ∅, RL ← R
11 Associate each solution S̃t with its nearest RV based on orthogonal distance
12 foreach R j ∈ R do
13 C ← All solutions associated with R j
14 Remove Pareto-dominated solutions in C
15 α ← Solution in C with minimum orthogonal distance
16 if R j is not an objective-axis vector then
17 β ← ∅
18 for s ∈ C do
19 if s hf-dominates α then
20 β ← β ∪ s

21 if count(β) ≥ 1 then
22 α ← Solution in β with minimum orthogonal distance
23 S ← S ∪ α; St ← St \ α; RL ← RL \ R j

24 foreach r ∈ RL do
25 α ← Solution in St nearest to r
26 SL ← SL ∪ α

27 Pt+1 ← S ∪ SL

28 if Pt+1 is mildly stabilized then
29 Z N ← Update Nadir(Pt+1, Z ideal)
30 if Pt+1 is strictly stabilized then
31 Terminate LHFiD
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first time, accounts for the number of objectives in which a solution is better; the
size by which a solution is better; and objectives’ relative preferences—explicitly
and simultaneously, and without requiring tuning of any additional parameter.

The pseudo-code for any generation t of LHFiD is presented in Algorithm 2.5.
Following the offspring (Qt ) creation, they are evaluated and merged with the parent
population. It is imperative to note that, unlike other RV-EMaOAs, LHFiD does not
compute and update the nadir point in each generation. Hence, if nadir point has been
computed at least once, the populationmembers are normalized using ideal and nadir
points, else they are translated using just the ideal point. The normalized/translated
solutions are then clustered around each RV based on orthogonal distance (similar
to NSGA-III). From each cluster, exactly one solution is selected, based on Pareto-
dominance and hf -dominance, and survived to Pt+1. If the total cluster count is N ,
the above step allows the survival of N solutions. Otherwise, if the cluster count
is less than N , the nearest solutions to each of the empty RVs survive to Pt+1,
leading to a surviving population of size N . Furthermore, LHFiD tracks the stability
of the population using a stabilization tracking algorithm [40]. In that: (a) if mild
stabilization is detected, the nadir point is updated; and (b) if strict stabilization is
detected, the LHFiD run is terminated.

2.2.3 No-Free-Lunch (NFL) Theorem

The discussion on optimization algorithms cannot be complete without referring to
theNo-Free-Lunch (NFL) theorem [51]. In its simplest form, theNFL theorem can be
described as follows. Imagine that someone is trying to establish which optimization
algorithms between A1 and A2 are best in terms of a performance metric for solving
all possible optimization problems (set P). The experiments are set up to apply
A1 and A2 to each problem p in P with a specific fixed resource (on a specific
computer for a specific number of solution evaluations, etc.) and the performance
indicator I1(p) is computed. After all the problems have been solved, an aggregate
performance indicator I1 is calculated from all I1(p) with p ∈ P values. The same
experiments are repeated for algorithm A2 using the same resource used for algorithm
A1 and an aggregate performance indicator value of I2 is obtained. Their theoretical
results show that

I1 = I2. (2.14)

The theorem states that no algorithm is better than another algorithm in terms of
solving all possible optimization problems. It is also argued that the NFL theorem
breaks down if the scope of investigation is restricted to a subset of problems. It
implies that if the problem of interest belongs to a specific problem class, then
there can exist a specific super algorithm (Abest) that would be better than all other
algorithms.

The theorem keeps optimization researchers modest in their claims and compels
researchers to state the problem class for which an algorithm has been developed,



40 2 Optimization Problems and Algorithms

as it is now well established that a single optimization algorithm cannot be most
efficient for solving each and every problem that one can encounter. The NFL the-
orem also facilitates an important deduction that there is a need to customize an
optimization algorithm for specific problem classes. Customization may involve the
exploitation of specific characteristics and properties of the problem to design an
efficient algorithm. One specific instance of a population-based customized opti-
mization algorithm relates to solving a billion-variable integer linear programming
(ILP) problem to near-optimality [15], while standard point-based ILP algorithms
cannot solve more than 2000-variable version of the same problem class. Based on
the above, customizability can be seen to be a desirable feature and strength for any
algorithm. For instance, the fact that population-based algorithms rely on simple
variation and selection operators and do not rigidly rely on mathematical compu-
tations such as gradient makes them more amenable to customization. This in turn
could be seen as the strength of such algorithms, since available problem-specific
knowledge could be incorporated for tuning of operators, enhancing their efficiency.
The NFL theorem has also been extended for multi-objective optimization and a
similar conclusion has been reached [4].

Notably, the NFL theorem does not deny the possibility that there can exist a spe-
cific super algorithm which performs better than all other algorithms for a specific
problem class. This is manifested by the fact that point-based optimization algo-
rithms with provable efficacy exist for certain structured optimization problems. For
example, an LPP with linear objective and constraint functions of real-parameter
variables can be solved to optimality with known computational complexity. The
same is possible for QPPs with a quadratic objective function having a positive def-
inite Hessian matrix and linear constraint functions. Some algorithms with proof
exist for certain convex programming problems, but the generality of provable algo-
rithms almost ends there. Furthermore, if even some of the problem characteristics
(nature of objectives, constraints, or variables) for the respective problem classes
cited above are altered, then the corresponding algorithms may no longer perform
with the same efficacy. Therefore, the real challenge lies in developing flexible and
customizable algorithms for generic problem scenarios. This may require a combina-
tion of point-based and population-based algorithms (for instance, point-based local
search applied to solutions obtained fromEOalgorithms)with possible incorporation
of problem-knowledge-driven heuristics.

2.3 Summary

This chapter started by highlighting the importance of optimization in different
application domains. The optimization problems were then categorized according
to the number of objectives involved and the corresponding solution features were
highlighted. This was followed by the introduction of point-based and population-
based optimization algorithms, and their suitability for uni-modal SOPs,multi-modal
SOPs, MOPs, and MaOPs was discussed. Finally, the NFL theorem was presented,
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which offers researchers a sense of perspective, stating that no single algorithm can
be better than other algorithms for all possible optimization problems. Hence, it is
prudent to have a dedicated focus on solving specific problem classes at a time, rather
than hoping to find a single optimization algorithm that is best suited for all possible
problems. Similarly, in the context of generic (unstructured) problem scenarios, it
is rather imperative to develop flexible and customizable algorithms. This chapter
also includes an Appendix, which shares details on the generation of RVs that enable
an important class of algorithms, namely RV-EMâOAs, that are intensively used in
subsequent chapters.

Appendix

2.4 Generation of Reference Vectors (RVs)

It was discussed earlier in Sect. 2.2.2.3 that some EMâOAs use a uniform set of RVs,
referred to as RV-EMâOAs, in their search method. In this appendix, some methods
to create a uniformly distributed set of RVs, scalable for any number of objectives,
have been discussed. But before discussing these methods in detail, the philosophy
for the creation of RVs has been highlighted, in terms of covering the positive orthant
of an M-dimensional Z space.

The purpose of creating a uniform set of RVs is to aid in the selection of uniformly
distributed solutions in theZ space. This necessitates a mapping of solutions’ objec-
tive vectors to these RVs, using some distance metric in the M-dimensional space. In
any real-world problem, the objective values can be either positive or negative and
can also be differently scaled. Thus, it is intuitive to bring the RVs and the objective
vectors (of the population) to the same scale. Toward this, the objective values of
all solutions are normalized, to bring them into the hypercube bounded by zeros
and ones. One such way is to have minimum ( f min

i ) and maximum ( f max
i ) values

computed for the non-dominated solutions in the population, and then compute the
normalized objective values as below.

f̄i (X) = fi (X) − f min
i

f max
i − f min

i

. (2.15)

For an EMâOA, f min
i and f max

i can be obtained from the current population,
which provides an edge to population-based optimization algorithms.However, some
sophisticated methods for computing f min

i and f max
i have also been proposed to

deal with different scenarios of non-dominated solutions that may arise during the
evolutionary process [14].

Normalization of objectives brings the non-dominated solutions within a positive
and unit hypercube: f̄i (X) ∈ [0, 1], for all objectives. The RVs can now be con-
structed in the same hypercube, spanned uniformly. Consider the three-dimensional
hypercube (representing a three-objective case), bounded by [0, 0, 0] (origin) and
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[1, 1, 1] (diagonally opposite to origin), as shown in Fig. 2.15. To span the space
from the origin (representing the ideal point) or from the diagonally opposite corner
of the hypercube (representing the nadir point), one idea would be to consider the
unit simplex shown in the figure and then find a uniformly distributed set of points
on it, as shown in the figure (with 91 points). Thereafter, each point can be joined
with either the ideal point (origin) or the nadir point (diagonally opposite to origin)
to construct the RVs. These RVs will span the entire hypercube uniformly. If a single
solution, close to each of these RVs and as close to the origin (or ideal point) as
possible, can be found by an EMâO, then a reasonably good distribution on PF can
be achieved. If the PF is linear in shape, the Pareto-optimal solutions will lie on
the unit simplex itself; however, for PFs with nonlinear shapes, the solutions will
deviate from the unit simplex. Unless the PF deviates by a large amount, the RVs
derived from uniformly distributed points on the unit simplex will be sufficient to
reasonably represent the PF .

Two prominent methods of creating a uniformly distributed set of RVs have
been discussed in the following subsections. The first method follows a structured
approach that can only produce a specific number of RVs (H ), given a dimension
(M). However, the second method follows a generic approach, where any number of
RVs can be created in a given M-dimensional Z space.

2.4.1 Das–Dennis Method

The Das–Dennis method [5] involves a parameter p, indicating the number of gaps
between RVs along one of the objective axes. For given objectives M and number
of gaps p, the total number of equi-distant points on the unit simplex is given by

H(p, M) =
(

M + p − 1

p

)
. (2.16)

The smallest distance between any two points is
√
2/p. Owing to this strict struc-

ture, an arbitrary number of points cannot be created using this method. Figure 2.15
shows the result with M = 3 and p = 12, to create 91 points. If p = 13 were used,
it would create 105 points. Notably, no other number between 91 and 105 can be
achieved using the Das–Dennis method.

There are some other properties of this method, as will be described next. In
addition to the inability to construct an arbitrary number of points, there is another
problem with the Das–Dennis approach. As M increases, the number of total points
on the unit simplex increases rapidly, as shown for M = 10 on the right vertical axis
in Fig. 2.16. Although a sublinear plot on the semilog scale indicates weaker than
exponential behavior, an extremely large number of points are generated for very
reasonable values of gaps p. Since the population size of an EMâOA is usually the
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Fig. 2.15 Depiction of
(3+12−1

12 ) = 91 points in a
three-objective space,
created using Das–Dennis
method

Fig. 2.16 Proportion of
interior points compared to
the total number of points
created by the Das–Dennis
method with M = 10 (taken
from [2])
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same as the number of points and consequently the number of RVs, this requires an
extremely large population size.

Another crucial problemwith large M is that themajority of pointswith reasonable
values of p lie on the boundary of the unit simplex and only a few points lie in the
interior region. Calculations reveal that p < M leads to only boundary points and
no interior points; and p = M leads to all but one boundary point, where that one
point lies in the center of the unit simplex. With p > M , points begin to appear in the
interior region, but the count of such interior points is given by nI = ( p−1

p−M

)
, which

is only a tiny fraction of the total number of points.

ρI = nI

n
= p! (p − 1)!

(p − M)! (M + p − 1)! . (2.17)

Figure 2.16 shows that for M = 10, the proportion of interior points increases
with p, but the proportion (left vertical axis) is very small.

To provide an example, with p = 15, a total of 1, 307, 504 points are created,
of which only 0.15% (only 2, 002) points are in the interior region. The rest of the
points lie on the boundary of the unit simplex.
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2.4.2 Riesz-Energy-Based Unit Simplex Method

A recently proposed Riesz-energy based unit simplex method alleviates the rigid
structure of the Das–Dennis method.

The motivation behind the use of an energy concept to obtain a well-distributed
set of points comes from nature. Multi-body and interacting physical systems even-
tually settle on a state that corresponds to the minimum overall potential energy.
For example, given two bodies, the potential energy is inversely proportional to the
distance between them. The minimum potential energy solution corresponds to a
diverse distribution of multiple bodies in a physical space with dimension s. When
dealing with a high-dimensional space, a generalization of potential energy, called
Riesz s-Energy [26], is used, which is defined between two points (z(i) and z( j)) as
follows:

U (z(i), z( j)) = 1∥∥z(i) − z( j)
∥∥s . (2.18)

In the context of creating well-distributed points, it is not clear how the dimension
s should depend on the number of objectives (M), but based on the motivation set in
[2], s = M2 is used here. For multiple (N ) points, the overall s-energy can be given
as follows:

UT (z) = 1

2

n∑
i=1

n∑
j=1
j 
=i

1∥∥z(i) − z( j)
∥∥s , z ∈ R

n×M . (2.19)

The basic concept behind this energymethod is to find the z-matrix of size N × M
that minimizes UT subject to every z(i) vector to lie on the unit simplex, that is,∑M

m=1 z(i)
m = 1. In that, a gradient-based optimization method (Adam [32]) has been

used. Due to the large magnitude of UT , the logarithm of UT is determined and then
the partial derivative of FE = logUT with respect to z(i)

m is calculated as follows:

∂FE

∂z(i)
m

= − 2s

UT

⎡
⎢⎣

n∑
j=1
j 
=i

(
z(i)

m − z( j)
m

)

∥∥z(i) − z( j)
∥∥s+1

⎤
⎥⎦ . (2.20)

To ensure that all points remain on the unit simplex, gradients are projected onto
the unit simplex. Figure 2.17 shows the result for M = 3 with 92 points.

The general outline of the s-Energy method is as follows:

1. An initial point-set z(i) (i = 1, . . . , n) is generated on the unit simplex using the
Reduction method.

2. Until the maximum number of iterations is reached or convergence criteria are
met:

a. The gradient is calculated with respect to z(i):

∇z(i) FE =
(

∂FE

∂z(i)
1

, ∂FE

∂z(i)
2

, . . . , ∂FE

∂z(i)
M

)
for all points i = 1, 2, . . . , n.
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Fig. 2.17 Distribution of
points obtained by s-Energy
with 91 (circle) and 92
(cross) points. Notice how an
additional point placed on
the bottom-right corner
adjusts the neighboring
points to make a good
distribution (taken from [2])

b. The calculatedgradient is projectedonto theunit simplex:∇proj
z(i) FE = ∇z(i) FE −

1
M ×

(∑M
m=1

∂FE

∂z(i)
m

)
û, where û is a M-dimensional vector of the ones. This guar-

antees
∑M

m=1 z(i)
m = 1,∀i .

c. Each z(i)
m (for n points and for M dimensions) is updated using the gradient-

based optimizer Adam. Whenever a point z(i) is outside the unit simplex, it is
projected back to the unit simplex to ensure it satisfies z(i)

m ≥ 0,∀i, m.

Since the final distribution of points depends on the initial configuration, the
Reduction method is used to generate an initial set of points. In that, the termination
criterion is defined based on the average movement of all points (below 10−5), and a
restart of Adam optimizer is performed, in case no improvement has been made for
50 iterations. In addition, the maximum number of iterations is set to 3000.

Earlier, the result of the Das–Dennis method was presented with p = 12 for a
three-objective scenario, which created 91 points. Figure 2.17 shows the distribution
of 91 points in the unit simplex using the s-Energy method, marked with circles.
Next, a set of 92 points is created from scratch using the s-Energy method, which is
not possible with the Das–Dennis method. These points are marked with crosses.
It is interesting to observe from the figure that only a few points toward the lower
right corner of the simplex get readjusted to accommodate the extra (92nd) point.
The choice of adjustment in the lower right corner is arbitrary and probably is an
outcome of the starting distribution of points (random). The major portion of the
overall distribution remains nearly similar to the configuration obtained for n = 91
points. Visually, the resulting set of 92 points is uniform, even though (to the best of
authors’ knowledge) it is known that no perfectly well-spaced distribution of points
with 92 or any arbitrary number of points exists.
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Chapter 3
Foundational Studies on ML-Based
Enhancements

Many efficient evolutionary multi- and many-objective optimization algorithms,
jointly referred to as EMâOAs, have been proposed in the last three decades. How-
ever, while solving complex real-world problems, EMâOAs that rely only on natural
variation and selection operators may not produce an efficient search [14, 33, 45].
Therefore, it may be desirable or essential to enhance the capabilities of EMâOAs by
introducing synergistic concepts from probability, statistics, machine learning (ML),
etc. This chapter highlights some of the key studies that have laid the foundations for
ML-based enhancements for EMâOAs and inspired further research that has been
shared in subsequent chapters.

3.1 Innovization-Based Enhancements

The term innovization, rooted in the merging of innovation and optimization, refers
to a two-step procedure involving: (1) invocation of an EMâOA to obtain a set
of trade-off solutions for a given problem; and (2) unveiling new, innovative, and
important design principles relating to the decision variables and objectives that are
common to a subset or the complete set of trade-off solutions. Think of a design
optimization problem in which the objectives are to minimize the size of an electric
induction motor and simultaneously maximize the power delivered by the motor.
Clearly, different combinations of design variables, including armature radius, wire
diameter, and number of wiring turns, lead to different trade-off solutions. Possibly,
a solution representing a small-sized motor (solution A in Fig. 3.1) may only deliver
a few horsepower, just enough to run a pump to lift water to a two-story building.
Similarly, a solution representing a high-power motor based on the same technology
(solution B in Fig. 3.1), which produces the few hundred horsepower needed to run
a compressor in an industrial air conditioning unit, is likely to have substantially
larger size and weight. The application of an EMâOA to this problem leads to these
two extreme solutions and a number of other intermediate solutions (as in Fig. 3.1)
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Fig. 3.1 A hypothetical set
of trade-off designs showing
a conflict between motor size
and power delivered in a
range of induction motors.
Despite the differences, there
are similarities in their
designs (taken from [16])
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with different trade-offs between size and power. Such intermediate solutions may
represent motors that can be used in an overhead crane to lift and maneuver a load,
motors delivering 50 to 70 horsepower that can be used to run a machining center in
a factory, and motors that deliver a few hundred horsepower which can be used in
an industrial exhaust fan. Now, if all such motors are lined up as per the worsening
order in one of the objectives (say, increasing size), then they would automatically
represent an improving order in the other objective (increasing power). Obtaining
such awide variety of solutions in a single EMâOA run is in itself a significant matter,
discussed and demonstrated in various EMâO studies [9, 11].

To further enhance the value derived from the computational effort spent on an
EMâOA run, innovization seeks to determine important innovative design principles
hidden in trade-off solutions, or the recipe for optimality, through a post-optimality
analysis, as discussed below. The basis for the postulation that optimal trade-off
solutions may encapsulate important design principles (relationships between the
decision variables and objective functions) lies in the fact that optimal solutions (X∗)
are not arbitrary solutions in the variable space (X space), rather they are special
solutions which satisfy the so-called Fritz John necessary conditions [19, 29, 41], in
addition to them being feasible, certain constraint qualification conditions.

M∑

i=1

λi∇ fi (X
∗) +

J∑

j=1

λi∇g j (X
∗) = 0, (n-dim vector equation), (3.1)

μ jg j (X
∗) = 0, for all j = 1, 2, . . . , J, (3.2)

μ j ≥ 0, for all j = 1, 2, . . . , J. (3.3)

The fact that these conditions bind the variables to the gradients of the objective
and constraint functions makes it natural for them to encapsulate and exhibit these
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relationships. Depending on the underlying problem, such relationships may hold
across the trade-off solutions on the entire Pareto front (PF), or different relationships
may characterize different parts of the PF . In either case, such relationships shedding
light on the physics of the underlying problem may not be intuitive to the designer,
and once revealed, could be utilized subsequently as a set of innovative rules. Given
that these innovative relationships are derived through the outcome of a carefully
performed optimization task, it can be interpreted as a process of obtaining innovative
solution principles through optimization, abbreviated as innovization [15]. In the
specific context of the induction motor example, it would be interesting to see if
all optimal solutions have an identical wire diameter or have an armature diameter
proportional to or in some relation to the delivered power. If such a relationship
among the design variables and objective values exists and can be captured, it would
be of great importance to a designer. With such a recipe, the designer can later design
a new motor for a new application without resorting to solving a completely new
optimization problem.Moreover, the crucial relationship among design variables and
objectives will also provide vital information about the theory of design of a motor,
which can bring out limitations and scopes of the existing procedure and spur new
and innovative ideas of designing an electric motor.

The manual implementation of the innovization task, in reference to two engi-
neering design problems, is described in the Appendix. For each problem, it involves
the following:

1. Discovery of Pareto-optimal solutions using an EMâOA followed by local search
(for improved convergence of solutions).

2. Manual analysis of Pareto-optimal solutions to extract innovated principles of a
certain structure.

3.1.1 Automated Innovization Procedure

Early studies on innovization used a manual process of plotting variables in pairs
to find patterns and relationships between them, making the task tedious. In 2010,
a machine learning procedure was proposed [1], in which the trade-off solutions
obtained from an EMâOA run were used to automatically extract rules of the pre-
specified structure, based on a sophisticated optimization problem formulation. The
choice of pre-specified rule structure was motivated by two factors: (i) rules must
be easily interpretable, and (ii) rules must be able to reveal direct and inversely
proportional properties of variables, as often desired in practical problems. Taking
into account this, pre-specified rule structureswere restricted to power laws, as shown
below:

ψk(X) =
n∏

i=1

xbiki = ck . (3.4)
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In that formulation, ψk refers to the kth rule, and bik ∈ R is the power of xi in the
kth rule. Notably, the powers bik and constants ck are found by solving a nonlinear
optimization problem of minimizing the error between the rule-predicted values and
the actual variable values in the trade-off solutions obtained from an EMâOA run. In
some studies, instead of considering all n variables in a rule, only a few (two or three)
variables were allowed. For illustration, the sample rules possible in a two-variable
scenario (x1 and x2), under the above power law, are as follows:

• x21 x
−1
2 = 2, indicating x2 = 0.5x21 , implying a positive correlation between the

two variables in the entire Pareto-optimal set (PS).
• x21 x

0.5
2 = 1.2, indicating x2 = 1.44/x41 , implying a negative correlation between

the variables.

Another interesting possibility is that while the left part of the rule (φk) may be
the same for the entire PS, the right value (ck) may be different for different subsets
of PS. In other words, x21 x

−1
2 = 2 and x21 x

−1
2 = 1 could simultaneously hold for

different subsets of the Pareto-optimal solutions. Considering the above, some key
features of the automated innovization (AutoInn) procedure can be summarized as
below:

• AutoInn is a data-driven approach: The trade-off solutions obtained from an
EMâOA run serve as the input data.

• AutoInn is capable of simultaneously finding a family of rules for the same pre-
defined structure, implying multiple ck (right-hand sides) for the same structure
represented by φk (left-hand side); in such a case, each ck may correspond to a
subset of Pareto-optimal solutions.

• AutoInn is capable of finding multiple rules based on different predefined struc-
tures, implying different φk (left-hand side) based on different combinations of
variables. This is challenging in the sense that several combinations of variables
are possible.

• It is assumed that the data is noisy, as the trade-off solutions obtained may not be
true representatives of the true PS. This may happen if the EMâOA is terminated
prematurely or the problem search space is too difficult.

To illustrate the case of finding a family of rules with the same predefined structure
(say xb11 xb22 = c), the set of N trade-off solutions obtained from an EMâOA run serve
as the input data. Then, a new single-objective optimization problem (SOP) is created,
with power-law coefficients (b1 and b2) as variables. In that SOP, each solution (b1-b2
pair) would lead to N values of c. The objective value for each solution is computed
by applying a clustering procedure on the c values; and calculating the sumof clusters
found in the c values, the count of c values left unclustered, and the coefficient of
variation (covlv = μl/σl) in each cluster found (depicted in Eq.3.5). Additionally,
a constraint is applied to the variables (b1 and b2), to avoid their near-zero values,
since b1 = b2 = 0 can always be a solution to this SOP, leading to c = 1. A single-
objective genetic algorithm is then used to solve this SOP, to arrive at an optimal
b1-b2 pair. When the same clustering procedure is applied one last time on the c
values obtained using the optimal b1-b2 pair, it reveals a single rule or family of
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Fig. 3.2 Distribution of ck -values, indicating three clusters and three unclustered data points

rules depending on whether one or more clusters were found. This procedure, when
applied to a sample dataset of 15 trade-off solutions as shown on the left side of
Fig. 3.2, leads to 15 values of c as shown on the right side of Fig. 3.2. As is evident,
three clusters are identified, each representing a different rule (different values of c)
within the same family of rules (same values of b1 and b2). In this background, the
results on a few engineering design problems are presented in the appendix.

Minimize
(
#Clusters + Unclustered_points + ∑

l cov
l
v

)
,

Subject to bmin ≤ |bik | ≤ 1, for all i and k.
(3.5)

3.1.2 Innovized Repair (IR) Operator

Manual and automated innovation procedures find variable relationships preserved
within variable vectors of the PS. They can also be used to influence subsequent
iterations of an EMâOA. The existing innovized repair (IR) operator [22, 23] is
discussed here in brief.

The main idea is that innovized principles (of power-law structure) can be
extracted from non-dominated solutions in intermittent generations of an EMâOA
run. Unlike the AutoInn procedure, here the power-law rules are generated using log-
linear modeling, followed by multivariate linear regression [23]. The inter-variable
relationships (in terms of rules) thus generated can then be used to repair the off-
spring created by the genetic operators (referred to as natural offspring) in anEMâOA
generation. For instance:

• If a rule involving a single variable xi happens to be xi = c, then the variable xi of
a natural offspring can be repaired, by picking a random number from a bounded
uniform distribution given as follows:

x̂i = U(μi − σi ,μi + σi ), (3.6)
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where μi and σi are the mean and standard deviation of the variable xi in the parent
population.

• If a rule involving two ormore variables is given by xb11 xb33 = c, then the dependent
variables x1 or x3 of an offspring can be repaired (assuming that x3 or x1 are
independent, respectively) according to the equation below.

x̂1 =
(
ĉ/xb̂33

)1/b̂1
, x̂3 =

(
ĉ/xb̂11

)1/b̂3
. (3.7)

It has also been observed that the best strategy is to randomly pick one of the
variables as the independent variable. For ruleswithmore than twovariables, a similar
logic can be followed. Such repairs are made to all the natural offspring in the current
EMâOA generation, one by one, and the repaired offspring thus created replace
their respective original natural offspring. Note the following important aspects of
repairing an offspring [23]:

1. Following each variable repair, if the repaired variable value lies outside its origi-
nal bounds as defined in the given multi- or many-objective optimization problem
(MOP/MaOP), then the repaired value is replaced by its nearest bound.

2. It is plausible that a variable may simultaneously be a part of multiple rules. In
such scenarios, while repairing the offspring, a particular variable is only allowed
to be repaired once using only one of the rules obtained. For example, given two
rules x1x2 = 2 and x1x3 = 3, if the first rule is used to repair x1 in a particular
offspring, then variable x1 is not considered again for repair, leaving x3 to be
repaired using the second rule.

3. In scenarios where multiple rules of different lengths may exist, a preference
is given to shorter rules for repair, as the corresponding repair is found to be
relatively more effective.

However, before any meaningful rules can be extracted, adequate convergence or
stability of the non-dominated dataset may be required. In EMâOA-IR, an EMâOA
integrated with the IR operator, no learning or repair is executed until 33% of tmax

have passed, where tmax is the pre-specified number of generations after which an
algorithmic run of EMâOA-IR is terminated. In each subsequent generation, the
learned mathematical relationships are applied to repair offspring solutions created
by the genetic operators. In this background, the results on a few engineering design
problems are presented in the appendix of this chapter.

3.2 Surrogate Modeling

ML methods have often been used in the EMâO domain for surrogate modeling.
The overall idea is to learn the variable–objective relationships locally, using an ML
method (called a surrogate model), and evolve the solutions on the basis of approxi-
mate function values (through the surrogate model). Repeated use of this procedure
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during an optimization run may require fewer actual function evaluations in order
to converge. Despite the high computational complexity of building surrogate mod-
els, this approach could be useful in real-world problems where the actual function
evaluation can be computationally very expensive [3, 8, 18].

Although the overarching idea ofML-based surrogate modeling in EMâO is high-
lighted above, it is incompletewithout taking into account the evaluation of constraint
functions, which could also be computationally expensive. Given this, the function
and constraint evaluations are collectively referred to as solution evaluations in this
book. There are several approaches, where each objective function and constraint
function is modeled independently from the solutions already evaluated, using dif-
ferent ML methods, such as Gaussian random field models [21]; Gaussian regres-
sion models [20]; Kriging [30, 48]; radial basis functions [44]; random forests [49];
response surfaces [34]; and support vector regression [28].

In a slight departure, [13] discussed the possibility of building a single collec-
tive surrogate model for all objective functions using scalarizing functions, such as
weighted sum or Tchebychev [41]; and separately building a single surrogate model
for all constraint functions using a combined normalized constraint violation func-
tion [12]. In a balancing act, [27] proposed a framework that could switch between
independent and collective surrogate models in an adaptive manner.

In addition to facilitating approximate solution evaluations, surrogatemodels have
also been used to perform other tasks in EMâO, including local search [31, 56] and
efficient offspring creation [32, 37]. Next, the surrogate-model-based local search is
discussed, followed by the surrogate-based efficient offspring creation.

Performing a local search in intermediate generations of an EMâOA run requires
additional solution evaluations beyond the usual evaluations of offspring in each gen-
eration. To reduce this additional computational burden, some studies use a surrogate
model to perform the local search using approximate solution evaluations [35, 36]. In
these studies, a structural hill climber (for local search) had been combined with the
BOA [46], where the search neighborhoods are defined by the inter-variable depen-
dencies learned by the probabilistic model of BOA. Despite these efforts, the choice
between using a surrogate model for approximate solution evaluations and using
actual solution evaluations was inconclusive, as different dynamics were observed
for problems with different characteristics [36].

Some methods have also used surrogate models for efficient offspring creation.
In that work, [37] relies on the generation of multiple offspring from the same set
of parents (in each generation) using different mating strategies. This, in general,
may necessitate extra solution (offspring) evaluations compared to the conventional
scenario where only one/two offspring are generated from a set of parents. To limit
the additional computational cost, the fitness of the latter is approximated using
a surrogate model instead of the potentially expensive actual solution evaluations.
This challenge of extra solution evaluations is also manifested in another similar
method [32], where in addition to the parents in any generation, some extra solutions
are created that could serve as potential parents. Again, the evaluation of the fitness of
such solutions is based on surrogate models rather than potentially expensive actual
evaluations.



56 3 Foundational Studies on ML-Based Enhancements

3.3 Model-Based Offspring Sampling

EMâOAs with model-based offspring sampling began with the development of Esti-
mation of Distribution Algorithms (EDAs) in 1996 [43]. EDAs were designed to
directly extract the statistical information from the global search space from the
current search and build a probabilistic model of elite solutions, using ML meth-
ods such as Bayesian networks or decision trees. This model would then be used
to create new offspring solutions (through sampling) for subsequent generation(s).
EDAs, such as BOA [46], MONEDA [38], RM-MEDA [52], EDA-VNS [17] and
HMOBEDA [39], have shown a potentially distinctive advantage of exploiting inter-
variable dependencies in creating new offspring solutions. One of the significant
extensions to EDAs includes FEG-EDA [51], that (i) maps the original search space
to a modified search space, (ii) samples new offspring solutions in the modified
search space, and (iii) reverts them back to the original search space, in an attempt to
capture the inter-variable dependencies better. Reportedly, there are twomajor issues
with model-based sampling, including the need to choose: (a) the selection strategy
for elite solutions and (b) the building strategy for the probability distribution model
[6].

Given that sampling through these probabilistic models embeds the captured
inter-variable dependencies into the offspring solutions, their advantage is tangible
when there are inter-variable dependencies present in the PF solutions, for a given
MOP/MaOP. However, there are other MOPs/MaOPs where independent mating
through EMâO’s natural variation operators produces a more efficient search [42]. In
this background, several EMâOAs have been proposed that create offspring partially
through natural variation operators and partially through model-based sampling,
including M-MOEA [55], Hybrid [54], IM-MOEA [7], and GMOEA [25].

3.4 Efficient Mutation

In EMâOAs, the mutation is one of the natural variation operators, which is used
primarily as a mechanism to maintain diversity in the population [26]. Although the
mutation operator alone may not produce an effective search, it plays a crucial role
alongwith a suitable recombination operator,making the overall search efficient [24].
Traditionally, mutation operators modify one or more variables in a given solution
with probability, while the extent of that modification is controlled by an index. To
avoid the fixation of these parameters a priori, which can deter an efficient search,
some studies have chosen to integrate reinforcement learning (RL) into EMâOAs.
One such study is NSGA-RL [4], where suitable mutation parameters are learned
on-the-fly using RL, individually for each variable, toward a more efficient search.
Another such study is RL-NSGA-II [47], where the RL algorithm attempts to learn
and decidewhich variable(s) of a given solution should bemodified,while controlling
the extent of that modification through a randomized input.
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In addition to the above, some studies have used the learning automaton (LA), a
variant of RL, to guide the mutation in a more comprehensive manner [10, 53]. In
these instances, [10] learns two probabilities individually for each variable, corre-
sponding to the direction of modification of that variable (toward the lower or upper
bound) and the extent of that modification. Alternatively, [53] takes advantage of the
reference vector (RV)-based structure of the underlying RV-EMâOA, by learning the
choice of mutation operator (of three), individually for each RV.

Unlike the above approaches that attempted to learn and adapt the mutation oper-
ation to a more efficient search, a recent study [50] attempted to learn and adapt the
search space itself, using PCA. In that work, the parent solutions are first mapped to
a transformed (reduced) search space built through the application of PCA, and the
new offspring solutions are generated through mutation in the transformed search
space. Finally, the new offspring solutions are mapped back to the original search
space prior to their evaluation. Notably, the PCA-assisted mutation is applied only
after a fixed proportion of the maximum generations allowed (tmax).

3.5 Summary

In this chapter, some studies related to innovization and online innovization have
been discussed. Innovization refers to the task of revealing innovative and important
design rules hidden in the trade-off (Pareto-optimal) solutions, also being referred to
as the recipe for optimality. In that, manual and automated innovization procedures
have been discussed. While the former entails a series of steps that a user can man-
ually execute, the latter involves solving an SOP, to arrive at the design rules. While
innovization refers to a post-optimal analysis, online innovization includes reveal-
ing the design rules in any intermediate generation of an EMâOA run and using
those rules within the same run to repair the offspring solutions. To this end, the
innovized repair operator has been discussed. Furthermore, some other ML-based
enhancements in EMâOAs have been discussed, including the use of surrogate mod-
els, model-based offspring sampling, and efficient mutation operators. This chapter
also carries an Appendix, which shares some solved examples on manual innoviza-
tion, automated innovization, and the innovized repair operator.

Appendices for in this Chapter

The following sections discuss examples of the manual innovization task, the auto-
mated innovization task, and the innovized repair operator.
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3.6 Examples of Manual Innovization Task

The basic working of the manual innovization procedure has been illustrated here
through a three-variable, two-objective truss design problem, which was originally
studied using the ε-constraint approach [5, 41] and later using an evolutionary
approach [11]. In that, the truss (Fig. 3.3) must carry a certain load without incurring
an elastic failure. The two conflicting design objectives are to (i) minimize the total
volume of the truss members and (ii) minimize the maximum stress developed in
both members (AC and BC) due to the application of the load 100 kN. Furthermore,
the three decision variables are cross-sectional area of AC and BC (x1 and x2, respec-
tively), measured in square meters, and the vertical distance between A (or B) and C
(y), measured in meters. The optimization problem formulation is given as follows:

Minimize f1(�x, y) = x1
√
16 + y2 + x2

√
1 + y2,

Minimize f2(�x, y) = max(σAC ,σBC),

Subject to max(σAC ,σBC) ≤ Smax,

0 ≤ x1, x2 ≤ Amax,

1 ≤ y ≤ 3.

(3.8)

Using the dimensions and loading specified in Fig. 3.3, it can be observed that
member AC is subjected to 20

√
16 + y2/y kN load and member BC is subjected to

80
√
1 + y2/y kN load. The stress values are calculated as follows:

σAC = 20
√
16 + y2

yx1
, σBC = 80

√
1 + y2

yx2
. (3.9)

Here, the stress values and the cross-sectional areas are limited to Smax = 1(105) kPa
and Amax = 0.01m2, respectively. All three variables are treated as real-valued. Sim-
ulated binary crossover (SBX) with ηc = 10 and polynomial mutation operator with

Fig. 3.3 The design of
two-bar truss (taken from
[16])

4m 1m

y

x1 x2

A B

C

100 kN
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Fig. 3.4 NSGA-II solutions
obtained for the two-bar truss
problem (taken from [16])
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ηm = 50 have been used. All constraints are handled using the constraint-tournament
approach [11]. Figure3.4 shows the final set of non-dominated solutions obtained
by an algorithmic run of NSGA-II. Although the trade-off between the two objec-
tives is evident in Fig. 3.4, these solutions are further analyzed, using two different
studies, to gain more confidence in the Pareto-optimality of these solutions. First, a
single-objective RGA is used to find the optimum of individual objective functions,
subject to the same constraints and variable bounds. Figure3.4 marks these two solu-
tions (one per objective) as 1-obj solutions. It is evident that the front obtained using
NSGA-II extends to these two extreme solutions. Next, the normal constraint method
(NCM) [40] is usedwith different starting points froma line that joins the two extreme
solutions. The solutions thus obtained, one at the end of each NCM procedure, are
also shown in Fig. 3.4. Since these solutions lie on the front obtained using NSGA-II,
it is confirmed that the non-dominated solutions obtained using NSGA-II are close
to the true PF .

3.6.1 Theoretical Innovized Principles and Manual
Innovization Results

Before applying the manual innovization procedure to the solutions obtained using
NSGA-II, an exact analysis of this problem is presented to identify the true PF ,
and the underlying innovized principles (theoretical), if any. The problem, although
simple mathematically, is a typical optimization problem that has two resource terms
in each objective, involving variables x1 and x2, and interlinking them with the third
variable y. For such problems, the optimumoccurswhen identical resource allocation
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is made between the two terms in both objective and constraint functions, as shown
below.

x1
√
16 + y2 = x2

√
1 + y2 =⇒ 20

√
16 + y2

yx1
= 80

√
1 + y2

yx2
. (3.10)

Thus, every optimal solution is expected to satisfy both of the above equations,
resulting in the following innovated rules:

x1
x2

= 0.5, and y = 2. (3.11)

Substituting y = 2 into the expression for the first objective (volume) leads to x2 =
V/2

√
5 m2, where V is the volume of the structure (in m3). Similarly, substituting

these values into the objective functions V = f1 and S = f2 leads to SV = 400—an
inverse relationship between the objectives. Thus, the solutions in the true PF are
given in terms of volume V , as follows:

x∗
1 = V ∗

4
√
5
m2, x∗

2 = V ∗

2
√
5
m2, y∗ = 2 m, S∗ = 400/V ∗ kPa.

When the variable x2 reaches its upper bound, that is, at the transition point T
shown in Fig. 3.5, VT = 0.04472 m3 and ST = 8944.26 kPa, since x2 cannot be
increased any further. The inset plot (drawn with a logarithmic scale of both axes)
in Fig. 3.4 shows this interesting aspect of the front obtained. There are two distinct
behaviors around the transition point T marked in the figure: (i) one that stretches
from the smallest volume solution to a volume of about 0.04478m3 (point T), and
(ii) another that stretches from this transition point to the smallest stress solution.

Fig. 3.5 Variation of x1 and
x2 for the truss design
problem (taken from [16])
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Table 3.1 Two extreme solutions and an interesting intermediate solution (T) for the two-bar truss
design problem are presented (taken from [16])

Solution x1 (m2) x2 (m2) y (m) f1 (m3) f2 (kPa)

Min. volume 4.60(10−4) 9.05(10−4) 1.935 0.004013 99,937.031

Intermediate
(T)

49.30(10−4) 99.89(10−4) 2.035 0.044779 8,945.610

Min. of max.
stress

39.54(10−4) 100.00(10−4) 3.000 0.051391 8,432.740

The extreme solutions and this intermediate solution, obtained by NSGA-II, are
tabulated in Table3.1.

An investigation of the values of the decision variables reveals the following:

1. The inset plot in Fig. 3.4 reveals that for optimal structures, the maximum stress
(S) developed is inversely proportional to the volume (V ) of the structure, that
is, SV = constant, as predicted above. When a straight line is fitted through
the logarithm of the two objective values, SV = 402.2, a relationship is found
between these solutions obtained using NSGA-II. The obtained relationship is
close to the theoretical relationship computed above (from the true PF).

2. The inset plot also reveals that the transition occurs at V = 0.044779 m3, which
is also close to the exact theoretical value computed above.

3. To achieve an optimal solution with a lower maximum stress (and larger volume),
both cross-sectional areas (AC and BC) should increase linearly with volume, as
shown in Fig. 3.5. The figure also plots the mathematical relationships (x1 and
x2 versus V ) obtained earlier with solid lines, which can barely be seen, as the
solutions obtained using NSGA-II fall on top of these lines.

4. A further investigation reveals that the ratio between these two cross-sectional
areas is almost 1:2, and the vertical distance (y) takes a value close to 2 for all
solutions.

5. Figure3.6 reveals that the stress values onbothmembers (ACandBC) are identical
for any Pareto-optimal solution (Fig. 3.7).

The innovized rules illustrated above are some interesting properties of the orig-
inal optimization problem that may not be intuitive to the designer. However, these
principles can be explained from the mathematical formulation described above.
Thus, although these optimality conditions can be derived mathematically from the
problem formulation given in Eq.3.8 in this simple problem, such optimality con-
ditions may often be tedious and difficult to achieve exactly for large and complex
problems. The application of a numerical optimization procedure and then inves-
tigating the obtained optimal solutions have the potential to reveal such important
innovative design principles.
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Fig. 3.6 Variation of
stresses in AC and BC of the
two-bar truss problem
(taken from [16])
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Fig. 3.7 Variation of y for
the two-bar truss design
problem (taken from [16])
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3.7 Examples of Automated Innnovization Task

The same two-bar truss problem, discussed above, is chosen to illustrate the working
of the AutoInn procedure. For the solutions obtained using NSGA-II, the AutoInn
procedure finds four rules common to 87% to 92% of the non-dominated dataset:

SV = 400.770,
x1
V

= 0.111,
x2
V

= 0.224,
x2
x1

= 1.984. (3.12)

Figure3.8 shows the relevant non-dominated solutions obtained using NSGA-II.
Some unclustered solutions are marked as red points. Figure3.9 shows the distri-
bution of ck values for one of the rules obtained V−0.997x1.0001 = c. It is clear that
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Fig. 3.8 Pareto front for the two-bar truss design problem. Red points are a few unclustered points
for the V−0.997x1.0001 = c rule
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Fig. 3.9 ck distribution for the rule V−0.997x1.0001 = c is shown, found to 87%of the non-dominated
dataset. Unclustered non-dominated data are shown with a ‘X’ (taken from [2])

the values V and x1 of the majority (87%) non-dominated solutions satisfy the rule.
The clustering algorithm inbuilt in the AutoInn procedure found three clusters with
slightly different ck-values. But the non-dominated solutions that do not satisfy the
rule have very different ck values. For ease of understanding, the ck-values are sorted
from low to high in the figure shown.

The respective distributions of the ck values for two other rules are shown in
Figs. 3.10 and 3.11.

Although the AutoInn procedure finds multiple clusters, the respective ck values
are close to each other, and the difference in the c values from the unclustered points
is significant.
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3.8 Examples of Innovized Repair Operator

Fig. 3.12 shows the median generational distance (GD) and inverse generational
distance (IGD) metrics [11] for the two-bar truss design problem. Notably, GD is
an indicator of convergence, and IGD is a combined indicator of convergence and
diversity. The plots in Fig. 3.12 reveal that NSGA-II-IR with repair preference given
to short rules (SN repair strategy) performs much better than the no repair strategy
(NI, i.e., base NSGA-II), in terms of GD (smaller the better). However, in terms
of the IGD metric, the NI strategy performs marginally better. This is expected, as
the NSGA-II with SN repair strategy is expected to focus more on improving the
convergence than on maintaining the diversity.
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Fig. 3.12 Median GD and IGD results for the two-bar truss design problem over 30 runs

The rules extracted at the end of the NSGA-II run with the SN strategy, provided
below, closely match the theoretical property of variables stated in Eq.3.11:

x−1.008
1 x2 = 2.0750, x3 = 1.9449 ± 0.0674. (3.13)
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Chapter 4
Learning to Understand the Problem
Structure

This chapter focuses on an important aspect of learning the preference structure of
the objectives, inherent in multi- and many-objective optimization problem formu-
lations. This involves identifying the non-essential (redundant) objectives, and also
determining the relative importance of the essential objectives. Such an approach to
knowledge discovery is based on the following rationale. Modeling an optimization
problem, analytically or through experiments, involves a lot of time and physical
resources, possibly from multiple disciplines, in conjunction or isolation from each
other. Often, it can be intriguing for analysts or decision makers (DMs) to know if the
developed model represents the underlying problem in a minimal form or is marked
by redundancy. Any redundancy among objectives, if revealed, could shed insightful
light on the physics of the underlying problem, in addition to reducing its complexity
and promising greater search efficiency for evolutionary multi- and many-objective
optimization algorithms (EMâOAs). Furthermore, the revelation of the relative pref-
erences among the essential objectives that are inherent in the problemmodels could
also be significantly useful, as highlighted below.

