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Abstract Proteins are essential units of life that govern several functions. Under-
standing their behavior is closely related to their conformations, native folds, and
change in conformations. Thus, the dynamic information of protein becomes essen-
tial to understand its properties at the molecular level. The molecular dynamics
(MD) simulation approach provides atomistic-level dynamic information about pro-
teins. However, more extended or complex MD simulations of protein are challeng-
ing to analyze and to gather meaningful confirmation from several snapshots of the
dynamic system. To achieve it, i.e., analyzing MD simulation data, Markov State
Model (MSM) is a powerful tool that has a statistical background. It represents the
MD simulation system as a combination of finite memoryless states, i.e., states that
are not dependent on prior states and transition probability among such states. MSM
applications have grown from peptides to membrane protein simulations. The
present book chapter sheds light on MD simulation’s role in protein dynamics and
why MSM is required. The brief theoretical aspects of MSM techniques are dem-
onstrated. Lastly, the chapter discusses the application of MSM in different protein
folding and dynamics.
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1 Introduction

Protein dynamics and folding have been challenging phenomena essential for the
molecular-level understanding of protein function. Molecular dynamics
(MD) simulation is a valuable tool that comprehends macromolecular structural
and functional insights. Data assembled after the MD simulation study can confer
good knowledge about the macromolecular structure and provide detailed informa-
tional insights [1].

1.1 Importance of Molecular Dynamics

Proteins and nucleic acids are dynamic entities, and their dynamics play a significant
role in their functions. Crystal structures stored at the PDB provide a halfway and
limited perspective on three-dimensional (3D) construction. Especially protein mol-
ecules undergo crucial conformational changes during a particular function
[2, 3]. One such change is the structural rearrangement in the protein molecule
upon binding a substrate or inhibitor [4, 5]. This can be effectively verified by
comparing apo and ligand-bound 3D protein structures. The conformational changes
are usual parameters of enzymes’ catalytic mechanisms [6]. One of the common
instances is loop movement or domain rearrangements that change the local com-
position of the active site’s chemical environment to perform a function. Sometimes,
these alterations activate the catalytic process by bringing protein subunits together.
Moreover, one can correlate protein function only when dynamic properties are
considered [7–9].

There are several ways to deal with the conformation correlated with the relevant
macromolecular function. One of the conventional ways is to gather experimentally
determined structures covering the conformational space using X-ray crystallogra-
phy, nuclear magnetic resonance (NMR) spectroscopy, or cryo-electron microscopy
(cryo-EM) methods. These methods can be used to study structures of macromole-
cules in different environments or bound with other substrates or ligands. However,
these experimental studies are time taking and need specific high-end instruments.

On the other hand, theoretical strategies are the most helpful method for getting
an image of the macromolecular dynamic properties of a protein. Protein folding
occurs in a timescale of a few microseconds, allosteric transitions in microseconds to
milliseconds, relative motions of protein domains in nanoseconds to seconds, and
dynamics of side chains in picoseconds to nanoseconds (Fig. 1) [10]. Additionally, it
is observed that longer timescale motions can influence shorter timescale dynamics
and vice versa. Hence, long timescale simulations have always been a well-chosen
option [11, 12]. Long-time simulations provide an opportunity to understand the
flexibility of proteins and their related ensemble of alternative structural states,
which are crucial for understanding the folding and dynamics of proteins [13, 14].
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Fig. 1 The figure represents the protein motion concerning the time axis. TheMD simulations must
be performed at femtosecond time steps to capture the bond stretching motion and similarly for
other represented motions that are more time-scaled atomistic. Hence, more computational power is
required

Protein-conformational changes play a vital role in its functioning [15, 16]. Hence
it is not enough to study just one PDB conformer. Modern-day advances in simu-
lation algorithms and calculations have promoted the idea of “conformational
ensembles” as an option in contrast to examining a single structure from PDB.
These ensembles or conformers can be examined to determine thermodynamic
properties, entropy, free energy, conformational changes, or protein folding phe-
nomenon [16–18]. There are two significant difficulties in analyzing MD simulations
of biomolecules: adequate conformational sampling and exact physical force fields.
Despite remarkable improvements in modern computing capacity, conventional MD
(cMD) simulations are still essentially constrained to shorter timescales than those
demonstrated by various biomolecular movements and functions [19–22]. Hence, to
gather multiple conformations, a specified tool is required.

Furthermore, protein folding remains one of biology’s fundamental and least
understood phenomena. This fascinating phenomenon of conversion of the primary
sequence of a protein to the native 3D structure remains less understood. Small
molecular weight proteins with ~10–100 amino acid residues fold in the microsec-
ond to sub-millisecond timescales, known as “fast-folding” proteins. They are
magnificent model systems to study and analyze protein folding through long
timescale cMD simulations in explicit water [23]. Protein folding needs a broad
measure of conformational examination and computational ability to describe the
free energy landscape appropriately. Advancement in computation with more
extended simulations is insufficient to expand the conformational sampling in the
molecular framework. The complicated state of the free energy landscape makes the
majority of the simulations investigate only a small region around the energy least
near to the initial conformation. With the accessibility of the current advanced HPC
systems, a conspicuous methodology is to play out a series of parallel simulations



with several initial energy-minimized conformations. Although this could be profi-
cient, it requires detailed information on the framework to simulate and cannot be
applied as an overall strategy.
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Nevertheless, protein folding has been analyzed using cMD and utilizing pro-
ductive examining methods such as replica-exchange MD [24], Markov State
Models (MSM), biasing MD simulations such as bias-exchange metadynamics
[25], and transition path sampling [26]. This chapter sheds light on how MSM
helps tackle protein dynamics and folding problems.

1.2 Motivation Behind Using MSM Technique

At times, protein folding and dynamics require long timescale simulations, or the
system becomes highly complex or enormous (such as in the case of membrane
protein simulation). The first microsecond-length all-atom MD simulation of a small
protein was carried out by Duan and Kollman [27]. Further advancements in
computer power open up possibilities of MD simulations of thousands of protein
atoms, long time-scaled simulation of proteins, etc. Biomacromolecules frequently
perform their functions through dynamic transitions between conformational states.
For instance, the AdeB efflux pump undergoes carbapenem resistance through
conformational modifications [28]. By performing long timescale dynamics based
on several short MD simulations, MSM has emerged as a prominent method for
bridging this timescale gap [2, 29].

Representing physical, chemical, or biological systems using stochastic processes
is standard practice. The objective is to analyze the stochastic model and roughly
compute the exciting properties of the system. Direct sampling and building a
coarse-grained model of the system are two methods for carrying out such analysis.
In a direct sampling strategy, one attempt to produce a statistically significant
number of occurrences representing the system property in question. Here, making
sufficient statistics for accurate estimates requires much computation. Estimation
through direct numerical simulation is impossible, especially if the state space is
continuous and has a