In the context of many-objective problems, the challenges associated with the
complete Pareto front (PF)-approximation by the EMâOAs are well known. Even
where a complete PF-approximation is possible, selecting the best point of interest
catering to many objectives is a non-trivial task. Taking into account these factors,
the notion of guiding an EMâOA to only a few solutions preferred by the DMs seems
quite appealing [12, 25, 38]. This requires the participation of DMs in one of the
following forms. They may interact only at the beginning of an EMâOA run, provid-
ing preference information through—one or more reference point(s) [13, 40]; one
or more reference directions [7]; and one or more light beam specifics [8], follow-
ing which an EMâOA would target convergence of the population near the specific
solutions on the PF . Alternatively, the DMs may be engaged multiple times along
an EMâOA run [12] toward a more seamless optimization-cum-decision-making
process. However, the generality and utility of this approach could be impaired,
since the preferences of the DMs in the case of many-objective problems can lack
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in—objectivity (a rational basis); repeatability (the same preferences, if the same
solutions are repeated); consistency (broadly aligned preferences where sought pro-
gressively along an EMâOA run); and coherence (non-conflicting preferences amidst
multiple DMs). This, in turn, could be attributed to cognitive limitations of human
beings [27, 30, 39] in handling several factors at once (5 ± 2), and the fact that
real-world decision-making: (i) is often based on habitual domains [43] of the DMs,
consisting of personal experience, memory, thoughts, thinking paradigms, psycho-
logical states, and perceived state of nature rather than the true state of nature [18],
and (ii) involves many people, often with conflicting objectives, and the whole pro-
cess is redolent with feedback [1]. Such bottlenecks could potentially be resolved if
the objectives’ relative preferences inherent in the problem model were made avail-
able to the DMs. Ideally, regardless of the form and number of times the DMsmay be
engaged, their preferences should be consistent with those embedded in the problem
model. If, in a practical situation, that is not the case, then at least the DMs must
have a justification for the digression.

Approaches to identify the redundant objectives, referred to as objective reduc-
tion approaches were proposed as early as 2006. These approaches were based on
preserving the correlation structure [11] and the dominance structure [2], of the
non-dominated solution set obtained from an EMâOA. Both these approaches were
further developed overtime and more comprehensive studies were available [3, 16,
33, 34]. Several other correlation-based approaches were developed parallely [23]
and subsequently [15, 17, 29, 41]. While most of these approaches are based on
analyzing the set of non-dominated solutions obtained from an EMâOA run, some
specialized EMâOAs for objective reduction have also been proposed [26, 37]. Con-
sidering the scope of this book, this chapter presents an ML-based framework [16,
34] that operates on the objective vectors of the non-dominated solutions obtained
from an EMâOA; learns the preference structure of the objective functions by pre-
serving the correlation structure of the solutions; and provides decision support in
terms of:

1. Revelation of an essential objective set: an essential objective set (FS ) is defined
as the smallest set of conflicting objectives that can generate the same PF as the
original objective set (F0). Here, an essential objective (standalone) can be defined
as one that conflicts with at least one other objective and is not correlated with
any other objective. Notably: (i) if the cardinality of F0 is M , then the cardinality
of FS shall be less than or equal to M , say = m ≤ M , and (ii) revelation of FS ,
implicitly reveals the redundant objective set, say FR = F0 \ FS , each member
of which is correlated with at least one other objective.

2. Preference ranking of all the objective functions: the preference ranking of the
objectives is based on their preference weights, namelywi s, such thatwi ≥ 0 and∑M

i=1 wi = 1. In this case, wi represents the normalized error (variance lost) that
would be incurred if fi were to be eliminated.

3. δ-MOSS (δ-minimum objective subset) analysis: here, for an allowable degree of
error δ (0 ≤ δ ≤ 1) specified by the DM, the task is to determine the δ-minimum
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objective subset,1 namelyF{δ}—the smallest subset of objectives that ensures that
the error associated with omission of the remaining objectives does not exceed δ.

4. k-EMOSS (minimum objective subset of size k with minimum error) analysis:
here, for an allowable set size k specified by the DM, the task is to determine
the k-minimum set, namely F{k}—the subset of k objectives which ensures that
the error associated with omission of the remaining objectives is the minimum,
compared to any other possible combination of k objectives.

4.1 Foundation: Machine Learning Based Identification
of Preference Structure of Objectives

Machine learning (ML)-based dimensionality reduction arises from the premise that
the intrinsic structure of a garbled high-dimensional dataset can be revealed by trans-
forming it so that the effect of noise and redundancy (dependencies) is minimized.

Principal Component Analysis (PCA) [36] achieves this goal by projecting the
given data X so that the correlation structure is preserved most faithfully, in that PCA
projects X on the eigenvectors of the correlation matrix of X . Notably, PCA is based
on removing the second order dependencies in the given data. Hence, it is prone to
errors, if applied to datasets with multi-modal Gaussian or non-Gaussian distribu-
tions [36], as in Fig. 4.1a. Several nonlinear dimensionality reduction methods exist,
such as kernel PCA [35] and Graph-based methods [32], for removing the higher
order dependencies. The former nonlinearly transforms the data by using a standard
kernel function and then applies PCA in the transformed/kernel space. However, its
success depends on the a priori chosen kernel. The latter eliminates this limitation
by deriving data-dependent kernels. MaximumVariance Unfolding (MVU) [42] is a
graph-based method that computes the low-dimensional representation by explicitly
attempting to unfold the high-dimensional data manifold, as in Fig. 4.1. The unfold-
ing is achieved bymaximizing the Euclidean distances between the data points while
locally preserving the distances and angles between nearby points. Mathematically,
this can be posed as a semidefinite programming problem (SDP) [42], the output of
which is the kernel matrix (say, K ) representing the kernel space to which PCA can
be applied.

The suitability of such ML approaches for objective reduction and revelation of
the objectives’ preference structure has been illustrated through an example, namely
DTLZ5(3, 5). It is an instance of the DTLZ5(I, M) problem [34], where M denotes
the original number of objectives, and I denotes the dimensionality2 of the PF .

1 For a given 0 ≤ δ ≤ 0, there may be multiple subsets of objectives which ensure that the error
associated with the the omission of the remaining objectives does not exceed δ. Each such subset
is referred to as a δ-minimal objective subset. However, the δ-minimal objective subset having the
smallest size is referred to as the δ-minimum objective subset.
2 Here, dimensionality refers to the number of objectives that are essential to characterize the
complete PF .
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Hence, DTLZ5(3, 5) is a five-objective problem, with a three-dimensional PF , in
that f1– f2– f3 are perfectly correlated and an essential objective set is given byFS =
{ f3, f4, f5}. These characteristics are evident in Fig. 4.2a, for the solutions sampled
on the true PF (NNP ). Therefore, an approach such as PCA, applied to NNP , is
expected to reveal the correlation between f1– f2– f3, and the conflict between f3–
f4– f5. However, the challenge for the efficacy of PCA is bigger in realistic scenarios
where an EMâOA may not offer an exact PF-approximation. For example, the non-
dominated solutions obtained by a single run of NSGA-II [10] on DTLZ5(3, 5),
denoted as NNS in Fig. 4.2b, reveal that NSGA-II has: (i) failed to converge to the
true PF , since the maximum values for each objective are much larger than those
possible on the true PF (Fig. 4.2a), and (ii) failed to capture the correlation structure
of the true PF , since f1– f2– f3 erroneously report partial conflict. More insights can
be gained from Fig. 4.2c, in which NNS is projected in the FS subspace. In this
essential subspace, solution A seems to dominate solution B. However, B qualifies
as a member of NNS , because with respect to the original set of objectives, it is
better than A in one of the redundant objectives, namely f1 or f2. This illustrates
that the presence of redundant objectives hinders the search efficiency of NSGA-
II, given which the dominance relations characterizing NNS do not conform with
those of NNP . Theoretically, if NSGA-II were allowed to run for infinitely many
generations, spurious solutions such as B could die out, and NNS may conform
with NNP , however, this is not possible when NSGA-II is practicably run for a
finite number of generations. In view of this, the objective reduction problem can be
viewed as a machine learning problem. In that problem:

• The intrinsic structure of PF refers to its intrinsic dimensionality (m) and the
essential components (FS ).

• The garbled high-dimensional data refers to the non-dominated solutions obtained
fromanEMâOA,which typically provide a poor PF-approximation and, therefore,
are characterized by dominance relations that may be different from those of the
true PF . In that situation, objectives that are perfectly correlated on PF may show
a partial conflict in the EMâOA solutions obtained.

Fig. 4.1 Maximum variance unfolding (taken from [34])
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(a) NNP : Parallel coordinate plot

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5

O
bj

ec
tiv

e 
V

al
ue

s

Objective Number

(b)NNS : Parallel coordinate plot

(c) NNS versus true PF

AB

True POF
Non−dominated solutions

 1

 0.5

 1.5

 2.5

 3.5
f5

 0

f3
 0  0.5  1  1.5  2

f4
 2

Fig. 4.2 DTLZ5(3, 5): NNP denotes the solutions directly sampled on the true PF , while NNS
denotes the PF-approximation obtained by NSGA-II (run for 2000 generations, with a population
size of 200) (taken from [34])

• Unnoised signal refers to exact optimal solutions, that is, non-dominated solutions
which are characterized by the same dominance relations as those which define
the true PF (the fraction of NNS lying on the true PF , Fig. 4.2c).

• Noised signal refers to non-optimal solutions, characterized by dominance rela-
tions that are different from those that define the true PF (the fraction of NNS
departing from the true PF , Fig. 4.2c).

• Noise refers to the difference in the characteristics of the unnoised and noised
signal, for example, the difference in the dimensionality of unnoised signal (m)
and that of the noised signal (upto M).

• Redundancy refers to the presence of objectives that are not conflicting (or corre-
lated) with some other objectives and may contribute to garbled data.

Following the modeling of objective reduction as a machine learning problem
(as above), the procedure for the determination of an essential objective set is as
follows. Given am M-objective problem, the task of identifying the smallest set
of m (m ≤ M) conflicting objectives which preserves the correlation structure of
the given non-dominated solution set, is achieved by eliminating objectives that are
non-conflicting along the significant eigenvectors of the correlation matrix. Once an
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essential objective set is identified, any further elimination of an objective will distort
the correlation structure, and the corresponding error is assessed by the objective’s
contribution to the significant eigenvectors. Here, two broad scenarios are possible
with regard to the fidelity of the correlation structure of the available non-dominated
solution set, in that itmay ormay not conformwith that of the true PF . If it does, then
the essential objective set determined as above would naturally represent the essen-
tial objective set for the underlying problem (PF). If it does not, then the available
non-dominated dataset would need to be treated as noisy, necessitating denoising
(discussed later), before the inferences drawn for the available non-dominated solu-
tion set can be extended for the underlying problem (PF). Considering that for an
unknown problem, the conformance between the correlation structure of the true PF
and that of the non-dominated solutions offered by an EMâOA cannot be verified, it
becomes important that any approach to learning the objectives’ preference structure
includes some denoising mechanism(s).

4.2 Learning Preference Structure of Objectives

This section presents an ML-based framework to extract the objectives’ preference
structure, and provide decision support in terms of revelation of the essential objec-
tive set; preference ranking of all objectives; δ-MOSS; and k-EMOSS analysis. As
depicted in Fig. 4.3, this framework is iterative in nature. In each iteration, it allows
the use of linear and nonlinear objective reduction algorithms, namely, L-PCA and

Fig. 4.3 A schematic for the ML-based framework to extract the preference structure of objectives
(taken from [16])
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Framework 4.1: An ML-based framework to extract the preference structure
of objectives.
Input: t ; a non-dominated solution set obtained from an EMâOA corresponding to Ft =

{ f1, f2, . . . , fMt }; and an empty error list L (sized M)
1 begin
2 Obtain a set of non-dominated solutions by running an EMâOA corresponding to Ft , for

Ng generations with a population size of N .
3 For L-PCA, compute R (Eq. 4.1), and its eigenvalues and eigenvectors. For

NL-MVU-PCA,, compute both R and K (Eq. 4.2), and the eigenvalues and eigenvectors
for K .

4 Perform the Eigenvalue Analysis to identify the set of potentially conflicting objectives
Fe ⊆ Ft (Sect. 4.2.3).

5 Perform the Reduced Correlation Matrix Analysis to identify the identically correlated
subsets in Fe (Sect. 4.2.4). If there is no such subset, Fs = Fe.

6 Apply the selection scheme to identify the most significant objective in each correlated
subset, to arrive at Fs , such that Fs ⊆ Fe ⊆ Ft (Sect. 4.2.5).

7 if Fs �= Ft then
8 For each redundant objective ( fi ∈ Fr ), compute Et,i (Eq. 4.7)
9 For each essential objective ( f j ∈ Fs ), compute Et, j (Eq. 4.7)

10 For all the redundant objectives combined, compute Er
t (Eq. 4.8)

11 For all the essential objectives combined, compute Es
t (Eq. 4.9)

12 For each redundant objective, compute ηrt,i (Eq. 4.10)
13 For each redundant objective, update L by storing ηrt,i at the location-i
14 Set t = t + 1, Ft = Fs , and go to Step 2

15 if Fs = Ft then
16 Set T = t
17 For each essential objective ( f j ∈ Fs ), compute Et, j (Eq. 4.7)
18 For all the essential objectives combined, compute Es

t (Eq. 4.9)
19 For each essential objective, compute ηst, j (Eq. 4.10)

20 For each essential objective, update L by storing ηst, j at the location- j

21 Generate SL, by sorting L in ascending order of the normalized error values therein,
along with the corresponding objective indices

22 Stop and offer the decision support
23 Declare the final essential objective set FS = Fs
24 Declare the final redundant objective set FR = F0 \ FS
25 Report the total error E R (Eq. 4.8) incurred for reduction of F0 to FS
26 Perform the δ-MOSS analysis using SL (Sect. 4.2.7.2)
27 Perform the k-EMOSS analysis using SL (Sect. 4.2.7.3)

NL-MVU-PCA, respectively [34]. While L-PCA is based on the decomposition of
the eigenvalue of the correlation matrix (R), NL-MVU-PCA is based on the decom-
position of the eigenvalue of the kernel matrix (K ) that is learned using the MVU
principle. Such iterations are allowed as long as their initial objective set Ft and the
final objective set Fs are different; otherwise they are terminated and the decision
support is offered.

The Framework 4.1 formalizes the constitutive steps for an iteration t with Mt ≤
M objectives, which are discussed below. However, before delving into the details, it
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must be realized that an essential objective is one that conflicts with at least one other
objective and is not correlated with any other objective. Given this, the governing
principle for identifying the essential objectives is as follows:

• First, the set of potentially conflicting objectives is identified, say, Fe ⊆ Ft . For
any objective to qualify for Fe, it must exhibit conflict with at least one other
objective, along a significant direction of principal variance in the given set of
solutions (this involves eigenvalue and eigenvector analysis, discussed later).

• Then the set of conflicting objectives, sayFs ⊆ Fe is determined by: (i) identifying
subsets of correlated objectives in Fe (if any) and (ii) retaining only one represen-
tative objective per such subset, in addition to including those objectives which
did not belong to any correlated subset. To appreciate the above criteria, consider
Fe = { fi , f j , f p, fq}. Say that fi and f j qualified forFe due to their conflict along
the most significant direction of principal variance, while f p and fq qualified due
to their conflict along the second most significant direction of principal variance.
Furthermore, consider that fi and f p are correlated (this is possible since they
correspond to different directions of principal variance). Therefore, if only one of
them is retained, say fi , it can explain the conflict with both f j and fq . In such a
case, the set of conflicting objectives can be given by Fs = { fi , f j , fq}. Notably,
f j and fq qualify as members of Fs , since they were members of Fe and were
not part of any correlated subset. It is critical to note that correlation is a set-based
property, therefore, for fi and f p to be considered as correlated, the following
criteria must be met: (i) the nature of the relationship of fi and f p with all other
objectives must be similar, and (ii) the strength of their pairwise correlation must
be sufficiently strong.

Given the above overarching principle, the details of the constitutive steps in the
Framework 4.1 can be found below.

4.2.1 Construction of a Positive Semi-definite Matrix

As afirst step, the correlationmatrix (R) and the kernelmatrix (K ),whichwill be used
for linear and nonlinear objective reduction, respectively, are constructed. Toward
that end, the non-dominated solutions are obtained by running an EMâOA with the
objective set Ft = { f1, . . . , fMt }, corresponding to a population size of N . Let the
objective vector in the non-dominated set, corresponding to the i th objective ( fi ), be
denoted by f̄i ∈ R

N and its mean and standard deviation by μ f̄i and σ f̄i , respectively.

Furthermore, let f̂i = ( f̄i − μ f̄i )/σ f̄i . Then, the input data X , an Mt × N matrix, can

be composed as X = [ f̂1 f̂2 . . . f̂Mt ]T .
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Given an X , the correlation matrix R is defined by Eq. 4.1. Notably, L-PCA is
based on the decorrelation of R, that is, the removal of second-order dependencies
in X . Therefore, the scope of L-PCA is largely limited to linear objective reduction.

R = 1
Mt

X XT . (4.1)

For the removal of higher order dependencies in X , NL-MVU-PCA relies on the
decorrelation of the kernel matrix K . The determination of K involves solving the
SDP formulation given by Eq. 4.2. Notably, it requires the correlation matrix R as
an input. This explains why even in the case of NL-MVU-PCA, the Framework 4.1
calls for computation of both R and K .

Maximize trace(K ) = ∑
i j

(Kii−2Ki j+K j j )

2Mt
,

Subject to: (a)Kii − 2Ki j + K j j = Rii − 2Ri j + R j j ,∀ ηi j = 1,
(b)

∑
i j Ki j = 0,

(c)K is positive-semidefinite,
where : Ri j is the (i, j)th element of the correlation matrix R,

ηi j =
{
1, if ḟ j is among the q − nearest neighbor of ḟi ,
0, otherwise.

(4.2)

The neighborhood relation ηi j in Eq. 4.2 is governed by the parameter q. For
each input feature ( f̄i ∈ R

N ), q represents the number of neighbors with respect to
which the local isometry is to be retained during unfolding. In other words, ηi j ∈
{0, 1} indicates whether there is an edge between f̄i and f̄ j in the graph formed
by pairwise connecting all q-nearest neighbors. While a high value of q ensures
better retention of isometry, it delays the unfolding process. On the contrary, a low
value of q offers fast unfolding, but at the risk of distorting the isometry. Given
this trade-off, the proper selection of q is crucial. From the perspective of accuracy
(preservation of local isometry), higher values of q should be preferred, as long as
the matrix K is not completely defined by the constraints, and the objective of the
SDP formulation also has a role to play. It was established in [34] that even the most
constrained case of q = Mt − 1, fulfills the above criterion. Therefore, q = Mt − 1
was recommended and used. It may also be noted that the SDP problem is convex,
for which polynomial time off-the-shelf solvers, such as the SeDuMi [24] toolbox
in MATLAB are available. In [34], SeDuMi had been used.

4.2.2 Computation of Eigenvalues and Eigenvectors

The eigenvalues and eigenvectors of R and K (each, an Mt × Mt matrix) are deter-
mined, in the case of L-PCA andNL-MVU-PCA, respectively. Let these be given by:
λ1 ≥ λ2 . . . ≥ λMt and V1, V2, . . . VMt , respectively. As a foundation for subsequent
processing, the following may be noted.
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(a) If e j = λ j/
∑Mt

j=1 λi , then
∑Mt

j=1 e j = 1.
(b) The i th component of j th principal component, say fi j , reflects on the contri-

bution of fi toward Vj ∈ R
Mt .

(c) From the orthonormality of the eigenvectors, it follows that |Vj | = ∑Mt
i=1 f 2i j =

1 ∀ j = 1, . . . , Mt .
(d) The contribution of fi across all Vj ’s can be given by ci = ∑Mt

j=1 e j f
2
i j , such that∑Mt

i=1 ci = 1.

4.2.3 Eigenvalue Analysis

This step aims to identify the conflicting objectives (inF0) along the significant prin-
cipal components (Vj s), as follows. First, the count of significant Vj s is determined.
These correspond to the smallest number (Nv) such that

∑Nv

j=1 e j ≥ θ, where the
variance threshold θ ∈ [0, 1] is an algorithm parameter. θ = 0.997 had been used
in [34]. Subsequently, each significant Vj is interpreted as follows:

• An objective fi with the highest contribution to Vj by magnitude is chosen, along
with all other objectives with contributions of the opposite sign to Vj .

• If all the objectives have the same-sign contributions (all positive/negative), then
the objectives with the top two contributions by magnitude are picked.

Let the collection of all the above-picked objectives constitute a set Fe ⊆ Ft .

4.2.4 Reduced Correlation Matrix (RCM) Analysis

This step aims to identify the subsets of identically correlated objectiveswithin the set
Fe determined by eigenvalue analysis. Such subsets may exist because the objectives
chosen with reference to different (significant) Vj s could well be correlated. If such
subsets exist, then the most significant objective in each subset can be retained while
the rest could be discarded, allowing for further reduction of Fe. The above can be
achieved through the following steps:

1. Construction of a Reduced Correlation Matrix (RCM): RCM is composed of the
columns of R that correspond to the objectives in Fe. Equivalently, the RCM is
the same as R, except that the columns corresponding to the objectives in Ft \
Fe are not included.

2. Identification of potentially correlated subset for each objective in Fe: toward
that goal, for each fi ∈ Fe, all f j ∈ Fe which satisfy Eq. 4.3 constitute a poten-
tially correlated subset Ŝi . Notably, Eq. 4.3 manifests the fact that the correlation
between the objectives is a set-based property. Hence, unless the nature of the
relationship of each of fi and f j with all other objectives is not identical, they
cannot be considered as potentially correlated.
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sign(Rik) = sign(R jk), k = 1, 2, . . . , Mt . (4.3)

3. Identification of correlated subset for each objective in Fe: those f j ∈ Fe which,
in addition to Eq. 4.3, also satisfy Eq. 4.4, constitute an identically correlated
subset Si . Notably, Eq. 4.4 accounts for the fact that the non-dominated set based
on which R is computed may be garbled, and hence the strengths of correlation
evident from R may not conform with the true correlations on the PF . In a sense,
Eq. 4.4 serves to have a denoising effect, while interpreting a matrix based on
garbled data, to minimize the chances of inaccurate identification of S.

Ri j ≥ the correlation threshold (Tcor ). (4.4)

The following may be observed with respect to the determination of Tcor . There
are several guidelines for interpreting the strength of correlation, one of which is
the Cohen scale [4]. It interprets a correlation strength of 0.1 to 0.3 as weak, 0.3 to
0.5 as moderate and 0.5 to 1.0 as strong. However, in the current context, a rigid
interpretation of the correlation strength will not be helpful because Tcor needs to
adapt to conflicting goals depending on the problem being solved. In view of this,
low and high values Tcor are desired in solving problems with high and negligible
redundancy, respectively. Toward this end, a dynamic calculation of Tcor is recom-
mended based on the spectrum of the eigenvalues. This is based on the understanding
that with an increase in the degree of redundancy in a problem: (i) the first eigenvalue
e1 becomes predominantly higher, and (ii) fewer principal components are required
to account for a certain variance threshold. For a given Mt -objective problem, let
M2σ

t denote the number of principal components required to account for 95.4% of
the variance (analogical to Gaussian distributions, without restricting the scope to
these), then Tcor can be computed as per Eq. 4.5.

Tcor = 1.0 − e1(1.0 − M2σ
t /Mt ). (4.5)

Notably, for a highly redundant problem where e1 will be very high and M2σ
t will

be small compared toMt , Tcor will have a small value. Therefore,when the eigenvalue
spectrum indicates higher redundancy, a lower Tcor improves the chances that poten-
tially correlated objectives pass the correlation strength test (Eq. 4.4). In contrast,
for a problem with low redundancy, e1 will be low and M2σ

t will be comparable to
Mt , Tcor will have a very high value. Hence, when the eigenvalue spectrum indicates
a lower redundancy, a higher Tcor reduces the chances that potentially correlated
objectives pass the correlation strength test (Eq. 4.4).
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4.2.5 Selection Scheme for Final Reduction

Once the subsets of identically correlated objectives inFe are identified by the RCM
analysis, the goal is to identify and retain the most significant objective in each
subset (S) and eliminate the remaining ones. This is achieved by: (i) attributing a
selection score for each objective, based on its contribution to the significant principal
components,3 as given by Eq. 4.6, and (ii) retaining the objective with highest sci in
each S and eliminating the rest.

sci = ∑Nv

j=1 e j | fi j |. (4.6)

Doing so helps reduce Fe to Fs , which becomes an essential objective set for the
current iteration of the framework. Given this, Fr = Ft \ Fs becomes the redundant
objective set for the current iteration of the framework.

4.2.6 Computation of Error

In Sect. 4.2.2, it was highlighted that the contribution of an objective fi across all
Vj ’s can be given by ci = ∑Mt

j=1 e j f
2
i j , such that

∑Mt
i=1 ci = 1. Hence, if fi were to be

eliminated, then the variance left unaccounted for would be given by ci , and would
account for the error corresponding to the omission of fi .

Given the above, the error in iteration t , corresponding to an essential objective
f j ∈ Fs , denoted by Et, j , is defined as nothing but the corresponding c j (Eq. 4.7).
However, the error in iteration t , corresponding to a redundant objective fi ∈ Fr ,
denoted by Et,i is defined as the corresponding ci scaled down by a factor, since part
of the variance ci is already accounted for, by virtue of fi ’s correlation with some
essential objective f j ∈ Fs .

Et,i = ci (1.0 − max{δi j .Ri j }) for f j ∈ Fs,

where: ci = ∑Mt
k=1 ek f

2
ik,

δi j =
{
1, if fi and f j are identically correlated,
0, otherwise,

Ri j = Correlation between fi and f j ,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

for fi ∈ Fr ,

Et, j = c j , where: c j = ∑Mt
k=1 ek f

2
jk

}
for f j ∈ Fs .

(4.7)

Notably, defining Et,i for fi ∈ Fr , and Et, j for f j ∈ Fs , iteration-wise, enables
computation of all other measures necessary for the decision support. For example,

3 This contribution can be given by sci = ∑Nv

j=1 e j f
2
i j (Sect. 4.2.2). However, e j and fi j being less

than one, may lead to indiscriminately low values for sci , hence, adapted in Eq. 4.6.
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1. Once the framework terminates, the user/DM may be interested in knowing the
total error incurred owing to the omission of the redundant objectives (Fr ) across
all the iterations combined, implying the error corresponding to thefinal redundant
objective set given by FR = F0 \ FS . Toward that end: (i) first, the total error
for all redundant objectives in iteration t , denoted by Er

t can be calculated (Eq.
4.8), and (ii) then the total error for all redundant objectives starting from the
initial iteration until the penultimate iteration can be calculated (Eq. 4.8). The
final iteration T is excluded from E R , since, by definition, it does not report any
redundant objectives. Furthermore, it may be noted that the error Er

0 for the first
iteration is the variance that will not be taken into account if the objectives in the
correspondingFr were to be eliminated.Hence, the errorEr

1 in the second iteration
will only be with respect to 1 − Er

0 or the variance of the original problem. This
argument is generalized in Eq. 4.8.

Er
t =

∑

i : fi∈FR

Et,i , E R = Er
0 +

T−1∑

t=1

Er
t (1 − Er

t−1). (4.8)

2. For the δ-MOSS and k-EMOSS analysis, it becomes necessary to generate an
M-dimensional list, say SL, consisting of normalized errors in ascending order
along with the corresponding objective indices. This pre-necessitates that:

• The normalized error is available for each objective in each iteration t . Toward
it: (a) the errors for the essential objectives in any iteration t need to be com-
puted, which Eq. 4.9 provides, and (b) the normalized errors in iteration can
be computed as per Eq. 4.10. To this end: (a) for t < T , only the normalized
errors for redundant objectives are provided for, since the essential objectives
identified in the intermediate iterations are not final and subject to reduction in
subsequent iterations; and (b) for t = T , only the normalized error for essential
objectives is provided for, since the final iteration by its very definition involves
only the essential objectives.

E s
t =

∑

j : f j∈Fs

Et, j . (4.9)

If t < T : ηrt,i = Et,i
Er
t + E s

t
, else if t = T : ηs

t, j = Et, j
E s
t

. (4.10)

• An M-dimensional list, L, is generated over all iterations t (0 ≤ t ≤ T ),
so that Lk stores the normalized error for fk . Toward that goal, an empty
M-dimensional error list, L, is initialized, and then: (a) in each intermittent
iteration t (0 ≤ t < T ), L is updated by normalized errors for the redundant
objectives, in that ηrt,i corresponding to fi ∈ FR is assigned to Li ; and (b) in
the final iteration t = T ,L is updated by the normalized errors for the essential
objectives, in that ηrt, j corresponding to f j ∈ FS is assigned toL j . Hence, upon
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termination, a fully populated, M-dimensional, normalized error list L will be
available, which could then be sorted in ascending order of error values along
with the corresponding objective indices (SL).

For ease of reference and processing of SL, let its composition (independent of
reference to ηrt,i or ηs

t, j ) be in ascending order of the values of η, and let the set
of objectives based on the corresponding indices be given by Eq. 4.11, where �
denotes less-important-than relation.

SL : {ηr1 ≤ ηr2 ≤ . . . ≤ ηrM } ⇒ { fr1 � fr2 � . . . � frM }. (4.11)

4.2.7 Decision Support Based on the Learned Preference
Structure

Termination of the Framework 4.1 facilitates decision support in terms of the fol-
lowing.

4.2.7.1 Revelation of an Essential or Redundant Objective Set

Given anM-objective problem, an essential objective set,FS , may consist ofm ≤ M
objectives. By definition, them objectives inFS should lead to the same PF as theM
objectives in F0. Furthermore, the first M − m locations in the normalized error list
SL should ideally comprise of zeros, and the redundant objectives could be indis-
criminately assigned to these locations. As per the Framework 4.1, consideration
of FS is associated with an error E R (Eq. 4.8). If E R �= 0, then it may apparently
contradict the definition of FS , and raise doubts on the credibility of the objec-
tives’ preference ranking derived from SL. Such apparent contradictions should be
interpreted from two perspectives discussed as follows:

1. The quality of obtained PF-approximation: if an EMâOA run were to offer an
ideal PF-approximation, then the error reported by the Framework 4.1 corre-
sponding to each fi ∈ FR would be zero, since there would exist some f j ∈ Fs

such that Ri j = 1 (Eq. 4.7). However, practically, in most cases, the obtained PF-
approximation may be noisy, which implies that even if fi and f j are perfectly
correlated on true PF , the obtained solutions may yield Ri j < 1. This explains
why the Framework 4.1 may report E R �= 0 corresponding to FS , and also why
different fi ∈ FR may exhibit a preference ranking in SL .

2. The nature of conflict/correlation among the objectives: it is possible that some
objectives in a given problem may have partial conflict/correlation among them-
selves. If the degree of correlation is stronger than the degree of conflict, then
they may be inferred as correlated—subject to some error. This again explains
the apparent contradictions with respect to non-zero E R , and the preference rank-
ing of the objectives.
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4.2.7.2 δ-MOSS Analysis

As introduced before, the δ-MOSS analysis seeks to find the smallest subset of
objectives (δ-minimal objective subset or F{δ}) which ensures that the error associ-
ated with omission of the remaining objectives does not exceed δ. Given the sorted
error list SL (Eq. 4.11) and a user-defined δ, F{δ} can be determined by finding the
lowest value of J , that satisfies

∑J
j=1 ηr j ≥ δ. Subsequently, F{δ} can be given as

{ frJ , frJ+1 , . . . , frM }, with size of M − J + 1.

4.2.7.3 k-EMOSS Analysis

As introduced before, the k-EMOSS analysis refers to finding the subset of k objec-
tives (k-minimal objective subset orF{k}), such that the error associatedwith omission
of the remaining objectives is the minimum, compared to that corresponding to any
other possible combination of k objectives. Given the sorted error list SL (Eq. 4.11)
and a user-defined k, F{k} can be determined by selecting the last k objectives from
SL, given by { frM−k+1 , frM−k+2 , . . . , frM }. Hence, the omission of the remaining objec-
tives (first M − k objectives) would collectively result in the lowest possible error
or the k-minimal error, given by ηk = ∑M−k

j=1 ηr j .

4.3 Test Suite and Experimental Settings

The test suite used in this chapter, aligned with [34], consists of both redundant and
non-redundant problems, described below.

Among the redundant problems, the DTLZ5(I, M) [11] and WFG3(M) [19]
problems are used, whose significant features as described below:

1. DTLZ5(I, M): here, M denotes the number of objectives, while I denotes the
dimension of PF , which is characterized by the parameter g = 0. Notably, the
first M − I + 1 objectives are perfectly correlated, while the rest are in conflict
with every other objective in the problem. Hence, an essential objective set is as
given by Eq. 4.12.

FS = { fk, fM−I+2, . . . , fM }, where
k ∈ {1, . . . , M − I + 1} : in general, and
k = M − I + 1 : for L-PCA and NL-MVU-PCA in particular.

⎫
⎬

⎭
(4.12)

In the case of L-PCA and NL-MVU-PCA, k = M − I + 1 because among the
possible indices for k, the variance of fk=M−I+1 is the highest, and these algo-
rithms are based on the premise that a greater variance corresponds to the signal,
while a smaller variance corresponds to noise.
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Table 4.1 Test problems: variable-settings and quality indicators (taken from [34])

Problem Objectives Variables Quality indicators for PF

ρ κ g DA = DT

DTLZ1(M) f1:M M − 1 5 0
√
0.25M

DTLZ2(M) f1:M M − 1 10 0
√
M

DTLZ3(M) f1:M M − 1 10 0
√
M

DTLZ4(M) f1:M M − 1 10 0
√
M

DTLZ5(I, M) f1:M M − 1 10 0
√
V *

WFG3(M) f1:M M − 1 20 NA NA

* V=
( 1
2

)M−I + ∑M−I+1
i=2

( 1
2

)M−I+2−i + I − 1

2. WFG3(M): here, M denotes the number of objectives, and PF degenerates into
a linear hyperplane such that �M

m=1 fm = 1. Notably, the first M − 1 objectives
are perfectly correlated, while the last objective is in conflict with every other
objective in the problem. Hence, an essential objective set is as given by Eq. 4.13.

FS = { fk, fM−I+2, . . . , fM }, where
k ∈ {1, . . . , M − I + 1} : in general, and
k = M − I + 1 : for L-PCA and NL-MVU-PCA in particular.

⎫
⎬

⎭
(4.13)

Here, k = M − 1 for L-PCA and NL-MVU-PCA, as among all possible indices
for k, the variance of fk=M−I+1 is the highest.

For the non-redundant problems (the scalable DTLZ1 to DTLZ4), the degree of
convergence can be quantified by a problem parameter g.4 Notably, all the objectives
in these problems are equally conflicting. Hence, the essential objective set is as
given by Eq. 4.14.

FS = { f1, . . . , fM }. (4.14)

These problems involve variables that have been categorized in [19] as thedistance
variables (say, κ, whose change results in comparable solutions) or the position
variables (say, ρ, whose change results in incomparable solutions). The settings used
for κ and ρ are reported in Table 4.1.

The performance of Framework 4.1 is evaluated based on experiments with:

• Asolution set offering an exact PF-approximation (symbolizing only the unnoised
signal): toward this end, the solutions are sampled on the true PF (NP ). Notably,
the use ofNP has been restricted here to a single problem, namely, DTLZ5(3, 5),
to exemplify some of the salient features, including the interpretation of error
as discussed in Sect. 4.2.7.1. To generate NP , the sampling scheme in [44] was
used. In that scheme, the number of solutions generated is given by N = CH+m−1

m−1 ,

4 This is also true forDTLZ7 but it is precluded here due to the inconsistency between its formulation
and its PF , as presented in [14].
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wherem represents the dimension of PF and H is a user-defined parameter (whose
recommended settings are H = 8 for m ≤ 10 and H = 4 for m > 10).

• Solution sets offering inexact PF-approximation (symbolizing a combination of
the unnoised and noised signal): toward this end, the non-dominated solution sets
generated by two EMâOAs, namely ε-EMâOA [9] and NSGA-II [10] are consid-
ered. These sets of solutions, called Nε and NNS , respectively, correspond to a
population size of 200 and runs of up to 2000 generations each. The recombination
and mutation operators include SBX (pc = 0.9 and ηc = 5) [5] and polynomial
mutation (pm = 0.1 and ηm = 20) [6] for an n variable problem. Furthermore,
ε = 0.3 is used for ε-EMâOA.

For each problem, the experiments with each of Nε and NNS , correspond to 20
different seeds. For all problems, except WFG problems, the quality of the PF-
approximation offered by Nε and NNS is assessed in terms of

• Convergence: by computing the value of the problem parameter g, and comparing
it with g = 0 corresponding to the PF .

• diversity: by computing the value of the normalized maximum spread indicator,
Is = DA/DT [31], where, DA represents the actual dispersal of solutions in Nε

andNNS , andDT represents the dispersal of solutions on the true PF . Notably, the
problem-wise derivations for DT can be found in the supplementary file to [34].
Table 4.1, reports only their final values for brevity. Naturally, if Nε and NNS
offered Is = 1, it would mean that they have covered PF completely.

4.4 Implementation of Objective Reduction Framework
on a Sample Problem

This section demonstrates the implementation of L-PCAandNL-MVU-PCAembed-
ded in Framework 4.1, on a sample problem.Toward it, first the implementation based
on NP (representing exact PF-approximation) is shown. Then, the implementation
based on Nε and NNS (representing inexact PF-approximation) is shown. For this
purpose, the DTLZ5(3, 5) problem is used. It is a five-objective problem with a
three-dimensional PF . This problem has been chosen due to its moderate degree of
redundancy (40% objectives are redundant), with the aim of highlighting the absence
of any ad-hoc fixes in L-PCA and NL-MVU-PCA, for problems with high or negli-
gible degrees of redundancy.

4.4.1 Performance on a Solution Set with Exact
PF-Approximation

The prerequisite correlation matrix R and the kernel matrix K based onNP , and the
corresponding eigenvalues and eigenvectors are presented in Table 4.2.
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Table 4.2 DTLZ5(3, 5): the eigenvalues and eigenvectors of matrices R and K , for NP (taken
from [34])

4.4.1.1 L-PCA on NP

Based on the eigenvalues and eigenvectors of the correlation matrix R, the L-PCA
analysis is summarized in Table 4.3. In that:

• The eigenvalue analysis (Table 4.3a) shows that the top three principal components
are needed to account for θ = 0.997, leading to Fe = { f1, f2, f3, f4, f5}.

• The subsequent RCM analysis (Table 4.3b) suggests three potentially correlated
subsets, namely, Ŝ1, Ŝ2, and Ŝ3. Since R12 = R13 = R23 = 1.0 and Tcor = 0.5879,
each objective pair in these subsets fulfills Eq. 4.4(ii), implying three identically
correlated subsets, namely S1 = S2 = S3 = { f1, f2, f3}.

• As the selection scores of f1, f2 and f3 happen to be equal (Table 4.3c), the analysis
concludes with Fs = { fk, f4, f5}, where fk could be f1 or f2 or f3.

• Letting Fs = { f3, f4, f5} implies E0 = cM1 (1.0 − R13) + cM2 (1.0 − R23) = 0.0.
• Notably, Iteration-2 of L-PCA fails to further reduce any objectives, and therefore
is not shown here. In effect, FS is nothing but Fs in iteration-1.
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Table 4.3 DTLZ5(3, 5): Iteration-1 of L-PCA with NP (taken from [34])

4.4.1.2 NL-MVU-PCA on NP

Based on the eigenvalues and eigenvectors of the kernel matrix K , this analysis is
summarized in Table 4.4. In that:

• The eigenvalue analysis (Table 4.4a) leads to Fe = { f1, f2, f3, f4, f5}.
• Since R12 = R13 = R23 = 1.0 (Table 4.2a) and Tcor = 0.7086, the RCM analysis
leads to S1 = S2 = S3 = { f1, f2, f3} (Table 4.4b).

• Finally, based on the selection scores of f1, f2 and f3 (Table 4.4c), f3 emerges
as the representative in each of S1, S2 and S3, leading to Fs = { f3, f4, f5} with
E0 = cM1 (1.0 − R13) + cM2 (1.0 − R23) = 0.0.

• Iteration-2 of NL-MVU-PCA fails to further reduce any objectives, and hence is
not shown here. In effect, FS is nothing but Fs in iteration-1.

4.4.1.3 Key Inferences from the Analysis onNP

It can be seen in Fig. 4.4 for NP that: (i) f1– f2– f3 are correlated, and (ii) the vari-
ance of f1 and f2 is equal, and less than the variance of f3. Given a set of correlated
objectives, both L-PCA and NL-MVU-PCA pick a representative objective in the
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Table 4.4 DTLZ5(3, 5): iteration-1 of NL-MVU-PCA with NP (taken from [34])

set. To this end, these algorithms compute the variance contribution of each corre-
lated objective, along the significant principal components, and this is known as the
selection score (sci , Eq. 4.6). Hence, for NP , these algorithms should determine
sc3 > sc2 = sc1. However, unlike NL-MVU-PCA (Table 4.4), L-PCA fails to iden-
tify this fact (Table 4.3) plausibly owing to its inability to accurately determine the
principal components in the first place. This is evident from Table 4.2c, where the
significant principal components based on R are such that the variance contributions
of f1, f2 and f3 are equal. In contrast, in the case of NL-MVU-PCA, the signifi-
cant principal components based on K (Table 4.2c) accurately capture the variance
contributions of f1, f2 and f3.

4.4.2 Performance on Solution Sets with Inexact
PF-Approximation

The relative capabilities of L-PCA and NL-MVU-PCA were demonstrated above
with respect to an ideal data set,NP , directly sampled on the true PF (symbolizing
the unnoised signal). This section seeks to demonstrate the relative capabilities of
these algorithms with realistic data sets offered by EMâOAs, where the quality of the
PF-approximation may or may not be good (symbolizing a combination of unnoised
and noised signals). To do that, Nε and NNS , have been considered.
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Fig. 4.4 DTLZ5(3, 5): Parallel coordinate plot for NP (taken from [34])

It may be noted with respect toNP (Fig. 4.4), that over the true PF : (i) the range
of— f1 and f2 is [0 : 0.5]; f3 is [0 : 0.707]; f4 and f5 is [0 : 1], and (ii) f1- f2- f3 are
correlated, while f3- f4- f5 are in conflict. In contrast, Fig. 4.5a and b suggest that
both Nε and NNS fail to approximate PF well, since both fail to:

• converge to PF : this is evident by larger ranges for the objectives.
• capture the correlation structure of PF : this is evident by some crossing lines
between f1- f2 and f2- f3, symbolizing partial conflict even among f1- f2- f3.

However, based on the degree of departure from the true PF characteristics, it can
be inferred that NNS offers a worse PF-approximation than Nε.

In this background, Iteration-1 of L-PCA and NL-MVU-PCA, based on Nε,
as summarized in a self explanatory Table 4.5 may be noted. In that, L-PCA
inaccurately leads to Fs = { f1, f4, f5}, while NL-MVU-PCA accurately leads to
Fs = { f3, f4, f5}. For both algorithms, Iteration-2 fails to reduce any objectives fur-
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Fig. 4.5 DTLZ5(3, 5): Parallel coordinate plots for Nε and NNS (taken from [34])
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Table 4.5 DTLZ5(3, 5): Iteration-1 of L-PCA and NL-MVU-PCA with Nε (taken from [34])
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ther, and is not shown here for the sake of brevity. To summarize, L-PCA leads to
FS = { f1, f4, f5}, while NL-MVU-PCA leads to FS = { f3, f4, f5}.

Similarly, Iteration-1 of L-PCA and NL-MVU-PCA, based on NNS , as summa-
rized in a self explanatory Table 4.6 may be noted. In that, L-PCA fails to reduce
any objective, and hence, no further Iterations can help. In contrast, NL-MVU-PCA
reduces toFs = { f1, f3, f4, f5}. This necessitates Iteration-2, presented in Table 4.7.
In that, { f1, f3, f4, f5} serves as the set of input objectives, which, for ease of refer-
ence, is denoted as {F1, F2, F3, F4}. Evidently, Iteration-2 leads toFs = { f3, f4, f5},
followingwhich Iteration-3 is carried out. However, no further reduction is observed,
hence, Iteration-3 is not reported for the sake of brevity. To summarize, NL-MVU-
PCA leads to FS = { f3, f4, f5}.

The above results for L-PCA and NL-MVU-PCA, based onNε andNNS , respec-
tively, can naturally be explained on the basis of an interplay of algorithmic capability
and quality of the dataset as follows:

• NL-MVU-PCA performs better than L-PCA, in each case of Nε and NNS . This
could be attributed to the benefits that MVU facilitates progress toward removal
of higher order dependencies in the data sets.

• Each of NL-MVU-PCA and L-PCA performs better with Nε, than with NNS .
This could be attributed to the better PF-approximation by Nε than by NNS .

4.5 Results on a Wider Range of Redundant Problems

This section presents the experimental results for a wider range of the DTLZ5(I, M)

and WFG3(M) problems, with respect to Nε and NNS . Here, the performance
of L-PCA and NL-MVU-PCA is compared to that of the Dominance-Relation-
Preservation (DRP)-based 0-MOSS analysis (δ-MOSS with δ = 0) by both greedy
and exact algorithms [2, 3].

The results presented in Tables 4.8 and 4.9, reveal that the DRP-based greedy and
exact algorithms fail to identify an essential objective set (FS), for all the problems.
Their failure, even with δ = 0, could plausibly be attributed to the fact that the
underlying data sets are noisy, and hence the inferences drawn do not accurately
characterize the true PF . In general, for δ �= 0, the limitations of the DRP-based
algorithms are linked to the underlying stringent assumptions [3, 16], including:

• δ error across all solutions is comparable: this assumption could be violated in
situations where the objective function values are not equally distributed.

• δ error is comparable across all the objectives for any two given solutions: this
assumption is likely to be violated unless the objectives are either linear or iden-
tically nonlinear.
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Table 4.6 DTLZ5(3, 5): Iteration-1 of L-PCA and NL-MVU-PCA with NNS (taken from [34])
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Table 4.7 DTLZ5(3, 5): Iteration-2 of NL-MVU-PCA based on NNS (taken from [34])

In terms of L-PCA and NL-MVU-PCA, Tables 4.8 and 4.9 show that, in the case
of the DTLZ5(I, M) problems:

1. The performance of NL-MVU-PCA is better than that of L-PCA, corresponding
to both Nε and NNS . This could again be attributed to the underlying nonlinear
unfolding, given which the principal components are more accurately determined
(Sect. 4.4.1).

2. The performance of both NL-MVU-PCA and L-PCA on Nε is better than their
respective performance on NNS . This could be attributed to the fact that the
PF-approximation by Nε is better than that by NNS . Its justification lies in
the better convergence and diversity measures corresponding to Nε than those
corresponding to NNS . This is further endorsed by the fact that, compared to
NNS , the Tcor values based on Nε have a smaller deviation from the Tcor values
based on NP (Fig. 4.6b and c).

Furthermore, in the case of WFG3(M) problems:
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Table 4.8 Redundant problems: Results based onNNS andNε with θ = 0.997. The entries below
I andFS indicate the number of successful cases in the 20 runs. The dashes (-) imply inconsequential
entrieswhere the prerequisite of accurate I is notmet. The footnotes report cases that requiremultiple
iterations of the algorithm for accurate results, where in P—aR(bI) implies that for the problem P,
a Runs out of 20, required b iterations each (taken from [34])

Test problems Presented approaches DRP [2, 3]; δ-MOSS, 0% error

NL-MVU-PCA L-PCA Greedy approach Exact approach

DTLZ5(I, M) Nε NNS Nε NNS Nε NNS Nε NNS
I M Ib FS Ic FS Id FS I FS I FS I FS I FS I FS

2 5 20 20 20 20 20 14 20 1 0 – 0 – 0 – 0 –

2 20 20 20 7 7 20 2 0 – 0 – 0 – 0 – 0 –

2 50 20 20 14 14 20 0 10 0 0 – 0 – 0 – 0 –

3 5 20 20 18 18 20 9 0 – 0 – 0 – 0 – 0 –

3 20 20 20 0 – 20 1 0 – 0 – 0 – 0 – 0 –

5 10 19 19 0 – 19 3 0 – 0 – 0 – 0 – 0 –

5 20 19 19 0 – 18 3 0 – 0 – 0 – 0 – 0 –

7 10 19 19 0 – 20 6 0 – 0 – 0 – 0 – 0 –

7 20 16 16 0 – 13 3 0 – 0 – 0 – 0 – 0 –

WFG3 5 20 20 20 20 20 19 20 4 0 – 0 – 0 – 0 –

15 15 15 20 20 10 1 19 0 0 – 0 – 0 – 0 –

25 9 9 20 20 6 0 20 0 0 – 0 – 0 – 0 –

[a] The tabulated results are obtained using the source codes at: http://www.tik.ee.ethz.ch/sop/
download/supplementary/objectiveReduction/. The same codes are used for the results presented
later in Tables 4.10–4.13
[b] DTLZ5: (5, 10)—3R(2I); (5, 20)—8R(2I); (7, 10)—7R(2I); (7, 20)—9R(2I) & 1R(4I); and
WFG3: (15)—6R(2I) & 3R(3I); (25)—5R(2I), 1R(3I) & 1R(4I)
[c] DTLZ5: (2, 20)—7R(2I), 2R(4I), 2R(5I), 1R(6I) & 1R(7I); (2, 50)—8R(2I) & 2R(3I); (3, 5)—
9R(2I)
[d] DTLZ5: (5, 20)—1R(2I); (7, 10)—3R(2I); (7, 20)—1R(2I); and WFG3: (5)—11R(2I); (15)—
1R(2I).

1. The performance of NL-MVU-PCA is better than that of L-PCA, for bothNε and
NNS .

2. Contrary to the case of DTLZ5(I, M) problems, the performance of both NL-
MVU-PCA and L-PCA is better, corresponding toNNS , than withNε. Although
this difference in performance may seem significant in terms of the frequency of
success in 20 runs (Table 4.8), it can be seen from Table 4.9 that this difference
is only marginal in terms of the average dimension of PF in 20 runs. However,
these results imply that the PF-approximation by NNS should be better than
that by Nε. This is validated by the fact that, compared to Nε, the Tcor values
corresponding to NNS are closer to those of NP (Fig. 4.6b and c).

Besides the above results, the following issues are noteworthy:

• Given the goal of Tcor (Sect. 4.2.4), a low and a high value of Tcor are desired
for problems with high and low redundancy, respectively. The fact that the given
formulation (Eq. 4.5) fulfills its goal is confirmed by Fig. 4.6b and c, where cor-

http://www.tik.ee.ethz.ch/sop/download/supplementary/objectiveReduction/
http://www.tik.ee.ethz.ch/sop/download/supplementary/objectiveReduction/
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Table 4.9 Redundant problems: Results based on NNS and Nε with θ = 0.997. The entries are
formatted as μ ± σ, where μ and σ represent the mean and standard deviation of the number of
essential objectives identified, in 20 runs (taken from [34])

Test problems Presented approaches DRP [2, 3]; δ-MOSS, δ = 0

DTLZ5(I,M) NL-MVU-PCA L-PCA Greedy Exact

I M Nε NNS Nε NNS Nε NNS Nε NNS

2 5 02.0 ±
0.0

02.0 ±
0.0

02.0 ±
0.0

02.0 ±
0.0

05.0 ±
0.0

04.7 ±
0.5

05.0 ±
0.0

05.0 ±
0.0

2 20 02.0 ±
0.0

10.9 ±
7.8

02.0 ±
0.0

18.3 ±
2.2

16.0 ±
1.4

11.8 ±
1.8

15.5 ±
1.4

11.3 ±
1.5

2 50 02.0 ±
0.0

04.4 ±
3.8

02.0 ±
0.0

05.2 ±
4.2

19.2 ±
2.2

10.9 ±
1.2

18.9 ±
1.2

10.5 ±
1.0

3 5 03.0 ±
0.0

03.2 ±
0.6

03.0 ±
0.0

05.0 ±
0.0

05.0 ±
0.0

04.9 ±
0.3

05.0 ±
0.0

04.9 ±
0.2

3 20 03.0 ±
0.0

19.7 ±
0.8

03.0 ±
0.0

19.8 ±
0.3

13.1 ±
1.5

10.6 ±
1.2

12.2 ±
1.4

10.3 ±
1.1

5 10 05.0 ±
0.2

10.0 ±
0.0

05.0 ±
0.2

10.0 ±
0.0

09.1 ±
0.6

09.4 ±
0.5

08.7 ±
0.6

09.3 ±
0.4

5 20 05.0 ±
0.2

20.0 ±
0.0

05.1 ±
0.3

20.0 ±
0.0

10.7 ±
1.3

10.3 ±
1.0

09.7 ±
1.3

09.8 ±
1.0

7 10 07.0 ±
0.2

10.0 ±
0.0

07.0 ±
0.0

10.0 ±
0.0

08.8 ±
0.8

09.4 ±
0.5

08.4 ±
0.9

09.3 ±
0.4

7 20 07.2 ±
0.4

20.0 ±
0.0

07.3 ±
0.4

20.0 ±
0.0

10.3 ±
1.4

10.7 ±
0.9

09.6 ±
1.6

10.5 ±
0.6

WFG3 5 02.0 ±
0.0

02.0 ±
0.0

02.0 ±
0.0

02.0 ±
0.0

05.0 ±
0.0

04.7 ±
0.4

04.5 ±
0.5

04.1 ±
0.4

15 02.2 ±
0.4

02.0 ±
0.0

02.7 ±
0.8

02.0 ±
0.2

05.7 ±
0.7

05.6 ±
0.5

04.9 ±
0.9

04.6 ±
0.5

25 02.7 ±
0.7

02.0 ±
0.0

03.1 ±
0.9

02.0 ±
0.0

05.4 ±
0.5

05.4 ±
0.6

04.4 ±
0.6

04.6 ±
0.6

responding to NP : (i) for a fixed I in DTLZ5(I, M) problems, as M increases
(higher redundancy) the Tcor decreases, and (ii) for a fixedM , as I increases (lesser
redundancy) the Tcor increases. The same trend holds for theWFG3(M) problems.

• The instances where more than one iteration is required are those in which: (i) the
underlying solution set does not reveal all the identically correlated objectives,
or (ii) the strength of correlation between the identically correlated objectives
happens to be weaker than the computed Tcor (Sect. 4.2.4). In such cases, only
some of the redundant objectives are eliminated in the first iteration, while the
remaining ones disappear in subsequent iterations.
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Convergence (g) Diversity (Is)
D5 Nε NNS Nε NNS

I M (μ±σ) (μ±σ) (μ±σ) (μ±σ)

2 05 0.15±0.09 0.48±0.63 1.93±0.01 4.20±0.17
2 20 0.20±0.07 2.10±0.58 1.91±0.02 8.06±0.17
2 50 0.23±0.08 2.34±0.34 1.99±0.02 8.18±0.22
3 05 0.08±0.04 0.70±0.61 1.48±0.00 3.54±0.02
3 20 0.17±0.07 2.25±0.03 1.59±0.02 6.67±0.01
5 10 0.14±0.07 2.06±0.34 1.38±0.02 4.29±0.02
5 20 0.15±0.07 2.25±0.31 1.37±0.00 5.00±0.01
7 10 0.16±0.07 1.99±0.38 1.27±0.01 3.30±0.01
7 20 0.16±0.08 2.17±0.38 1.28±0.00 3.94±0.02

(a) g (convergence) and Is (diversity) measures
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(b) Tcor : NL-MVU-PCA
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(c) Tcor : L-PCA

Fig. 4.6 Redundant problems: reflecting on the quality of PF-approximation offered by Nε and
NNS . For brevity, DTLZ5(I, M) andWFG3(M) are abbreviated as D5(I, M) andW3(M), respec-
tively. The values of g, Is and Tcor are averaged over 20 runs (taken from [34])

4.6 Results on Non-redundant Problems

This section presents the results for the non-redundant problems, DTLZ1(M) to
DTLZ4(M). The PF for these problems is constituted by M conflicting objectives,
implying that no two objectives are correlated on the PF . The results corresponding
to Nε and NNS are presented in Table 4.10, where it can be seen that:

• Both the DRP-based algorithms fail to identify the true dimension (m = M) of
the PF , except for the five-objective instances of the problems.

• Both NL-MVU-PCA and L-PCA corresponding toNNS accurately identify m =
M for all problems. However, their performance corresponding to Nε is poor for
some problems.
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Fig. 4.7 Non-redundant problems: reflecting on the quality of PF-approximation offered by Nε

and NNS . For the sake of brevity, Dk(M) represents an M-objective DTLZk problem. The Tcor
values are averaged over 20 runs (taken from [34])

As in the previous section, the performance of NL-MVU-PCA and L-PCA
reported inTable 4.10 should be interpreted through the interplay of algorithmic capa-
bility and quality of the dataset. Here: (i) NL-MVU-PCA by construction promises to
be more accurate than L-PCA, and (ii) in contrast to the case of redundant problems,
the quality of PF-approximation in the case of non-redundant problems seems to
be better for NNS , than Nε. This is supported by Fig. 4.7, where it can be seen that
compared toNε, the values of Tcor corresponding toNNS are in stronger conformity
with those based on NP .

4.7 Decision Support for Real-World Problems

This section considers two real-world problems and demonstrates the utility of envi-
sioned decision support in terms of the revelation of an essential/redundant objective
set, δ-MOSS and k-EMOSS analysis. For both of these problems, the reported results
are restricted to NL-MVU-PCA (L-PCA- and DRP-based approaches are excluded),
since it emerged as the most accurate algorithm based on the test problems.

4.7.1 Storm Drainage System Problem

This is a five-objective, seven-constraint problem [28] which relates to optimal plan-
ning for a storm drainage system in an urban area. NSGA-II is run for 30 uniformly
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Table 4.11 Storm drainage: analysis based on NNS (one run; iteration-1)

distributed seeds, where each run corresponds to a population size of 200 and 2000
generations. The resulting NNS for one of the sample runs is subjected to NL-
MVU-PCA, of which iteration-1 is presented in the self-explanatory Table 4.11. The
resultingFs = { f2, f3, f4, f5} is then fed as the input for the iteration-2 (Table 4.12),
where the involved objectives are referred to as {F1, F2, F3, F4}, for ease of refer-
encing.

Evidently, iteration-2 fails to reduce the objectives any further, and therefore
NL-MVU-PCA is terminated. Notably, the relevant errors in the two iterations are
calculated (as per Sect. 4.2.6) leading to the sorted normalized error list, SL:{1.09E-
04, 2.91E-02, 2.94E-02, 2.53E-01, 6.87E-01}, and the corresponding preference
ranking of objectives, as { f1 � f5 � f2 � f3 � f4}. The preference structure of the
objectives, learnt above, paves the way for decision support as follows.

4.7.1.1 Essential Objective Set

FS = { f2, f3, f4, f5}; FR = { f1}; and the error associated with omission of FR
happens to be E R = Er

0 = 1.07E-04 ≡ 0.0107%.
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Table 4.12 Storm drainage: analysis based on NNS (one run; iteration-2)

4.7.1.2 δ-MOSS and k-EMOSS Analysis

By treating SL and the corresponding preference ranking of objectives, across 30
applications ofNL-MVU-PCA(corresponding to 30NNS ) as reference, the δ-MOSS
analysis with varying δ, and k-EMOSS analysis with varying k are summarized in
Fig. 4.8a and b, respectively, in which the height of each bar indicates the percentage
of runs (out of 30) in which a specific objective falls in the reduced objective set for
the corresponding δ or k, as applicable. For instance, if the analyst is keen to know:

• The smallest subset of objectives ensures that the error associated with the
omission of the remaining objectives does not exceed δ = 0.1 ≡ 10%; then,
F{0.1} = { f2, f3, f4, f5}. Similarly, for δ = 0.7 ≡ 70%; F{0.7} = { f2, f3, f4}.

• The subset of 2 objectives, such that the error associated with omission of the
remaining objectives is the minimum, then F{k=2} = { f3, f4}.

4.7.2 Radar Waveform Problem

This is a nine-objective, eight-variable problem [22], dealing with the design of a
waveform for a PulsedDoppler Radar, typical ofmany airborne fighter radar systems.
Such systems aim to unambiguously measure the range and velocity of targets that
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(a) δ

δ)

(b) k-MOSS: % of occurrence of

objectives (varying

-EMOSS: % of occurrence of

objectives (varying k)

Fig. 4.8 Storm drainage problem: visual representation of the δ-MOSS and k-EMOSS analysis by
NL-MVU-PCA based on NNS over 30 runs

may travel at very high velocities (Mach 5 possible) and may be located at very long
distances (100 nautical miles typical). The physical meaning associated with each
objective is highlighted in Eq. 4.15, where f1 to f8 are to be maximized, while f9 is
to be minimized.

f1( f2) : Median range(velocity) of target before schedule is not decodable
f3( f4) : Median range(velocity) of target before schedule has blind regions
f5( f6) : Minimum range(velocity) of target before schedule is not decodable
f7( f8) : Minimum range(velocity) of target before schedule has blind regions

f9 : Time required to transmit total waveform

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4.15)

Interestingly, according to source [22]: (i) the objectives associated with the per-
formance in the range, namely f1- f3, and f5- f7, tend to have a degree of correlation,
just as the objectives associated with the performance in velocity, namely f2- f4, and
f6- f8 do, and (ii) the objectives related to range and velocity conflict. It is critical
to note that objective formulations for this problem are not available in the pub-
lic domain. Instead, only non-dominated solution sets corresponding to 30 runs of
MSOPS-II [21], each with 20000 function evaluations and sizes ranging from 8839
to 9716 points are available [20].

Given the lack of objective formulations, multiple iterations of NL-MVU-PCA,
that naturally culminate in the envisioned decision support are not possible. Hence,
the scope here is restricted to the determination of FS based on a single application
of NL-MVU-PCA, and an adapted implementation of δ-MOSS and k-EMOSS anal-
ysis. It may be recalled that the δ-MOSS and k-EMOSS analysis rely on the sorted
normalized error list, SL, constituted by the normalized errors for the redundant
objectives in the intermittent iterations, and the normalized errors for the essential
objectives in the final/terminating iteration. In the current situation, errors for all
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objectives in a single iteration are made to contribute to SL. For consistency with
the previous notation, the set of solutions obtained from MSOPS-II is referred to as
NMS .

Table 4.13 shares the application of NL-MVU-PCA on one of the availableNMS ,
up to RCM analysis. While the preliminary steps are self explanatory, the following
features in the RCM analysis are worth noting:

• There are nine potentially correlated objective subsets. Four of these are consti-
tuted by all range-related objectives, that is, { f1, f3, f5, f7}. The remaining five
are constituted by all the velocity-related objectives together with the transmission
time-related objective, that is, { f2, f4, f6, f8, f9}.

• Tcor = 0.371 being relatively low, is indicative of redundancy in the problem.
• When the nine potentially correlated objective subsets are subjected to the test of
Tcor , the following correlated subsets emerge:

– S1 = S5 = { f1, f3, f5, f7}, for which f3 emerges as the representative.
– S3 = { f1, f3, f5}, for which f3 emerges as the representative.
– S7 = { f1, f5, f7}, for which f7 emerges as the representative.
– S2 = S4 = S6 = S8 = S9 = { f2, f4, f6, f8, f9}, for which f4 emerges as the
representative.

Hence,Fs = { f3, f4, f7}, whileFr = { f1, f2, f5, f6, f8, f9}. The follow-up error
analysis is presented in Table 4.14, from which the following can be inferred:

• The collective error corresponding to Fr can be given by

Er
0 = ∑

i : fi∈Fr

E0,i = 0.03816 ≡ 3.816%.

• The sorted normalized error list, SL:{1.10E-03, 1.66E-03, 6.55E-03, 6.60E-03,
9.76E-03, 1.90E-02, 3.91E-02, 1.60E-01, 7.55E-01}.

• The preference ranking of objectives corresponding toSL occurs to be { f9 � f2 �
f1 � f8 � f5 � f6 � f4 � f7 � f3}.
The preference structure of the objectives, learnt above (within the restriction of

a single application of NL-MVU-PCA), paves the way for the decision support as
follows.

4.7.2.1 Essential Objective Set

FS = Fs = { f3, f4, f7}; FR = Fr = { f1, f2, f5, f6, f8, f9}; and the error associ-
ated with omission of FR happens to be E R = Er

0 = 0.03816 ≡ 3.816%.
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Table 4.13 Radar waveform problem: an application of NL-MVU-PCA on NMS (taken from
[16])
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Table 4.14 Radar waveform problem: error analysis for Table 4.13 (taken from [16])

Index i ≡ fi ∈ fr , and index j ≡ f j ∈ fs
Category cMi & cMj max{δi j .Ri j } E0,i & E0, j η0,i & η0, j

f1 ≡ fi ∈ Fr 0.041116 0.863848 (R13) 0.005597 0.006558

f2 ≡ fi ∈ Fr 0.031403 0.954665 (R24) 0.001423 0.001667

f3 ≡ f j ∈ Fs 0.644745 – 0.644744 0.755382

f4 ≡ f j ∈ Fs 0.033398 – 0.033397 0.039128

f5 ≡ fi ∈ Fr 0.017168 0.514645 (R53) 0.008332 0.009762

f6 ≡ fi ∈ Fr 0.030609 0.469935 (R64) 0.016224 0.019008

f7 ≡ f j ∈ Fs 0.137228 – 0.137228 0.160776

f8 ≡ fi ∈ Fr 0.031862 0.823009 (R84) 0.005639 0.006606

f9 ≡ fi ∈ Fr 0.032472 0.970888 (R94) 0.000945 0.001107

4.7.2.2 δ-MOSS and k-EMOSS Analysis

By treating SL and the corresponding preference ranking of objectives, across 30
applications of NL-MVU-PCA (corresponding to 30 NMS ) as reference, the δ-
MOSS analysis with varying δ, and k-EMOSS analysis with varying k are summa-
rized in the Fig. 4.9a and b, respectively, in which the height of each bar indicates
the percentage of runs (out of 30) in which a specific objective falls in the reduced
objective set for the corresponding δ or k, as applicable. For instance, if the analyst
is keen to know:
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Fig. 4.9 Radar waveform problem: visual representation of the δ-MOSS and k-EMOSS analysis
by NL-MVU-PCA based on 30 available NMS (taken from [16])
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• The smallest subset of objectives ensures that the error associated with the
omission of the remaining objectives does not exceed δ = 0.1 ≡ 10%; then,
F{0.1} = { f1, f3, f4, f7}. Similarly, for δ = 0.7 ≡ 70%; F{0.7} = { f3}.

• The subset of 2 objectives, such that the error associated with omission of the
remaining objectives is the minimum, then F{k=2} = { f3, f4}. Similarly, for the
subset of 7 objectives, F{k=7} = { f1, f3, f4, f5, f6, f7, f8}.

4.8 Summary

This chapter has presented an ML-based framework that operates on the objective
vectors of the non-dominated solutions obtained from an EMâOA; learns the objec-
tives’ preference structure by preserving the correlation structure of the solutions;
and provides decision support through revelation of (i) an essential objective set—a
smallest set of m (m ≤ M) conflicting objectives that generates the same PF as that
of the original problem with M objectives, (ii) the smallest subset of objectives that
ensures that the error associated with omission of the remaining objectives does not
exceed a user-defined δ, and (iii) the subset of k objectives (k being user defined),
such that the error associated with omission of the remaining objectives is minimum.
Recognizing that the available solution sets may be noisy (not be representative of
the PF), this framework has embedded denoising mechanisms, where the strength
of correlation between an objective pair is tested against a dynamically computed
Tcor . The efficacy of the framework is tested on a wide range of test problems, and its
practical utility is demonstrated on two real-world problems. The significance of this
chapter lies in the fact that, unlike other chapters where the definition of the problem
is treated as a given, this chapter aims at knowledge discovery about the problem
definition itself.
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Chapter 5
Learning to Converge Better: IP2
Operator

In the context of online innovization (Sect. 3.1.2, Chap. 3), it has been discussed
that inter-variable relationships with pre-specified structures can be extracted in any
intermediate generation of an evolutionary multi- and many-objective optimization
algorithm (EMâOA) run. Subsequently, these relationships can be used for offspring
repair, within the same EMâOA run, to help induce better convergence [7, 8]. Any
attempt to eliminate the a priori specification of the relationship structure would
require alternative criteria that could guide the improvement in convergence. It is
suggested that if the scope of online innovization could be narrowed down to ref-
erence vector (RV)-based EMâOAs, RV-EMâOAs, then the underlying RVs could
provide the aspired criteria. The rationale for this claim is rooted in the recognition
that

1. The solutions associated with the RVs in the objective space (Z space) have their
representations in the variable space (X space).

2. In any generation of an RV-EMâOA, the current best solution associated with an
RV can be known in theZ space. Some previous generation solutions associated
with the RV can be mapped onto the current best solution. Corresponding to this
mapping in the Z space, a mapping in the X space can be obtained.

3. Since the mapping defined above in the Z space captures the improvement in
convergence property of the previous solutions, the underlying mapping in the
X space promises to capture efficient search directions for better convergence.

In this context, this chapter presents the InnovizedProgress 2 (IP2) operator, designed
for convergence enhancement in RV-EMâOAs.

The IP2 operator includes an ML-based approach that (a) maps the solutions
from previous generations of an RV-EMâOA run to the best selected solution up
to the current generation in Z space, along the respective RVs; (b) trains an ML
model to learn the corresponding directional improvements in the X space; and (c)
uses the learned ML model in the same generation to create 50% pro-convergence
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offspring through progression of 50% of the natural1 offspring (in theX space). The
choice of creating only 50% pro-convergence offspring in a particular generation has
been justified later in Sect. 5.3, in the context of convergence–diversity balance and
ML-driven risk–reward trade-off.

The remainder of this chapter is organized as follows: Sect. 5.1 describes the IP2
operator, followed by an outline of its integration with NSGA-III, an RV-EMâOA,
in Sect. 5.2. Section5.4 discusses the computational complexity of the IP2 operator,
followed by a discussion on the experimental setup to demonstrate the efficacy of the
IP2 operator in Sect. 5.5. Finally, the results and related discussions are presented in
Sect. 5.6.

5.1 IP2 Operator for Convergence Enhancement

The IP2 operator whose scope is summarized above encapsulates three modules,
including Training-dataset construction, ML Training, and Offspring Progression.
The design and implementation of these modules is discussed below.

5.1.1 Training-Dataset Construction Module

In any generation t of theRV-EMâOA, the training-dataset is constituted bymapping
between members of input archive At and members of target archive Tt . The process
of constituting and updating At and Tt , and mapping of their members is presented
below.Toward its prerequisite terminology, let Pt (of size N ) be the parent population;
Qt (of size N ) be the offspring population;R (of size N ) be the RV set; and tpast be
a user-defined parameter that represents the number of past generations involved in
the composition of At .

5.1.1.1 Input Archive Composition and Update

In any generation t , input archive At is intended to serve as a pool of reasonably
diverse distinct solutions from previous generations, which can be mapped onto
representative solutions in the current generation (target archive), so that (a) an ML
method could learn the directional improvements in the X space, and (b) such a
learning could be utilized for effective progression of some of the current offspring.
In this spirit, At = {Pt−tpast } ∪ {Qt−tpast , Qt−tpast+1, . . . Qt−1}. Notably

1 Natural offspring refers to the offspring initially created using the natural variation operators,
including recombination and mutation.
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1. First, both parents and offspring in the (t − tpast)th generation are included to
account for maximum diversity without incorporating duplicate solutions (since
parents and offspring in any generation are distinct).

2. In addition, only the offspring from the (t − tpast + 1)th until the (t − 1)th gen-
eration are included, while corresponding parents are excluded. This is done to
avoid duplicity of (parent) solutions, since, in any particular generation, not all
parents may be replaced by the offspring. This duplicity would be more prevalent
in the later generations of an RV-EMâOA-IP2 run (RV-EMâOA integrated with
IP2 operator), compared to the earlier generations.

Given its composition, At automatically updates with each increase in the gener-
ation counter t .

5.1.1.2 Target Archive Composition and Update

As indicated above, target archive in the current generation t , namely Tt is intended
to serve as a set of representative solutions, onto which the At members could be
mapped, providing a basis for ML training and its subsequent use. To this end, Tt
seeks to identify N solutions along the N RVs. From implementation perspective,
Tt is obtained by updating Tt−1 by accounting for the members in Pt . This poses two
pertinent questions, as to how (a) T1 is initialized, and (b) T2 is obtained by updating
T1 through the members in P2, reflecting in general as to how Tt can be obtained by
updating Tt−1 through the members in Pt .

T1 is initialized by associating with each RV one member of P1 as the target.
Different RV-EMâOAs can have different association criteria. For example, NSGA-
III [5] uses minimum perpendicular distance (PD) of a solution from the RV, as the
association criterion, whileMOEA/D [15] relies on the minimum value of the scalar-
ization function, such as achievement scalarization function (ASF) or penalty bound-
ary intersection (PBI). These criteria require normalized objective values, which can
be obtained as given by Eq.5.1. Here, Z ideal and Znadir represent the ideal and nadir
points, respectively:

f̄m(X) = fm(X) − Z ideal
m

Znadir
m − Z ideal

m

, ∀m ∈ {1, 2, . . . ,M}. (5.1)

Any subsequent generation t (t ≥ 2) entails two steps: (a) associating each mem-
ber of Pt with some RV, and (b) updating Tt−1. It may be noted that the association
in t = 1 is in stark contrast to the association in t ≥ 2. While the former ensured one
associated solution per RV (each RV being the reference for association), the latter
did not (each solution being the reference for association). Once the Pt members are
associated, there may exist some RVs with just one associated target, while others
may have two ormore targets.When two ormore target solutions exist, one of them is
selected based on the RV-EMâOA’s underlying association criterion (PD, ASF, PBI,
etc., as the case may be). In this background, the process of updating Tt is formal-
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ized in Algorithm5.1. Here, the objective values of the solutions in Tt−1 and Pt are
normalized (lines 1–2), and an array V , sized N × N , is initialized as an empty array
(line 3), so it can later store the association criterion values, referred to as the metric
values. Subsequently, for each solution (indexed i) in Pt : first, the metric value is
computed with respect to each RV,R( j) ∈ R (lines 5–7); the minimum metric value
is stored in V P , and the RV (indexed J ) offering this value is noted (lines 8–9). Let
V T be the metric value of the existing target associated with R(J ). If V P is better
than V T , then the considered (i th) parent solution becomes the target forR(J ) (lines
10–12).

Algorithm 5.1: Update_Target_Archive (Pt , Tt−1,R, Z ideal, Znadir)

Input: Parent population Pt , last target archive Tt−1, set of RVs R, ideal point Z ideal, nadir
point Znadir

Output: Updated target archive Tt
1 {FT , FP } ← Objective function values in {Tt−1, Pt }
2 {F̄T , F̄ P } ← Normalize the objective values using Z ideal and Znadir

3 V[N×N ] ← ∅ % stores evaluated metric values (PD/ASF/PBI)
4 Tt ← Tt−1
5 for i = 1 to N do
6 for j = 1 to N do
7 Vi, j ← Metric value of F̄ P

(i) w.r.t. R( j)

8 V P ← Store the minimum value of Vi, j , where j ∈ [1, N ]
9 J ← Calculate the index j , where Vi, j is same as V P

10 V T ← Metric value of F̄T
(J ) with respect to R(J )

11 if V P < V T then
12 Tt,(J ) ← Pt,(i)

For the benefit of the readers, the procedure for obtaining Tt (t ≥ 2) by updating
Tt−1 through the members in Pt is illustrated through an example, in Fig. 5.1. Here,
for each RV inR = {R1,R2, . . . ,R6}, there exists (a) a corresponding target from
Tt−1 = {m1, m2, . . . , m6}, and (b) no, unique, or multiple potential targets from
members in Pt = {s1, s2, . . . , s6}. Assuming NSGA-III to be the base RV-EMâOA,
preference among competing targets is given to non-dominated ones. However, if
there are two or more non-dominated targets, then the one with the lowermost PD
becomes the representative target.

1. ForR1,R3, andR6, the associated targets from Tt−1 arem1,m3, andm6, respec-
tively, while the corresponding targets from Pt are s1, s3, and s6, respectively. As
evident in the figure, for each of these RVs, the target member from Pt dominates
the target member from Tt−1. Therefore, s1, s3 and s6 become the targets ofR1,
R3, and R6, respectively, in Tt .

2. For R2, the associated target solution from Tt−1 is m2; however, there are two
potential target solutions from Pt , namely s2 and s3. Here, s2 emerges as the
updated target solution, since it dominates both s3 and m2.
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3. For R4, the associated target solution is s5 since it is non-dominated to m4 but
offers a lower value of PD.

4. For R5, the associated target solution from Tt−1 is m5; however, there is no
potential target solution from Pt . Even though s6 dominates m5, s6 is not con-
sidered since it is associated with another RV R6. Hence, m5 is retained as the
updated target solution.

Finally, the archive Tt is constituted by {s1, s2, s4, s5,m5, s6}.

5.1.1.3 Mapping of Input and Target Archives

This is the last step of the training-dataset constructionmodule, where the solutions
in At are mapped onto those in Tt , to yield training-dataset Dt . Each solution in At

is associated with some RV (as discussed above), and with each RV a solution from
Tt is associated (as discussed above). Therefore, the RV involved provides a basis for
the association of each solution in At with a particular solution in Tt . For example,
if a solution ai ∈ At is associated with a particular RV, say R j , then there is also a
solution, saymk ∈ Tt , that is associated withR j . Hence, the solution ai gets mapped
onto mk . Since the goal of the IP2 operator is to learn the directional improvements
in the X space, only the variable vectors (X vectors) of these solutions are stored in
Dt . In the context of the above example, the X vectors of ai and mk together form a
input -target sample for Dt . The dataset construction based on the mapping of the
input and target archives is summarized in Algorithm5.2.

Before moving on to how the constructed dataset can be utilized, the reader may
note the subtle considerations of convergence-diversity trade-off embedded in the
dataset, by choice. In Fig. 5.1,m5 is dominated by another target member (s6). Hence,
from the convergence perspective, it should ideally not be treated as one of the
target members. However, being the best and sole representative for R5 till the t th

Fig. 5.1 Depicting the
procedure for obtaining the
current target archive (Tt ) by
updating the previous target
archive (Tt−1) through the
current population (Pt ).
NSGA-III is assumed to be
the base RV-EMâOA, and
hence, non-domination
check and perpendicular
distance constitute the
criteria for association of a
solution with a RV

Reference Points

Existing Targets

Parent Population

New Targets
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Algorithm 5.2: Archive_Mapping (At , Tt , R, Z ideal, Znadir)

Input: Input archive At , target archive Tt , set of RVs R, ideal point Z ideal, and nadir point
Znadir

Output: training-dataset Dt

1 F A ← Objective function values in At

2 F̄ A ← Normalize the objective values using Z ideal and Znadir

3 Dt ← ∅
4 V[1×N ] ← ∅ % stores evaluated metric values
5 for i = 1 to si zeof (At ) do
6 for j = 1 to N do
7 Vj ← Metric value of F̄ A

(i) with respect to R( j)

8 I ← Index value where Vj is minimum
9 input ← X vector of At,(i); target ← X vector of Tt,(I )

10 Dt ← Add [input, target] to Dt

generation, it may deserve consideration from the diversity perspective. Broadly, the
following options are open to the handling of R5:

1. Both R5 and m5 are left out of consideration: in this case, a significant part of
theX space would remain unrepresented in Dt , and therefore may not be a good
choice.

2. R5 is considered but without m5 as its target solution: in this case, a non-
dominated solution from a neighboring RV can be assigned as the target for
R5, say s6. However, this may imply preference for convergence over diversity.

3. R5 is considered with m5 as its target solution: this choice would imply prefer-
ence to diversity even at the cost of poorer convergence.

In the approach presented here, a judicious choice in favor of the third option has been
made, guided by the rationale that (a) diversity preservation is crucial, especially in
the early RV-EMâOA generations, and (b) the marginal compromise in convergence
could possibly be overcome in subsequent generations as long as all regions of the
X space are explored equitably.

5.1.2 ML Training Module

The goal here is to train an MLmodel toward capturing the directional improvement
in the X space, which defines the transition of input solutions to their respective
target solutions, along all the RVs. For this task, random forest (RF) [2] is chosen
as the ML method here, though other multi-output regression methods could also
be used, including artificial neural network (ANN), gradient boost, XGBoost, least
angle regression, and support vector regression.

The ML training module is executed through (a) a pre-training step involving
normalization of the training-dataset using the dynamic normalization method, and
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(b) ML training itself, as presented in Algorithm5.3. Notably, each time the IP2
operator is invoked, a new ML model is trained and the last trained ML model is
discarded.

Algorithm 5.3: Training (Dt , [X (L), X (U )])
Input: training-dataset Dt , lower & upper bounds of variables specified in the problem, X (L)

and X (U )

Output: Trained ML model ML , Bounds [Xmin, Xmax]
1 {X (L ,t), X (U,t)} ← Minimum and Maximum of each variable in Dt

2 Xmin, Xmax ← Compute the dynamic normalization bounds using Eq.5.2
3 Normalize Dt using Xmin and Xmax as bounds
4 ML ← Trained ML model using Dt

5.1.2.1 Dynamic Normalization of the Training-Dataset

Training of an ML model (based on the training-dataset Dt ) involves minimizing a
loss/error function, such as mean squared error (MSE). Also, it is known that the
scales and ranges of different variables, depending on the problem at hand, may
be different. Hence, to ensure a fair training process, it is critical to even out each
variable’s contribution to the loss function, necessitating their normalization.

In the approach presented here, the normalized value of any variable xk , denoted
by x̄k , is given by Eq.5.2:

x̄k = xk − xmin
k

xmax
k − xmin

k

, (5.2)

where
xmin
k = 0.5

(
x (L)k + x (L ,t)k

)
, and xmax

k = 0.5
(
x (U )
k + x (U,t)

k

)
.

It is important to note that the variable bounds, xmin
k and xmax

k , used above are dynamic
in nature. In that, x (L)k and x (U )

k denoting the static permitted bounds for xk are
problem-specific features. However, x (L ,t)k and x (U,t)

k denoting the extent to which
the permitted bounds are explored until the generation t of RV-EMâOA are dynamic
in nature, and implicitly factor in the RV-EMâOA’s performance, thus far.

5.1.2.2 Training an RF Model

Once the normalization is executed, as discussed above, an RF model is trained on
the normalized training-dataset. This requires three critical settings: the number of
trees (Ntr); the number of variables/features considered while splitting a node (Nfeat);
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and the loss function. Assuming that the training-dataset Dt is constituted by Nsam

training samples, the parameters are fixed as Ntr = Nsam and Nfeat = n. The loss
function used is MSE, and the rest of the RF settings are kept as default.2

5.1.3 Offspring Progression Module

Here, the trained ML model is directly used for progression of some of the natu-
ral offspring solutions, without their prior evaluation. This module is executed as a
four-step process, where each step alters the X vector of the offspring. After progres-
sion, the pro-convergence offspring solutions are referred to as progressed offspring
solutions (Xpg). The constitutive steps of offspring progression are described below.

5.1.3.1 Selection and Progression

Once the natural offspring solutions (Qt ) are created, 50% of them are randomly
selected (�0.5N	 offspring) to avoid their evaluation a priori; and then trained ML
model is used for progression of the selected offspring. Since theMLmodel is trained
on the normalized dataset, the X vectors of the randomly chosen natural offspring
solutions are also normalized prior to their progression using the ML model, and
their denormalization is done after progression.

5.1.3.2 Near-Boundary Restoration

Consider a problem where some of the optimum solutions are characterized by the
extreme or boundary values for a particular variable xk , implying either x∗

k = x (L)k

or x∗
k = x (U )

k . It would be desirable for xk to reach its respective extreme at the
time of progression. However, during the initial or even intermediate generations
of the underlying RV-EMâOA, the training-dataset may predominantly contain xk
values away from its extremes. Therefore, the trained ML model may be biased
against the extreme values of xk . Consequently, if a natural offspring that has a
near-extreme value for xk is subjected to progression using the ML model, it is
likely that xk is driven in the opposite direction to what is desired. In such a case,
the progression of xk could be self-defeating. To help avoid such instances, it is
important that variables having values very close to their extremes are barred from
progression. From an implementation perspective, where the entire X vector of the
selected offspring is subjected to the trained ML model, without any direct control
over individual variables in the vector (some xk ∈ X ), it is imperative that progression
be undone for those variables which, prior to progression, had values very close to

2 The RF regressor used in this study has been taken from Scikit-learn’s Python implementation.



5.1 IP2 Operator for Convergence Enhancement 117

their extremes. To this effect, the original values are restored for all such variables
that, prior to progression, had values within 1% of either of their extremes.

5.1.3.3 Jutting the Progressed Offspring

Understandably, the ML model learns the directional improvements that define the
transition of solutions from previous generations to the best solution until the current
generation, along each RV. The current offspring’s progression using such an ML
model is based on the assumption that the directions found pertinent in the past
shall again help the offspring transition to better solutions. In this situation, the IP2
operator treats the learnt directions for different RVs as promising search directions,
and introduces the notion of step length through the parameter η, leading to jutted
offspring solutions, given by

X jpg = X + η × (Xpg − X), (5.3)

where X and Xpg mark the original and progressed offspring, respectively, and X jpg

represents the consequent jutted offspring. Notably, η = 1 leads to the originally
progressed offspring (X jpg = Xpg), while η > 1 leads to a different offspring (X jpg �=
Xpg). Fundamentally, jutting counters the limitation that many ML-based regression
methods, including RF, are not suitable for extrapolation, despite their excellence
in predicting the data that can be interpolated from the input training-dataset. In
effect, the challenge that the IP2 operator may not help create offspring solutions
in regions that can only be achieved by extrapolating on the current population is
greatly alleviated by jutting.

5.1.3.4 Boundary Repair

In the EMâO domain, there are several common methods to prevent an operation
from setting the value of a variable outside its original bound. These include (a)
replacing by the variable value at its respective bound, (b) choosing an arbitrary
value within the variable bound, or (c) mapping the value inward, proportionally as
much as it was outside the bound (reflection). While the first method may deteriorate
population diversity in theX space since several offspring may end up with the same
variable values (their respective bound), the second method may deteriorate search
efficiency by introducing random variable values into several offspring. Based on the
above, the IP2 operator incorporates a sophisticated variant of the third method [12].
In that, any variable xk ∈ X jpg that goes outside its permitted bounds ([x (L)k , x (U )

k ])
is mapped to an inner value based on an Inverse Parabolic Spread Distribution [12].

The overall process of the offspring’s progression, as described through the four
steps above, is summarized in Algorithm5.4.
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Algorithm 5.4: Progression (Qt , η, [Xmin, Xmax], [X (L), X (U )], ML)

Input: Original offspring Qt , jutting parameter η, bounds from Algorithm5.3 [Xmin, Xmax],
variable bounds in problem definition [X (L), X (U )]

Output: Progressed offspring Qt
1 I ← Randomly selected 50% offspring from Qt
2 for X ∈ I do
3 X̄ ← Normalize X using Xmin and Xmax

4 X̄pg ← ML(X̄)
5 Xpg ← Denormalize X̄pg using Xmin and Xmax

6 for each variable k ∈ [1, n] do
7 Restore xpgk to xk if xk lies in 1% vicinity of its bounds

8 X jpg ← Compute the jutted offspring using Eq.5.3
9 Perform the variable boundary repair on X jpg

10 Replace the original offspring X in Qt by X jpg

5.2 Integration of IP2 Operator into NSGA-III

This section describes the integration of the IP2 operator with NSGA-III, leading to
NSGA-III-IP2. This integration, summarized in Algorithm5.5, is generic in nature
and can be extended to any other RV-EMâOA.

Notably, Algorithm5.5 represents any intermediate generation t of NSGA-III-
IP2, and involves a new parameter, namely t IP2freq, that specifies the number of genera-
tions between two successive progressions. First, target archive Tt is updated using
Algorithm5.1 (line 1, Algorithm5.5). Then, the prerequisite condition for the first
invocation of IP2 operator—i.e., population being completely non-dominated—is
checked. If complete non-domination is detected, the start I P2 flag is marked as
True (lines 2–3, Algorithm5.5). The non-domination check is crucial toward ensur-
ing that before the IP2 operator is invoked for the first time, a reasonable diversity
in the Z space has been achieved, to effect better learning. Subsequently

• If t IP2freq generations have passed after IP2’s last invocation, then IP2 is invoked,
leading to creation of 100% natural offspring and progression of randomly chosen
50% offspring. Overall, Qt remains sized N (lines 4–8, Algorithm5.5).

• Otherwise, if IP2 is not invoked, all natural offspring (100%) are created and no
progression is executed (lines 9–10, Algorithm5.5).

• The offspring Qt are evaluated and the input archive is updated (lines 11–12,
Algorithm5.5).

• The survival selection procedure of NSGA-III is executed (line 13, Algorithm5.5).
• The count of offspring N surv

t that survived to the next generation is estimated. In
a generation where IP2 is invoked, if this count has improved compared to the
previous generation, implying good performance of the IP2 operator, then t IP2freq is
reduced by 1, resulting in a more frequent progression. Otherwise, if the count has
reduced, t IP2freq is increased by 1 (lines 14–17, Algorithm5.5).
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Algorithm 5.5: Generation t of NSGA-III-IP2

Input: Ideal point Z ideal, Nadir point Znadir , Reference vector set R, original variable
bounds [x (L), x (U )], Parent population Pt , Target Archive Tt−1, Input Archive At ,
number of past generations tpast used in At , frequency of progression t IP2freq, number of

survived offspring in (t − 1)th generation N surv
t−1

Output: Pt+1, Tt , t IP2freq, At+1, N surv
t

1 Tt ← Update the target archive using Algorithm5.1
2 if population is completely non-dominated then
3 start I P2 ← True

4 if start I P2 & t IP2freq generations passed after last invocation then
5 Dt ← Create the training-dataset using Algorithm5.2
6 ML ← Train the ML model using Algorithm5.3
7 Qt ← Create 100% offspring using natural variation operators
8 Qt ← Progression of randomly picked 50% offspring using Algorithm5.4

9 else
10 Qt ← Create 100% offspring using natural variation operators

11 Evaluate Qt
12 At+1 ← Update the input archive for IP2 operator
13 Pt+1 ← Perform survival selection on Pt ∪ Qt
14 N surv

t ← Count of offspring in Qt that survived to Pt+1
15 if IP2 was invoked in current generation then
16 if N surv

t > N surv
t−1 then reduce t IP2freq by 1

17 if N surv
t < N surv

t−1 then increase t IP2freq by 1

5.3 Degree of IP2 Operator Utilization: Critical
Considerations

The efficacy of any RV-EMâOA-IP2 vis-à-vis the base RV-EMâOA is bound to be
influenced by the following decisions: (a) the frequency with which the IP2 operator
is invoked (value of t IP2freq), and (b) the percentage of total offspring created using
the IP2 operator, in any generation where it is invoked. In principle, such decisions
should address the dual considerations of

• Convergence–diversity balance: conventionally, the natural variation operators
(say, recombination and mutation) utilize the principle of guided randomness to
produce the offspring solutions QV, without any explicit consideration of their
convergence or diversity characteristics. Such convergence–diversity-neutral off-
spring, along with parent solutions, serve as input to the selection operator, which
pursues EMâO’s dual goals of convergence and diversity. Hence, it is imperative
that, in any generation, the offspring resulting through the IP2 operator are not
overskewed in favor of either convergence or diversity.

• Risk–reward trade-off: notably, the IP2 operator relies on learning the efficient
search directions (in X space), based on the mapping of inter-generational solu-
tions in Z space. Clearly, there is a possibility that such a learning may not be
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Source of offspring 
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subjected to selection

Linkage of offspring solutions with the dual 

goals in EMâOAs
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RV-EMâOA-IP2 IP2 V

Fig. 5.2 Symbolic depiction of the degree of IP2 operator’s contribution to convergence and diver-
sity, over an entire run of RV-EMâOA-IP2. The natural offspring QV do not impose any explicit
preference for convergence or diversity, hence, are marked by a different color

meaningful due to multiple factors, including the nonlinearity in the given prob-
lem; training-dataset comprising intermediate generation solutions which may not
be representative of the Pareto front (PF); and choice of ML methods. Hence, it
is imperative that the degree of reliance on the IP2 operator is moderated, consid-
ering the risk–reward trade-off associated with the accuracy of the underlying ML
models.

The approach presented here recognizes that both the key considerations of
convergence–diversity balance and the risk–reward trade-off could be addressed by
ensuring that over the entire run of RV-EMâOA-IP2 (accounting for all generations
up to termination), the share of convergence–diversity-neutral offspring (QV) out-
weighs the contribution of pro-convergence offspring (QIP2). Although this could be
ensured in multiple ways, here it is implemented by keeping the proportion of QIP2

in each generation where IP2 is invoked as 50%; and keeping t IP2freq ≥ 1. The justifi-
cation is that (i) in those generations where IP2 is invoked, QV shall still contribute
50% of N , and (ii) in generations where IP2 is not invoked due to t IP2freq ≥ 1, QV shall
contribute 100% of N . Hence, as symbolically depicted in Fig. 5.2, the overall con-
tribution of QV across all generations is guaranteed to be dominant. Notably, in this
figure QV is separated from QIP2 through a fuzzy boundary. This is due to the fact
that a priori quantification of QV’s exact share for an entire run of RV-EMâOA-IP2
is not possible, since t IP2freq is adapted on-the-fly based on the survival rate of QIP2.

5.4 Computational Complexity of IP2 Operator

This section discusses the computational complexity of the IP2 operator, in reference
to the time and space complexities of each of its constituent modules.

5.4.1 Training-Dataset Construction Module

Thismodule pertains to the update of At and Tt , andmapping of the solutions therein.
The respective time complexities of these three steps are given below.
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• Update of the input archive: The process of updating At to At+1 involves replacing
the 2N solutions. These solutions are known and their selection does not involve
any additional computation. Hence, the time complexity of this step is O(N ).

• Update of target archive: The process of updating Tt is summarized in
Algorithm5.1. It includes N × N computations of the metric (such as PD or PBI
or ASF), which has the complexity ofO(M). Hence, the resulting time complexity
is O(MN 2).

• Archive mapping: The overall process is summarized in Algorithm5.2. It includes
si zeo f (At ) × N computations of the association criterion. From the defined com-
position of At , si zeo f (At ) = N (tpast + 1). Hence, the resulting time complexity
of the archive mapping step is O(MN 2tpast).

During training-dataset construction, the input archive At , the target archive Tt
and the training-dataset Dt are stored. Taking into account the sizes of At , Tt , and Dt ,
their space complexities are O(Ntpast), O(N ), and O(Ntpast), respectively. Hence,
theworst time and space complexities of thismodule areO(MN 2tpast) andO(Ntpast),
respectively.

5.4.2 ML Training Module

The training-dataset (constructed in the previous module) is used to train the RF
in this module. The worst-case time complexity of training an RF is O(NtrnN 2

sam
log (Nsam)), where Ntr denotes the number of trees in the RF, Nvar denotes the
number of variables or features considered in the RF, and Nsam denotes the number
of training samples or the size of training-dataset that is used to train the RF [11].
Similarly, the worst-case space complexity of the RF is O(NtrnNsam). According
to the parameter settings discussed in Sect. 5.1.2, Ntr = N (tpast + 1), n = n, and
Nsam = N (tpast + 1). Upon substituting their values and simplifying, the obtained
time and space complexities of the ML training module areO(N 3t3pastn log (Ntpast))
and O(N 2t2pastn), respectively.

5.4.3 Offspring Progression Module

Evidently, this module (Algorithm5.4) is executed in four steps, namely (a) selection
and progression, (b) near-boundary restoration, (c) jutting, and (d) boundary repair.
In the last three steps (b–d), the respective functions have a time complexity ofO(n),
which are repeated for �0.5N	 solutions. Hence, their time complexity is O(Nn).
However, in the first step of selection and progression, the trained RF model is used
for progression of �0.5N	 offspring. From [11], the worst-case time complexity for
prediction using an RF isO(NtrnNsam), which is the same as the space complexity of
theRFas discussed in the previous subsection.Upon simplifying, the time complexity
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Table 5.1 Time- and space complexities of different modules of the IP2 operator

Module Time complexity Space complexity

Training-dataset generation O(MN 2tpast) O(Ntpast)

ML training O(N 3t3pastn log (Ntpast)) O(N 2t2pastn)

Offspring’s progression O(N 3t2pastn) –

of a prediction through RF becomesO(N 2t2pastn). Since �0.5N	 predictions aremade
(considering progression of only �0.5N	 offspring), the resulting time complexity is
O(N 3t2pastn). Moreover, since the progressed offspring replace the original offspring,
there is no related space complexity of the offspring’s progression module.

The worst-case time and space complexity of each constituent module of the IP2
operator is summarized in Table5.1. Evidently, training an RF has the highest time
complexity, while the trained RF model has the highest space complexity.

5.5 Experimental Setup

This section sets the foundation for experimental investigation, by highlighting the (i)
test suite considered, (ii) performance indicators used and related statistical analysis,
and (iii) parameters pertaining to the RV-EMâOA(s) and the IP2 operator.

5.5.1 Test Suite

To demonstrate the search efficacy infused by the IP2 operator into an RV-EMâOA,
several two- and three-objective problems with varying degrees of difficulty have
been used. These include the ZDT [16], DTLZ [6] and MaF [3] problems3 with the
following specifications.

• ZDT (M = 2): their respective g(X) have beenmodified to have the Pareto-optimal
solutions at x∗

k = 0.5 ∀ k ∈ {2, . . . , 30}, instead of x∗
k = 0. Such a shifting of

optima to a non-boundary value devoids the IP2 operator of any biased advantage,
owing to its boundary repair method, leading to a fair comparison. To emphasize
this difference, themodified ZDTproblems are referred to as Z̃DT in the remainder
of this book.

• DTLZ and MaF (M = 3): the distance variables k have been kept as 20, to make
the problems convergence-harder, compared to the generally used k = 5 or 10.

3 Notably, the redundant problems such as DTLZ5, DTLZ6, and MaF6 have been excluded. Since
only a small number ofRVs pass through PF of these problems, they are ineffective in demonstrating
the efficacy of the IP2 operator that learns the search directions along the RVs. In addition, DTLZ7
has been omitted since it overlaps with MaF7, already considered in the test suite.
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5.5.2 Performance Indicators and Statistical Analysis

Hypervolume has been used as the primary performance indicator, as it serves as
a combined indicator of convergence and diversity. Computing the hypervolume
requires a reference point to be specified,which is set as R1×M = [1 + 1

p , . . . , 1 + 1
p ]

[9],where p is the number of gaps set for theDas–Dennismethod [4]while generating
the RVs for RV-EMâO. Notably

• While for the Z̃DT and DTLZ problems, the scales of different objectives are
equal, they differ for some MaF problems. Hence, the solutions are normalized in
the Z space using the theoretical PF extremes for the latter.

• While the median values of hypervolume from two algorithms can be compared
directly (the higher, the better), these values are subjected to a statistical analysis
using the Wilcoxon ranksum test [14]. Here, the threshold p-value of 0.05 (95%
confidence level) has been used.

Notably, hypervolume jointly indicates the quality of convergence and diversity,
as assessed in the Z space. For further insights into the convergence levels in the X
space, the population mean of the g(X) function values has also been reported.

5.5.3 Parameter Settings

In this subsection, the parameters and settings used for (a) the RV-EMâOA, that is,
NSGA-III, and (b) the IP2 operator, i.e., tpast, t IP2freq, and η, have been discussed.

5.5.3.1 RV-EMâOA Settings

With an aim to obtain a reasonably sized set ofRVsusing thewell-knownDas–Dennis
method [4], the gap parameter p is set as (i) p = 99 for two-objective problems,
leading to 100 RVs, and (ii) p = 13 for three-objective problems, leading to 105
RVs. For coherence, the population sizes of N = 100 and N = 105 are used in
NSGA-III, for two- and three-objective problems, respectively. Furthermore, the
natural variation operators include SBX (pc = 0.9 and ηc = 20) and polynomial
mutation (pm = 1/n and ηm = 20) for an n variable problem.

For each test instance, the performance of eachRV-EMâOAhas been assessed over
its runs with 31 random seeds. To avoid arbitrary fixation of termination (maximum
allowed) generations tmax, a stabilization tracking algorithm [13] has been included
in NSGA-III-IP2. This stabilization tracking algorithm requires a set of parameters,
kept as ψterm ≡ {3, 50}, which suggests tmax for NSGA-III-IP2 on-the-fly. The mean
tmax determined for NSGA-III-IP2 over 31 runs has been used as tmax for NSGA-III.
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5.5.3.2 IP2 Operator Settings

The IP2 operator involves three parameters: tpast, t IP2freq, and η. Here, tpast controls the
size of the input archive At and the training-dataset Dt ; t IP2freq controls the invocations
of the IP2 operator; and η controls the degree of jutting of the progressed offspring.

Here, t IP2freq has been adapted on-the-fly based on the survival of the offspring, as can
be observed in Algorithm5.5. Its initial value is set as 1. To avoid an ad hoc fixation
of η, it is set as a random value in [1.0, 1.5], implying a maximum of 50% extra
progression along the learned search directions. While t IP2freq and η could be rationally
adapted or set, the direct impact of tpast on the performance of the IP2 operator is
uncertain. Toward this, the behavior of NSGA-III-IP2 with respect to different values
of tpast has been briefly discussed and investigated here.

Asmentioned above, tpast controls the size of the training-dataset Dt . The potential
implications of varying tpast, on the performance of the IP2 operator are mentioned
below.

• A lower value of tpast would lead to a smaller size of Dt , and would require a lower
ML training time, since its dependence on tpast can be given as O(t3past log tpast).
However, the size of Dt may become insufficient to train the ML model well.

• On the other hand, a higher value of tpast would lead to a larger (sufficient) size
of Dt , but would consequently require a higher ML training time. In addition, the
directional improvements (in theX space) learnt from a longer history of solutions
may not be pertinent for subsequent generations.

In thewake of the above, it is fair to infer that the value of tpast should be in a certain
range, such that a sufficient size of Dt can be obtained, and a higherML training time
can be avoided. Toward this, a sample parametric study on tpast is presented here, on
three problems from different test suites, namely Z̃DT1, DTLZ1, and MaF1, with
tpast = {1, 3, 5, 7, 9}. The median hypervolume obtained by NSGA-III-IP2 at tmax

generations determined on-the-fly is shown in Table5.2. In that, the best-obtained
hypervolume and its statistically equivalent results are marked in bold.

Interestingly, Table5.2 suggests that for the considered problems, the performance
of NSGA-III-IP2 is not very sensitive to the choice of tpast. Notably, among the
potential values, tpast = 5 is picked for further use in this book, since it (i) emerges
as the lowest value offering good performance for all the problems, and (ii) promises
a moderate ML training time. It may be fair to hypothesize that even for unknown
problems, tpast = 5 may suitably balance the requirements of—a reasonably sized
training-dataset and moderate ML training time, if a reasonable population size (N )
is used by the underlying EMâOA.

Table 5.2 Median hypervolume obtained by NSGA-III-IP2 with different tpast values

Problem tpast = 1 tpast = 3 tpast = 5 tpast = 7 tpast = 9

Z̃DT1 0.681859 0.681859 0.681859 0.681859 0.681859

DTLZ1 1.222185 1.222243 1.22407 1.222514 1.22193

MaF1 0.233907 0.235205 0.234613 0.236887 0.233841
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5.6 Results and Discussions

This section compares the performance of NSGA-III-IP2 vis-à-vis NSGA-III, on a
wide range of test problems. It is important to acknowledge that the performance
enhancements offered by the IP2 operator could be interpreted, in terms of

1. Improvement in the quality of PF-approximation: this is realistic in situations
where the base RV-EMâOA may fail to approximate the PF well, owing to the
difficulty of the underlying problem. In such a scenario, it may be fair to expect
that the IP2 operator helps improve the quality of PF-approximation.

2. Improvement in the speed of PF-approximation: this is realistic in situations
where the underlying problem is not difficult enough, and the base RV-EMâOA
run sufficiently long, and is able to approximate the PF well. In such a scenario,
the IP2 operator could only speed up the PF-approximation.

Notably, the scope of the proof-of-concept results, presented here, has been
restricted to the use of only one ML method, i.e., RF. However, a recent study [1]
has revealed that the performance of the IP2 operator is reasonably robust and not
too sensitive to the choice of underlying ML method.

5.6.1 General Trends

As highlighted earlier, hypervolume has been used as the primary performance indi-
cator, supported by the g(X) function, for further insights. In this background,
Table5.3 reports the median hypervolume and median g(X) values, from among
the 31 randomly seeded runs at the end of tmax generations.

In that, tmax has been determined on-the-fly for NSGA-III-IP2, and the same has
been used for NSGA-III. From this table, the following can be observed.

• In terms of the hypervolume: NSGA-III-IP2 performs either statistically better
than or equivalent to NSGA-III in 20 out of the 21 test instances.

• In terms of the g(X) values: NSGA-III-IP2 performed statistically better than or
equivalent to NSGA-III in each of the 18 test instances, where g(X) function was
existent/computable (instances, where it is not existent, are marked by ‘–’).

To share more insights into these results, sample two- and three-objective prob-
lems where NSGA-III-IP2 reported statistically better than or equivalent hypervol-
ume measures, than NSGA-III, are discussed below. In addition, the anomalous
instance of MaF1 where NSGA-III-IP2 reported statistically worse hypervolume
measures, than NSGA-III, is also discussed.
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Table 5.3 Hypervolume and g(X)-based comparison of NSGA-III and NSGA-III-IP2 on bench-
mark Z̃DT, DTLZ, and MaF problems, at tmax generations determined on-the-fly for NSGA-III-IP2
using a stabilization tracking algorithm. In each row, the respective generations (tmax) are shown
with the median hypervolume values and median g(X) values. The best performing algorithm and
its statistical equivalent are marked in bold

Problem tmax Median hypervolume Median g(X)

NSGA-
III

NSGA-
III-IP2

p-value g(X)∗ NSGA-
III

NSGA-
III-IP2

p-value

M = 2 Z̃DT1 1197 0.681860 0.681860 8.46E-02 1 1.000732 1.000427 2.47E-07

Z̃DT2 1280 0.348793 0.348794 3.66E-02 1 1.000580 1.000315 6.19E-08

Z̃DT3 1005 1.068427 1.068537 8.98E-02 1 1.006285 1.005028 4.21E-04

Z̃DT4 1768 0.681859 0.681860 4.10E-01 1 1.000040 1.000001 3.59E-07

Z̃DT6 1808 0.312677 0.319672 6.86E-06 1 1.429366 1.356089 1.76E-06

M = 3 DTLZ1 1408 1.221260 1.221979 3.28E-01 0 0.022966 0.014078 3.35E-01

DTLZ2 970 0.667330 0.667333 2.75E-01 0 0.000021 0.000030 8.38E-01

DTLZ3 1658 0.649913 0.660617 3.78E-02 0 0.009864 0.003851 3.78E-02

DTLZ4 1509 0.667305 0.667316 6.07E-01 0 0.000021 0.000015 9.05E-01

MaF1 603 0.236040 0.234557 2.99E-05 0 0.001816 0.001299 4.32E-05

MaF2 500 0.396730 0.396523 2.03E-01 0 0.145610 0.097152 8.32E-05

MaF3 2078 1.193480 1.193830 1.49E-01 0 0.004076 0.003067 1.41E-01

MaF4 1315 0.615647 0.627573 7.40E-05 0 0.023300 0.010995 9.35E-05

MaF5 1344 1.227613 1.227601 8.21E-02 0 0.000036 0.000047 3.01E-01

MaF7 1215 0.375931 0.376036 5.13E-01 1 1.003598 1.003468 7.84E-01

MaF8 1510 0.464343 0.463852 1.16E-01 – – – –

MaF9 1326 0.626818 0.626816 6.62E-02 – – – –

MaF10 982 0.527672 0.516973 7.04E-02 0 0.017232 0.018419 6.17E-01

MaF11 965 0.980408 0.979677 6.37E-01 0 0.000993 0.001157 8.46E-02

MaF12 737 0.600200 0.614154 4.16E-09 0 0.260721 0.180398 8.72E-03

MaF13 934 0.367100 0.372636 2.90E-03 – – – –

Total −→ 15 20 of 21
probs.

8 18 of 18
probs.

Note (–) implies that the concerned problem does not have a g(X) function; and g(X)∗ =
g(X)|X∈PS , where PS is the Pareto-optimal set

5.6.2 Insights into Two- and Three-Objective Problems

For a sample discussion on a two-objective problem, the Z̃DT1 problem has been
randomly chosen. Figure5.3a and b shows the generation-wise median hypervolume
and median g(X) plots, respectively, among the 31 randomly seeded runs of NSGA-
III and NSGA-III-IP2. The termination generation tmax had been set as 1197 for
NSGA-III, as was determined on-the-fly for NSGA-III-IP2. Interestingly, both the
hypervolume and the g(X) measures suggest that the base NSGA-III alone could
approximate PF well (note, g(X)|X∈PS = 1, where PS refers to the Pareto-optimal
set). Therefore, according to the premise for interpretation of the results, laid in the
beginning of this section, the scope of possible enhancements by the IP2 operator
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(a) Median hypervolume until tmax (b) Median g(X) until tmax

(c) Median hypervolume in early generations (d) Median g(X) in early generations

Fig. 5.3 Results and analysis of the IP2 operator on two-objective Z̃DT1 problem

reduces to speeding up of the PF-approximation. In fact, this is the case, as supported
by Fig. 5.3c and d. In that, as the focus is restricted to only the early generations,
NSGA-III-IP2 can be seen to offer superior hypervolume and g(X) measures, right
after the underlying IP2 operator is invoked.

As a follow-up, the MaF12 problem has been chosen for a sample discussion of
a three-objective problem. Figure5.4a and b shows the median hypervolume and
median g(X) plots by generation, respectively, among the 31 randomly seeded runs
of NSGA-III and NSGA-III-IP2. The termination generation tmax was set as 737
for NSGA-III, as determined on-the-fly for NSGA-III-IP2. Evidently, this presents
an instance where the base NSGA-III could not offer a good PF-approximation.
This is because, even around 737 generations, the hypervolume for NSGA-III could
not stabilize, and the corresponding g(X) measures remained far from the desired
g(X)|X∈PS = 0. Hence, according to the premise for the interpretation of the results,
laid in the beginning of this section, such a scenario points to the possibility of
improvement in the quality of PF-approximation by the IP2 operator. This is indeed
the case, as supported by

• Better hypervolume and g(X) measures/trend for NSGA-III-IP2 in Fig. 5.4a and
b, respectively.

• Figure5.4c and d, where NSGA-III-IP2 can be seen to offer superior hypervolume
and g(X) measures, right after the underlying IP2 operator is invoked.
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(a) Median hypervolume until tmax (b) Median g(X) until tmax

(c) Median hypervolume in early generations (d) Median g(X) in early generations

Fig. 5.4 Results and analysis of the IP2 operator on three-objective MaF12 problem

Fig. 5.5 Actual Offspring
progression at t = 35 (a
randomly chosen
intermediate generation in
which the IP2 operator was
invoked) to visually depict
the ability of the underlying
RF model

While the above discussions explain the general trend of the results in Table5.3,
the focus here is to share visual insights on why the IP2 operator is able to enhance
the performance of NSGA-III. Toward it, the Z̃DT1 problem has been chosen, and
the capability of the RF model trained in a randomly chosen intermediate generation
in which the IP2 operator was invoked (t = 35, for the median run of NSGA-III-
IP2) is visually depicted in Fig. 5.5. In that, nearly half of the progressed offspring
population can be seen to be superior to the original offspring population, while
the remaining half can be seen to overlap. This is in agreement with the offspring
progression module, where only 50% of the original offspring is subjected to the
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RF model, hoping for better convergence characteristics. To summarize, the IP2
operator’s ability to enhance NSGA-III’s performance could plausibly be attributed
to the cumulative effect of

1. Direct improvements in terms of convergence, over all generations where IP2 is
invoked,

2. Availability of better parents for recombination in the subsequent generations
(where IP2 is not invoked). Notably, in the generation immediately after the
invocation of the IP2 operator, the better fraction of the progressed offspring
population is likely to be selected as recombination-contributing parents, leading
to better offspring than otherwise possible. This has a recursive impact since better
offspring in this generation may contribute as fitter parents in the subsequent
generation, and so on.

5.6.3 Insights into the MaF1 Problem

As highlighted earlier, MaF1 happened to be the only problem in Table5.3, where
NSGA-III-IP2 reported statistically worse hypervolume measures than NSGA-III.
This is accompanied by the fact that NSGA-III-IP2 still managed to have statistically
better measures for g(X), than NSGA-III. These trends imply that, compared to
NSGA-III:

• NSGA-III-IP2 performs better in the convergence criterion (g(X)) but is poorer
in the conjoint convergence–diversity criteria (hypervolume).

• The loss in diversity corresponding to the use of IP2 is more significant than the
corresponding gain in convergence.

The latter is validated by Fig. 5.6, where NSGA-III can be seen to offer better
diversity (in terms of both the spread and the distribution within that spread) than
NSGA-III-IP2. This could, in turn, be explained through the two factors highlighted
below

• MaF1 is a problem with inverted PF , which is known to pose challenges to RV-
EMâOAs, sinceonly a fractionof theunderlyingRVspass through the true PF [10].

• The above challenge could be further augmented by the possibility that some
of the 50% offspring that are randomly chosen for progression may have been
the sole representatives of some of the RVs that pass through the true PF . After
progression of the chosen offspring, some of the underlying RVs may not be left
with any associated solution. This may negatively impact PF coverage/diversity.

Notably, the above potential pitfall points to the importance of the diversity
enhancing (IP3) operator, or the unified operator (UIP) that simultaneously pursues
both convergence and diversity. As already highlighted, these operators are discussed
in the subsequent chapters.
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Fig. 5.6 NSGA-III and
NSGA-III-IP2 populations at
tmax, for the MaF1 problem
(M = 3)

5.7 Summary

In this chapter, the IP2 operator for convergence enhancement of RV-EMâOAs has
been presented. The IP2 operator is constituted by three modules, including training-
dataset construction,ML training, and offspring progression. The first modulemaps
the inter-generational solutions along the RVs (generated in the objective space)
and utilizes their underlying variable vectors to construct the training-dataset. The
second module trains an ML model on the above dataset to learn the underlying
directional improvements in variable space. The third module utilizes this trained
model for progression of 50% of the natural offspring (�0.5N	 in number, where
N is the population size). Notably, the progressed offspring replace their underlying
natural offspring, with the hope that such offspring will contribute to better conver-
gence, over the RV-EMâOA generations. The hallmark of the IP2 operator is that its
design and usage is guided by the overarching criteria to—avoid additional solution
evaluations beyond those required by the base RV-EMâOA; favorably manage the
convergence–diversity balance and ML-based risk–reward trade-off; and minimize
ad hoc parameter fixes. Experimental results on several convergence-hard problems
reveal that compared to the base NSGA-III, NSGA-III-IP2 performed better in about
29% test cases, and better or equivalent in about 95% test cases.
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Chapter 6
Learning to Diversify Better:
IP3 Operator

It was emphasized earlier that evolutionary multi- and many-objective optimization
algorithms, jointly referred to as EMâOAs, pursue the dual goals of convergence to
and diversity across the true Pareto front (PF). In that, diversity must be interpreted
in terms of the extent of spread (coverage of PF) and uniformity of distribution
within a given spread. The goals of reference vector (RV)-based EMâOAs, namely
RV-EMâOAs, are no different. In the last chapter, the machine learning (ML)-based
IP2 operator has been presented aiming to enhance convergence of RV-EMâOAs, by
creating pro-convergence offspring. This chapter presents an ML-based Innovized
Progress 3 (IP3) operator to cater to the other goal of diversity, by creating pro-
diversity offspring. In analogy with the IP2 case, an RV-EMâOA integrated with the
IP3 operator is referred to as RV-EMâOA-IP3.

In any generation of an RV-EMâOA-IP3, if the IP3 operator gets invoked, it relies
on (a) learning the efficient search directions in variable space (X space) based on
a mapping of intra-generational solutions across the RVs, in the objective space (Z
space); and (b) using the learned directions, for creation of pro-diversity offspring
(in X space). Notably, if the population size used by RV-EMâOA-IP3 is N , then the
IP3 operator—whenever invoked—contributes to �0.5N� pro-diversity offspring,
referred to as QIP3. Furthermore, as in the case of IP2 operator, the frequency with
which IP3 is invoked (tIP3freq) is adapted on-the-fly based on the survival rate of QIP3.

Although the details of the IP3 operator are presented in subsequent sections, a
higher level depiction of how it operates when invoked is symbolically presented in
Fig. 6.1. Here, the parent solutions, shown in white circles, are associated only with
a few RVs. The fact that some RVs do not have an associated solution symbolizes
poor distribution/diversity. The IP3 operator facilitates the progression of some of
these parent solutions, so that the resulting solutions—considered as offspring—
cover some of unassociated RVs, contributing to improved uniformity; and get driven
beyond the normalizedZ space, contributing to better spread. This figure also makes
it intuitive that such a progression of parent solutions is possible by restricting the
focus on the same-generation solutions associatedwith different RVs (hence, the term
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Fig. 6.1 A symbolic
depiction of how the
progression of some Parents
in a given generation (shown
in white circles), facilitated
by the IP3 operator, can
contribute to expanded
spread (denoted by S), and
improved uniformity
(denoted by U)
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Objective-space 

in generation 

True 

U

U

U

S

intra-generational is used), in contrast to the IP2 operator, where the use of solutions
from multiple generations was necessary (hence, the term inter-generational was
used).

It may be recalled that the efficacy of RV-EMâOA-IP2 over the base RV-EMâOA
could be attributed to three key features of the IP2 operator—efficientmanagement of
the convergence-diversity balance and ML-based risk-reward trade-off, while avoid-
ing any extra solution evaluations. It is significant to note that the limited details of
the IP3 operator presented above suffice to establish that the IP3 operator is well
poised to retain the three key features, as explained below

• In any generation of an RV-EMâOA-IP3 (working with a population size of N )
run, if IP3 is invoked, it contributes to �0.5N� pro-diversity offspring. Clearly,
in generations where IP3 is not invoked, all N offspring are natural1 offspring.
Hence, the overall contribution of natural offspring, QV, across all generations of
an RV-EMâOA-IP3 run, is guaranteed to be dominant, as symbolically depicted2

in Fig. 6.2. The predominance of convergence-diversity-neutral QV would ensure
that the convergence-diversity balance is not disrupted and that the ML-based
risk-reward trade-off is favorably managed.

• The avoidance of any extra solution evaluations by RV-EMâOA-IP3, compared to
the base RV-EMâOA, is ensured by creating �0.5N� natural offspring and �0.5N�
pro-diversity offspring through progression of the parent solutions (already eval-
uated).

1 Natural offspring refer to the offspring initially created using the natural variation operators,
including recombination and mutation. Such offspring are said to be convergence-diversity-neutral,
since they are not created with an explicit aim to promote either convergence or diversity.
2 Here, it is also notable that QV is separated from QIP3 through a fuzzy boundary. This is due to
the fact that tIP3freq is adapted on-the-fly based on the survival rate of QIP3, and therefore a priori

quantification of QV’s exact share for an entire run of RV-EMâOA-IP3 is not possible.
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Source of offspring 
solutions that are 

subjected to selection

Linkage of offspring solutions with the dual 
goals in EMâOAs

Convergence Diversity

RV-EMâOA

RV-EMâOA-IP2
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Fig. 6.2 Symbolic depiction of the convergence-diversity balance across all generations of RV-
EMâOA-IP3 vis-à-vis RV-EMâOA-IP2 and base RV-EMâOA. The natural offspring QV do not
impose any explicit preference for convergence or diversity, and, hence, are marked by a different
color

The remaining chapter is organized as follows: the IP3 operator is detailed in
Sect. 6.1, while its integration with NSGA-III [4], an RV-EMâOA, is presented in
Sect. 6.2. Its computational complexity is highlighted in Sect. 6.3. Finally, Sect. 6.4
highlights the experimental settings, leading to the presentation of the results in
Sect. 6.5.

6.1 IP3 Operator for Diversity Enhancement

Analogous to the IP2operator, the IP3operator encapsulates threemodules, including
Training-dataset construction,MLTraining, andOffspring Creation. The design and
implementation of these modules is discussed below.

6.1.1 Training-Dataset Construction Module

This subsection is divided into three parts, in that, first, the mapping requirements
are identified vis-à-vis the end goal of diversity enhancement that the IP3 operator is
expected to serve; then, the constitution of the training-dataset is presented, followed
by its algorithmic implementation.

6.1.1.1 Deciphering Solution-Mapping Requirements Toward Diversity
Enhancement

It must be acknowledged up front that the training-dataset is to be designed in a
manner that the consequent ML model can cater to both aspects of diversity: (a)
complete coverage of the true PF , i.e., spread of solutions, and (b) uniform distribu-
tion of solutions within the spread.
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(a) Concept of neighborhood (b) The solution-mapping challenge

Fig. 6.3 Setting the context for training-dataset construction for diversity enhancement (taken from
[10])

As a precursor, the notion of neighborhood may be noted. Let r represent the
average spacing on the unit simplex in the Z space between any two adjacent RVs,
say Ri and Rj as in Fig. 6.3a. For a solution Si associated with Ri, its neighbor-
hood is defined as the set of solutions that are associated with the adjacent Rj, that
is, Nbd(Si) ≡ {Sj| 0.5r < dist(Ri, Sj) ≤ 1.5r}. Hence, in the context of Fig. 6.3a:
Nbd(Si) ≡ {Sj1, Sj2}. Given this, a sample scenario with scope for diversity improve-
ment is shown in Fig. 6.3b. In that, the solutions are projected onto the unit simplex,
where the RVs are created. In particular, the (RV)RE does not have a solution asso-
ciated with it, and the corresponding void marks a poor distribution of solutions. This
could potentially be resolved if a trained ML model could enable the progression
of one of the neighboring solutions (within dotted circles) to RE . A natural choice
for progression to RE is the closest solution Sa. This progression of Sa requires an
improvement in f1 and f2, and a deterioration in f3. Alternatively, if, say, Sa was not
present, then the next closest Sb could be chosen for progression toRE , characterized
by an improvement in f3 and a deterioration in f1 and f2. These potential instances
illustrate the challenge that a generic characterization of the progression of differ-
ent solutions, onto an empty RV, is not possible in terms of transitions in all the
objectives.

In view of this, alternative is that if M ML models can be trained (one for each
objective, indexed as m ∈ {1, . . . ,M }) to help each solution improve in any specific
objective, then both aspects of diversity can be improved, as highlighted below.

• Uniformdistribution: toward it, (i) the nearest neighboring solution to an emptyRV
can be identified; (ii) the objective undergoing maximum change (improvement or
deterioration) during the progression of this solution to the RV can be determined,
say fm; and (iii) the mth ML model can be used for the progression of the solution.
For example, in Fig. 6.3b, suppose that the progression of Sa to RE entails a
maximum change (improvement) in f2. Then Sa can be subjected to the second
ML model. Alternatively, if the progression of Sa entails a maximum change
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(deterioration) in f3, then the third ML model can be used, simply by reversing its
direction of progression.

• Spread expansion: toward it, all boundary RVs having at least one associated
solution can be identified first. This implies identifying RVs that have (i) at least
one of their weight components as zero and (ii) at least one associated solution.
Then, the ML model corresponding to a zero component of the RV can be used
for spread expansion. For example, Rc in Fig. 6.3b, associated with Sc, will have
its second component as zero. Therefore, the second ML model promising an
improvement in f2 could be applied to Sc, resulting in expansion of the overall
spread, as symbolically highlighted by an arrow from Sc, away from the current
unit simplex.

6.1.1.2 IP3 Operator’s Training-Dataset

The need forM MLmodels points to the need forM training-dataset. Before detailing
how theseM dataset could be constituted, it is important to note the prerequisite step
of projecting the current generation solutions in the Z space onto the unit simplex
overwhich theRVs are sampled. This is needed for dimensional compatibility, so that
the concept of neighborhood can be applied meaningfully. Toward this, as defined in
Eq.6.1, first for each objective, the normalized value f̄m can be calculated using the
ideal (Z ideal) and nadir (Znadir) points available, following which its projected value
on the unit simplex f um can be calculated:

f̄m(Xi) = fm(Xi) − Z ideal
m

Znadir
m − Z ideal

m

, f um (Xi) = f̄m(Xi)

M
�
j=1

f̄j(Xi)

. (6.1)

TheM training-dataset can be given byD ≡ {D1, . . . ,DM }, whereDm represent-
ing the ML model for the mth objective is defined as follows. For any solution Si, let
its underlying variable vector (X vector) bemapped onto theX vector of the neighbor
Sj that offers maximum improvement in the mth objective. When repeated for every
solution, this leads to Dm. Hence, in principle, Dm, which accounts for all solutions,
captures the pertinent X space transitions that enable maximum improvement in the
mth objective. Ideally,D can constitute a matrix of size N × M . However, neighbor-
ing solutions that offer improvement in each objective may not be available for each
solution. Therefore, D may not be fully populated.

For a visual depiction of the construction of the training-dataset, a three-objective
scenario is presented in Fig. 6.4. In that, hypothetical solutions projected onto the
unit simplex are shown. One of the solutions, marked as S1, is treated as the input
solution;Nbd(S1) has been marked by two dotted circles; and the solutions S2 and S3
belonging to Nbd(S1) are said to constitute the target cluster C. For each objective
m ∈ {1, 2, 3}, the selection of target solutions from C is discussed below.
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All Solutions

Input solution

Target solution cluster

Selected target solution

Fig. 6.4 A schematic representation of the training-dataset construction based on objective-wise
mapping, within a predefined neighborhood, in the projected Z space. Here, S1 is the input solution,
and S2 and S3 constitute the target solutions for different objectives

1. m = 1: only one solution S3 offers a better value in f u1 than S1, and hence is
selected as the target solution.

2. m = 2: both S2 and S3 offer a better value in f u2 than S1. Among these, S2 is
selected as the target solution since it offers a greater improvement in f u2 .

3. m = 3: there is no solution that offers a better value in f u3 than S1, implying no
target solution. Given this, S1 does not contribute to D3.

Algorithm 6.1: Dataset_Construction (Pt ,R, r)
Input: Parent population Pt , RVs R, neighborhood radius r
Output: M training-dataset D1–DM

1 Compute the projected objective values f u1 , . . . , f uM
2 Initialize D ≡ {D1,D2, . . . ,DM } as an empty set
3 for each solution Si ∈ Pt do
4 Initialize cluster C as an empty set
5 for each solution Sj ∈ Pt (other than Si) do
6 if Sj is in neighborhood of Si: Sj ∈ Nbd(Si) then
7 Add solution Sj to cluster C

8 for each objective m = 1 to M do
9 Sj ← the solution in cluster C offering best value in f um

10 if f um (Sj) < f um (Si) then
11 Add [X (Si), (X (Sj) − X (Si))] to Dm
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6.1.1.3 Algorithmic Implementation of Training-Dataset Construction

In the background mentioned above, the overall procedure for constructing D1–DM

is summarized in Algorithm6.1. In that, the first step is to calculate the projected
objective values Fu, using Eq.6.1. Subsequently, each solution Si ∈ Pt is considered
a potential input solution (line 3, Algorithm6.1), and subjected to the following steps:

1. Identification of target solution cluster C (lines 4–7, Algorithm6.1): the target
cluster C, corresponding to an input solution Si, constitutes all such solutions
Sj ∈ Pt that belong to the neighborhood of Si, implying Sj ∈ Nbd(Si).

2. Identification of the target solutions from C, toward each of D1–DM (lines 8–11,
Algorithm6.1): for each objective m ∈ [1,M ], the solution Sj ∈ C offering the
minimum value of f um (Sj) is identified. If the latter is better than f um (Si), then the
underlying X vectors are included in the corresponding training-datasetDm (lines
11–12, Algorithm6.1).

6.1.2 ML Training Module

The goal here is to trainM MLmodels (one-per-dataset), such that for each objective
m, an aggregated search direction inX space that promises improvement in f um could
be learnt from the solution-mapping embedded inDm. Toward it, k-nearest neighbors
(kNN)3 has been used as the ML method [3]. Notably, kNN’s implementations are
available for both classification and regression; however, owing to the contextual
relevance, only the latter has been used here. For kNN training with regard to Dm,
when a solution’s X vector is fed as the test input: (a) the kNN model identifies its k
nearest input solutions within Dm; and (b) learns the average of the corresponding
target vectors.

Notably, a very low or high value of k (in kNN) is known to lead to overfitting
or underfitting, respectively. An appropriate choice for k depends on the dataset
and the intended application. In the context of the IP3 operator, k = n (number of
variables) has been used. This choice is based on the recognition that the training-
dataset, sayDm, involves n × 1 dimensional input and target vectors. Hence, if each
neighbor of the input vector differed only in one of the n elements, then k = n
would still allow variation in all the n elements, ensuring sufficient input variation
and avoidance of potential overfitting. Furthermore, a sensitivity analysis for k is
presented in Sect. 6.5.3.

Similar to the IP2 operator, the ML training module is executed as a two-step
process: (a) a pre-training step involving normalization of the training-dataset using
the dynamic normalization method,4 and (b) ML training itself, as presented in
Algorithm6.2. Since the kNN model relies on the identification of the k-nearest

3 The implementation of the kNN method has been taken from Scikit-learn package (in Python).
4 Details of the dynamic normalization method can be found in Sect. 5.1.2 (Chap.5).
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neighbors, it is important that the dataset is normalized in the X space prior to
training. Here, the above process is repeated M times for training M ML models.

Algorithm 6.2: ML_Training (D, [x(L), x(U )])
Input: Combined training-dataset D, lower & upper bounds of variables specified in the

problem, x(L) and x(U )

Output: M trained ML modelsML1–MLM
1 {x(L,t), x(U,t)} ← Minimum and Maximum of each variable in D in generation t
2 Initialize xmin and xmax as empty sets
3 for n = 1 to n do
4 xmin

n = 0.5 × (x(L,t)
n + x(L)

n )

5 xmax
n = 0.5 × (x(U,t)

n + x(U )
n )

6 D̄ ← Normalize D using xmin and xmax as bounds
7 for each dataset m = 1 to M do
8 TrainMLm using D̄m

6.1.3 Offspring Creation Module

The IP3 operator is used for the progression of 50% of the parent populationPt (sized
N ), leading to �0.5N� pro-diversity offspring. In that, boundary progression and gap
progression contribute each 25% offspring. The choice of 50% has already been
justified in the beginning of this chapter, in the context of convergence-diversity bal-
ance and ML-based risk-reward trade-off. The implementation details are presented
below.

6.1.3.1 Boundary Progression

The procedure for creating offspring using the boundary progression (QB
t ) for bet-

ter spread is summarized in Algorithm6.3. This involves identifying the boundary
solutions in Pt , and their progression using an appropriate ML model (rationale set
earlier), as detailed below.

(a) Identification of the boundary RVs (line 1, Algorithm6.3): all boundary RVs are
identified and stored inRB.

(b) Identification of the solution for progression (lines 4–5, Algorithm6.3): one of
the RVs inRB is randomly chosen, say 
B, and its closest associated solution, say
Sstart , is chosen for progression.

(c) Selection of the ML model (line 6, Algorithm6.3): given that 
B is a boundary RV,
some of its components may be zero. The index for one of these zero components
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Algorithm 6.3: Bound_Prog (Pt , R,ML, [xmin, xmax], [x(L), x(U )])
Input: Current population Pt , RVs R, ML models ML1–MLm, bounds from Algorithm 6.2

[xmin, xmax], variable bounds in problem definition [x(L), x(U )]
Output: New solutions created QB

t
1 RB ← All boundary RVs having at least one solution associated
2 Initialize QB

t as an empty set
3 for i = 1 to �0.25N� do
4 
B ← Randomly select an RV from RB

5 Sstart ← Find the solution nearest to 
B
6 m ← Randomly select an objective, such that 
Bm = 0
7 X̄ (Sstart) ← Normalize X (Sstart) using xmin and xmax as lower and upper bounds
8 d̄X ← Pass X̄ (Sstart) through the mth model MLm
9 dX ← Denormalize d̄X to the original X space using xmin and xmax as bounds

10 Obtain the new solution: X (Snew) ← X (Sstart) + λB × d̂X
11 Perform boundary repair on X (Snew), if required
12 Add X (Snew) to QB

t

(say m) is randomly selected, and MLm becomes the model suitable for the
progression of Sstart , enabling the expansion of the boundaries.

(d) Obtaining the search direction (lines 7–9, Algorithm6.3): considering thatMLm
was trained on the normalized dataset: (i) X (Sstart) requires normalization using
the bounds computed in Algorithm6.2, before being subjected to MLm; and
(ii) the normalized search direction (d̄X ) resulting from the application of MLm
must be denormalized (using the same bounds) to represent the desired search
direction dX .

(e) Progression and repair (lines 10–11, Algorithm6.3): the progression of Sstart
leading to Snew can be given by X (Snew) = X (Sstart) + λB × d̂X , where d̂X is a
unit vector along the search direction dX (computed above), and λB is the step
length. λB is chosen such that it can offer a spread up to twice the current spread.
For symbolic depiction, Fig. 6.5 shows the unit simplex for a scenario with two
objectives. In that, solutions α and γ, interspaced by

√
2, belong to extreme

RVs. Hence, according to the specified goal, λB should be able to facilitate
the progression of the solution γ to multiple locations bounded by γ′, that is,√
2 from γ. To appreciate the formulation of λB, consider two solutions α and

β, associated with adjacent RVs. Their distance in the Z space can be treated
as r (the spacing between their corresponding RVs). Their distance in the X
space can be defined as the average spacing over all solutions associated with all
pairwise adjacent RVs, denoted by rX . To summarize: r in Z space corresponds
to rX in X space. Hence, spread expansion by a factor of

√
2 in the Z space

will correspond to
√
2rX /r in the X space. Given the above, the formulation of

λB is given by λB = rand(0, 1) × √
2rX /r, where rand(0, 1) creates a random

number in the range [0, 1]. Here, the use of rand(0, 1) allows the progression of
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Fig. 6.5 A symbolic
depiction of the boundary
and gap progression on the
unit simplex (taken from
[10])

Gap 

Progression

Boundary 

Progression
Maximum

γ to intermittent positions up to γ′. Notably, the resultingX (Snew)may have some
out-of-bound variables. These variables are repaired using the method proposed
in [11].

The above steps are repeated �0.25N� times for the creation of �0.25N� offspring.
In that, the random selection of a boundary solution and its progression with a
random step length ensure that, across the generations, the spread expansion is fairly
emphasized on all boundaries.

6.1.3.2 Gap Progression

The procedure for creating offspring using gap progression (QG
t ) to improve the

uniformity of the solutions is summarized in Algorithm 6.4. This involves the iden-
tification of empty RVs and the progression of one of their respective neighboring
solutions to these empty RVs using an appropriate ML model (rationale set earlier),
as detailed below.

(a) Identification of the empty RVs (line 1, Algorithm 6.4): all empty RVs are iden-
tified and stored in RG .

(b) Identification of the solution for progression (lines 4–5, Algorithm 6.4): one of
the RVs inRG is randomly selected, say 
G. Its closest solution (associated with
some other RV), say Sstart , is chosen for progression.

(c) Selection of theMLmodel (lines 6–7, Algorithm 6.4): here, the objective inwhich
Sstart would undergo the maximum transition in its progression to 
G is identified,
say fm, such that MLm becomes the model suited for progression.

(d) Obtaining the search direction (lines 8–12, Algorithm 6.4): considering thatMLm
was trained on the normalized dataset: (i) X (Sstart) requires normalization using
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Algorithm 6.4: Gap_Prog (Pt , R,ML, [xmin, xmax], [x(L), x(U )])
Input: Current population Pt , RVs R, ML models ML1–MLM , bounds from Algorithm 6.2

[xmin, xmax], variable bounds in problem definition [x(L), x(U )]
Output: New solutions created QG

t
1 RG ← Identify all empty RVs (having no solutions associated)
2 Initialize QG

t as an empty set
3 for i = 1 to �0.25N� do
4 
G ← Randomly select an RV from RG

5 Sstart ← Find the solution nearest to 
G
6 Difference vector: 
δ ← Fu(Sstart) − 
G
7 m ← Find the objective that maximizes |
δm|
8 X̄ (Sstart) ← Normalize X (Sstart) using xmin and xmax as lower and upper bounds
9 d̄X ← Pass X̄ (Sstart) through the mth model MLm

10 dX ← Denormalize d̄X to the original X space using xmin and xmax as bounds

11 if 
δm < 0 then
12 dX ← reverse the obtained search direction (−1 × dX )

13 Obtain the new solution: X (Snew) ← X (Sstart) + λG × d̂X
14 Perform boundary repair on X (Snew), if required
15 Add X (Snew) to QG

t

the bounds computed in Algorithm6.2, before being subjected toMLm; and (ii)
the normalized search direction (d̄X ) resulting from application of MLm needs
to be denormalized (using the same bounds), to represent the sought search
direction dX . In the case where the progression of Sstart to 
G is characterized
by deterioration in fm, dX is reversed by multiplying each of its components by
(−1), as depicted in line 12 (Algorithm 6.4).

(e) Progression and repair (lines 13–14, Algorithm 6.4): the progression of Sstart
leading to Snew can be given by X (Snew) = X (Sstart) + λG × d̂X , where d̂X is a
unit vector along the search direction dX (computed above), and λG is the step
length. λG is chosen in a manner that the progression of a solution to 
G could be
executed, regardless of whether or not that solution belongs to the neighborhood
of 
G. For symbolic depiction, Fig. 6.5 shows the potential progression of solution
β, to its neighborR3 and also non-neighborR4. Let J be the (rounded-off) integer
number of RV transitions required for progression of an existing solution onto
an empty RV. In the above example, J = 1 for R3 and J = 2 for R4. Given
this context and the mapping of r and rX established earlier, the progression
of Sstart to 
G can be represented as J × r in Z space, and J × rX in X space.
Critically, Sstart may not necessarily lie on the RV. Rather, it may lie anywhere
within ±0.5r around the RV. This is illustrated in Fig. 6.5, where β may lie
anywhere in the engulfing rectangle characterized by ±0.5r. To accommodate
this uncertainty, the formulation of λG is given by λG = rand(J ± 0.5) × rX .
Notably, the obtained X (Snew) may have some out-of-bound variables, which
can be repaired using the same method as used in boundary progression.
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These steps are repeated �0.25N� times for the creation of �0.25N� offspring.
In that, the random selection of empty RVs ensures that each identified gap in the
current population is emphasized fairly.

6.2 Integration of IP3 Operator into NSGA-III

This section describes the integration of the IP3 operator with NSGA-III, leading to
NSGA-III-IP3. This integration, summarized in Algorithm6.5 is generic in nature
and can be extended to any other RV-EMâOA.

Algorithm 6.5: Generation t of NSGA-III-IP3

Input: RV set R, original variable bounds [x(L), x(U )], Parent population Pt , frequency of
progression tIP3freq, neighborhood radius r, number of survived offspring in (t − 1)th

generation N surv
t−1

Output: Pt+1, tIP3pg , tIP3freq, N
surv
t

1 if population has mildly stabilized then
2 startIP3 = True

3 if startIP3 & tIP3freq generations passed after last invocation then
4 D ← Construct the training-dataset using Algorithm 6.1
5 Train the M ML models using Algorithm 6.2
6 QB

t ← Create 25% offspring using boundary progression (Algorithm 6.3)
7 QG

t ← Create 25% offspring using gap progression
(Algorithm spsrefalgo:IP3spsgapspsprog)

8 QV
t ← Create rest 50% offspring using natural variation operators

9 Qt ← Merge QB
t , Q

G
t and QV

t (total N offspring)

10 else
11 Qt ← Create 100% offspring using natural variation operators

12 Evaluate Qt
13 Pt+1 ← Perform the survival selection on Pt ∪ Qt
14 N surv

t ← Count of offspring Qt that survived to Pt+1
15 if IP3 was invoked in current generation then
16 if N surv

t > N surv
t−1 then reduce tIP3freq by 1

17 if N surv
t < N surv

t−1 then increase tIP3freq by 1

Notably,Algorithm6.5 represents any intermediate generation t ofNSGA-III-IP3,
and involves a new parameter, namely tIP3freq, which specifies the number of genera-
tions between two successive progressions. In Algorithm6.5, first the prerequisite
condition for invocation of the IP3 operator is checked, that is, mild population
stabilization. To do that, a stabilization tracking algorithm [12] has been used.5 If

5 The same algorithm can be used for (a) triggering the IP3 operator with a mild setting, and (b)
terminating an RV-EMâOA run with a strict setting.
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stability is detected, the startIP3 flag is marked as True (lines 1–2, Algorithm6.5).
It is important to let the population mildly stabilize (ensuring some degree of con-
vergence) before applying the IP3 operator; otherwise, premature focus on diversity
enhancement may lead to a delayed convergence, at the cost of additional computa-
tional expense. Notably, the underlying stabilization tracking algorithm requires an
additional set of parameters (ψmild) to detect mild stabilization, which is discussed
in Sect. 6.4.3.2. Subsequently:

• If tIP3freq generations have passed after the last invocation of the IP3 operator, then
IP3 is invoked, leading to the creation of 50% offspring using the IP3 function;
and rest 50% natural offspring, leading to Qt , sized N (lines 3–6, Algorithm6.5).

• Otherwise, if IP3 is not invoked, all (100%) natural offspring are created (lines
7–8, Algorithm6.5).

• The offspring Qt are evaluated and the survival selection procedure of NSGA-III
is executed (lines 9–10, Algorithm6.5).

• The count of offspring N surv
t that survived to the next generation is estimated. In

a generation where IP3 is invoked, if this count has improved compared to the
previous generation, implying good performance of the IP3 operator, then tIP3freq is
reduced by 1, resulting in a more frequent progression. Otherwise, if the count has
reduced, tIP3freq is increased by 1 (lines 11–14, Algorithm6.5).

Notably, in the absence of gaps in the population, that is, if no RVs are unassociated,
then the �0.25N� offspring solutions created using gap progression are created using
boundary progression, ensuring that overall �0.5N� offspring solutions are created
using the IP3 operator.

6.3 Computational Complexity of IP3 Operator

As described in the previous section, the IP3 operator consists of three modules. The
following subsections discuss the time and space complexities of each constituent
module, followed by its overall summary.

6.3.1 Training-Dataset Construction Module

The process of constructing M training-dataset D1–DM has been summarized in
Algorithm6.1. In that, for each solution in Pt , first the target solutions cluster is
identified which requires N computations and then, the target solutions are picked
for each dataset, which requiresM × M computations. Collectively, this procedure is
repeated for each solution in Pt (sizedN ). Given that the above procedure is repeated
forN solutions, the resulting time complexity is max{O(N 2),O(NM 2))}. Generally,
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the population sizes N used in RV-EMâOAs (as also used in this book) satisfy N ≥
M 2. Hence, the resulting time complexity of this module can be approximated as
O(N 2).

Furthermore, only the training-dataset D1–DM are additionally created, over the
base NSGA-III algorithm. Each dataset in D can have a maximum of N mapped
pairs of solutions, considering which the resulting space complexity of this module
is O(MN ).

6.3.2 ML Training Module

The training-dataset constructed above is used to train M kNN regressor mod-
els in this module. The worst-case time complexity of training a kNN model is
O(NdimNsam log(Nsam)), where Ndim denotes the dimensionality of the training-
dataset and Nsam denotes the number of samples. Similarly, the worst-case space
complexity of kNN isO(NdimNsam). In this case, Ndim = n, max(Nsam) = N , andM
trainings are executed. Upon substituting their values, the resulting time and space
complexities of the ML training module are O(MNn log(N )) and O(MNn), respec-
tively.

6.3.3 Offspring Creation Module

Evidently, this module constitutes two submodules, each of which follows the same
procedure from the computational complexity perspective. Hence, a common discus-
sion is presented here. Each submodule is executed through four steps: (a) identifica-
tion of the solution for progression; (b) selection of the ML model; (c) identification
of the search direction; and (d) progression and repair. The worst-case computa-
tional complexity of Step-(a) is O(MN ), owing to the identification of the closest
solution to a given RV. Step-(b) requires M + M computations, leading to a com-
plexity ofO(M ). Step-(c) involves making a prediction using one of the learnt kNN
models. The prediction time complexity of a kNN model is O(kNsam), where k is
the number of neighbors. Since k = n has been used, the resulting time complexity
for making a prediction is O(Nn). Finally, Step-(d) involves the progression of a
given solution with O(M ) complexity. Among the four steps, the worst time com-
plexity can be given as max{O(MN ),O(Nn)}. Generally, n > M is the majority of
the multi-objective problems (MOPs). Hence, the worst-case time complexity can
be approximated as O(Nn). Since these steps are repeated for �0.25N� solutions,
the resulting time complexity becomes O(N 2n). Furthermore, since the offspring
solutions created through progression are included in the N offspring solutions that
are created by any RV-EMâOA, there is no related space complexity of this module.
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Table 6.1 Time and space complexities of different modules of the IP3 operator

Module Time complexity Space complexity

Training-dataset construction O(N 2) O(MN )

ML training O(MNn log(N )) O(MNn)

Offspring creation O(N 2n) –

The worst-case time complexity and space complexity of each constituent module
of the IP3 operator are summarized inTable6.1. Evidently, training ofM kNNmodels
has the highest time complexity, and the M trained kNN models have the highest
space complexity.

6.4 Experimental Setup

This section sets the foundation for experimental investigation, by highlighting the (a)
test suite considered; (b) performance indicators used and related statistical analysis;
and (c) parameters pertaining to the RV-EMâOA(s) and the IP3 operator.

6.4.1 Test Suite

To demonstrate the search efficacy infused by the IP3 operator into an RV-EMâOA,
several two- and three-objective problems with varying degrees of difficulty have
been used. These include CIBN [7], DASCMOP [5], and MW [9] problems with the
following specifications:

• CIBN: CIBN1–3 are two-objective problems, and CIBN4–5 are three-objective
problems, with n = 10.

• DASCMOP: DASCMOP1–6 are two-objective problems, and DASCMOP7–9 are
three-objective problems, with n = 30. Since different difficulty settings are avail-
able for these problems [5], setting 5 has been used here that corresponds to the
diversity-hardness in these problems.

• MW: majority of these problems are two-objective, except for MW4, MW8, and
MW14 which are three-objective. Here, n = 15 for all the problems MW1–14.

Notably, all these test problems have been proposed in recent years, and are
diversity-hard due to the presence of multiple constraints. Standard EMâOAs, such
asNSGA-III, that rely on the constraint dominance principle for handling constraints,
exhibit severe under-performance in some of these problems [8].
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6.4.2 Performance Indicators and Statistical Analysis

The choice of performance indicators is exactly the same as adopted earlier inChap.5.
The key details are reiterated below

• Hypervolume is used as the primary indicator with the reference point given as
R1×M = [1 + 1

p , . . . , 1 + 1
p ], where p is the number of gaps set for the Das–Dennis

methodwhile generating theRVs forRV-EMâOAs. Further, for the problemswhere
the scales of different objectives are different, the solutions are normalized in the
Z space using the true PF extremes.

• The population mean of the g(X ) function is used as the secondary indicator, to
provide insights into the convergence levels in the X space. Although the IP3
operator explicitly focuses on diversity enhancement, it would be intriguing to
assess whether there is an adverse impact on the convergence of solutions.

Further, in the context of the statistical analysis on these performance indicators:

• When comparing only two algorithms, at a time, the Wilcoxon ranksum [13] test
is performed on the indicator values reported over multiple/independently seeded
runs. In that, the p-value of 0.05 (95% confidence interval) is used as threshold.

• When comparing more than two algorithms, at a time, the Kruskal–Wallis test [6]
with the threshold p-value of 0.05 is used to infer if their overall differences are
statistically insignificant or not. If not, the Wilcoxon ranksum test is used for their
pairwise comparisons, when the algorithm reporting the best median hypervolume
is treated as the reference. Furthermore, the threshold p-value is adjusted using the
standard Bonferroni correction [1], to retain the same overall confidence.

6.4.3 Parameter Settings

In this subsection, the parameters and settings used for (a) the RV-EMâOA, i.e.,
NSGA-III; and (b) the IP3 operator, i.e., r, tIP3freq, ηj, and ψmild, have been discussed.

6.4.3.1 RV-EMâOA Settings

These settings have been kept exactly the same as those used for the IP2 operator in
Chap.5. The key details are reiterated below.

• For generating RVs, Das–Dennis method has been used, with (a) p = 99 forM =
2, leading to N = 100 and (b) p = 13 forM = 3, leading to N = 105.

• The natural variation operators include (a) SBX crossover, with pc = 0.9 and
ηc = 20, and (b) polynomial mutation, with pc = 1/n and ηm = 20.

• Each of NSGA-III and NSGA-III-IP3 has been run 31 times, with random seeds.
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• For NSGA-III-IP3, tmax has been determined on-the-fly using the stabilization
tracking algorithm, usingψterm ≡ {3, 50}. ForNSGA-III, themean tmax determined
for NSGA-III-IP3 over 31 runs has been used as tmax.

6.4.3.2 IP3 Operator Settings

The IP3 operator involves three parameters: r, tIP3freq, and ψmild. In that, the neigh-
borhood radius r governs the identification of the cluster of target solutions during
mapping; tIP3freq controls the invocations of the IP3 operator; andψmild (similar toψterm)
governs the degree of stabilization required to trigger the first invocation of the IP3
operator during an RV-EMâOA-IP3 run.

Here, r is simply derived from the given RV setR, and tIP3freq has been adapted on-
the-fly based on the survival of the offspring, as can be observed in Algorithm6.5.
The initial value of tIP3freq is set to 1. While the first two (of three) parameters could be
rationally derived or adapted, a direct impact of ψmild on the performance of the IP3
operator is not that straightforward.

As mentioned above, ψmild governs the degree of stabilization required to trigger
the first invocation of the IP3 operator. While it is intuitive that ψmild should cor-
respond to a lower degree of stabilization than ψterm that is used to terminate the
NSGA-III-IP3 run, its exact setting is borrowed from the suggestion made in [12].
According to that, the mild stabilization corresponds to ψmild = {2, 20}.

6.5 Experimental Results

This section compares the performance of NSGA-III-IP3 vis-à-vis NSGA-III that
includes (a) an assessment of the general performance trends on a wide range of
test problems; and (b) an investigation on some sample two- and three-objective
problems. In the end, an assessment of the sensitivity of the IP3 operator’s perfor-
mance with the variation in k (used for kNN, the underlying ML method) has been
presented. Notably, the premise laid earlier in Sect. 5.6 (Chap. 5), in context of the
interpretation of results with IP2 operator, is also applicable for the results with IP3
operator.

Further, the scope of the proof-of-concept results, presented here, has been
restricted to the use of only one ML method, i.e., kNN. However, a recent study [2]
has revealed that the performance of the IP3 operator is reasonably robust and not
too sensitive to the choice of underlying ML method.
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6.5.1 General Trends

As highlighted earlier, hypervolume has been used as the primary performance indi-
cator, supported by the g(X ) function values for further insights. In this context,
Table6.2 reports the median hypervolume and median g(X ) values, from among
the 31 randomly seeded runs at the end of tmax generations. In that, tmax has been

Table 6.2 Hypervolume and g(X )-based comparison of NSGA-III and NSGA-III-IP3 on bench-
mark CIBN, DASCMOP, and MW problems, at tmax generations determined on-the-fly for NSGA-
III-IP3 using a stabilization tracking algorithm. Each row shows the median hypervolume and g(X )

values at the end of tmax generations. The best performing algorithm and its statistical equivalent
are marked in bold

Problem tmax Median hypervolume Median g(X )

NSGA-
III

NSGA-
III-IP3

p-value g(X )∗ NSGA-
III

NSGA-
III-IP3

p-value

M = 2 CIBN1 1404 0.328355 0.483381 1.34E-11 0 0.000581 0.001742 1.34E-11

CIBN2 753 0.655604 0.669094 2.89E-11 0 0.003847 0.002461 1.48E-09

CIBN3 889 0.213285 0.219149 1.34E-11 0 0.003371 0.003022 1.05E-04

DASCMOP1 1948 0.089614 0.31699 3.22E-09 0 0.000266 0.004733 1.34E-11

DASCMOP2 1793 0.414381 0.637702 1.34E-11 0 0.000292 0.012345 1.34E-11

DASCMOP3 1639 0.391362 0.39416 4.95E-02 0 0.000525 0.000899 1.66E-01

DASCMOP4 1978 0.336838 0.336812 7.95E-01 0 0.000149 0.000158 8.60E-01

DASCMOP5 2101 0.672598 0.672677 3.21E-01 0 0.000136 0.000129 9.61E-01

DASCMOP6 2377 0.549901 0.574818 2.53E-03 0 0.000093 0.000072 6.83E-02

MW1 1047 0.415296 0.415318 4.68E-01 1 1.000057 1.000034 1.13E-01

MW2 836 0.482964 0.482899 7.95E-01 1 1.020645 1.020625 9.49E-01

MW3 875 0.469838 0.469803 5.54E-01 1 1.041892 1.043891 1.23E-03

MW5 1821 0.083018 0.197173 1.86E-04 1 1.000027 1.000176 1.81E-05

MW6 1229 0.298354 0.298348 9.94E-01 1 1.026767 1.026708 9.61E-01

MW7 892 0.366328 0.366413 5.59E-01 1 1.094907 1.096497 1.53E-01

MW9 1071 0.293771 0.29641 7.47E-04 1 1.452991 1.42566 1.48E-09

MW10 1063 0.246928 0.247365 8.38E-01 1 1.049239 1.05019 8.82E-01

MW11 961 0.268168 0.259526 2.66E-02 1 1.277597 1.243012 7.04E-02

MW12 1068 0.570536 0.570814 3.81E-03 1 1.246089 1.249201 3.65E-03

MW13 972 0.328753 0.328191 7.41E-01 1 1.069005 1.072882 4.68E-01

M = 3 CIBN4 438 0.912571 0.917063 9.39E-03 0 0.012301 0.014547 1.01E-03

CIBN5 287 0.629831 0.629746 6.07E-01 0 0.008496 0.008635 5.40E-01

DASCMOP7 1693 1.02602 1.025306 5.31E-01 0 0.001225 0.001369 6.27E-01

DASCMOP8 1650 0.628281 0.658097 1.02E-02 0 0.010428 0.001833 1.15E-02

DASCMOP9 1539 0.346689 0.647012 1.34E-11 0 0.004983 0.005401 2.34E-01

MW4 743 1.041376 1.041362 7.09E-01 1 1.000239 1.000337 4.68E-01

MW8 718 0.626856 0.626362 9.49E-01 1 1.014327 1.014104 7.51E-01

MW14 914 0.154225 0.158839 2.13E-01 1 1.016592 1.017586 9.83E-01

Total −→ 15 27 of 28
probs.

24 21 of 28
probs.

Noteg(X )∗ = g(X )|X∈UPS ,whereUPS denotes thePareto-optimal set for the unconstrainedversion
of the MOP



6.5 Experimental Results 151

determined on-the-fly for NSGA-III-IP3, and the same has been used for NSGA-III.
From this table, the following can be observed.

• In terms of hypervolume: NSGA-III-IP3 performed either statistically better than
or equivalent to NSGA-III in 27 out of 28 test instances.

• In terms of g(X ) values: NSGA-III-IP3 performed either statistically better than
or equivalent to NSGA-III in only 21 out of 28 instances, whereas NSGA-III
performed either statistically better than or equivalent to NSGA-III-IP3 in 24 out
of 28 instances.

The preliminary conclusion from the above trends is that overall, NSGA-III-IP3
performed better in hypervolume butworse in g(X ) values, thanNSGA-III.While the
latter could be attributed to the partial shift in focus of offspring creation (due to IP3
operator) toward diversity enhancement, the former suggests that the improvement
in diversity was significantly higher than the loss in convergence, leading to better
hypervolume values. This clearly endorses the search efficacy infused by the IP3
operator into NSGA-III, toward diversity enhancement.

6.5.2 Insights into Two- and Three-Objective Problems

For further insights into the performance of IP3 operator, some sample test instances
have been chosen for discussion, including (a) CIBN1—a two-objective problem
where NSGA-III fails to achieve a reasonable PF approximation; (b) MW12—a
two-objective problem where NSGA-III achieves a reasonable PF approximation;
and (c) DASCMOP9—a three-objective problem, as presented below.

6.5.2.1 CIBN1 Problem (M = 2)

Here, the CIBN1 problem is chosen for a sample discussion on a two-objective
problemwhere NSGA-III fails to achieve a reasonable PF-approximation. Figure6.6
shows the final set of solutions obtained in the respective median runs of NSGA-
III and NSGA-III-IP3 (out of the 31 randomly seeded runs each). The termination
generation tmax has been set as 1404 for NSGA-III, determined on-the-fly for NSGA-
III-IP3. As evident, this presents an instance where NSGA-III could not offer a good
PF-approximation since the obtained spread of solutions is only a subset of the actual
spread of the PF . Hence, such a scenario points to the possibility of improving the
quality of the PF approximation.

As canbe observed inFig. 6.6,NSGA-III-IP3 clearly achieved a betterPF approxi-
mation thanNSGA-III. AlthoughNSGA-III-IP3 could not achieve the desired spread
across the true PF , the improvement in the spread of solutions over NSGA-III could
only be attributed to the search efficacy infused by the IP3 operator toward diversity
enhancement.
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Fig. 6.6 Final obtained solutions in the respective median runs of NSGA-III and NSGA-III-IP3
on CIBN1 problem

(a) Hypervolume plot (b) g(X) plot

Fig. 6.7 Generation-wise performance of NSGA-III and NSGA-III-IP3 on CIBN1

For further insights into performance, Fig. 6.7a and b shows the generation-wise
median hypervolume and median g(X ) plots, respectively. In that, there is a sig-
nificant improvement in hypervolume, but a slight deterioration in the g(X ) value,
suggesting a slightly poorer convergence of NSGA-III-IP3. However, the improve-
ment in hypervolume suggests that the better diversity across thePF compensates and
overcomes the loss in convergence to the PF . Moreover, it can be observed that even
at tmax = 1404, the hypervolume measures for NSGA-III-IP3 could not stabilize.
This suggests that although the population had stabilized according to the defined
termination criterion, and the NSGA-III-IP3 run should have been terminated from
a practical perspective, there was scope for further improvement in spread across
the PF .

It may be noted that the IP3 operator attempts to cater to both aspects of diversity
enhancement, that is, spread expansion and uniformity within the spread. While the
first aspect has clearly been demonstrated through the discussion presented above
in the context of the CIBN1 problem, it is imperative to gather insights into the
performance of the IP3 operator in terms of achieving a better uniformity of solutions
within a given spread. Toward it, the parent solutions in generation tmild = 178, right
before the IP3 operator is invoked for the first time, are shown in Fig. 6.8a; and
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(a) Parent solutions t = tmild = 178 (b) Parent solutions t = 200 > tmild

Fig. 6.8 Parent solutions in the respective median runs of NSGA-III and NSGA-III-IP3 on CIBN1
problem at t = tmild = 178, and at t = 200 (an arbitrary generation afterward). Notice how the
spread is similar in both generations, but the uniformity of solutions in NSGA-III-IP3 has improved
significantly, owing to the gap progression submodule of the IP3 operator

the parent solutions in a subsequent arbitrary generation, say t = 200, are shown in
Fig. 6.8b. As can be observed in t = tmild, the solutions of NSGA-III and NSGA-III-
IP3 coincide, implying that NSGA-III-IP3 behaves exactly the same as NSGA-III
until the generation in which the IP3 operator is invoked for the first time. In that,
there is a perceivable gap between the solutions, which is applicable to both NSGA-
III and NSGA-III-IP3. However, at t = 200, while there is still a gap between the
solutions of NSGA-III, the uniformity of the solutions has improved significantly
for NSGA-III-IP3. This improvement in the uniformity of solutions can only be
attributed to the efficacy of the IP3 operator.

6.5.2.2 MW12 Problem (M = 2)

Here, the MW12 problems are considered for discussion, where NSGA-III is able
to achieve a reasonable PF-approximation. Reference may be made to Fig. 6.9a
and b, which presents the generation-wise median hypervolume and g(X ) plots,
respectively, among the 31 randomly seeded runs of NSGA-III and NSGA-III-
IP3. The termination generation tmax had been set as 1068 for NSGA-III, deter-
mined on-the-fly for NSGA-III-IP3. As evident, both NSGA-III and NSGA-III-IP3
achieved a similar PF-approximation at the end of tmax generations. Hence, the scope
of possible enhancements by the IP3 operator reduces to speeding up of the PF-
approximation. This is supported by the reference to an arbitrarily chosen generation
t = 250 in Fig. 6.9a,whereNSGA-III-IP3 clearly achieved a better hypervolume than
NSGA-III.

Toward a deeper investigation, the solutions obtained in the respectivemedian runs
of NSGA-III and NSGA-III-IP3 at t = tmax and at t = 250 are shown in Fig. 6.10a
and b, respectively. In that, while the solutions at t = tmax reflect similar performance
of NSGA-III and NSGA-III-IP3, the solutions at t = 250 clearly reflect the better
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(a) Hypervolume plot (b) g(X) plot

Fig. 6.9 Generation-wise performance of NSGA-III and NSGA-III-IP3 on MW12

(a) Obtained solutions at t = tmax (b) Obtained solutions at t = 250

Fig. 6.10 Solutions obtained in the respective median runs of NSGA-III and NSGA-III-IP3, at
termination and at an arbitrarily fixed generation, in MW12 problem

performance of NSGA-III-IP3 in terms of diversity. This improvement sped up the
PF approximation, which could only be attributed to the search efficacy infused by
the IP3 operator into NSGA-III.

6.5.2.3 DASCMOP9 Problem (M = 3)

The efficacy of the IP3 operator has been demonstrated above on two two-objective
problems, namely CIBN1 andMW12.Widening the scope of this discussion, a three-
objective problem, namely DASCMOP9, has been discussed here. In that, Fig. 6.11a
and b shows the generation-wise median hypervolume and g(X ) plots, respectively,
among the 31 randomly seeded runs of NSGA-III and NSGA-III-IP3. For NSGA-
III, tmax = 1539 had been used, as determined on-the-fly for NSGA-III-IP3. Clearly:
(a) in terms of hypervolume, NSGA-III-IP3 performs significantly better than
NSGA-III, and (b) in terms of g(X ), NSGA-III-IP3 performs worse in the inter-
mediate generations, but performed (statistically) similarly at termination.

Further, the final obtained solutions in the respective median runs of NSGA-
III and NSGA-III-IP3 on DASCMOP9 problem are shown in Fig. 6.12. As evident,
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(a) Hypervolume plot (b) g(X) plot

Fig. 6.11 Generation-wise performance of NSGA-III and NSGA-III-IP3 on DASCMOP9

Fig. 6.12 Final obtained
solutions in the respective
median runs of NSGA-III
and NSGA-III-IP3 on
DASCMOP9 problem

NSGA-III failed to achieve a reasonable diversity across thePF , while NSGA-III-IP3
achieved a diverse set of solutions across the PF , providing a proof-of-concept that
the IP3 operator is suitable for diversity enhancement in more than two objectives
as well.

6.5.3 Operator Sensitivity to Number of Nearest Neighbors

As discussed in Sect. 6.1.2, setting the number of nearest neighbors k (in kNN) is
important since keeping it very lowor veryhighmay lead to underfittingor overfitting,
respectively. Although the choice of k = n has been reasoned, it is imperative to
analyze the sensitivity of the IP3 operator’s performance toward the variation in k.
In this background, the performance of NSGA-III-IP3 is presented here with three
different settings of k, on all test problems considered. These include (a) k = 0.5n,
leading to a value lower than the recommended setting; (b) k = n, the recommended
setting; and (c) k = 1.5n, leading to a value higher than the recommended setting.
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Table 6.3 Hypervolume-based comparison of NSGA-III-IP3, across different settings of k (used
in the ML method). Here, tmax determined on-the-fly for NSGA-III-IP3 with k = n has been used
for other values of k. The best performing algorithm and the statistically equivalent algorithms are
marked in bold

Problem tmax k = 0.5n k = n k = 1.5n

M = 2 CIBN1 1404 0.461365 0.483381 0.480270
CIBN2 753 0.668817 0.669094 0.670272
CIBN3 889 0.218083 0.219149 0.219981
DASCMOP1 1948 0.092495 0.316990 0.310258
DASCMOP2 1793 0.423645 0.637702 0.643858
DASCMOP3 1639 0.391166 0.394160 0.421778
DASCMOP4 1978 0.336946 0.336812 0.336798
DASCMOP5 2101 0.672619 0.672677 0.672666
DASCMOP6 2377 0.574846 0.574818 0.571492
MW1 1047 0.415397 0.415318 0.415296
MW2 836 0.483818 0.482899 0.482363
MW3 875 0.470024 0.469803 0.454545
MW5 1821 0.196080 0.197173 0.190051
MW6 1229 0.298365 0.298348 0.287468
MW7 892 0.366522 0.366413 0.366388
MW9 1071 0.295749 0.296410 0.295482
MW10 1063 0.247155 0.247365 0.199358
MW11 961 0.266061 0.259526 0.243113
MW12 1068 0.570748 0.570814 0.570793
MW13 972 0.328788 0.328191 0.326313

M = 3 CIBN4 438 0.921200 0.917063 0.926683
CIBN5 287 0.629971 0.629746 0.629372
DASCMOP7 1693 1.022840 1.025306 1.016004
DASCMOP8 1650 0.658195 0.658097 0.649069
DASCMOP9 1539 0.647740 0.647012 0.646312
MW4 743 1.041465 1.041362 1.041295
MW8 718 0.626492 0.626362 0.619107
MW14 914 0.151894 0.158839 0.153753

Total (out of 28) −→ 22 28 27

The median hypervolume obtained by NSGA-III-IP3 with all three settings of k,
at the end of tmax generations determined on-the-fly for k = n, is shown in Table6.3.
In that, the best obtained hypervolume, and its statistically equivalent results are
marked in bold. From Table6.3, the following may be observed.

• With k = n (recommended), the performance was either statistically better than
or equivalent to other settings of k in all (28 out of 28) instances. As is evident,
the recommended setting of k performed well, compared to other settings.
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• With k = 0.5n, the performance was statistically better than or equivalent to other
settings of k in only 22 out of 28 instances. This deterioration of performance could
be attributed to the lower value of k than desired, implying that the performance
of the IP3 operator is sensitive to variation in k, for k < n.

• With k = 1.5n, the performance was statistically better than or equivalent to other
settings of k in 27 out of 28 instances. Despite this slight deterioration in the
overall performance, it is fair to infer that the IP3 operator’s performance is not
very sensitive toward variation in k, for k > n.

This endorses the use of k = n for the kNN method in the IP3 operator. Notably,
only a limited variation in k has been investigated here, owing to the scope of this book
that focuses on providing the proof-of-concept that ML methods could be used for
such performance enhancements in RV-EMâOAs, rather than tuning the parameters
of these ML methods.

6.6 Summary

In this chapter, the IP3 operator for diversity enhancement of RV-EMâOAs has been
presented. The IP3 operator is constituted by three modules, including training-
dataset construction,ML training, and offspring creation. The first modulemaps the
intra-generational solutions across the RVs (generated in the objective space) and
utilizes their underlying variable vectors to construct M training-dataset. The sec-
ond module trainsM ML models on the above dataset (one per dataset) to learn the
underlying directional improvements in variable space, where eachMLmodel facil-
itates improvement in a particular objective. The third module utilizes these trained
models, one at a time, for creation of 50% offspring (�0.5N� in number, where N is
the population size). In that, half of these offspring (�0.25N� in number) are created
for improvement in spread, and the other half (�0.25N� in number) for improvement
in uniformity of solutions. Notably, in generations where IP3 is invoked, since 50%
offspring are created already using IP3, only 50% natural offspring are created, lead-
ing to creation of N offspring in total. The hallmark of the IP3 operator is that its
design and usage is guided by the overarching criteria to—avoid additional solution
evaluations beyond those required by the base RV-EMâOA; favorably manage the
convergence-diversity balance and ML-based risk-reward trade-off; and minimize
the ad hoc parameter fixes. Experimental results on several diversity-hard problems
reveal that compared to the base NSGA-III, NSGA-III-IP3 performed better in about
46% instances and better or equivalent in about 96% instances.



158 6 Learning to Diversify Better: IP3 Operator

References

1. Abdi, H.: Bonferroni and Sidak corrections for multiple comparisons. Encyclopedia of Mea-
surement and Statistics, pp. 103–107 (2007)

2. Bhasin, D., Swami, S., Sharma, S., Sah, S., Saxena, D.K., Deb, K.: Investigating innovized
progress operators with different machine learning methods. In: Emmerich, M., Deutz, A.,
Wang, H., Kononova, A.V., Naujoks, B., Li, K.,Miettinen, K., Yevseyeva, I. (eds.) Evolutionary
Multi-Criterion Optimization, pp. 134–146. Springer Nature Switzerland, Cham (2023)

3. Cover, T.: Estimation by the nearest neighbor rule. IEEE Trans. Inf. Theory 14(1), 50–55
(1968). https://doi.org/10.1109/TIT.1968.1054098

4. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-
point-based nondominated sorting approach, Part I: Solving problems with box constraints.
IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.
2281535

5. Fan, Z., Li, W., Cai, X., Li, H., Wei, C., Zhang, Q., Deb, K., Goodman, E.: Difficulty adjustable
and scalable constrained multiobjective test problem toolkit. Evol. Comput. 28(3), 339–378
(2020). https://doi.org/10.1162/evco_a_00259

6. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. J. Amer. Stat.
Assoc. 47(260), 583–621 (1952). http://www.jstor.org/stable/2280779

7. Lin, J., Liu, H., Peng, C.: The effect of feasible region on imbalanced problem in constrained
multi-objective optimization. In: 2017 13th International Conference on Computational Intel-
ligence and Security (CIS), pp. 82–86 (2017)

8. Ma, H., Wei, H., Tian, Y., Cheng, R., Zhang, X.: A multi-stage evolutionary algorithm for
multi-objective optimization with complex constraints. Inf. Sci. 560, 68–91 (2021). https://doi.
org/10.1016/j.ins.2021.01.029

9. Ma, Z.,Wang,Y.: Evolutionary constrainedmultiobjective optimization: Test suite construction
and performance comparisons. IEEE Trans. Evol. Comput. 23(6), 972–986 (2019). https://doi.
org/10.1109/TEVC.2019.2896967

10. Mittal, S., Saxena, D.K., Deb, K., Goodman, E.D.: A unified innovized progress operator
for performance enhancement in evolutionary multi- and many-objective optimization. IEEE
Trans. Evol. Comput. 1–1 (2023). https://doi.org/10.1109/TEVC.2023.3321603

11. Padhye, N., Deb, K., Mittal, P.: Boundary handling approaches in particle swarm optimization.
In: Bansal, J., Singh, P., Deep, K., Pant, M., Nagar, A. (eds.) Proceedings of Seventh Inter-
national Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012).
Advances in Intelligent Systems and Computing, vol. 201, pp. 287–298. Springer, India (2013)

12. Saxena, D.K., Kapoor, S.: On timing the nadir-point estimation and/or termination of
reference-based multi- andmany-objective evolutionary algorithms. In: Deb, K., Goodman, E.,
Coello Coello, C.A., Klamroth, K., Miettinen, K., Mostaghim, S., Reed, P. (eds.) Evolutionary
Multi-Criterion Optimization, pp. 191–202. Springer International Publishing, Cham (2019)

13. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945).
http://www.jstor.org/stable/3001968

https://doi.org/10.1109/TIT.1968.1054098
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1162/evco_a_00259
http://www.jstor.org/stable/2280779
https://doi.org/10.1016/j.ins.2021.01.029
https://doi.org/10.1016/j.ins.2021.01.029
https://doi.org/10.1109/TEVC.2019.2896967
https://doi.org/10.1109/TEVC.2019.2896967
https://doi.org/10.1109/TEVC.2023.3321603
http://www.jstor.org/stable/3001968


Chapter 7
Learning to Simultaneously Converge
and Diversify Better: UIP Operator

It has been highlighted earlier that all evolutionary multi- and many-objective opti-
mization algorithms (EMâOAs), including the reference vector (RV)-based EMâOAs
orRV-EMâOAs, pursue the dual goals of convergence-to and diversity-across the true
Pareto front (PF). In previous chapters, IP2 and IP3 operators have been discussed
with a focus solely on convergence enhancement and diversity enhancement, respec-
tively. Interestingly, on convergence-hard problems: NSGA-III integrated with IP2,
referred to as NSGA-III-IP2, reported (statistically) significantly better convergence
over base NSGA-III, without compromising on diversity. Similarly, on diversity-
hard problems: NSGA-III integrated with IP3, referred to as NSGA-III-IP3, reported
significantly better diversity over base NSGA-III, without compromising on conver-
gence. Such revelations testify that the IP2 and IP3 operators could successfully
maintain the delicate convergence-diversity balance, which is essential for a good
PF-approximation. Plausibly, the above was possible due to the implementation of
IP2 and IP3 operators in a manner which ensures that the share of convergence–
diversity neutral natural1 offspring dominates the share of pro-convergence or pro-
diversity offspring, across all generations of an NSGA-III-IP2 or NSGA-III-IP3 run.

It is critically important to recognize that a priori characterization of a given
problem as convergence-hard or diversity-hard, is not a trivial task. Given this, the
suitability of the IP2 or IP3 operators cannot be assessed a priori. Hence, it becomes
rather compelling to develop an operator that provides the scope for improvement
in both convergence and diversity, without assuming a priori, the characteristics of
a given problem. To this effect, this chapter presents the Unified Innovized Progress
(UIP) operator, which invokes both the IP2 and IP3 operators, for the creation of pro-

1 Natural offspring refer to the offspring initially created using the natural variation operators,
including, recombination andmutation. Such offspring are said to be convergence–diversity neutral,
since they are not created with an explicit aim to promote either convergence or diversity.
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Source of offspring 

solutions that are 

subjected to selection

Linkage of offspring solutions with the dual 

goals in EMâOAs

Convergence Diversity

RV-EMâOA

RV-EMâOA-IP

RV-EMâOA-IP

RV-EMâOA-UIP

Fig. 7.1 Symbolic depiction of the convergence–diversity balance across all generations of RV-
EMâOA-UIP vis-à-vis RV-EMâOA-IP3, RV-EMâOA-IP2 and RV-EMâO. The natural offspring QV

do not impose any explicit preference for convergence or diversity, hence, are marked by a different
color

convergence offspring QIP2 and pro-diversity offspring QIP3, respectively. Aligned
with the earlier used terminology, an RV-EMâOA integrated with the UIP operator
is referred to as RV-EMâOA-UIP. Although the details are shared later in Sect. 7.1.4,
it must be noted upfront that the share of convergence–diversity neutral offspring
(QV) over all the generations of RV-EMâOA-UIP, dominates the combined share
of pro-convergence (QIP2) and pro-diversity (QIP3) offspring. The same has been
symbolically depicted in Fig. 7.1.

The remaining chapter is organized as follows: the UIP operator is detailed in
Sect. 7.1, alongwith its integration with someRV-EMâOAs, includingNSGA-III [6],
θ -DEA [19],MOEA/DD [12] and LHFiD [17]. Its computational complexity is high-
lighted in Sect. 7.2, followed by its comparison with some common enhancements
used in EMâOAs in Sect. 7.3. The experimental settings are discussed in Sect. 7.4,
followed by the results in Sects. 7.5 and 7.6. Finally, a small analysis of the additional
run-time associated with the UIP operator is presented in Sect. 7.7.

7.1 UIP Operator for Convergence and Diversity
Enhancement

It has been highlighted above that the UIP operator relies on invocations of both IP2
and IP3 operators in such a manner that the delicate convergence–diversity balance
is not disrupted. The constitutive modules of the IP2 operator were presented in
Chap. 5, and their integration with NSGA-III was summarized in Algorithm 5.5.
Similarly, in Chap. 6, the constitutive modules of the IP3 operator were presented,
and their integration with NSGA-III was summarized in Algorithm 6.5. To avoid
clutter in the algorithmic description of NSGA-III-UIP, the IP2 and IP3 operators
have been defined below as—compact, yet self-sufficient functions, which can be
appropriately invoked, as part of NSGA-III-UIP.
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7.1.1 Representation of IP2 Operator as a Function

The IP2 operator, as a function, is presented in Algorithm 7.1. It includes: (a) con-
struction of the training-dataset Dt using Algorithm 5.2, (b) training of the machine
learning (ML) model on Dt using Algorithm 5.3, (c) creation of 50% natural off-
spring, denoted by QV

t , and (d) progression of all offspring solutions in QV
t using

Algorithm 7.4, leading to 50% progressed offspring solutions QIP2
t .

Algorithm 7.1: IP2(At , Tt ,R, [X (L), X (U )], Pt )

Input: Input archive At , target archive Tt , RV set R, original variable bounds [X (L), X (U )],
parent population Pt

Output: Offspring solutions QIP2
t

1 Dt ← Construct the training-dataset using Algorithm 5.2
2 Train the ML model using Algorithm 5.3
3 QV

t ← Create 50% offspring using natural variation operators
4 QIP2

t ← Progression of randomly picked 50% of QV
t using Algorithm 7.4

7.1.2 Representation of IP3 Operator as a Function

The IP3 operator, as a function, is presented in Algorithm 7.2. It includes: (a) con-
struction of M training-dataset D1–DM using Algorithm 6.1, (b) training of M ML
models on D1–DM (one per dataset) using Algorithm 6.2, (c) creation of 25% off-
spring, QB

t , using Algorithm 6.3 for better spread of solutions, (d) creation of 25%
offspring, QG

t , usingAlgorithm6.4 for better uniformity of solutions, and (e)merging
of QB

t and QG
t , leading to 50% offspring solutions, denoted by QIP3

t .

Algorithm 7.2: IP3(Pt ,R, r, [X (L), X (U )])
Input: Parent population Pt , RV set R, neighborhood radius r , original variable bounds

[X (L), X (U )]
Output: Offspring solutions QIP3

t
1 D1–DM ← Construct the training-datasets using Algorithm 6.1
2 Train the m ML models using Algorithm 6.2
3 QB

t ← Create 25% offspring using boundary progression (Algorithm 6.3)
4 QG

t ← Create 25% offspring using gap progression (Algorithm 6.4)
5 QIP3

t ← Merge QB
t and QG

t (total 50% offspring)
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7.1.3 UIP Operator and Integration with NSGA-III

The UIP operator is not an independent operator which requires a goal-driven
training-dataset construction andML training, leading to offspring creation. Instead,
theUIP operator is about invocation of the IP2 and IP3 operators, simultaneously or in
isolation of each other, leading to creation of pro-convergence and / or pro-diversity.
For the sake of clarity, this subsection highlights the steps that enable the generation
of an RV-EMâOA-UIP, as statements of fact (the what aspect). The rationale for the
above steps is detailed in the subsequent subsections (the why and how aspects).

Notably, in any generation t of an RV-EMâOA-UIP, none, one, or both of the
IP2 and IP3 operators may be invoked. The first invocation of these constitutive
operators is subjected to specific initiation conditions being met (as described in
Chaps. 5 and 6). Furthermore, their subsequent invocations are guided by the adaptive
frequency parameters (t IP2freq and t IP3freq), which represent the number of generations
between two successive invocations for each operator. Four different scenarios are
possible, depending on which of the initiation conditions are met and the values
of the corresponding frequency parameters. First, the most comprehensive scenario
where both IP2 and IP3 are invoked in an RV-EMâOA-UIP generation, is discussed
below, with reference to Fig. 7.2. In that scenario:

• First 100% (N ) natural offspring are created, denoted by QV (in boxes (a) and (b)
under ‘Offspring Population’).

• IP2 creates 50% pro-convergence offspring QIP2 (in box (c)), through the progres-
sion of 50% of randomly chosen QV.

• IP3 creates 50% pro-diversity offspring QIP3 (in box (d)), through the progression
of 50% of the judiciously chosen parent solutions.

Fig. 7.2 A schematic for an RV-EMâOA-UIP generation. When IP2 is invoked, 0.5N pro-
convergence offspring QIP2 are created by subjecting 0.5N natural offspring QV to the IP2 operator.
Similarly, when IP3 is invoked, 0.5N pro-diversity offspring QIP3 are created by subjecting 0.5N
parents to the IP3 operator (taken from [14])
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• The new offspring QIP2 and QIP3 (in boxes (c) and (d), collectively of size N ) are
combined with the parent population, leading to the combined population, of size
2N . Notably, the extra offspring, in boxes (a) and (b), are not evaluated.

• Finally, the survival selection of the underlying RV-EMâOA is executed, leading
to the surviving population (of size N ), which serves as the parent population for
the next generation.

Figure7.2 also helps to interpret the other scenarios, where in a generation t of an
RV-EMâOA-UIP, none or one of the IP2 and IP3 operators may be invoked. For
example:

• If in anRV-EMâOA-UIP generation, neither IP2 nor IP3 is invoked: this generation
is implemented as the base RV-EMâOA generation. In that, QV, of size N (boxes
(a) and (b)) constitute the final offspring.

• If in an RV-EMâOA-UIP generation, only IP2 gets invoked: QV of size N (boxes
(a) and (b)) are created and half of them randomly chosen (box (a)) are subjected
to the IP2 operator. The newly created QIP2 (box (c)) along with the unused QV

(box (b)) constitute the final offspring.
• If in an RV-EMâOA-UIP generation, only IP3 is invoked: only half of QV (box
(a)) is created and along with the newly created QIP3 (box (d)), constitute the final
offspring.

The enabling steps in an RV-EMâOA-UIP generation, highlighted above, prompt
several critical questions, including:

(a) Why are the proportions of QIP2 and QIP3, kept at 50% each?
(b) If QIP2 is created by subjecting QV to the IP2 operator, then why is QIP3 created

by subjecting the parent solutions to the IP3 operator?
(c) What is the rationale for the criterion for the first invocation of IP2 and IP3

operators?
(d) While the subsequent invocations of IP2 and IP3 operators are based on t IP2freq and

t IP3freq, respectively, what is the criterion for their on-the-fly updates?

The answers to the above questions are detailed in the following subsections, and as
depicted in Fig. 7.3 question-wise, they are all guided by the need to ensure that: (i)
neither convergence nor diversity gets over-emphasized at the cost of the other, (ii) the
performance of the base RV-EMâOA is not significantly impacted in a detrimental
sense, if the learning (through underlying ML models) happens to be erroneous,
for some reason, (iii) no extra solution evaluations vis-à-vis the base RV-EMâOA
are incurred, and (iv) ad-hoc fixation of introduced parameters in avoided, as far as
possible.

7.1.4 Proportion of Offspring Created by IP2/IP3 Operators

The success of EMâOAs, including RV-EMâOAs, largely depends on a fine explo-
ration-exploitation balance [5, 8]. A prerequisite for this balance is that the search
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Fig. 7.3 UIP operator: the
key considerations (i–iv) in
the wake of critical questions
(Q1–Q4) listed earlier
(taken from [14])

(i)

(ii)

(iii)

(iv)

space exploration (X space) is convergence–diversity neutral. This implies that natu-
ral variation operators should not have an explicit bias toward creating offspring that
are particularly superior in terms of convergence or diversity. Failure to ensure this
during exploration may eventually lead selection (exploitation) operators to undesir-
ably propagate faster convergence at the expense of loss of diversity or vice versa.
This philosophy is endorsed by Fig. 7.1, where 100% offspring in the case of an RV-
EMâOA are shown to be convergence–diversity neutral (QV). It must be noted that
the choice of QIP2 = 50% and QIP3 = 50%, along with the constraints on adaptive2

t IP2freq and t IP3freq, respectively, help to fulfill the key considerations of the convergence–
diversity balance and ML-based risk-reward trade-off. For example:

• In a generation of RV-EMâOA-UIP where only IP2 is invoked: QIP2 = 50%
implies its proportion equal to QV. In such a scenario, the dominant share of
QV is ensured, as in the case of RV-EMâOA-IP2, as explained earlier in Sect. 5.3
(Chap. 5).

• In a generation of RV-EMâOA-UIP where only IP3 is invoked: QIP3 = 50%
implies its proportion equal to QV. In such a scenario, the dominant share of
QV is ensured, as in the case of RV-EMâOA-IP3 (by extending the same argument
presented for RV-EMâOA-IP2).

• In a generation of RV-EMâOA-UIP where both IP2 and IP3 operators are invoked:
QIP2 = 50% and QIP3 = 50% together imply zero contribution of convergence–
diversity neutral QV. To avoid over-dependence on IP2- and IP3-based offspring,
the constraints of t IP2freq ≥ 2 and t IP3freq ≥ 2 are imposed, so at least in the next gener-
ation, neither IP2 nor IP3 is invoked, and the contribution of QV shall be 100%.

2 The on-the-fly adaptation is detailed in Sect. 7.1.6.
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Furthermore, the fact that, under on-the-fly adaptation, t IP2freq > 2 and t IP3freq > 2 are
possible ensures that across all generations the share of QV > (QIP2 ∪ QIP3), as
depicted in Fig. 7.1. This in turn shall ensure the retention of the convergence–
diversity balance, and the desired safety net, in case the learning for the IP2 and
IP3 operators is erroneous.

7.1.5 First Invocations of IP2 and IP3 Operators

To avoid erroneous learning, the first invocations of these operators are deferred
until the base RV-EMâOA population attains some degree of stability considered
conducive to convergence and diversity enhancements, respectively. The criteria for
the same, reiterated here, have also been described in earlier Chaps. 5 and 6. For the
pro-convergence IP2, it is desired that sufficient diversity be achieved first by the
population so that most RVs get associated with a solution, and efforts to enhance
convergence along each RV could be pursued. To this effect, the base RV-EMâOA
is given sufficient search opportunity, and IP2 is first invoked only after the entire
population becomes non-dominated. Similarly, the IP3 operator is first invoked after
the RV-EMâOApopulation reports amild stability [16], after which drastic variations
in the spread of the boundaries or the internal distribution of solutions may be less
likely.

7.1.6 Subsequent Invocations of the IP2 and IP3 Operators

To avoid arbitrary parameter fixations, the subsequent invocations of IP2 and IP3
are not enforced by rigidly fixed parameters, but guided by independent parameters,
namely, t IP2freq and t

IP3
freq, respectively, which are adapted on-the-fly as mentioned earlier.

The adaptation of t IP2freq and t IP3freq is based on the survival rates of QIP2 and QIP3,
respectively. In the context of IP2, if the fraction of QIP2 in generation t that survives
to the next generation exceeds its counterpart in the previous generation, then t IP2freq
is reduced by 1, which implies a more frequent invocation of IP2. Otherwise, if the
fraction of QIP2 in generation t that survives to the next generation falls short of its
counterpart in the previous generation, then t IP2freq is increased by 1, which implies a
less frequent invocation of IP2. The same logic is applicable for the adaptation of
t IP3freq, based on the fraction of QIP3 that survives to the next generation.
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7.1.7 Avoiding Additional Solution Evaluations by IP2/IP3

The designs of the IP2 and IP3 operators are such that their invocations do not
necessitate any additional solution evaluations, in addition to those required by
the base RV-EMâOA. Notably, any generation of the base RV-EMâOA requires N
solution evaluations, corresponding to the N natural offspring. Notably:

• In any generation where IP2 is invoked: first 100% natural offspring are created,
and then, the trained ML model is used for the progression of 50% of these off-
spring (randomly picked). Subsequently, these progressed offspring replace their
respective original offspring, maintaining the overall offspring count as N , while
ensuring that any additional solution evaluations are avoided.

• In any generation where IP3 is invoked: only 50% natural offspring are created,
while the remaining 50% are pro-diversity offspring created by subjecting judi-
ciously picked parents to the IP3 operator. Hence, only N solution evaluations are
required. Notably, the reliance on the parents here (unlike the IP2 case) is natural,
since the diversity requirements with respect to gap filling and boundary expansion
are directly captured by the parents (current generation solutions) themselves.

Hence, any extra solution evaluations are avoided in the case of any IP2 and/or IP3
invocations.

7.1.8 Algorithmic Implementation of RV-EMâOA-UIP

Toward a generic discussion, the UIP operator has been integrated with multiple RV-
EMâOAs, including, NSGA-III, θ -DEA, MOEA/DD, and LHFiD. For a smoother
reading, the integrationwithNSGA-III has been presented here, while the integration
with the others is detailed in the appendix of this chapter (Sect. 7.9).

Algorithm 7.3 highlights a representative generation t of NSGA-III-UIP. It may
be recalled that the training-dataset for the IP2 operator (Chap. 5) relies on map-
ping the solutions of the current generation (target-archive) and the solutions from
the past generations (input-archive). In contrast, the IP3 operator (Chap. 6) is based
on generating the training-dataset only from the solutions in the current generation.
Therefore, at t th generation, the target-archive for the IP2 operator is updated (line 1,
Algorithm 7.3), while no such update is needed for IP3. Then the prerequisite condi-
tions for the invocations of IP2 and IP3 are checked and, if fulfilled, the start I P2 and
start I P3 flags are activated for the invocation of IP2 and IP3 operators, respectively
(lines 2–5, Algorithm 7.3). In the subsequent generations:

• If the IP2 operator is invoked, then the trainedMLmodel is used for the progression
of 50% of the natural offspring (randomly chosen), leading to QIP2

t (lines 6–7,
Algorithm 7.3).
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Algorithm 7.3: Generation t of NSGA-III-UIP

Input: RV set R, variable bounds [X (L), X (U )], parent population Pt
IP2-specific: target archive Tt−1, input archive At , frequency t IP2freq

IP3-specific: neighborhood radius r , frequency t IP3freq

Output: Pt+1, Tt , At+1, t IP2freq, t
IP3
freq

1 Tt ← Update the target archive for IP2 operator
2 if population is completely non-dominated then
3 start I P2 = True

4 if population has mildly stabilized then
5 start I P3 = True

6 if start I P2 & t IP2freq generations passed after last invocation then
7 QIP2

t ← Create 50% offspring using IP2 (Algorithm 7.1)

8 if start I P3 & t IP3freq generations passed after last invocation then
9 QIP3

t ← Create 50% offspring using IP3 (Algorithm 7.2)

10 if offspring created are not sufficient (< N) then
11 QV

t ← Create rest of offspring using natural variation operators

12 Qt ← Merge QIP2
t , QIP3

t and QV
t (total N offspring)

13 Evaluate(Qt )
14 At+1 ← Update the input archive for IP2 operator
15 Pt+1 ← Perform survival selection on Pt ∪ Qt
16 if IP2 was invoked in current generation then
17 Update t IP2freq (Section 7.1.6)

18 if IP3 was invoked in current generation then
19 Update t IP3freq (Section 7.1.6)

20 if both IP2 and IP3 were invoked in current generation then
21 if t IP2freq < 2 then t IP2freq = 2

22 if t IP3freq < 2 then t IP3freq = 2

• If the IP3 operator is invoked, then the trainedMLmodel is used for the progression
of 50% of the parent solutions (judiciously chosen), leading to QIP3

t (lines 8–9,
Algorithm 7.3).

• If none or only one of IP2 and IP3 is invoked, the number of offspring shall be less
than N . Hence, the remaining offspring are created using the variation operators,
denoted by QV

t (lines 10–11, Algorithm 7.3).
• All offspring, namely QIP2

t , QIP3
t and QV

t aremerged into Qt (size N ) and evaluated
(lines 12–13, Algorithm 7.3).

• Update the input-archive At+1 as required by the IP2 function (line 14,
Algorithm 7.3).

• The combined Pt and Qt are subjected to survival selection of NSGA-III, leading
to the new Pt+1 (line 15, Algorithm 7.3).

• t IP2freq and t IP3freq are adapted, if the respective operators were invoked in the current
generation t (lines 16–19, Algorithm 7.3). This adaptation is based on the sur-
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vival of the respective offspring vis-à-vis the natural offspring, as described in
Sect. 7.1.6.

• Finally, if both IP2 and IP3 are invoked in the current generation, it is ensured that
neither t IP2freq nor t

IP3
freq has a value lower than two (lines 20–22, Algorithm 7.3), as

explained earlier in Sect. 7.1.4.

7.2 Computational Complexity of UIP Operator

As detailed in Sect. 7.1, the UIP operator consists of two modules. These modules
are based on the IP2 and IP3 operators, which have computational complexity as
presented in Sect. 5.4 (Chap. 5) and Sect. 6.3 (Chap. 6), respectively. From this anal-
ysis, the worst-case time and space complexities of IP2-based offspring progression
and IP3-based offspring creation are summarized in Table7.1.

It may be noted that these worst-case complexities, both for IP2 and IP3, cor-
respond to their underlying ML methods, i.e., RF and kNN, respectively. The use
of a different ML method may affect the corresponding complexities in Table7.1.
However, since the focus of this book is to provide a proof-of-concept that MLmeth-
ods could be utilized for such enhancements related to convergence and diversity in
RV-EMâOAs, the comparison of alternative ML methods is not within the scope of
this book.

7.3 Comparison with Existing EMâO Enhancements

The concept of the UIP operator (and the underlying IP2 and IP3 operators), as in
this book, may seem similar to certain existing enhancements used in the EMâO
domain. In this section, some of these practices, including: (a) a local-search method
and (b) a surrogate-modeling method, are highlighted, and their key differences from
the operators introduced here are discussed. In this discussion, the IP2, IP3, and UIP
operators are collectively referred to as the IP operators.

Table 7.1 Time- and space complexities of different modules of the UIP operator

Module Time-complexity Space-complexity

IP2-based offspring
progression

O(N 3t3pastn log (Ntpast)) O(N 2t2pastn)

IP3-based offspring creation O(MNn log(N )) O(MNn)
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7.3.1 A Local Search Method

The IP operators (IP2, IP3, and UIP) attempt to create the offspring solutions through
their ML-based progression, in any intermediate generation of an RV-EMâOA run.
This operation should not be confused with a local search method [2, 10, 15] that
aims to improve the local convergence of solutions in any generation. Key differences
are highlighted below.

• Usually, in a multi- or many-objective optimization problem (MOP/MaOP), mul-
tiple conflicting objectives are present. This poses a challenge to local search, as
the local search usually relies on a single objective function for improvement,
defining which may be a non-trivial task. On the contrary, multiple objectives do
not pose any additional challenge to any of the IP operators.

• Implementing a local search requires additional solution evaluations beyond the
default solution evaluations of any EMâOA, which is not the case with any of the
IP operators.

• A local search usually means searching for the best solution in a local neighbor-
hood,while the progression of any solution’s X vector using any of the IP operators
may be substantial and not necessarily be local.

7.3.2 A Surrogate-Modeling Method

In EMâOAs, a surrogate model is often constructed and used to find solutions closer
to PF . In real-world problems in which solution evaluations are computationally
very expensive, such an approach helps reduce the number of actual solution evalu-
ations needed to converge, thus saving computational effort and run-time (Chap. 3).
Existing studies on surrogate modeling have used several ML methods, including
Random Forests (RF). Therefore, it is important to clarify the distinction between
ML-based surrogate modeling and ML-based IP operators, which Table7.2 seeks to
make clearer.

7.4 Experimental Setup

This section lays the foundation for the experimental investigations by highlighting
the: (a) test suite considered, (b) performance indicators used and related statistical
analysis, and (c) parameters pertaining to the RV-EMâOA(s) and the UIP operator.
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Table 7.2 Fundamental differences between an EMâOA coupledwith surrogate modeling andwith
one of the IP operators (IP2, IP3, or UIP)

Point of difference EMaOAs with

Surrogate modeling IP operators

1. ML model training X -F mapping X -X mapping

2. ML model application Does not alter a solution’s X
vector directly

Alters a solution’s X vector
directly

3. Evolution of Offspring Performed by variation
operators only

Performed by the variation
operators and/or the learnt ML
model(s)

4. Fitness evaluation Guided by both approximate
and actual objective values

Guided by actual objective
values only

5. Quality of
PF-approximation

At best equivalent to base
EMÔA but in fewer actual
solution evaluations

Better of equivalent PF-
approximation in same number
of solution evaluations

7.4.1 Test Suite

To demonstrate the efficacy of the UIP operator, several MOPs have been used, as
previously used in Chaps. 5 and 6. These include: (i) convergence-hard (Z̃DT, DTLZ
and MaF); and (ii) diversity-hard (CIBN, DASCMOP, and MW) problems.

Once the efficacy of the UIP operator is established on MOPs, several MaOPs
with M = 5, 8, and 10 are also considered, including the DTLZ [7] and MaF [3]
problems. In these problems, the distance variables have been set to k = 20, wherever
applicable.

7.4.2 Performance Indicators and Statistical Analysis

The choice of performance indicators is the same as that adopted earlier in Chaps. 5
and 6. Key details are reiterated in the following:

• Hypervolume is used as the primary indicator, with the reference point set as
R1×M = [1 + 1

p , . . . , 1 + 1
p ], where p is the number of gaps set for the Das–

Dennis method while generating the RVs for RV-EMâO. Furthermore, for prob-
lems where the scales of different objectives are different, the solutions are nor-
malized in the Z space using the theoretical PF extremes.

• The population mean of the function g(X) is used as a secondary indicator to
provide information on the convergence levels in the X space.

Furthermore, in the context of statistical analysis of performance indicator values,

• When comparing only two algorithms at the same time, the Wilcoxon rank sum
test [18] is performed on the indicator values reported on multiple independently
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seeded runs. Here, the threshold value of p = 0.05 (95% confidence interval) is
used.

• When comparing more than two algorithms at the same time, the Kruskal–Wallis
test [11] with the threshold value p = 0.05 is used to infer whether their overall
differences are statistically significant or not. If not, the Wilcoxon rank sum test is
used for their pairwise comparisons, treating NSGA-III-UIP as the reference. In
that, the threshold value p is adjusted using the standard Bonferroni correction [1],
to retain the same overall confidence.

7.4.3 Parameter Settings

In this subsection, the parameters and settings used for (a) the RV-EMâOAs; and (b)
the UIP operator are discussed.

7.4.3.1 RV-EMâOA Settings

To obtain a reasonably sized set of RVs using the Das–Dennis method [4], the gap
parameter is set as given in Table7.3. In that table, where two values of p (gaps)
are shown, the first value is used to create the boundary RVs and the second value
is used to create the interior RVs [6]. For coherence, the population size N is kept
the same as the number of RVs corresponding to a particular objective, as given
in Table7.3. Furthermore, the natural variation operators include SBX crossover
(pc = 0.9 and ηc = 20) and polynomial mutation (pc = 1/n and ηm = 20) for an
n-variable problem.

Further, each EMâOA has been run 31 times, with different random seeds. In
that process, for NSGA-III-UIP, termination generation tmax has been determined
on-the-fly through the stabilization tracking algorithm, usingψterm ≡ {3, 50}. For all
other EMâOAs, the mean tmax determined for NSGA-III-UIP on 31 runs has been
used as tmax.

Table 7.3 Parameter settings for the Das–Dennis method

Setting M = 2 M = 3 M = 5 M = 8 M = 10

p (gaps) 99 13 5, 4 3, 3 3, 3

N 100 105 196 240 440
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7.4.3.2 UIP Operator Settings

TheUIPoperator does not involve any additional parameters, other than those specific
to IP2 or IP3, for which details are provided below.

• IP2-specific: the IP2 operator involves three parameters—tpast, t IP2freq and η. Here:
(a) tpast = 5 is used, since performance is not very sensitive to tpast [13], (b) t IP2freq
is adapted on-the-fly based on the survival of IP2-based offspring, while its initial
value is set as 1, and (c) η assumes a random value in the range [1, 1.5].

• IP3-specific: the IP3 operator involves two parameters—t IP3freq and ψmild. In that
operator, t IP3freq is adapted on-the-fly based on the survival of IP3-based offspring,
while its initial value is set as 1. In addition,ψmild governs the degree of stabilization
required to trigger IP3’s first invocation. While it is intuitive that ψmild should
correspond to a lower degree of stabilization than ψTM that is used to terminate
the RV-EMâOA-UIP runs, its exact setting is borrowed from the suggestion made
in [16, 17]. According to that, ψmild = {2, 20}.

7.5 Results and Discussion

This section first presents the evaluation of: (a) UIP vis-à-vis IP2, on convergence-
hard problems; and (b) UIP vis-à-vis IP3, on diversity-hard problems, to collectively
establish the efficacy of the UIP operator on MOPs, after which the evaluation of the
UIP operator on MaOPs is presented.

7.5.1 UIP Vis-à-Vis IP2 Operator

In this subsection, the performance comparison of UIP and IP2 operators has
been made through a direct comparison of NSGA-III-UIP and NSGA-III-IP2 on
convergence-hard MOPs. Notably, NSGA-III has also been included as reference, to
assess whether UIP’s integration into NSGA-III leads to deteriorated performance
in any test instance.

Table7.4 reports the median hypervolume and median g(X) values, from among
the 31 randomly seeded runs at the end of the tmax generations. In that, tmax has been
determined on-the-fly for NSGA-III-UIP, and the same has been used for NSGA-III
and NSGA-III-IP2. From Table7.4, the following can be observed:

• In the context of hypervolume: compared to NSGA-III-IP2, NSGA-III-UIP per-
forms statistically better, equivalent, and worse in 4, 16, and 1 instances, respec-
tively, out of 21 instances.

• In the context of g(X) values: compared to NSGA-III-IP2, NSGA-III-UIP per-
forms statistically better, equivalent, and worse in 3, 12, and 3 instances,
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(a) Z̃DT6 (tmax = 1836) (b) MaF12 (tmax = 725)

Fig. 7.4 Generation-wise median hypervolume plots from among 31 randomly seeded runs of
NSGA-III, NSGA-III-IP2 and NSGA-III-UIP, on two sample convergence-hard problems

respectively, out of 18 instances (problems where g(X) function is not existent,
are marked by ‘–’).

Overall, the above results endorse that on convergence-hard problems, NSGA-III-
UIP performs statistically better than or equivalent to NSGA-III-IP2 in most cases,
and worse in a few cases. These results could be interpreted in light of the interplay
of—the problem features and the algorithmic features, as explained below:

1. Problem features: convergence-hard problems may belong to two broad cate-
gories: (i) where supplemental diversity may be desired or essential for good
convergence—for example, problems with multiple local optima, where popu-
lation diversification may help in overcoming the traps of local optima, and (ii)
where supplemental diversity may not facilitate better convergence.

2. Algorithmic features: for convergence-hard problems, the algorithmic features
contributing to the selection pressure for convergence are noteworthy. For exam-
ple, compared toNSGA-III-IP2,NSGA-III-UIP potentially provides a diminished
selection pressure for convergence3 and a supplemental selection pressure for
diversity. Hence, in problems where supplementary diversity may help improve
convergence (as generally observed for EMâOAs), NSGA-III-UIP may poten-
tially perform better than or equivalent to NSGA-III-IP2. However, in problems
where supplemental diversitymay be inconsequential, NSGA-III-UIPmay poten-
tially be marginally worse than NSGA-III-IP2.

The interplay of the problem and algorithmic features cited above appears to
manifest in a contrasting manner for the Z̃DT6 and MaF12 problems, where NSGA-
III-UIP offers a better and marginally worse hypervolume, respectively, than NSGA-
III-IP2 (Fig. 7.4).

3 In case of NSGA-III-IP2: �0.5N� pro-convergence offspring are produced whenever IP2 is
invoked, with t IP2freq ≥ 1. However, in case of NSGA-III-UIP: whenever IP2 and IP3 are invoked

simultaneously, pro-convergence �0.5N� offspring are produced, but with t IP2freq ≥ 2. The latter
causes fewer invocations of pro-convergence IP2 in the case of NSGA-III-UIP than in NSGA-
III-IP2, leading to a potentially diminished selection pressure for convergence in NSGA-III-UIP.
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7.5.2 UIP Vis-à-Vis IP3 Operator

In this subsection, the performance comparison of UIP and IP3 operators has
been realized through a direct comparison of NSGA-III-UIP and NSGA-III-IP3 on
diversity-hard MOPs. Notably, NSGA-III has also been included as a reference, to
assess whether UIP’s integration into NSGA-III leads to deteriorated performance
in any test instance.

Table7.5 reports the median hypervolume and median g(X) values, from among
the 31 randomly seeded runs at the end of the tmax generations. In those runs, tmax

has been determined on-the-fly for NSGA-III-UIP, and the same has been used for
NSGA-III and NSGA-III-IP3. From Table7.5, the following can be observed:

• In the context of hypervolume: compared to NSGA-III-IP3, NSGA-III-UIP per-
forms statistically better, equivalent, and worse in 6, 21, and 1 instances, respec-
tively, out of 28 instances.

• In the context of g(X) values: compared to NSGA-III-IP3, NSGA-III-UIP per-
forms statistically better, equivalent, and worse in 8, 20, and 0 instances.

Overall, the above results endorse that, on diversity-hard problems, NSGA-III-
UIP performs statistically better than or equivalent to NSGA-III-IP3 in most cases,
and worse in a few cases. These results could also be interpreted in light of the
interplay of—the problem features and algorithmic features, as explained below.

1. Problem features: diversity-hard problems may belong to two broad categories:
(i) where supplemental convergence during the earlier generations may be desired
or essential for achieving good diversity, eventually. and (ii) where supplemental
convergence during the earlier generations may be inconsequential for the final
diversity.

2. Algorithmic features: for diversity-hard problems, the algorithmic features con-
tributing to the selection pressure for diversity are noteworthy. For example, com-
pared to NSGA-III-IP3, NSGA-III-UIP potentially provides a diminished selec-
tion pressure for diversity4 and a supplemental selection pressure for convergence.
Hence, in problemswhere supplemental convergencemay help improve diversity,
NSGA-III-UIP may potentially perform better than or equivalent to NSGA-III-
IP3.However, in problemswhere supplemental convergencemaybe inconsequen-
tial, NSGA-III-UIP may potentially be marginally worse than NSGA-III-IP3.

Interestingly, the interplay of the problem and algorithmic features cited above
appears to manifest itself in favor of NSGA-III-UIP than NSGA-III-IP3, in all the
problems considered,with the exception of theCIBN5problem. For a sample illustra-
tion of the broader trend, the DASCMOP1 problem has been considered. Figure7.5a

4 In case of NSGA-III-IP3: �0.5N� pro-diversity offspring are produced whenever IP3 is invoked,
with t IP3freq ≥ 1. However, in the case of NSGA-III-UIP: whenever IP2 and IP3 are invoked simul-

taneously, �0.5N� pro-diversity offspring are produced, but with t IP3freq ≥ 2. The latter causes fewer
invocations of pro-diversity IP3 in the case of NSGA-III-UIP than in NSGA-III-IP3, leading to a
potentially diminished selection pressure for diversity in NSGA-III-UIP.
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(a) Hypervolume (b) NSGA-III

(c) NSGA-III-IP3 (d) NSGA-III-UIP

Fig. 7.5 Generation-wise hypervolume trend and solutions obtained in the respective median runs
of NSGA-III, NSGA-III-IP3, and NSGA-III-UIP at tmax = 2101 generations, on DASCMOP1

shows the generation-wise median hypervolume plot among the 31 randomly
seeded runs of NSGA-III, NSGA-III-IP3, and NSGA-III-UIP. In addition, their
respective PF-approximations at the end of tmax = 2101 generations are shown in
Figs. 7.5b to d. Clearly, the superiority of NSGA-III-UIP is evident in terms of both
the hypervolume measure and the quality of the PF-approximation. While the above
results form the broader trend, the only aberration to it related to the CIBN5 problem
is captured in Fig. 7.6.While the quality of PF-approximations offered byNSGA-III,
NSGA-III-IP3, and NSGA-III-UIP presented in Figs. 7.6b to d, are hard to distin-
guish visually, their characterization in terms of hypervolume values presented in
Fig. 7.6a reveals the differences in their performance.

7.5.3 UIP Operator on Many-Objective Problems

This subsection aims to assess whether the efficacy of the UIP operator, established
above on MOPs, can be extended to MaOPs as well. Notably, since the UIP operator
clearly outperformed the IP2 and IP3 operators, they have been excluded from further
investigation on MaOPs. To this end, Table7.6 reports the median hypervolume
values from among the 31 randomly seeded runs of NSGA-III and NSGA-III-UIP,
at the end of the tmax generations. In this, tmax has been determined on-the-fly for
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(a) Hypervolume (b) NSGA-III

(c) NSGA-III-IP3 (d) NSGA-III-UIP

Fig. 7.6 Generation-wise hypervolume trend and solutions obtained in the respective median runs
of NSGA-III, NSGA-III-IP3, and NSGA-III-UIP at tmax = 294 generations, on CIBN5

NSGA-III-UIP, and the same has been used for NSGA-III. From Table7.6, it can be
observed that compared to NSGA-III, NSGA-III-UIP performs statistically better,
equivalent, and worse in 15, 28, and 5 instances, respectively, out of 48 instances
(spread over M = 5, 8 and 10). From the above, it is fair to infer that NSGA-III-UIP
offers overall better performance than NSGA-III on the considered MaOPs, ranging
from 5 to 10 objectives. This serves as a proof-of-concept that the UIP operator is
scalable in terms of objectives. Hence, the UIP operator is capable of improving the
performance of NSGA-III, not only on MOPs, but also on MaOPs.

7.6 Comparison with Other RV-EMâOAs

To demonstrate how the UIP operator can improve the search efficacy of other RV-
EMâOAs, the performance of θ -DEA-UIP, MOEA/DD-UIP, and LHFiD-UIP has
been investigated vis-à-vis their respective base variants, on bothMOPs andMaOPs.
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7.6.1 Multi-objective Problems

In this subsection, for each of the algorithms: θ -DEA, MOEA/DD and LHFiD, its
base version is compared with its respective UIP variants. The median HV values
are shown in Table7.7, where one can see:

• θ -DEA-UIPperforms statistically better in 23 (out of 49) instances, and statistically
better or equivalently in 48 (out of 49) instances, compared to θ -DEA.

• MOEA/DD-UIP performs statistically better in 20 (out of 49) instances, and statis-
tically better or equivalently in 48 (out of 49) instances, compared to MOEA/DD.

• LHFiD-UIPperforms statistically better in 16 (out of 49) instances, and statistically
better or equivalently in 45 (out of 49) instances, compared to LHFiD.

In general, the UIP variants are statistically better in about 42% of the instances,
and statistically better or equivalent in about 96% of the instances, compared to their
respective base variants (including theNSGA-III-UIP results presented inSects. 7.5.1
and 7.5.2). This performance enhancement could be directly attributed to the search
efficacy infused by the UIP operator when integrated with an RV-EMâOA.

7.6.2 Many-objective Problems

In this subsection, for each of the algorithms: θ -DEA, MOEA/DD, and LHFiD, its
base version is compared with its respective UIP variants. The median HV values
are shown in Table7.8, where one can see:

• θ -DEA-UIPperforms statistically better in 13 (out of 48) instances, and statistically
better or equivalently in 45 (out of 48) instances, compared to θ -DEA.

• MOEA/DD-UIP performs statistically better in 14 (out of 48) instances, and sta-
tistically better or equivalently in 44 (out of 48) instances, than MOEA/DD.

• LHFiD-UIPperforms statistically better in 14 (out of 48) instances, and statistically
better or equivalently in 38 (out of 48) instances, than LHFiD.

In general, the UIP variants are statistically better in about 28% of the instances,
and statistically better or equivalent in about 89% of the instances (including NSGA-
III-UIP results presented in Sect. 7.5.3). This performance enhancement could be
directly attributed to the search efficacy infused by the UIP operator, when integrated
with an RV-EMâOA.

7.7 Run-Time Analysis of UIP Operator

For real-world problems, quite often the time spent on solution evaluations con-
stitutes a dominant fraction of the overall run-time of the optimization process.
Moreover, these solution evaluations are costly in terms of the resources (exper-
imental or computational solvers, other than the optimizer) needed for evaluation.



182 7 Learning to Simultaneously Converge and Diversify Better: UIP Operator

Ta
bl
e
7.
7

H
V
ba
se
d
pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

θ
-D

E
A
-U

IP
,M

O
E
A
/D
D
-U

IP
an
d
L
H
Fi
D
-U

IP
w
ith

th
ei
r
re
sp
ec
tiv

e
ba
se

va
ri
an
ts
,i
.e
.,

θ
-D

E
A
,M

O
E
A
/D
D

an
d
L
H
Fi
D
,r
es
pe
ct
iv
el
y,
on

bo
th
co
nv
er
ge
nc
e-
ha
rd

(Z̃
D
T,
D
T
L
Z
,M

aF
)a
nd

di
ve
rs
ity

-h
ar
d
(C
IB

N
,D

A
SC

M
O
P,
M
W
)t
es
ts
ui
te
s.
E
ac
h
co
lu
m
n
sh
ow

s
th
e
m
ed
ia
n

H
V
(f
ro
m
31

ru
ns
)a
tt
he

en
d
of

t m
ax
ge
ne
ra
tio

ns
,d
et
er
m
in
ed

on
-t
he
-fl
y
fo
rt
he

re
sp
ec
tiv

e
U
IP

va
ri
an
ts
.T

he
sy
m
bo
ls
‘+
’,
‘=
’,
or

‘–
’a
ga
in
st
ea
ch

va
ri
an
th
ig
hl
ig
ht

w
he
re

th
es
e
ar
e
st
at
is
tic

al
ly

be
tte

r
th
an
,c
om

pa
ra
bl
e
to
,o
r
w
or
se

th
an

th
e
co
rr
es
po

nd
in
g
U
IP

va
ri
an
t,
re
sp
ec
tiv

el
y
(t
ak
en

fr
om

[1
4]
)

Pr
ob
le
m

M
t m

ax
θ
-D

E
A

θ
-D

E
A
-
U
IP

t m
ax

M
O
E
A
/D
D

M
O
E
A
/D
D
-
U
IP

t m
ax

L
H
Fi
D

L
H
Fi
D
-
U
IP

Z̃
D
T
1

2
11
61

0.
68
12
80
=

0.
68
12
99

11
55

0.
68
12
15
=

0.
68
11
93

68
3

0.
68
18
74
+

0.
68
18
71

Z̃
D
T
2

2
12
37

0.
34
78
54
=

0.
34
78
61

12
47

0.
34
77
46
=

0.
34
78
00

77
4

0.
34
87
92
–

0.
34
87
93

Z̃
D
T
3

2
97
7

1.
06
73
75
=

1.
06
75
61

10
05

1.
06
71
35
=

1.
06
73
64

66
4

0.
98
79
24
–

1.
02
26
36

Z̃
D
T
4

2
17
44

0.
68
12
57
=

0.
68
12
55

16
75

0.
68
11
96
=

0.
68
11
92

14
81

0.
68
18
73
+

0.
68
17
82

Z̃
D
T
6

2
18
22

0.
31
36
45
–

0.
33
40
52

17
71

0.
31
33
84
–

0.
33
26
46

12
09

0.
30
99
05
–

0.
33
30
11

D
T
L
Z
1

3
11
18

1.
21
35
03
+

0.
87
37
03

11
36

1.
21
61
24
=

1.
20
22
53

63
3

0.
01
22
68
=

0.
00
28
38

D
T
L
Z
2

3
96
3

0.
65
16
11
=

0.
65
17
58

91
2

0.
65
32
44
=

0.
65
28
84

49
9

0.
65
99
76
=

0.
66
05
92

D
T
L
Z
3

3
12
37

0.
61
19
78
=

0.
08
59
17

98
1

0.
55
13
22
+

0.
00
00
00

63
5

0.
00
00
00
=

0.
00
00
00

D
T
L
Z
4

3
19
35

0.
65
29
18
=

0.
65
48
25

12
26

0.
65
41
43
–

0.
65
59
37

90
8

0.
66
11
33
=

0.
66
10
58

M
aF

1
3

61
8

0.
22
82
33
=

0.
22
90
25

62
5

0.
22
95
22
=

0.
22
77
96

54
6

0.
20
81
56
–

0.
20
94
22

M
aF

2
3

51
5

0.
39
09
04
=

0.
39
16
98

51
3

0.
39
30
07
=

0.
39
37
00

48
8

0.
39
42
40
=

0.
39
40
93

M
aF

3
3

21
23

1.
19
32
23
–

1.
19
44
34

21
33

1.
19
15
62
–

1.
19
48
40

15
27

1.
19
18
26
=

1.
19
43
85

M
aF

4
3

13
00

0.
61
04
59
–

0.
62
08
79

12
95

0.
61
35
93
–

0.
61
78
12

73
6

0.
56
81
26
=

0.
01
39
83

M
aF

5
3

18
31

1.
22
86
40
=

1.
22
86
54

15
03

1.
22
84
84
=

1.
22
85
21

11
19

1.
22
29
87
–

1.
22
82
57

M
aF

7
3

11
66

0.
37
16
59
=

0.
37
25
02

11
18

0.
37
17
31
=

0.
37
17
82

10
49

0.
36
32
08
–

0.
37
13
74

M
aF

8
3

15
32

0.
00
03
31
=

0.
00
01
70

16
08

0.
00
01
09
=

0.
00
01
17

15
52

0.
45
81
62
=

0.
45
80
45

M
aF

9
3

11
55

0.
61
05
83
–

0.
61
48
58

12
27

0.
61
00
00
–

0.
61
31
24

77
7

1.
16
04
16
=

1.
16
04
59

M
aF
10

3
10
19

0.
47
72
26
–

0.
49
24
48

10
25

0.
50
85
91
=

0.
49
90
53

94
4

0.
56
86
94
=

0.
57
17
57

M
aF
11

3
10
71

1.
14
42
77
=

1.
13
83
50

99
8

1.
14
21
15
=

1.
14
20
02

80
0

1.
14
60
45
–

1.
15
90
70

M
aF
12

3
74
3

0.
53
46
50
–

0.
59
01
04

76
1

0.
53
51
99
–

0.
59
24
56

62
6

0.
53
37
82
–

0.
54
33
27

M
aF
13

3
10
21

0.
36
64
27
–

0.
36
95
16

11
74

0.
50
12
06
–

0.
52
40
71

94
6

0.
40
17
48
–

0.
45
62
61

C
IB
N
1

2
13
67

0.
33
56
19
–

0.
50
86
95

13
25

0.
33
45
98
–

0.
48
80
58

51
8

0.
38
15
07
–

0.
50
65
10

C
IB
N
2

2
81
1

0.
66
73
94
–

0.
67
01
58

76
6

0.
66
88
34
–

0.
66
96
95

40
6

0.
67
06
78
–

0.
67
72
35

(c
on
tin

ue
d)



7.7 Run-Time Analysis of UIP Operator 183

Ta
bl
e
7.
7

(c
on
tin

ue
d)

Pr
ob
le
m

M
t m

ax
θ
-D

E
A

θ
-D

E
A
-
U
IP

t m
ax

M
O
E
A
/D
D

M
O
E
A
/D
D
-
U
IP

t m
ax

L
H
Fi
D

L
H
Fi
D
-
U
IP

C
IB
N
3

2
10
13

0.
21
39
96
–

0.
22
59
95

91
4

0.
21
45
47
–

0.
22
67
47

42
6

0.
21
38
34
–

0.
22
26
45

C
IB
N
4

3
50
5

0.
89
54
68
–

0.
89
84
64

48
0

0.
89
67
55
=

0.
89
68
48

39
3

0.
99
28
18
–

1.
02
85
56

C
IB
N
5

3
29
9

0.
61
95
56
=

0.
61
92
34

30
5

0.
62
20
79
=

0.
62
12
81

35
9

0.
62
23
45
=

0.
62
24
45

D
A
SC

M
O
P1

2
18
89

0.
08
75
65
–

0.
33
29
68

19
44

0.
13
28
78
–

0.
33
32
00

19
29

0.
08
28
01
–

0.
32
91
37

D
A
SC

M
O
P2

2
18
51

0.
41
51
82
–

0.
66
47
93

19
63

0.
47
29
63
–

0.
66
95
19

18
76

0.
41
01
52
–

0.
66
31
36

D
A
SC

M
O
P3

2
18
36

0.
39
85
31
–

0.
48
96
64

18
66

0.
40
83
87
–

0.
48
33
95

29
73

0.
40
27
01
=

0.
39
20
24

D
A
SC

M
O
P4

2
20
06

0.
33
53
62
–

0.
33
55
32

21
83

0.
33
56
77
=

0.
33
56
16

17
41

0.
26
70
30
=

0.
25
03
59

D
A
SC

M
O
P5

2
20
56

0.
67
12
29
=

0.
67
14
56

22
93

0.
67
12
90
=

0.
67
13
08

18
63

0.
64
61
58
=

0.
62
99
77

D
A
SC

M
O
P6

2
25
36

0.
57
45
68
–

0.
57
48
66

20
24

0.
57
50
65
–

0.
57
51
32

18
87

0.
54
91
28
=

0.
53
25
82

D
A
SC

M
O
P7

3
17
67

1.
01
46
10
=

1.
01
13
53

18
88

1.
01
62
19
=

1.
01
71
15

22
57

1.
02
86
25
=

1.
02
84
17

D
A
SC

M
O
P8

3
17
51

0.
64
84
35
=

0.
63
24
79

18
50

0.
65
13
19
=

0.
65
15
29

21
15

0.
65
53
70
=

0.
65
50
50

D
A
SC

M
O
P9

3
15
24

0.
45
16
61
–

0.
64
35
08

15
11

0.
63
87
29
–

0.
64
73
14

22
01

0.
64
19
02
–

0.
64
28
64

M
W
1

2
10
22

0.
41
44
81
=

0.
41
44
39

10
74

0.
41
37
09
–

0.
41
45
43

12
68

0.
41
53
26
+

0.
41
50
05

M
W
2

2
83
3

0.
48
25
97
–

0.
48
99
76

89
1

0.
48
23
12
–

0.
49
04
26

81
3

0.
32
76
72
=

0.
33
00
55

M
W
3

2
10
50

0.
46
97
47
=

0.
46
94
11

97
1

0.
46
96
95
=

0.
46
97
23

16
19

0.
41
73
36
=

0.
00
00
00

M
W
4

3
75
6

1.
02
43
49
=

1.
02
66
01

75
5

1.
02
41
67
–

1.
02
83
55

87
9

1.
03
95
93
=

1.
03
96
63

M
W
5

2
16
32

0.
10
04
01
–

0.
20
00
33

14
53

0.
19
58
36
=

0.
20
01
13

11
25

0.
08
28
53
=

0.
01
02
35

M
W
6

2
12
12

0.
29
72
63
–

0.
31
06
65

12
72

0.
29
67
33
–

0.
30
98
47

81
4

0.
11
93
52
=

0.
11
95
53

M
W
7

2
90
5

0.
36
52
94
=

0.
36
50
80

89
0

0.
36
57
52
=

0.
36
60
39

81
4

0.
36
39
79
=

0.
36
40
93

M
W
8

3
73
2

0.
60
96
78
=

0.
61
28
39

66
8

0.
61
51
15
=

0.
62
48
75

12
23

0.
39
12
47
=

0.
47
24
79

M
W
9

2
98
6

0.
29
32
77
–

0.
29
52
67

11
28

0.
29
39
64
=

0.
29
39
13

76
4

0.
29
57
82
=

0.
29
52
58

M
W
10

2
10
32

0.
24
64
14
=

0.
26
32
19

10
54

0.
26
10
12
=

0.
28
98
81

16
80

0.
00
00
00
=

0.
00
00
00

M
W
11

2
98
7

0.
26
51
64
=

0.
20
81
45

10
87

0.
26
58
63
=

0.
25
42
58

68
1

0.
26
84
10
=

0.
26
85
41

M
W
12

2
98
8

0.
57
01
07
–

0.
57
02
62

10
85

0.
57
01
66
–

0.
57
04
40

73
2

0.
57
03
48
=

0.
57
02
97

M
W
13

2
99
0

0.
32
28
34
–

0.
33
65
27

94
5

0.
32
24
75
=

0.
33
44
42

72
3

0.
29
97
18
=

0.
30
15
07

M
W
14

3
89
4

0.
15
62
22
=

0.
15
59
41

96
0

0.
16
42
48
=

0.
16
88
07

67
9

0.
21
35
35
+

0.
20
98
78

To
ta
l(

+/
=

/
−)

−→
01
/2
5/
23

01
/2
8/
20

04
/2
9/
16

of
49

pr
ob
s.



184 7 Learning to Simultaneously Converge and Diversify Better: UIP Operator

Ta
bl
e
7.
8

H
V
-b
as
ed

pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

θ
-D

E
A
-U

IP
,M

O
E
A
/D
D
-U

IP
,a
nd

L
H
Fi
D
-U

IP
w
ith

th
ei
r
re
sp
ec
tiv

e
ba
se

va
ri
an
ts
,i
.e
.,

θ
-D

E
A
,M

O
E
A
/D
D
,

an
d
L
H
Fi
D
,r
es
pe
ct
iv
el
y.
Fo

r
ea
ch

te
st
in
st
an
ce

of
M

=
5,
8,
an
d
10

,m
ed
ia
n
hy
pe
rv
ol
um

e
is
sh
ow

n
at
th
e
en
d
of

t m
ax

ge
ne
ra
tio

ns
de
te
rm

in
ed

on
-t
he
-fl
y
fo
r
th
e

re
sp
ec
tiv

e
U
IP

va
ri
an
ts
.T

he
sy
m
bo
ls
‘+

’,
‘=

’,
or

‘−
’
ag
ai
ns
te
ac
h
ba
se

va
ri
an
th

ig
hl
ig
ht

w
he
re

th
es
e
ar
e
st
at
is
tic

al
ly

be
tte

r
th
an
,c
om

pa
ra
bl
e
to
,o
r
w
or
se

th
an

th
e
co
rr
es
po
nd
in
g
U
IP

va
ri
an
t,
re
sp
ec
tiv

el
y
(t
ak
en

fr
om

[1
4]
)

Pr
ob
le
m

M
t m

ax
θ
-D

E
A

θ
-D

E
A
-
U
IP

t m
ax

M
O
E
A
/D
D

M
O
E
A
/D
D
-U

IP
t m

ax
L
H
Fi
D

L
H
Fi
D
-
U
IP

D
T
L
Z
1

5
74
8

2.
15
71
68
=

2.
15
56
84

88
3

2.
67
02
44
=

2.
45
60
18

85
9

4.
20
79
28
=

4.
05
28
89

8
87
5

9.
98
17
30
=

9.
97
97
00

85
3

6.
96
09
60
+

5.
97
68
93

86
9

9.
98
80
74
=

9.
98
21
69

10
83
3

0.
00
00
00
=

0.
00
00
00

80
8

16
.1
39
12
4+

15
.3
07
20
7

12
23

17
.7
57
70
4=

17
.7
57
70
2

D
T
L
Z
2

5
94
1

2.
12
12
00
=

2.
11
75
10

89
4

2.
12
18
40
=

2.
12
05
90

57
8

3.
89
11
66
=

3.
89
08
23

8
90
5

9.
76
37
60
+

9.
75
74
00

83
9

9.
75
86
20
=

9.
75
50
60

64
4

9.
84
79
59
=

9.
84
79
37

10
87
7

17
.5
91
50
0=

17
.5
92
10
0

83
4

17
.5
74
20
0=

17
.5
66
90
0

67
6

17
.6
94
77
2=

17
.6
94
51
5

D
T
L
Z
3

5
76
5

2.
08
23
38
=

2.
01
20
05

90
4

0.
26
01
20
=

0.
06
67
50

77
6

0.
78
33
35
+

0.
00
00
00

8
84
7

8.
54
62
32
+

7.
62
29
17

80
3

8.
31
90
02
=

8.
11
66
30

86
3

9.
24
56
72
=

0.
01
49
20

10
81
9

0.
00
00
00
=

0.
00
00
00

81
4

9.
38
50
90
+

6.
92
06
23

88
1

17
.6
33
67
5=

17
.1
05
15
2

D
T
L
Z
4

5
96
9

2.
12
94
40
=

2.
12
86
80

96
0

2.
13
31
90
=

2.
13
07
90

86
8

3.
89
55
47
=

3.
89
57
53

8
85
7

9.
73
19
10
+

9.
70
79
90

78
4

9.
71
33
80
=

9.
71
46
00

84
1

9.
84
95
35
=

9.
84
99
60

10
76
3

17
.2
19
40
0=

17
.1
65
10
0

75
4

17
.2
96
20
0=

17
.2
48
20
0

85
7

17
.6
96
04
0=

17
.6
96
27
7

M
aF

1
5

84
4

0.
05
63
71
=

0.
05
63
79

85
6

0.
05
53
39
=

0.
05
67
72

82
8

0.
03
79
31
=

0.
03
79
28

8
92
8

0.
01
35
10
=

0.
01
28
73

83
9

0.
01
31
11
=

0.
01
31
42

88
6

0.
00
01
28
=

0.
00
01
29

10
77
3

0.
00
15
62
–

0.
00
16
47

75
7

0.
00
17
87
–

0.
00
18
37

86
2

0.
00
07
24
=

0.
00
07
24

M
aF

2
5

36
6

0.
98
85
66
–

0.
99
54
60

37
6

0.
98
16
35
=

0.
98
41
38

46
8

0.
86
75
56
+

0.
84
30
94

8
45
4

4.
12
20
40
–

4.
17
79
70

45
5

4.
03
97
90
–

4.
09
69
30

58
0

1.
29
02
79
+

1.
17
55
63

10
52
1

7.
47
53
70
–

7.
61
35
00

53
5

7.
32
14
50
–

7.
49
49
60

59
4

8.
16
11
62
+

7.
35
47
50

M
aF

3
5

12
09

1.
97
77
94
=

1.
86
60
41

18
42

2.
48
35
80
=

2.
37
80
10

17
29

2.
16
01
81
=

2.
16
01
09

8
61
2

0.
00
00
00
=

0.
00
00
07

15
04

0.
00
00
00
=

0.
00
00
45

14
53

3.
43
22
04
+

3.
43
20
00

10
46
1

0.
00
00
00
=

0.
00
00
00

56
8

0.
00
00
00
=

0.
00
02
37

14
01

17
.7
57
72
7+

17
.7
57
13
0

M
aF

4
5

86
3

0.
19
21
97
=

0.
22
08
78

82
0

0.
15
41
50
=

0.
16
82
07

11
01

0.
11
24
96
=

0.
10
85
72

8
96
3

0.
03
27
38
=

0.
04
52
56

83
3

8.
95
79
87
=

8.
74
88
36

11
72

0.
00
02
73
–

0.
00
05
33

10
12
22

0.
02
60
55
–

0.
03
40
63

97
5

0.
01
53
30
=

0.
01
99
16

11
46

0.
00
00
00
=

0.
00
00
00

(c
on
tin

ue
d)



7.7 Run-Time Analysis of UIP Operator 185

Ta
bl
e
7.
8

(c
on
tin

ue
d)

Pr
ob
le
m

M
t m

ax
θ
-D

E
A

θ
-D

E
A
-
U
IP

t m
ax

M
O
E
A
/D
D

M
O
E
A
/D
D
-U

IP
t m

ax
L
H
Fi
D

L
H
Fi
D
-
U
IP

M
aF

5
5

11
57

2.
48
77
20
=

2.
48
77
70

11
73

2.
48
76
90
–

2.
48
77
40

10
39

2.
16
03
46
–

2.
16
10
71

8
12
54

9.
98
87
20
=

9.
98
87
20

11
67

9.
98
87
20
–

9.
98
87
20

97
0

3.
43
11
63
–

3.
43
22
12

10
12
92

17
.7
57
70
0=

17
.7
57
70
0

10
90

17
.7
57
70
0=

17
.7
57
70
0

10
20

15
.0
21
72
3+

6.
17
48
41

M
aF

7
5

10
90

0.
95
61
68
=

0.
95
54
27

11
26

0.
96
85
69
+

0.
96
42
65

12
44

0.
65
79
65
–

0.
71
68
70

8
10
22

4.
22
21
40
–

4.
26
27
50

95
9

4.
29
12
00
=

4.
29
50
80

15
62

0.
45
37
48
–

0.
56
20
75

10
76
6

6.
46
80
70
=

6.
71
23
80

51
4

4.
93
54
40
–

5.
35
12
50

17
15

0.
00
00
00
=

0.
00
00
00

M
aF

8
5

17
67

0.
00
02
33
–

0.
00
03
40

18
53

0.
00
00
94
–

0.
00
02
08

16
75

0.
00
03
92
+

0.
00
03
90

8
14
29

0.
00
05
17
–

0.
00
05
70

15
08

0.
00
03
90
=

0.
00
03
82

16
47

0.
00
00
03
=

0.
00
00
03

10
13
17

0.
00
00
75
=

0.
00
00
81

14
38

0.
00
00
63
=

0.
00
00
61

15
95

0.
00
01
17
=

0.
00
01
17

M
aF

9
5

20
37

0.
02
83
36
=

0.
02
80
05

16
07

0.
02
61
04
=

0.
02
70
67

56
32

0.
02
23
43
–

0.
02
40
79

8
84
9

0.
00
08
33
=

0.
00
10
78

74
5

0.
00
00
00
=

0.
00
00
04

11
32

0.
00
00
54
=

0.
00
00
54

10
78
6

0.
00
00
14
=

0.
00
00
42

91
2

0.
00
00
22
–

0.
00
00
71

11
51

0.
00
05
04
=

0.
00
05
04

M
aF
10

5
10
49

0.
83
07
48
–

0.
87
78
55

97
5

0.
82
86
94
–

0.
87
90
25

11
80

0.
96
71
04
–

0.
99
15
90

8
88
8

2.
70
92
80
–

3.
29
32
80

93
1

2.
59
96
70
–

3.
32
61
20

12
84

1.
49
81
49
–

1.
57
82
52

10
96
2

5.
28
66
90
–

5.
60
92
90

93
8

4.
79
71
20
–

5.
62
42
00

14
75

0.
68
93
54
+

0.
25
44
70

M
aF
11

5
10
48

2.
37
67
60
=

2.
37
05
80

10
20

2.
36
18
10
=

2.
36
49
70

96
3

2.
14
31
15
–

2.
14
79
66

8
11
05

9.
44
84
00
=

9.
46
56
70

10
73

9.
36
83
20
=

9.
36
79
90

10
27

3.
39
51
03
=

3.
39
63
99

10
11
93

16
.9
19
80
0–

17
.0
53
50
0

11
49

16
.6
95
00
0–

16
.9
06
10
0

10
55

15
.5
82
98
3+

14
.0
25
16
1

M
aF
12

5
55
8

1.
67
10
30
=

1.
64
76
70

50
5

1.
63
72
50
=

1.
62
25
40

66
3

1.
61
55
04
–

1.
66
84
99

8
43
1

6.
45
09
00
=

6.
43
87
70

46
2

5.
85
61
90
=

5.
95
48
80

71
8

2.
72
48
94
–

2.
84
01
52

10
49
0

11
.4
61
00
0=

11
.6
12
80
0

49
6

10
.4
49
20
0=

10
.7
62
60
0

75
0

0.
00
00
00
=

0.
00
00
00

M
aF
13

5
85
7

0.
24
86
16
=

0.
51
37
28

94
4

0.
40
90
27
–

0.
51
58
26

18
15

0.
20
46
76
–

0.
52
12
77

8
96
6

0.
26
97
44
=

0.
29
78
63

11
32

0.
62
17
52
=

1.
00
78
20

20
91

0.
05
71
34
–

0.
05
76
23

10
12
11

0.
16
08
39
–

0.
21
33
71

11
64

1.
26
80
00
–

1.
91
84
00

24
14

0.
25
68
75
–

0.
47
46
52

To
ta
l(

+/
=

/
−)

−→
03
/3
2/
13

04
/3
0/
14

10
/2
4/
14

of
48

pr
ob
s.



186 7 Learning to Simultaneously Converge and Diversify Better: UIP Operator

Therefore, anymethodological intervention that could help ensure a reasonably good
PF-approximation in fewer solution evaluations could have immense utility. How-
ever, it cannot be ignored that any such intervention may require additional solution
evaluations and/or additional computational time for the underlying methodology to
be exercised.Hence, considering the collective requirements of the original optimizer
and the added methodology, both the total solution evaluations and the total run-time
need to be taken into account. In this context, it is notable that for a desired or pre-
fixed quality of PF-approximation, any methodological intervention may pose two
promising scenarios vis-à-vis the base case (without any intervention), where:

• Fewer total solution evaluations may be needed, and also a lower run-time.
• Fewer total solution evaluations may be needed, but a higher run-time.

In the context of the UIP operator, the results discussed above testify to its
promise of fewer total solution evaluations to achieve the desired quality of the
PF-approximation. These include:

• The fact that no new solution evaluations are required, and
• The fact thatwhen integratedwith anRV-EMâOA, it promises a better or equivalent

PF-approximation than the stand-alone RV-EMâOA, in any given generation (as
in Figs. 7.4 and 7.5a).

Critically, any specific generation of an RV-EMâOA-UIP run, where either or both
of IP2 and IP3 are invoked, will take more time than any generation of the base RV-
EMâOA (without UIP), whichmay be attributed to the construction of the underlying
training-dataset and subsequent time-consuming training of ML model(s). Hence, a
better PF-approximation after a fixed number of generations (equivalently, after a
fixed number of solution evaluations), as observed with respect to Figs. 7.4 and 7.5a,
may not necessarily translate to a better PF-approximation in lower total run-time.
This sets the motivation for investigating the UIP operator with regard to its asso-
ciated run-time. To this end, a sample analysis is presented here, focusing on the
performance of NSGA-III and NSGA-III-UIP on Z̃DT1 and Z̃DT6 problems. Let
TSE denote the time, in seconds, required for the evaluation of a solution. Under the
computational setup employed and the experimental settings highlighted earlier, it
turns out that TSE = 1.07e-04 (0.107 milliseconds) and 1.05e–04 (0.105 millisec-
onds) for Z̃DT1 and Z̃DT6, respectively. For both problems, NSGA-III-UIP has
been run until the respective tmax generations (determined on-the-fly); and the aver-
age run-time required (among 31 randomly seeded runs) has been recorded for both
problems. Subsequently, the base NSGA-III has been run on both problems, until the
generation where the corresponding run-time matches with that of NSGA-III-UIP.
The median hypervolume plots for both problems, with run-time on the horizontal
axis, are shown in Fig. 7.7a, d. In that:

• Figure7.7a shows the plot for Z̃DT1, where both NSGA-III and NSGA-III-UIP
achieve a similar hypervolume toward the end. Hence, Z̃DT1 serves as an example
where the base NSGA-III could arrive at a reasonable PF-approximation on its
own. However, the intermediate trend suggests that NSGA-III could achieve the
same hypervolume faster (in terms of run-time) than NSGA-III-UIP.
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(a) Z̃DT1: TSE ≈ 0.0001 (b) Z̃DT1: TSE = 0.01 (c) Z̃DT1: TSE = 1.0

(d) Z̃DT6: TSE ≈ 0.0001 (e) Z̃DT6: TSE = 0.01 (f) Z̃DT6: TSE = 1.0

Fig. 7.7 Generation-wise hypervolume trend in the respective median runs of NSGA-III and
NSGA-III-UIP. In that, NSGA-III-UIP has been run till termination generations (tmax = 1198 and
1836 for Z̃DT1 and Z̃DT6, respectively); and NSGA-III has been run till the generation where the
corresponding run-time matches to that of NSGA-III-UIP

• Figure7.7d shows the plot for Z̃DT6,whereNSGA-III-UIP achieves a better hyper-
volume than the base NSGA-III, toward the end. Hence, Z̃DT6 serves as an exam-
ple where the base NSGA-III could not arrive at a reasonable PF-approximation
on its own.Although the initial performancewas better for baseNSGA-III, NSGA-
III-UIP eventually performed better.

The specific instance of Z̃DT1 above could mistakenly lead to the inference that
if base NSGA-III can arrive at a reasonable PF-approximation on its own, it would
always require a lower run-time, even though NSGA-III-UIP may require fewer
generations or equivalently fewer solution evaluations. The basis for such a miscon-
ception has been countered below, through variation in TSE. To symbolically emulate
real-world scenarios where each solution evaluation can take a significantly longer
time, two hypothetical values of TSE = 0.01 and TSE = 1.0 have been considered.
Although, in the case of Z̃DT1, the solution evaluations, actual TSE = 1.07e-04, have
been padded by 0.01 and 1.0 s, respectively (using the sleep function available in the
computational setup used), to emulate the two scenarios. The corresponding median
hypervolume plots, with respect to run-time, are shown in Fig. 7.7b, c. Notably:

• In Fig. 7.7a with TSE ≈ 0.0001, NSGA-III achieved a better hypervolume than
NSGA-III-UIP, initially, while both achieved a similar hypervolume toward the
end.

• In Fig. 7.7bwithTSE = 0.01,NSGA-III achieved a hypervolume similar toNSGA-
III-UIP, both initially and toward the end.

• In Fig. 7.7cwithTSE = 1.0,NSGA-III achieved aworse hypervolume thanNSGA-
III-UIP, initially, while both achieved a similar hypervolume toward the end.
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The above analysis demonstrates that, if TSE is relatively higher, say 1.0 s (plausi-
ble in many real-world scenarios), even in problems where base NSGA-III can arrive
at a reasonable PF-approximation on its own, NSGA-III-UIP may require a lower
run-time, compared to NSGA-III. For completeness, similar plots for ZDT6 have
also been presented in Fig. 7.7e, f. Based on the above investigation, the following
can be inferred:

• In problems where base NSGA-III can arrive at a reasonable PF-approximation
on its own, NSGA-III-UIP may require a lower run-time, if the time required for
each solution evaluation is sufficiently high.

• In problems where the base NSGA-III cannot arrive at a reasonable
PF-approximation on its own, given the same run-time, NSGA-III-UIPmay arrive
at a better PF-approximation, regardless of the time required for each solution
evaluation.

Clearly, the utility of incorporating the UIP operator may be evenmore significant
in problems where each solution evaluation requires significant time.

7.8 Summary

In this chapter, the UIP operator for simultaneous and adaptive enhancement of
convergence anddiversity has beenpresented.TheUIPoperator relies on independent
invocations IP2 and IP3 operators for the creation of both pro-convergence and pro-
diversity offspring. Notably, in any generation of an RV-EMâOA-UIP run, either or
both of IP2 and IP3 operators may be invoked. Furthermore, the same criteria for
the first and subsequent invocations of IP2 and IP3 operators have been retained, as
presented originally in Chaps. 5 and 6. The hallmark of the UIP operator is that its
design and usage is guided by the overarching criteria to—avoid additional solution
evaluations beyond those required by the base RV-EMâOA; favorably manage the
convergence–diversity balance and ML-based risk-reward trade-off; and minimize
ad-hoc parameter fixes. The efficacy of the UIP operator has been established: (i)
with respect to IP2 and IP3 operators for NSGA-III, and (ii) in general for NSGA-III,
θ -DEA, MOEA/DD, and LHFiD. Notably, NSGA-III-UIP performed better than: (i)
NSGA-III-IP2 in about 19% of convergence-hard MOPs, and (ii) NSGA-III-IP3 in
about 21% of diversity-hard MOPs. This supports the claim that the use of pro-
convergence and pro-diversity offspring solutions simultaneously, regardless of the
underlying convergence- or diversity-hard problem characteristics, offers a better
PF-approximation than is possible without them. In general, the UIP variants of the
four RV-EMâOAs collectively performed: (i) better in about 36% of the instances,
and (ii) either better or equivalently in about 93% of the instances, compared to their
respective base variants, on the MOPs and MaOPs considered.
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Appendix

7.9 UIP Operator’s Integration with Other RV-EMâOAs

As mentioned earlier, the UIP operator is generic and can ideally be integrated with
any RV-EMâOA. To facilitate its implementation, three RV-EMâOAs (in addition
to NSGA-III) have been selected, including, θ -DEA, MOEA/DD, and LHFiD. The
algorithmic details of the resulting θ -DEA-UIP, MOEA/DD-UIP, and LHFiD-UIP
algorithms are provided below.

7.9.1 θ-DEA-UIP

The algorithmic description of any generation t of θ -DEA-UIP is summarized in
Algorithm 7.4. In that, the target-archive Tt as required by the IP2 function is updated
first (line 1, Algorithm 7.4). Then the prerequisite conditions for the invocation of IP2
and IP3 are checked, and if fulfilled, the flags start I P2 and start I P3 are activated
(lines 2–5, Algorithm 7.4). In the subsequent generations:

• If the IP2 operator is invoked, then the trainedMLmodel is used for the progression
of 50% of the (randomly chosen) natural offspring, leading to QIP2

t (lines 6–7,
Algorithm 7.4).

• If IP3 operator is invoked, then the trained ML model is used for progression
of 50% of the (judiciously chosen) parent solutions, leading to QIP3

t (lines 8–9,
Algorithm 7.4).

• If none or only one of IP2 and IP3 is invoked, the number of offspring shall be
less than N . Hence, the remaining offspring are created using the natural variation
operators, denoted by QV

t (lines 10–11, Algorithm 7.4).
• All offspring, namely, QIP2

t , QIP3
t and QV

t are merged into Qt (sized N ), and
evaluated (lines 12–13, Algorithm 7.4).

• Update the input-archive At+1 as required by the IP2 function (line 14, Algorithm
7.4).

• The steps in lines 15–27 (Algorithm 7.4) relate to the steps of the survival selection
procedure of θ -DEA [19].

• t IP2freq and t IP3freq are adapted, if the respective operators were invoked in the current
generation t (lines 28–31, Algorithm 7.4). This adaptation is based on the sur-
vival of the respective offspring vis-a-vis the natural offspring, as described in
Sect. 7.1.6.

• Finally, if both IP2 and IP3 are invoked in the current generation, it is ensured that
neither t IP2freq and t

IP3
freq have a value lesser than two (lines 32–34, Algorithm 7.4), as

explained in Sect. 7.1.4.
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Algorithm 7.4: Generation t of θ -DEA-UIP

Input: RV set R, variable bounds [X (L), X (U )], parent population Pt , offspring survived
N surv(V)
t−1

IP2-specific: target archive Tt−1, input archive At , frequency t IP2freq

IP3-specific: neighborhood radius r , frequency t IP3freq

Output: Pt+1, Tt , At+1, t IP2freq, t
IP3
freq

1 Tt ← Update the target archive for IP2 operator
2 if population is completely non-dominated then
3 start I P2 = True

4 if population has mildly stabilized then
5 start I P3 = True

6 if start I P2 & t IP2freq passed after last invocation then
7 QIP2

t ← Create 50% offspring using IP2 (Algorithm 7.1)

8 if start I P3 & t IP3freq generations passed after last invocation then
9 QIP3

t ← Create 50% offspring using IP3 (Algorithm 7.2)

10 if offspring created are insufficient (< N) then
11 QV

t ← Create rest of offspring using natural variation operators

12 Qt ≡ Merge QIP2
t , QIP3

t and QV
t (total N offspring)

13 Evaluate Qt
14 At+1 ← Update the input archive for IP2 operator
15 Rt ← Merge Pt and Qt
16 St ← Perform Pareto Non-dominated Sorting on Rt
17 Update the ideal point from solutions of St
18 Normalize St using Z ideal and Znadir as bounds
19 C ← Perform clustering on St using R
20 {F ′

1, F
′
2, . . .} ← Perform θ-non-dominated sorting on St

21 Initialize Pt+1 as an empty set
22 i ← 1
23 while |Pt+1| + |F ′

i | < N do
24 Pt+1 ← Pt+1 ∪ F ′

i
25 i ← i + 1

26 Randomly sort the solutions in F ′
i

27 Pt+1 ← Pt+1 ∪ F ′
i [N − |Pt+1|]

28 if IP2 was invoked in current generation then
29 Update t IP2freq (Section 7.1.6)

30 if IP3 was invoked in current generation then
31 Update t IP3freq (Section 7.1.6)

32 if both IP2 and IP3 were invoked in current generation then
33 if t IP2freq < 2 then t IP2freq = 2

34 if t IP3freq < 2 then t IP3freq = 2
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7.9.2 MOEA/DD-UIP

The algorithmic description of any generation t of MOEA/DD-UIP is summarized
in Algorithm 7.5. In that, the target-archive Tt as required by the IP2 function is
updated first (line 1, Algorithm 7.5). Then the prerequisite conditions for invocation
of IP2 and IP3 are checked, and if fulfilled, appropriate flags (start I P2, start I P3)
which influence whether or not IP2 and IP3 are to be invoked, are triggered as True
(lines 2–5, Algorithm 7.5). In the subsequent generations:

Algorithm 7.5: Generation t of MOEA/DD-UIP

Input: RV set R, variable bounds [X (L), X (U )], parent population Pt , offspring survived
N surv(V)
t−1

IP2-specific: target archive Tt−1, input archive At , frequency t IP2freq

IP3-specific: neighborhood radius r , frequency t IP3freq

Output: Pt+1, Tt , At+1, t IP2freq, t
IP3
freq

1 Tt ← Update the target-archive for IP2 operator
2 if population is completely non-dominated then
3 start I P2 = True

4 if population has mildly stabilized then
5 start I P3 = True

6 if start I P2 & t IP2freq generations passed after last invocation then
7 QIP2

t ← Create 50% offspring using IP2 (Algorithm 7.1)

8 if start I P3 & t IP3freq generations passed after last invocation then
9 QIP3

t ← Create 50% offspring using IP3 (Algorithm 7.2)

10 if offspring created are insufficient (< N) then
11 P̄t ← Perform mating selection on Pt
12 QV

t ← Create rest of offspring using natural variation operators

13 Qt ← Merge QIP2
t , QIP3

t and QV
t (total N offspring)

14 Evaluate Qt
15 At+1 ← Update input-archive for IP2 operator
16 Initialize Pt+1 as Pt
17 for each offspring q ∈ Qt do
18 Pt+1 ← Update the population Pt+1 using q

19 if IP2 was invoked in current generation then
20 Update t IP2freq (Section 7.1.6)

21 if IP3 was invoked in current generation then
22 Update t IP3freq (Section 7.1.6)

23 if both IP2 and IP3 were invoked in current generation then
24 if t IP2freq < 2 then t IP2freq = 2

25 if t IP3freq < 2 then t IP3freq = 2
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• If the IP2 operator is invoked, then the trainedMLmodel is used for the progression
of 50% of the (randomly chosen) natural offspring, leading to QIP2

t (lines 6–7,
Algorithm 7.5).

• If the IP3 operator is invoked, then the trained ML model is used for progression
of 50% of the (judiciously chosen) parent solutions, leading to QIP3

t (lines 8–9,
Algorithm 7.5).

• If none or only one of IP2 and IP3 is invoked, the number of offspring shall be less
than N . Hence, the remaining offspring are created using the variation operators,
denoted by QV

t (lines 10–12, Algorithm 7.5).
• All offspring, namely, QIP2

t , QIP3
t and QV

t are merged into Qt (sized N ), and
evaluated (lines 13–14, Algorithm 7.5).

• Update the input-archive At+1 as required by the IP2 function (line 15, Algorithm
7.5).

• The steps in lines 16–18 (Algorithm7.5) relate to the steps ofMOEA/DD’s survival
selection procedure [12].

• t IP2freq and t IP3freq are adapted, if the respective operators were invoked in the current
generation t (lines 19–22, Algorithm 7.5). This adaptation is based on the sur-
vival of the respective offspring vis-a-vis the natural offspring, as described in
Sect. 7.1.6.

• Finally, if both IP2 and IP3 are invoked in the current generation, it is ensured that
neither t IP2freq nor t

IP3
freq have a value lower than two (lines 23–25, Algorithm 7.5), as

explained in Sect. 7.1.4.

7.9.3 LHFiD-UIP

The algorithmic description of any generation t of LHFiD-UIP is summarized in
Algorithm 7.6. In that, first the target-archive Tt as required by the IP2 function is
updated (line 1, Algorithm 7.6). Then the prerequisite conditions for invocations of
IP2 and IP3 are checked, and if fulfilled, appropriate flags (start I P2, start I P3),
which influence whether or not IP2 and IP3 are to be invoked, are triggered as True
(lines 2–5, Algorithm 7.6). In the subsequent generations:

• If the IP2 operator is invoked, then the trainedMLmodel is used for the progression
of 50% of the (randomly chosen) natural offspring, leading to QIP2

t (lines 6–7,
Algorithm 7.6).

• If the IP3 operator is invoked, then the trainedMLmodel is used for the progression
of 50% of the (judiciously chosen) parent solutions, leading to QI P3

t (lines 8–9,
Algorithm 7.6).

• If none or only one of IP2 and IP3 gets invoked, the number of offspring shall
be less than N . Hence, the remaining offspring are created using the variation
operators, denoted by QV

t (lines 10–11, Algorithm 7.6).
• All offspring, namely, QIP2

t , QIP3
t and QV

t are merged into Qt (sized N ), and
evaluated (lines 12–13, Algorithm 7.6).
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Algorithm 7.6: Generation t of LHFiD-UIP

Input: RV set R, variable bounds [X (L), X (U )], parent population Pt , offspring survived
N surv(V)
t−1

IP2-specific: target archive Tt−1, input archive At , frequency t IP2freq

IP3-specific: neighborhood radius r , frequency t IP3freq

Output: Pt+1, Tt , At+1, t IP2freq, t
IP3
freq

1 Tt ← Update target-archive for IP2 operator
2 if population is completely non-dominated then
3 start I P2 = True

4 if population has mildly stabilized then
5 start I P3 = True

6 if start I P2 & t IP2freq generations passed after last invocation then
7 QIP2

t ← Create 50% offspring using IP2 (Algorithm 7.1)

8 if start I P3 & t IP3freq generations passed after last invocation then
9 QIP3

t ← Create 50% offspring using IP3 (Algorithm 7.2)

10 if offspring created are insufficient (< N) then
11 QV

t ← Create rest of offspring using natural variation operators

12 Qt ← Merge QIP2
t , QIP3

t and QV
t (total N offspring)

13 Evaluate Qt
14 At+1 ← Update input-archive for IP2 operator
15 Ut ← Merge Pt and Qt

16 Z I ← Compute the ideal point from solutions in Ut

17 if ZN is an empty set then
18 F̃ ← Translate the solutions in Ut using Z I

19 else
20 F̃ ← Normalize the solutions in Ut using Z I & ZN

21 Pt+1 ← Perform Survival selection on Ut
22 if population has mildly stabilized then
23 Update the nadir point ZN

24 if IP2 was invoked in current generation then
25 Update t IP2freq (Section 7.1.6)

26 if IP3 was invoked in current generation then
27 Update t IP3freq (Section 7.1.6)

28 if both IP2 and IP3 were invoked in current generation then
29 if t IP2freq < 2 then t IP2freq = 2

30 if t IP3freq < 2 then t IP3freq = 2

• Update the input-archive At+1 as required by the IP2 function (line 14,
Algorithm 7.6).

• The steps in lines 15–21 (Algorithm 7.6) relate to the steps of survival selection,
as in the base LHFiD proposed originally.
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• If mild stabilization of the population is detected, then the nadir point is updated
(lines 22–23, Algorithm 7.6).

• t IP2freq and t IP3freq are adapted, if the respective operators were invoked in the current
generation t (lines 24–27, Algorithm 7.6). This adaptation is based on the sur-
vival of the respective offspring vis-a-vis the natural offspring, as described in
Sect. 7.1.6.

• Finally, if both IP2 and IP3 are invoked in the current generation, it is ensured that
neither t IP2freq and t

IP3
freq have a value lesser than two (lines 28–30, Algorithm 7.6), as

explained in Sect. 7.1.4.

Notably, LHFiD, as originally proposed in [17], does not include constraint han-
dling. Owing to the use of constrained problems here:

• Its randommating selection procedure is replacedwith the constraint-basedmating
selection procedure [9].

• Its survival selection procedure is modified to select feasible solutions first. If the
number of feasible solutions is less than N , then the infeasible solutions offering
the least constraint violation values are selected to fill the population [9].

Further, there is a minor modification in the first invocation criterion of the IP2
operator when integrated with LHFiD. Instead of ensuring that the entire population
is non-dominated, the non-domination is checked locally within each cluster (one
cluster per RV). Since LHFiD (originally) does not have a non-domination check over
the entire population, there is no inherent selection pressure for the entire population
to be non-dominated. Hence, without the above modification, it is plausible that the
IP2 may never be invoked over the entire LHFiD-UIP run.
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Chapter 8
Investigating Innovized Progress
Operators with Different ML Methods

Chapters5 and 6 have shown how learning efficient search directions from the
intermittent generations’ solutions could be utilized to create pro-convergence and
pro-diversity offspring, enabling better convergence and diversity, respectively. The
entailing steps of dataset preparation, training of MLmodels, and utilization of these
models have been encapsulated as Innovized Progress operators, namely IP2 for con-
vergence improvement and IP3 for diversity improvement. In these chapters, the goal
was to establish that ML-based operators can potentially enhance the performance
of RV-EMâOAs. In doing so, major emphasis was laid on the design of these oper-
ators adhering to the key considerations of convergence–diversity balance and ML
risk–reward trade-off, and avoiding ad hoc parameter fixations and extra solution
evaluations. Noticeably, the impact of the choice of the specific ML methods used
in these operators was not discussed. However, to endorse the robustness of the pro-
posed (IP2, IP3, and UIP) operators, it is imperative to investigate how significantly
their performance can be influenced when the underlying ML methods are varied.

This chapter presents an exploratory analysis for both IP2 and IP3, based on eight
different ML methods, tested against an exhaustive test suite comprising multi- and
many-objective test instances. The results suggest that changing the underlying ML
methods (Random Forest in the case IP2, and k-Nearest Neighbors in the case of IP3)
does not significantly improve or deteriorate the operators’ performance in terms of
the hypervolume metric, though some gains in run-time can be observed for similar
hypervolume measures. The results interestingly also reveal that different ML meth-
ods are characterized by different trade-offs between the hypervolumemetric offered
and the associated run-times. Based on these results, an MLmethod offering the best
balance between hypervolume metric and run-time is identified, and is used as the
underlying method for the UIP operator (implying that the chosen method is used in
each of IP2 and IP3 operators). The remaining of the chapter is organized as follows:
the details of the ML methods considered in this study are presented in Sect. 8.1,
followed by the experimental settings in Sect. 8.2. The empirical investigation across
ML methods on IP2, IP3, and UIP operators is presented in Sect. 8.3, followed by
the conclusion in Sect. 8.4.
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8.1 Alternative ML Methods for IP2 and IP3 Operators

This chapter considers eight different ML methods, covering linear and nonlinear
Modeling, Boosting, and Trees, to investigate their suitability for the IP2 and IP3
operators. The chosen methods are highlighted below.

• From the family of linear methods: standard Linear Regression, Ridge Regres-
sion [7], and Elastic Net Regression [9] are included. Linear Regression based
on the least squares approach is used as the base model, but it can also be fitted
in other ways, such as by minimizing the lack of fit through a penalized version
of the least squares cost function as in Ridge Regression (L2-norm penalty) and
Lasso (L1-normpenalty). Since Lasso is known to sufferwhere there are correlated
features [8], it has not been considered. Hence, Ridge Regression and Elastic Net
Regression based on a linear combination of the L2-norm and L1-norm penalties
are included.

• From the family of trees: Extra Trees Regressor and Random Forests are included,
owing to their ability to efficiently handle complex, nonlinear, high-dimensional
data, with a lower tendency for overfitting [6]. Notably, Random Forests aggregate
the results from many decision trees, each generated from a bootstrap sample of
the data. Here, at each node, one feature is selected to split on, from a random
subset of all features. While in the case of Random Forests, the optimum split is
chosen, Extra Trees do it randomly.

• From the family of boosting algorithms: XGBoost is included. It is an implemen-
tation of gradient boosting that is scalable and optimized for execution speed and
model performance. This is an ensemble technique, where each new model added
sequentially learns from the previous models’ errors [2].

• From other nonlinear methods: k-Nearest Neighbors Regression and Support Vec-
tor Regression are included. The former method identifies the k nearest inputs of
the test instance in the original training-dataset and returns the average of their
respective targets [3]. The latter method seeks to find the hyperplane with the max-
imum number of points that lies within a threshold distance from the boundary
line (unlike other regression models that try to minimize the error between the real
and predicted values).

For ease of subsequent reference, the chosen ML methods have been abbreviated as
follows: Linear Regression (LR), Ridge Regression (Ridge), Elastic Net Regression
(ENet), Extra Trees Regressor (ExTree), Random Forests (RF), XGBoost (XGB),
k-Nearest Neighbors (kNN), and Support Vector Regression (SVR).

8.2 Experimental Settings

This section lays the foundation for the experimental investigations by highlight-
ing the (a) test suite considered, (b) parameters pertaining to the base RV-EMâOA
(NSGA-III), and (c) performance indicators used and related statistical analysis.
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8.2.1 Test Suite

The test suite in this chapter comprises a combination of multi-objective (both
convergence- and diversity-hard) and many-objective problems, as previously used
in Chaps. 5, 6, and 7. These include

• convergence-hard multi-objective problems: Z̃DT, DTLZ, and MaF.
• diversity-hard multi-objective problems: CIBN, DASCMOP, and MW.
• many-objective problems: DTLZ and MaF (M = 5, and 10).

Here, it may be noted that in Chap. 5 dedicated to the IP2 operator for convergence
enhancement, only the convergence-hard multi-objective problems were considered,
while many-objective problems were not. Similarly in Chap.6 dedicated to the IP3
operator for diversity enhancement, only the diversity-hardmulti-objective problems
were considered, while many-objective problems were not. The rationale for the
restricted experimentation in the above chapters relates to the fact that the focus in
these chapters was more on the development of the respective operators and proof-
of-concept that these operators bear the potential for performance enhancement of
RV-EMâOAs. However, since the goal in this chapter is more exploratory, even
many-objective problems are included for experiments pertaining to the IP2 and IP3
operators. In the same light, the UIP operator is tested for both multi- and many-
objective optimization problems.

8.2.2 RV-EMâOA Settings

To obtain a reasonably sized set of RVs using the Das–Dennis method [4], the gap
parameter is set as given in Table8.1. In that table, where two values of p (gaps)
are shown, the first value is used to create the boundary RVs and the second value
is used to create the interior RVs [5]. For coherence, the population size N is kept
the same as the number of RVs corresponding to a particular objective, as given
in Table8.1. Furthermore, the natural variation operators include SBX crossover
(pc = 0.9 and ηc = 20) and polynomial mutation (pc = 1/n and ηm = 20) for an
n-variable problem.

Further, each RV-EMâOA has been run 31 times, with different random seeds.
In that process, for the reference RV-EMâOA (explained below), the termination
generation tmax has been determined on-the-fly through the stabilization tracking

Table 8.1 Parameter settings for the Das–Dennis method

Setting M = 2 M = 3 M = 5 M = 10

p (gaps) 99 13 5, 4 3, 3

N 100 105 196 440
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algorithm, using ψterm ≡ {3, 50}. For all other RV-EMâOAs, the mean tmax deter-
mined for reference RV-EMâOA on 31 runs has been used as tmax.

Reference RV-EMâOA is the algorithm against which the performance of other
RV-EMâOAs is compared. For instance, the performance of NSGA-III-IP2 is to be
compared amidst its eight variants corresponding to eight different ML methods
(identified in Sect. 8.1). Since RF is the base method for the existing IP2 operator,
NSGA-III-IP2-RF can be distinguished from the other NSGA-III-IP2-ML variants.
Similarly NSGA-III-IP3-kNN can be distinguished from the remaining NSGA-III-
IP3-ML variants. Since in this chapter, NSGA-III is the sole RV-EMâOA, its name
can be avoided for brevity, and the task in this chapter translates to comparing the
performance of (a) IP2-RF with all other IP2-ML , and (b) IP3-kNN with all other
IP3-ML . Hence, NSGA-III-IP2-RF and NSGA-III-IP3-kNN are the reference RV-
EMâOAs for the exploratory analysis on IP2 and IP3 operators, respectively.

8.2.3 Performance Indicators and Statistical Analysis

In this chapter, hypervolume (HV) has been used as the primary performance indi-
cator. In that:

• the used reference points are given by R1×M = [1 + 1
p , . . . , 1 + 1

p ], where p is
the number of gaps set for the RV generating Das–Dennis method.

• the hypervolume values (31 in count) obtained from the final solutions of 31 ran-
domly seeded runs IP2-RF are subjected to Wilcoxon ranksum test (for statistical
significance) with a p-value threshold of 0.05, against the 31 hypervolume values
available for each IP2-ML . This test only infers if the difference between IP2-RF
and any IP2-ML is statistically insignificant (denoted by =). If not, then their
respective median values are compared, and the better/worse performing method
is denoted by a +/− sign (as in Tables8.2 and 8.3). Similar procedure is adopted
for comparison of IP3-kNN with each IP3-ML .

8.3 Experimental Results

This section first presents the exploratory analysis of (a) IP2-ML vis-à-vis IP2-RF
and (b) IP3-ML vis-à-vis IP3-kNN, followed by the underlying trade-off analysis.
Subsequently, the best performing ML method(s) have been applied on the UIP
operator to examine its performance, against the original UIP operator described in
Chap.7.
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8.3.1 Analysis of IP2 Operator

This subsection entails the comparative performance of seven IP2-ML variants ver-
sus IP2-RF, on both multi-objective (convergence-hard) and many-objective test
instances. The corresponding hypervolume comparison is presented in Tables8.2
and 8.3, respectively. The dominant trend in both, Tables8.2 and 8.3, is that even if
the MLmethod of the underlying IP2 operator is changed, the performance (in terms
of solution quality) largely remains statistically equivalent (with a few exceptions,
discussed later). This indicates that the originally proposed IP2 operator is reason-
able, robust, and its performance may neither drastically deteriorate nor improve
with a mere change in the underlying ML method.

For further insights into the results reported in Tables8.2 and 8.3, the notion
of Hypervolume factor is proposed for each ML method in conjunction with the
multi-objective and many-objective test suite. For instance, in Table8.2, intersection
of Column 4 and last row with the +/ = /− entries as 01/18/02 suggests that
for the multi-objective test suite comprising 21 problem instances, kNN performed
statistically better in one, equivalent in 18, and worse in two. In general, for both
Tables8.2 and 8.3, if the performance (+/ = /−) of any alternative ML method
vis-à-vis the base method, for a multi or many-objective problem suite, is given by
B/E/W , then it is proposed that the Hypervolume factor be defined as

Hypervolume factor = B − W

B + E + W
. (8.1)

Hence, for any alternative ML method and a specific problem suite: a posi-
tive/negative Hypervolume factor would represent the percentage instances, where
it is relatively better/worse than the base method.

Furthermore, the notion of Hypervolume factor is extended to computation of
Run-time factor. As a precursor, it may be noted that the run-time for only the seed
underlying the median HV run for each ML method was recorded.1 Their relative
summary formatted as H/L in Table8.4 indicates the number of times anMLmethod
has a higher/lower run-time compared to the base method. Given this, it is proposed
that the Run-time factor be defined as

Run-time factor = H − L

H + L
. (8.2)

Hence, for any alternative ML method and a specific problem suite: a posi-
tive/negative Run-time factor would represent the percentage instances, where it is
relatively worse/better than the base method in terms of run-time.

1 For this chapter, the 31 seed runs were executed in parallel to save the overall run-time, given
which the exact run-time for each seed was not traceable. Hence, for run-time estimate, only the
seed corresponding to the median hypervolume was executed again.
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Table 8.4 Run-time comparison for IP2 operator, with eight different ML methods, on multi- and
many-objective problems. Here, RF is the base method for the pairwise comparisons. The entries in
the format H/L indicate the number of times an ML method has a higher/lower run-time compared
to the base method (RF)

ExTree SVR ENet Ridge LR XGB kNN

Multi-objective 07/14 06/15 06/15 05/16 05/16 20/01 05/16

Many-objective 06/26 05/27 04/28 04/28 08/24 14/18 08/24

8.3.2 Analysis of IP3 Operator

This subsection entails the comparative performance of seven IP2-ML variants ver-
sus IP3-kNN, on multi-objective (diversity-hard) and many-objective test instances.
The corresponding hypervolume comparison is presented in Tables8.5 and 8.6,
respectively. The dominant trend in both, Tables8.5 and 8.6, is that even if the ML
method of the underlying IP3 operator is changed, the performance (in terms of
solution quality) largely remains statistically equivalent (with a few exceptions, dis-
cussed later). This indicates that the originally proposed IP3 operator is reasonably
robust, and its performance may neither drastically deteriorate nor improve with a
mere change in the underlying ML method. Furthermore, the run-time summary for
the IP3 operator has been presented in Table8.7.

8.3.3 Trade-off Analysis on IP2/IP3 Operator

In thewake of the results presented inSects. 8.3.1 and8.3.2, the performance of differ-
ent MLmethods at the level of multi- and many-objective problem suites is captured
in Figs. 8.1 and 8.2. Understandably, RF being the base method for IP2 occupies the
origin in Fig. 8.1. Similarly, kNNbeing the basemethod for IP3 occupies the origin in
Fig. 8.2. Importantly, if any alternative ML method was to dominate the base method
in case of IP2 or IP3, in terms of both HV and run-time, then it should occupy the
fourth quadrant. However, such occurrences are not frequent, as highlighted below

• For the IP2 operator applied to multi-objective suite: SVR and LR outperform the
base RF, and seem to offer slightly better HV in reasonably lower run-time.

• For the IP2 operator applied to many-objective suite: XGB, kNN, ExTree, SVR,
and Ridge seem to offer only a marginally better HV than the base RF, but in
reducing order of run-time.

• For the IP3 operator applied to multi-objective suite: the base kNN seems to be
the best choice, as it outperforms all other alternative ML methods.

• For the IP3 operator applied tomany-objective suite: Ridge, ExTree, LR, and ENet
offer insignificantly better HV, but in reducing order of run-time.
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Table 8.7 Run-time comparison for IP3 operator, with eight different ML methods, on multi- and
many-objective problems. Here, kNN is the base method for the pairwise comparisons. The entries
in the formatH/L indicate the number of times anML method has a higher/lower run-time compared
to the base method (kNN)

RF ExTree SVR ENet Ridge LR XGB

Multi-objective 27/01 27/01 23/05 24/04 26/02 25/03 28/00

Many-objective 27/05 12/20 17/15 09/23 14/18 10/22 29/03

(a) Multi-objective problems (b) Many-objective problems

Fig. 8.1 Plots comparing HV factor and Run-time factor across the multi-objective and many-
objective problem suite for the IP2 operator

Overall, if one winner has to be picked across all scenarios, then kNN can be inferred
as the one.

The presented results also endorse the known characteristics of some of the con-
sidered ML methods, as highlighted below. It can be observed that the considered
linear ML models, namely LR, Ridge, and ENet have a comparable performance,
particularly in terms of the HVmeasures. Within the family of trees, RF has a higher
run-time than ExTree. This is consistent with the expectation, since RF chooses the
optimal split, while ExTree relies on random split, saving some time. Overall, the
boosting algorithm, namely XGB, is seen to have a higher run-time compared to the
other ML methods. This could be attributed to the fact that during each split finding
process, XGB iterates over all entries in the input data, making the process slower.
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(a) Multi-objective problems (b) Many-objective problems

Fig. 8.2 Plots comparing HV factor and Run-time factor across the multi-objective and many-
objective problem suite for the IP3 operator

8.3.4 Results with UIP Operator

As concluded above in Sect. 8.3.3, if a single ML method had to be selected for
both IP2 and IP3 operators, kNN is the choice. Since the UIP operator employs both
IP2 and IP3 operators, it is imperative to investigate how the use of kNN for both
IP2 and IP3 operators affects the performance of UIP operator, given that the UIP
operator (as discussed in Chap. 7), uses RF for IP2 and kNN for IP3. Hence, this
section compares the performance of the original and new UIP operators, given as

• UIP (original): RF for the IP2 and kNN for the IP3 operator.
• UIP (new): kNN for both IP2 and IP3 operators.

The median hypervolume values for both original and new UIP variants, along
with their statistical comparison, are provided in Tables8.8, 8.9, and 8.10, for multi-
and many-objective problems. As can be observed from these tables:

• The new UIP performs statistically better in 1, and statistically equivalent in the
rest 20 convergence-hard multi-objective problems, compared to the original UIP.

• The new UIP performs statistically equivalent in all 28 diversity-hard multi-
objective problems, compared to the original UIP.

• The new UIP performs statistically better in 1, statistically equivalent in 30, and
statistically worse in 1 many-objective problems, compared to the original UIP.
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Table 8.8 HV-based comparison of UIP (original, with RF for IP2 and kNN for IP3), with the UIP
(new, with kNN for both IP2 and IP3) on convergence-hard multi-objective problems. The symbols
‘+’, ‘=’, and ‘–’ indicate whether the corresponding method is statistically better, equivalent, or
worse. Here, t̂TM denotes the average of the termination generations for 31 runs of UIP (new)

Problem M tTM UIP (original) UIP (new)

ZDT1 2 1200 0.681859= 0.681859

ZDT2 2 1270 0.348794= 0.348794

ZDT3 2 1002 1.068446= 1.068452

ZDT4 2 1763 0.681860= 0.681860

ZDT6 2 1781 0.334000= 0.333027

DTLZ1 3 1431 1.222117= 1.222344

DTLZ2 3 989 0.667332= 0.667338

DTLZ3 3 1548 0.658096= 0.661404

DTLZ4 3 2262 0.667356= 0.667354

MaF1 3 601 0.235747– 0.236504

MaF2 3 468 0.396482= 0.396862

MaF3 3 2154 1.239854= 1.239862

MaF4 3 1297 0.628690= 0.631397

MaF5 3 2027 1.227609= 1.227626

MaF7 3 1218 0.376031= 0.375771

MaF8 3 1515 0.466266= 0.466419

MaF9 3 1163 0.626760= 0.626764

MaF10 3 935 0.535141= 0.534181

MaF11 3 992 0.980350= 0.980128

MaF12 3 741 0.605585= 0.607628

MaF13 3 1008 0.369809= 0.369025

Total (+/=/–) −→ 00/20/01 of 21 probs.

Overall, it is fair to infer that the newUIPperforms almost equivalent to the original
UIP, in terms of performance (hypervolumemetric). Hence, changing the underlying
ML method of the IP2 operator (from RF to kNN) has an insignificant effect on the
performance of the UIP operator. This indicates that the originally proposed UIP
operator is reasonably robust, and its performance may neither drastically deteriorate
nor improve with a mere change in the underlying ML method. Notably, the use of
kNN still has its edge over the use of RF, in terms of run-time, as can be observed
from Table8.4.
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Table 8.9 HV-based comparison of UIP (original, with RF for IP2 and kNN for IP3), with the UIP
(new, with kNN for both IP2 and IP3) on diversity-hard multi-objective problems. The symbols ‘+’,
‘=’, and ‘–’ indicate whether the corresponding method is statistically better, equivalent, or worse.
Here, t̂TM denotes the average of the termination generations for 31 runs of UIP (new)

Problem M tTM UIP (original) UIP (new)

CIBN1 2 1421 0.480243= 0.486227

CIBN2 2 748 0.669060= 0.669101

CIBN3 2 943 0.224022= 0.223506

CIBN4 3 427 0.916890= 0.919279

CIBN5 3 296 0.630038= 0.629572

DASCMOP1 2 2028 0.321026= 0.320843

DASCMOP2 2 1962 0.651950= 0.654912

DASCMOP3 2 1567 0.391939= 0.392005

DASCMOP4 2 2033 0.336920= 0.336910

DASCMOP5 2 2115 0.672642= 0.672626

DASCMOP6 2 2473 0.574932= 0.574911

DASCMOP7 3 1811 1.028027= 1.028283

DASCMOP8 3 1711 0.661391= 0.653839

DASCMOP9 3 1574 0.647210= 0.647831

MW1 2 1061 0.415373= 0.415303

MW2 2 850 0.483088= 0.482936

MW3 2 966 0.470011= 0.470043

MW4 3 742 1.041414= 1.041342

MW5 2 1658 0.199164= 0.197663

MW6 2 1225 0.302555= 0.302521

MW7 2 897 0.366408= 0.366482

MW8 3 724 0.626689= 0.625977

MW9 2 1046 0.295656= 0.295583

MW10 2 1069 0.247448= 0.247404

MW11 2 974 0.264916= 0.255534

MW12 2 1079 0.570711= 0.570743

MW13 2 960 0.329176= 0.327977

MW14 3 838 0.154104= 0.156726

Total (+/=/–) −→ 00/28/00 of 28 probs.
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Table 8.10 HV-based comparison of UIP (original, with RF for IP2 and kNN for IP3), with the
UIP (new, with kNN for both IP2 and IP3) on many-objective problems. The symbols ‘+’, ‘=’, and
‘–’ indicate whether the corresponding method is statistically better, equivalent, or worse. Here,
tTM denotes the average of the termination generations for 31 runs of UIP (new)

Problem M = 5 M = 10

tTM UIP
(original)

UIP (new) tTM UIP
(original)

UIP (new)

DTLZ1 1476 2.488320= 2.488320 2011 17.757727= 17.757727

DTLZ2 866 2.172711= 2.172758 769 17.670674= 17.670376

DTLZ3 1136 2.488320= 2.488320 1806 17.757727= 17.757727

DTLZ4 1097 2.173476= 2.173154 804 17.676855= 17.676941

MaF1 830 0.058752= 0.058755 762 0.002110– 0.002252

MaF2 356 1.000493+ 0.997510 487 7.869492= 7.844157

MaF3 1971 2.488320= 2.488320 3654 17.757727= 17.757727

MaF4 650 0.214196= 0.154689 971 0.061585= 0.061113

MaF5 1655 2.487940= 2.487940 1178 17.757700= 17.757700

MaF7 1079 0.969948= 0.971369 834 7.688220= 7.669310

MaF8 1741 7.196114= 7.210096 1295 67.994300= 66.559200

MaF9 1015 0.027374= 0.027867 710 0.000115= 0.000137

MaF10 997 0.977029= 0.973406 903 6.008000= 6.068800

MaF11 1012 2.440631= 2.436644 1554 17.613900= 17.620000

MaF12 547 1.772635= 1.775227 489 13.038200= 13.004600

MaF13 752 0.233392= 0.231456 1092 0.173370= 0.170714

Total (+/=/–) 01/15/00 00/15/01

8.4 Summary

This chapter has sought to analyze as to how sensitive the existing Innovized Progress
operators (IP2 for convergence improvement and IP3 for diversity improvement) are
to the choice of the underlying ML method. In that, the key concern was to inves-
tigate if by changing the underlying ML methods, the performance of these opera-
tors may drastically deteriorate, or if it could be significantly improved. Exhaustive
experiments based on eight ML methods, tested against 49 multi-objective and 32
many-objective test instances, suggest that both the existing IP2 and IP3 operators
are reasonably robust, and not too sensitive to the choice of underlying ML method.
However, if one ML method is to be recommended for use, within the gambit of the
existing IP2 and IP3 operators, considered test suite, and chosen ML methods, then
kNN could be considered as the best performing method. The justification is that
even though the hypervolume offered by it may be comparable or just marginally
better than the alternative ML methods, its run-time is relatively lower. Hence, when
kNN is used as the underlying ML method for the IP2 and IP3 operators jointly
leading up to the UIP operator, the advantage in terms of the gain in hypervolume
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is insignificant compared to the the base UIP presented in Chap. 7 (with RF under-
lying the IP2 operator, and kNN underlying the IP3 operator). In accomplishing the
above investigation, this chapter relied on a systematic methodology to investigate
the trade-off associated with different ML methods in terms of their potential for
performance enhancement of EvolutionaryMulti- andMany-objective Optimization
algorithms vis-à-vis the associated computational cost.
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Chapter 9
Learning to Analyze the Pareto-Optimal
Front

Asmentioned in the previous chapters, evolutionary multi- and many-objective opti-
mization algorithms (EMâOAs) attempt to find a set of well-converged and well-
diversified solutions to approximate the true Pareto front (PF). In general, a uniform
distribution of solutions across PF is desired.However, this cannot be guaranteed due
to the stochasticity involved in EMâOAs. In a contrasting scenario, even a biased dis-
tribution of solutions across PF , with a higher concentration of solutions in specific
parts of PF , may be desired by the decision maker for a subsequent multi-criterion
decision-making (MCDM) task. indexMulti-criterion decision-making (MCDM)
To meet such requirements, this chapter presents a machine learning (ML)-based
approach, which treats a given PF-approximation as input and trains an ML model
to capture the relationship between pseudo-weight vectors derived from the objec-
tive vectors in the PF-approximation (F inZ), and their underlying variable vectors
(X in X ). Subsequently, the trained ML model is applied to predict the solution’s X
vector for any desired pseudo-weight vector. In other words, the trained ML model
is used to create new non-dominated solutions in any desired region of the obtained
PF-approximation. Such new solutions could be created to fill apparent gaps in
the input PF-approximation toward a more uniform distribution or to enhance the
concentration of solutions as desired by the decision maker. The working and useful-
ness of the above post-optimality analysis basis approach have been demonstrated
over several problem instances. However, this approach also has the potential to be
integrated within an EMâOA to arrive at the desired distribution.

In principle, the proposed approach, summarized above, conforms with any con-
ventional ML approach in which input–output relationships are learned from the
training-dataset, and the resulting ML model is used to predict the output from
an unseen given input. In the current context, the training-dataset is based on non-
dominated solutions obtained by the EMâOA, in which the input is a unique indicator
of a solution (in the objective space or Z space) and the output is the X vector of the
solution. In that scenario, the pseudo-weight vectors [2], denoted by W , have been
used as the unique indicator. An advantage of using a pseudo-weight vector is that

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
D. K. Saxena et al.,Machine Learning Assisted Evolutionary Multi- and Many-Objective
Optimization, Genetic and Evolutionary Computation,
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each component lies in the [0, 1] range and therefore does not require normalization.
Once the ML model is trained, any new pseudo-weight vector can be used as input,
to find the corresponding solution’s X vector. Subsequently, its F vector can be com-
puted using the objective formulations stated in the given multi- or many-objective
optimization problem (MOP/MaOP).

The remainder of this chapter is organized as follows. The ML-based procedure
for the post-optimal PF analysis is described in Sect. 9.1. The results on multi-
and many-objective test problems (constrained and unconstrained) and real-world
problems are presented in Sect. 9.2. Finally, Sect. 9.4 summarizes the findings.

9.1 ML-Based PF Analysis: Proposition and Validation

As discussed in previous chapters, using an EMâOA with N population members to
solve an MOP/MaOP can lead to N potentially non-dominated solutions X (k) ∈ R

n ,
for k = 1, 2, . . . , N , along with their respective objective vectors F(X (k)) ∈ R

M , for
k = 1, 2, . . . , N . In the Z space, these objective vectors are referred to as the PF-
approximation. From the position of each objective vector on the PF-approximation,

the corresponding pseudo-weight vectorW (k) =
(
w

(k)
1 , w

(k)
2 , . . . , w

(k)
M

)
;W (k) ∈ R

M

can be computed as follows [2]:

w
(k)
i =

(
f max
i − fi (X (k))

) / (
f max
i − f min

i

)
∑M

j=1

(
f max
j − f j (X (k))

) / (
f max
j − f min

j

) , (9.1)

where f max
i and f min

i are the maximum and minimum values in the i th objective,
among all the non-dominated solutions in the PF-approximation. The pseudo-weight
(W ) vector for any solution can be viewed as a representative identity on the obtained
PF-approximation. For example, given a two-objective problem, the best solution
in f1 would correspond to a vector W of (1, 0), which means that the solution is of
100% importance with respect to f1, and of no importance with respect to f2.

Clearly, Eq. 9.1 indicates that the W vectors are linearly derived from the F
vectors. If the solutions are sorted according to their F vectors, the respective W
vectors also are sorted accordingly. Previous studies on the concept of innovization
(Chap. 3) have revealed that a set of Pareto-optimal solutions usually possesses certain
patterns or constancy with respect to certain variables. Since a W vector is derived
from an F vector that bears an exact relationship with its underlying X vector, it
is fair to assume a linkage between a W vector and the corresponding X vector.
In this context, this study captures the relationships between the derived W vectors
and corresponding X vectors from a PF-approximation, using an MLmethod. Once
these patterns, if any, are captured, the desired W̄ vectors can be used to obtain the
X̄ vectors of new (potentially non-dominated) solutions. Figure9.1 illustrates the
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Fig. 9.1 Training data generation and test-data to create a new potentially Pareto-optimal solution
(taken from [3])

underlying ML training and testing procedure, as required, which is detailed in the
following steps:

Step 1: From each solution in the obtained PF-approximation, compute the W
vectors using Eq.9.1.

Step 2: Construct the training-dataset [W (k), X (k)] ∀ k = 1, 2, . . . , N , with W (k)

as input and X (k) as the corresponding target.
Step 3: Train an ML model using the training-dataset.
Step 4: Use the trained ML model to find X̄ for any specific desired W̄ vector.

Then, compute F̄ from X̄ using the original objectives’ formulation, where
F̄ = F(X̄).

The resulting trained ML model can then be used for several different tasks, as
summarized below.

Task 1: Gap-filling: The trainedMLmodel can be used to find new and potentially
non-dominated solutions, so that the apparent gaps in the obtained PF-
approximation can be filled. This could be realized by creating new W
vectors in those gaps and then applying the trained ML model to create
new (non-dominated) solutions.

Task 2: Gap-validation: The trained ML model can be used to determine whether
or not an apparent gap in the PF-approximation is a natural gap in the
true PF . This could be realized by first creating new W vectors in the
apparent gaps; obtaining the corresponding X vectors through the trained
ML model; evaluating these X vectors to obtain the corresponding F
vectors; and investigating whether or not these F vectors are dominated
by any solution in the existing PF-approximation. If any such F vector
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stands dominated, it implies that the apparent gap for which the W vector
was created happens to be a natural gap in the true PF .

Task 3: Preferred solution-density propagation: The trained ML model can be
used to populate new non-dominated solutions in any preferred region of
the PF-approximation, toward ease of visualization and decision-making.
This could be achieved by creating suitable W vectors in the region of
interest and then using the trained ML model to find new and potentially
non-dominated solutions in that region.

Task 4: Efficient offspring creation: The trained ML model can be used within
an EMâOA run, to create new offspring solutions. This could be realized
by first training an ML model using the non-dominated solutions from
the parent population; selecting the W vectors in the less dense areas;
and applying the trained ML model to create new offspring solutions (one
solution per W vector).

The scope of this proof-of-concept study has been restricted to the first three tasks
mentioned above since the last task requires the development of a new EMâOA.

9.1.1 Chosen ML Methods

In this section, details of the ML methods utilized in this study are discussed. The
problem statement at hand is the task of predicting an n-dimensional X vector from
a given M-dimensionalW vector. Since, in general, M � n, developing an accurate
ML model with few input parameters and a large number of output parameters is a
challenging task. Two different ML methods have been used for this task, namely
deep neural network (DNN) [6] and Gaussian process regression (GPR) [13]. In both
the DNN-based and the GPR-based approaches, the X vectors of the solutions are
normalized to zero mean and unit variance a priori, as required by the ML methods.
As mentioned at the beginning of this chapter, the W vectors are already within the
[0, 1] range and therefore do not require normalization.

For each problem considered here, PF is approximated using NSGA-III, with the
population size given by N = (110M + 10). These population sizes were selected
based on a trial-and-error study. From these N solutions, randomly selected 100M
solutions are used as the training-dataset, and the other 10M solutions are used as
the test-dataset. Subsequently, the remaining 10 solutions are used as the validation-
dataset as required by the DNN, but are discarded in the case of GPR, since GPR
does not require a validation step. The validation-dataset is uniformly sampled from
the PF-approximation for appropriate model selection in the case of DNN. Notably,
the same population size has been used for both to maintain the similarity of the
training-dataset size. Furthermore, this approach is not conditional on the source of
the training-dataset. Therefore, the training-dataset obtained from the non-dominated
solutions of the PF-approximation can be replaced by the non-dominated solutions
at the end of any intermediate generation of an EMâOA run.



9.1 ML-Based PF Analysis: Proposition and Validation 221

9.1.1.1 DNN-Based Approach

For the DNN-based approach, multi-layer perceptrons have been implemented using
the PyTorch library [12], with W vectors as inputs and their underlying X vec-
tors as respective targets, and the corresponding hyper-parameters are tuned using
Optuna [1]. Due to the proof-of-concept nature of the study, DNNs with hidden lay-
ers ranging from 1 to 6 are used with ‘ReLU’ as activation function, and ‘Adam’ [9]
as optimizer. The complexity of the DNN architecture and granularity of hyper-
parameters can be further increased for handling more complicated problems.

9.1.1.2 GPR-Based Approach

An approach similar to surrogate modeling is used to train the GPR model. In that
approach, each component of the target—that is, xi ∈ X—ismodeled independently.
A diverse set of kernels, mean functions, and other hyper-parameters is considered
in a grid-search for finding the most suitable setting.

9.1.2 Handling Variable Bounds and Constraints

In anyMOP/MaOP, the variables are usually restricted within the pre-specified lower
and upper bounds. Since a DNN or GPR model usually does not restrict its output
values (X vector) within any bounds by default, the resulting output values for any
test-dataset can be outside of those bounds, if specific steps are not taken. Hence,
the target values in the training-dataset have also been normalized. Subsequently, the
output X vector from the trained ML model is denormalized and clipped to within
the specified lower and upper bounds.

Furthermore, constraint satisfaction is also a strict requirement in solving a con-
strainedMOP/MaOP. In such a scenario, the resulting X vectors from the trainedML
model may not guarantee the constraint satisfaction by default. Hence, the infeasible
solutions (if created by the ML model) are simply discarded; but a more sophisti-
cated constraint handling method can be used during the ML training. For instance,
the constraint value of each constraint can be included as an additional output in
the training-dataset. During testing, if anyW vector (input) produces a positive con-
straint value (meaning a constraint violation), the solution can simply be ignored. To
implement such constraint handling, the training-dataset must contain some infeasi-
ble solutions that are non-dominated to the feasible non-dominated solution set, to
effect a better learning. In this study, such a tailored constraint handling approach
has not been included.



222 9 Learning to Analyze the Pareto-Optimal Front

9.1.3 Test Suite

For validation of ML models and analysis of different tasks (mentioned earlier in
Sect. 9.1), several test and real-world problems have been used, including the fol-
lowing:

• Two-objective unconstrained ZDT [16], and constrained OSY [11] and BNH [15]
problems.

• Three-objective unconstrained DTLZ [4] and WFG [7] problems.
• Many-objective unconstrained DTLZ [4] and constrained C-DTLZ [8] problems.
• Real-world Carside [5] and Crashworthiness [10] problems.

9.2 Validation of ML Models

This section focuses on the validation of the trained ML model. Recall that given
a PF-approximation with N = 110M + 10 solutions, the training-data was con-
stituted by randomly chosen 100M solutions. Of the remaining ones, the randomly
picked 10M solutions constitute the test-data and are referred to asRandom test-data.
Once the W vectors for these test solutions are subjected to the trained ML model
(DNN or GPR-based), it yields the X vectors (referred to as model-based X vectors)
which on evaluation offer the corresponding model-based F vectors. Since the origi-
nal X and F vectors of these test solutions are available from the PF-approximation,
the mean absolute error (MAE) between the original and model-based X vectors
(normalized using the variable bounds), and the original and model-based F vectors
(normalized using ideal and nadir points) can be computed and referred to as MAEX

and MAEF , respectively.
For validation of the ML model, a range of problems is considered, and 11 inde-

pendently seeded runs of NSGA-III are performed for each problem. The MAEX

resulting from each of the 11 runs can be processed, leading to their respective mean
and standard deviation, namely μ(MAEX ) and σ(MAEX ), respectively. Similarly,
using theMAEF values over the 11 runs, the correspondingμ(MAEF ) andσ(MAEF )

can be obtained. Table9.1 presents the above indicators for a range of two-objective
problems, for both DNN- and GPR-based approaches. Evidently:

• Low values of μ(MAEX ) and σ(MAEX ) indicate that the actual and the ML
model-based approximated X vectors are reasonably close to each other. The same
applies to the actual and approximated F vectors. These observations validate the
underlying ML models. A visual evidence for this claim is presented for a sample
problem, namely ZDT1, in Fig. 9.2.

• Compared to the DNN-based approach, the GPR-based approach offers lower val-
ues for each of μ(MAEX ) and σ(MAEX ), also μ(MAEF ) and σ(MAEF ). Hence,
the GPR-based approach is seemingly better than the DNN-based approach.
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Table 9.1 Comparison of DNN and GPR, with Random test-data on two-objective problems

Problem M Model μ(MAEX ) μ(MAEF ) σ(MAEX ) σ(MAEF )

ZDT1 2 DNN 4.606E-04 6.918E-03 2.575E-04 3.689E-03

GPR 5.525E-09 3.462E-06 3.064E-09 7.511E-06

ZDT2 2 DNN 7.260E-04 1.387E-02 4.065E-04 6.786E-03

GPR 1.398E-05 4.200E-04 1.946E-05 6.093E-04

ZDT3 2 DNN 4.619E-04 1.757E-02 2.591E-04 1.434E-02

GPR 3.659E-06 3.098E-04 4.985E-06 8.355E-04

OSY 2 DNN 7.833E-03 3.607E-02 3.323E-02 3.521E+00

GPR 1.491E-03 1.273E-03 1.146E-02 3.407E-01

(a) DNN-based approach (b) GPR-based approach

Fig. 9.2 DNN- and GPR-based approaches on Random test-dataset for the ZDT1 problem (taken
from [3])

The scope of ML-model validation is expanded by including some two-objective
(constrained), three-objective, and many-objective problems. However, for experi-
ments, only the GPR-based approach which performed better on the unconstrained
two-objective problems has been considered. The results are presented in Table9.2
along side some self-explanatory representative plots in Figs. 9.3 and 9.4.

9.3 ML-Based PF Analysis for Different Tasks

This section presents the application of the ML-based PF analysis toward the first
three tasks highlighted in Sect. 9.1. As a pre-requisite, the use of the different test-data
types as defined below must be noted.

• Edge test-data: It implies that the test solutions representing the gap belong to one
of the extreme regions of the PF-approximation.

• Continuous test-data: It implies that the test solutions representing the gap are
bounded by continuous regions in the PF-approximation.
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Table 9.2 Performance of GPR-based approach on two-objective (constrained), three-objective,
and many-objective problems, for Random test-dataset

Problem M μ(MAEX ) μ(MAEF ) σ(MAEX ) μ(MAEF )

BNH 2 1.890E-03 2.073E-04 3.004E-03 9.670E-03

DTLZ2 3 3.419E-03 1.153E-02 2.494E-03 7.168E-03

WFG2 3 4.773E-02 4.922E-02 1.220E-01 1.732E-01

Carside 3 1.171E-02 3.957E-03 9.080E-03 1.471E-02

DTLZ2 5 9.887E-03 1.382E-02 9.155E-03 8.668E-03

10 4.582E-02 1.418E-02 3.716E-02 8.500E-03

C2-DTLZ2 5 1.020E-02 1.323E-02 1.028E-02 7.448E-03

10 4.532E-02 1.418E-02 3.552E-02 9.490E-03

(a) BNH (b) DTLZ2

Fig. 9.3 GPR-based approach on Random test-dataset constrained two-objective (BNH) and three-
objective (DTLZ2) problems (taken from [3])

9.3.1 Task 1: Gap-Filling

This section focuses on the validation of Task 1, i.e., the gap-filling task. Unlike in
Sect. 9.2 where Random test-data was used, here Edge test-data has first been used,
followed by the Continuous test-data. The rest of the procedure is the same as used
for validation of the ML model in Sect. 9.2.

Table9.3 shows theMAEX andMAEF indicators on some two-objective problems
with Edge test-data, for both DNN- and GPR-based approaches. In that, compared to
the DNN-based approach, the GPR-based approach offers lower values for each of
μ(MAEX ) and σ(MAEX ), and also μ(MAEF ) and σ(MAEF ). This implies that the
GPR-based approach is better for finding edge gap solutions. For a visual represen-
tation, Fig. 9.5 shows the edge gap solutions produced using DNN- and GPR-based
approaches on the ZDT1 problem. As can be observed, while both approaches seem
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(a) 5-objective DTLZ2

(b) 10-objective C2-DTLZ2

Fig. 9.4 Parallel Coordinate Plots showing that the GPR-based F vectors conform with the F
vectors in the PF-approximation (Randomly picked), for five- and 10-objective DTLZ2 problems
(taken from [3])

Table 9.3 Comparison of DNN and GPR, with Edge test-data on two-objective problems

Problem M Model μ(MAEX ) μ(MAEF ) σ(MAEX ) σ(MAEF )

ZDT1 2 DNN 2.012E-03 1.864E-02 4.350E-04 4.332E-03

GPR 1.086E-06 2.447E-05 8.081E-07 1.820E-05

ZDT2 2 DNN 1.313E-03 3.986E-02 1.207E-04 3.680E-03

GPR 8.651E-04 3.811E-02 2.308E-04 1.023E-02
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(a) DNN-based approach (b) GPR-based approach

Fig. 9.5 DNN- and GPR-based approaches on Edge test-dataset for the ZDT1 problem (taken
from [3])

Table 9.4 Comparison of DNN and GPR, with Continuous test-data on two-objective problems

Problem M Model μ(MAEX ) μ(MAEF ) σ(MAEX ) σ(MAEF )

ZDT1 2 DNN 6.281E-04 9.264E-03 1.051E-04 1.374E-03

GPR 2.625E-08 8.466E-08 5.694E-08 1.806E-07

ZDT2 2 DNN 7.387E-04 1.321E-02 1.242E-04 2.357E-03

GPR 1.083E-04 3.633E-03 3.903E-05 1.320E-03

ZDT3 2 DNN 1.026E-03 3.948E-02 2.030E-04 1.994E-02

GPR 3.182E-05 3.365E-03 9.706E-06 2.015E-03

BNH 2 DNN 3.701E-03 2.760E-03 4.185E-03 5.378E-02

GPR 2.343E-03 1.274E-04 3.054E-03 2.224E-03

OSY 2 DNN 2.172E-03 2.720E-02 3.685E-03 6.518E-01

GPR 1.471E-03 1.243E-03 4.562E-03 5.371E-02

efficient in finding edge gap solutions, the GPR-based approach produces slightly
better (more converged) solutions.

Extending the above analysis to Continuous test-data, Table9.4 shows the MAEX

and MAEF indicators on some two-objective problems, for both DNN- and GPR-
based approaches. As evident, compared to the DNN-based approach, the GPR-
based approach offers lower values for each of μ(MAEX ) and σ(MAEX ), and
also μ(MAEF ) and σ(MAEF ). This implies that the GPR-based approach is bet-
ter for finding continuous gap solutions as well. For a visual representation, Fig. 9.6
shows the continuous gap solutions produced using the better performingGPR-based
approach.
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(a) ZDT2 (b) ZDT3

(c) OSY (d) DTLZ2

Fig. 9.6 GPR-based approach on Continuous test-dataset two-objective (ZDT2 and ZDT3), con-
strained two-objective (OSY) and three-objective (DTLZ2) problems (taken from [3])

9.3.2 Task 2: Gap-Validation

This section focuses on the validation of Task 2, i.e., the gap-validation task. For this
task, it is imperative to select a problem which has natural gaps in its true PF , so that
it can be validated. Hence, the ZDT3 problem has been used for validating this task.
Toward it, a sample set of 200 uniformly distributedW vectors has been created across
the obtained PF-approximation; the trainedMLmodels have been applied to find the
respective X vectors; and their corresponding F vectors are computed. The resulting
F vectors are shown in Fig. 9.7 (in red color), along with the originally obtained
PF approximation (in blue color), for both DNN- and GPR-based approaches. It
is evident that the W vectors corresponding to the true gaps produce dominated
solutions, but those corresponding to parts of the true PF result in non-dominated
solutions. Therefore, this procedure can also be used to testify whether the apparent
gaps in the PF-approximation offered by an EMâOA are natural gaps or not.
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(a) DNN on ZDT3 (b) GPR on ZDT3

Fig. 9.7 Pseudo-weights on true gaps produce dominated solutions, but pseudo-weights on true
PF produce non-dominated solutions, demonstrating Task 2 (taken from [3])

9.3.3 Task 3: Preferred Solution-Density Propagation

This section focuses on validation of Task 3, i.e., preferred solution-density propa-
gation. In other words, the aim of this task is to improve the density of low-density
regions of a given PF-approximation. In order to simulate a scenario in which an
EMâOA produces a non-uniformly distributed PF-approximation, some solutions
are removed from a specific region of a uniformly distributed PF-approximation.
In such a scenario, a GPR model can still be trained, and W vectors from the low-
density region of the PF-approximation can be used to produce new solutions in that
region. Figure9.8 reveals that the GPR-based approach can provide additional solu-
tions in such low-density regions for three-objective test (DTLZ2) and real-world
(crashworthiness) problems.

9.4 Summary

In this chapter, it has been demonstrated thatMLmodels can be used to learn patterns
between pseudo-weight vectors and corresponding variable vectors and generate
new points on the PF-approximation without doing any additional optimization
tasks. Furthermore, it has also been demonstrated that this approach can scale up
well to handle many-objective test problems, and also real-world problems. This
proof-of-concept study and a recent extended study [14] have paved the way for
encapsulation of this approach as an additional operator in an EMâOA, to achieve
a better distributed PF-approximation. Owing to the fact that the ML models are
conditioned on the pseudo-weight vectors, this approach can be readily used for
decision-making by the user without the need for further optimization.

In the future, it would be interesting to compare this approach with optimization-
based gap-filling methods, including preference-based EMâOAs. Applications to
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(a) DTLZ2 (b) Crashworthiness

Fig. 9.8 Additional solutions are supplied by the GPR-based approach for two three-objective
problems in regions of low density of solutions, demonstrating Task 3. A few blue points were
found by EMâOA on a part of the PF-approximation, but this ML approach has nicely replenished
them (taken from [3])

more complex real-world problems will further shed light on the potential of this
approach. Furthermore, suchmodeling approaches can be improved to include learn-
ing of constraint violation and variable bounds during the training process itself. For
example, specific activation functions (such as ReLU) can be used for the output
layer of DNNs to restrict the output within the variable bounds. Although constraint
satisfaction has always occurred in the results here, it would be a challenging task
to include constraint satisfaction in the training process, since all obtained solutions
(training-dataset) are expected to be feasible. Nevertheless, this proof-of-concept
study opens up a unique use of ML methods in assisting multi- and many-objective
optimization.
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Chapter 10
Conclusion and Future Research
Directions

This chapter shares the authors’ concluding perspectives and points out some
potential research directions that could help consolidate the emerging theme of
machine learning (ML)-assisted evolutionary multi- and many-objective optimiza-
tion (EMâO).

10.1 Concluding Perspectives

Any research domain has its own growth trajectory, and it becomes important to
continue enriching it through novel interventions, often by employing concepts and
ideas from synergistic domains. The domain of evolutionary optimization, seeded in
the coming together of computer science and evolutionary principles, is no different.
Notably, the availability of multiple sets of solutions over successive generations
of EMâO algorithms, or EMâOAs, makes them amenable to the application of ML
for various pursuits. However, while the ML domain has seen tremendous growth
in the last 15–20 years, efforts toward ML-assisted EMâO have only been sporadic
[14, 20], despite a growth of literature in ‘evolutionary machine learning’ which
deals with using evolutionary computation methods for improving the performance
of machine learning methods [13, 21, 24]. Recognizing the immense potential for
ML-based enhancements in the EMâO domain, this book intends to serve as a single
resource that can inform and educate experienced researchers and practitioners on
the existing literature, startingwith the foundational work on innovization (2003) and
objective reduction (2006), up to themost recently proposed innovized progress oper-
ators (2021–23). This book also seeks to appeal to the novice in the EMâO domain,
toward which the fundamental concepts associated with optimization (problem and
algorithm types) are sufficiently covered.
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In terms of content, this book caters to all three phases of EMâOAs, as highlighted
below

• The search phase: to enhance the search capabilities of EMâOAs, the innovized
progress operators, namely IP2, IP3, andUIP, are presented.Theseoperators enable
better Pareto front (PF)-approximation, by producing pro-convergence and/or pro-
diversity offspring.

• The post-optimality phase: to highlight how the lessons learned from the obtained
PF-approximation can be utilized, the notions of automated innovization and
objective reduction are presented. These approaches help to extract interpretable
knowledge for the user and to better understand the multi- or many-objective
optimization problem (MOP/MaOP) at hand. In particular, the objective reduction
approach, by revealing redundant objectives, if any, can help simplify the given
MOP/MaOP model, promising better search efficiency for the EMâOAs if the
reduced representation of the problem is used.

• The decision-making phase: for this phase, the δ-MOSS and k-EMOSS analyses
based on the objective reduction approach and the pseudo-weight analysis are
discussed.

The authors believe that the existing literature presented in this book has only
scratched the surface of what may turn out to be one of the dominant research
themes of ML-assisted EMâOA. Here, the authors wish to reiterate that the success
of any ML-based intervention to modify the creation of natural offspring, or adapt
the original search mechanism of an EMâOA would strongly depend on whether
the proposed modification/adaptation can (i) avoid disruption of the convergence–
diversity balance (otherwise ensured by the base EMâOA), (ii) favorably manage the
ML-based risk–reward trade-off, (iii) avoid extra solution evaluations, and (iv) be
executed within reasonable run-time.

10.2 Future Research Directions

The focus of the innovized progress operators has been the creation of pro-
convergence and/or pro-diversity offspring, toward a better PF-approximation. In
essence, these operators seek to complement the natural variation operators in a refer-
ence vector (RV)-based EMâOA, referred to as RV-EMâOA. The utility ofML-based
interventions could also be explored with respect to the other phases, including, but
not limited to, RV creation and update; initialization of solutions; normalization of
the objective space (Z space); and algorithm termination. Toward a wider gamut
of ML-assisted evolutionary optimization, the interventions discussed in the con-
text of RV-EMâOAs (IP2, IP3, and UIP operators) could also be extended to other
EMâOAs that do not rely on the use of reference vectors. The utility of the discussed
ML-based interventions could also be tested for wider real-world applications, par-
ticularly combinatorial optimization problems, where the curse of dimensionality is
known to pose a major challenge. Some preliminary ideas with regard to some of
the above possibilities are highlighted below.
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10.2.1 ML-Assisted Reference Vector Creation and Update

In RV-EMâOAs, each RV ideally leads to a specific solution on the true PF . There-
fore, the distribution of RVs, either before or during the optimization run, influences
the final distribution of solutions in the approximated PF . In general, a uniform dis-
tribution of solutions across the PF is desired. Toward it, structured methods such as
the Das–Dennis method and Riesz-energy method (already discussed earlier) exist,
which provide for a uniform sampling of RVs in the positive orthant of the Z space.

However, in special situations, a biased distribution of RVs may be required or
desired, and in such situations, the ML intervention could be useful. For example,
in the case of constrained problems, not all RVs in uniform distribution may pass
through feasible regions. If ML methods could be used to predict infeasible regions,
based on the trajectory of the evolving population, advanced RV-update methods
could be developed. Such methods can guide the elimination of RVs passing through
the infeasible region and the creation of new RVs in the feasible regions, so that the
same number of solutions as the RVs can approximate PF . Similarly, in situations
where some preference information from decision makers is available, more dense
RVs can be created in the preferred region of the PF . This could be achieved by
analyzing the preference information from decision makers through an ML method;
mapping out the preferred region of the PF ; and creating denser RVs in that region
using an existing method, such as Das–Dennis’s method [4].

Several non-ML-based methods for an adaptive update of RVs over the RV-
EMâOA generations already exist [11, 12]. These methods continuously monitor
the distribution of solutions with respect to RVs across generations. Subsequently,
new RVs are created in the regions where two or more solutions are attached to the
same RV (crowded). With ML-based interventions, efficient predictive models can
be developed to identify crowded regions, so that RVs that are in the less crowded
regions can be relocated to the crowded regions.

10.2.2 ML-Assisted Initialization

Conventionally, EMâOAs are initializedwith a population, composed of a predefined
number of solutions (N ). These solutions are created randomly or by utilizing some
uniform sampling methods in the variable space (X space), such as the Latin hyper-
cube. Although these N solutions may represent a diverse set in the X space, their
representation in the Z space remains unknown until they are evaluated. Intuitively,
if the population is so initialized that it has a good diversity in the Z space, then
it may eventually lead to a better PF-approximation in fewer solution evaluations.
Toward this, an ML method may be utilized to develop an inverse mapping model
(F ∈ Z → X ∈ X ), so that a diverse set of solutions can originally be sampled in
the Z space and then translated into the X space using the learned inverse mapping
model.
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10.2.3 ML-Assisted Normalization

Normalization of objectives is a crucial part of any EMâOA, since any distance (or
crowding metric) computation between two or more objective vectors makes sense
only when each objective is brought to the same scale. EMâOAs have a niche for
this matter, as for each objective, the current minimum and maximum values can
be obtained in each generation. These minimum and maximum objective values can
be used to normalize all objective vectors of the population, so that each normal-
ized objective value lies within the range [0, 1]. Often, the minimum and maximum
objective values are computed only for the non-dominated solutions in the popula-
tion, and not the entire population. Although the lower normalization bound ismostly
computed as the minimum objective value in the population, some studies have pro-
posed more sophisticated methods to compute the upper normalization bound. For
example, the method in [5] identifies the extreme solutions first; then determines
an (M − 1)-dimensional hyperplane passing through these extreme solutions; and
finally, the upper bound for each objective is given by the hyperplane’s intersection
with the respective objective axis. Even this method needs to be modified to handle
some specific scenarios—when there is only one non-dominated solution; when the
hyperplane’s intersection with any objective axis gives a negative intercept; or when
the hyperplane degenerates into a lower dimensional plane.

Despite the use of sophisticated methods, it has been observed that the upper nor-
malization bound undergoes significant changes, especially in the initial generations
of an EMâOA run, which adversely affects performance [18]. Significant fluctuations
in normalization bound over consecutive generations of an EMâOA is undesirable,
since it may render the elite solutions found in the former generations meaningless
in the latter generations. In this context, it is intuitive that an efficient normaliza-
tion process should maintain the continuity of normalization bounds between two
consecutive generations. ML methods could be utilized to learn how the normaliza-
tion bounds change over generations, and predict the bounds that could be used for
normalizing the objective vectors. It has been clearly observed that the sooner the
normalization bounds stabilize, the faster the convergence [2]. Notably, as soon as
an MOP/MaOP is formulated, its PF in the M-dimensional Z is defined, with fixed
(theoretical) normalization bounds. EMâOAs attempt to discover these (theoretical)
bounds along generations through their evolving population members. Therefore,
if sophisticated ML-assisted methods can help discover these bounds sooner, the
EMâOAs can converge faster to the true PF .

10.2.4 ML-Assisted Termination

In some of the studies presented in this book, a stabilization tracking algorithm [18]
has been utilized, to detect an appropriate timing for terminating an EMâOA run
without specifying the maximum generations for termination a priori. In particular,
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this algorithm requires a set of two parameters that govern the degree of stabiliza-
tion to be detected to suggest termination. Although these parameters could be set
intuitively, it would be better to have a stabilization tracking algorithm that does
not require a priori parameter fixation. To achieve this, an ML method can be used
to (i) detect the performance trend of the underlying EMâOA on-the-fly, through a
performance indicator; (ii) reliably predict the additional generations required by the
population to stabilize; and (iii) suggest an appropriate timing for terminating the
EMâOA run.

10.2.5 ML-Assisted Hyper-Parameter Learning

Hyper-parameter learning has become an important topic in evolutionary optimiza-
tion (EO) research, in its own right. An EO algorithm (including EMâOAs) has a
number of basic parameters, including population size, variation operators’ parame-
ters, termination-related parameters, etc. Although researchers have been trying hard
not to introduce any new parameters when proposing any new extensions to these
algorithms, the performance significantly depends on the choice of basic parame-
ters mentioned above. Hyper-parameter studies construct an outer optimization loop
in which the basic algorithmic parameters are the variables, while the inner loop
attempts to solve the given optimization problem by keeping the basic parameters
fixed to the outer loop variables [1, 15]. It is clear that, overall, such a methodology
attempts to solve the given optimization problem with different basic parameter set-
tings, in search of an optimal parameter set (by optimizing for a given performance
indicator). Any effort to make the outer loop more efficient will lead to fewer iter-
ations of the outer loop, significantly saving both computational resource and time.
This is where ML-based interventions can help, by learning more promising param-
eter combinations from the past iterations; predicting to what extent the inner-level
optimization should be continued for a specific parameter combination; identifying
parameters that are more sensitive for the given problem, etc.

10.2.6 ML-Assisted Innovized Progress Operators
for User-Preferred PF Concentration

Often, experienced DMs have a preference toward a specific region of the PF that
can be dictated by an aspiration point [23] or a reference direction [6], or other
means [16]. The innovized progress operators discussed in this book, to find the
complete PF approximation, can be modified to develop better-focused EMâOAs,
than the existing R-NSGA-II [8] or R-NSGA-III [22] algorithms. In such studies,
where diversity across the true PF is not desired, the pro-diversity IP3 operator can
receive a lower preference.
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10.2.7 ML-Assisted Transfer Learning

Transfer learning focuses on storing knowledge gained while solving one problem
and applying it to a different but related problem. For example, the knowledge gained
while learning to recognize cars could apply when trying to recognize trucks. This
notion of reusing or transferring information from previously learned tasks for the
learning of new tasks could bear multi-pronged utility for the EMâO domain, as
highlighted below

• Design of Problem class-specific EMâOAs: it is known that the performance of
EMâOAs strongly depends on their underlying design aspects, including the rep-
resentation of a solution, the initialization procedure, the selection, recombination
and mutation operators, and the termination criteria. Different combinations of
these aspects may work best on different problems that can be classified based
on several features, including variable description, search space complexity, etc.
Based on an available history of EMâOA runs, ML model(s) can be trained to
capture the best configurations of algorithmic-components vis-à-vis the problem
features. Given an optimization problem with its underlying features known a pri-
ori, such ML model(s) can be invoked to predict promising configurations for an
EMâOA design.

• Knowledge-Basedand InteractiveEMâO: EMâOAshave primarily been viewed
as computational algorithms that start with the push of a button and are expected to
end up producing a set of Pareto-optimal solutions. Most existing EMâOAs do not
expect user intervention in the middle of a run. It is imperative to note that users
(experts in the subject domain of the problem) often have a certain hidden knowl-
edge (hunch), which can be treated as properties of good solutions. However, this
knowledge may not be explicitly available as a mathematical construct at the time
of problem formulation. Often, this knowledge is contextual and can be extracted
when the user is exposed to sample solutions/patterns. Such nuggets of knowl-
edge can be extremely useful while solving a complex optimization problem. For
example, as in the case of innovized repair—rules found along the intermediate
generations of an EMâOA can be reinforced along the subsequent generations. A
recent study [10] has shown that such an interactive EMâOA run works best when
an optimal number of patterns is used to modify an optimal proportion of popu-
lation members. While the optimal patterns could be zeroed in using some broad
principles, say, smaller size, etc., a better alternative could be to utilize the user’s
domain knowledge for preference-ordering of the rules. For complex problems,
such user intervention is not trivial and carries immense value. To enhance its
value, ML methods can help in modeling user preferences, so this learning could
be transferred to solve other complex problems from the same problem class.

• Multi-criterion decision-making (MCDM): indexMulti-criterion decision-
making (MCDM) Most EMâO studies focus on finding a set of Pareto-optimal
solutions and leave the MCDM task of choosing a single preferred solution to the
decision maker (DM). However, many existingMCDMmethods can be combined
with EMâOAs, such that the DM’s preferences can influence selection, eventually
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leading to a single preferred optimal solution at the end of an EMâOA run. ML
methods could possibly assist in transfer learning of DM’s preferences, to help
avoid repeated DM’s intervention over the same class of problems. For example,
past practices of chosen solutions for similar problems can be learnt, to understand
the variable and objective combinations that were chosen. This model can then be
applied to pick the preferred solution from a fresh set of Pareto-optimal solutions.

10.2.8 ML-Assisted Combinatorial and Other Optimization
Studies

Combinatorial optimization problems are considered to be one of the most challeng-
ing classes of optimization problems, due to the discrete nature of variables and the
high dimensionality of their search spaces. This explains why the applications of
EMâOAs on such problems are relatively sparse in the literature. It would be worth
investigating whether the innovized progress operators discussed in this book can
be extended to such problems and to what extent the search efficacy of EMâOAs
could be improved. In addition to the above possibilities, ML-based interventions
can also be explored to improve EMâOA’s performance in other classes of optimiza-
tion problems, such as dynamic problems [9], bilevel or multi-level problems [19],
variable-length problems [17], and large-scale problems [3, 7].

To conclude: the body of work presented pertaining to ML-assisted EMâO, sup-
portedby a rather exhaustive list of foreseeable possibilities, indicates the significance
of this book in making evolutionary optimization—in particular, EMâOAs—more
efficient, useful, and timely. Advancements in the ML literature can make such stud-
ies possible and bring ML and EMâO communities together. In preparing this book,
it has been authors’ desire that the book would spur more such ML-assisted EMâO
studies in the near future.
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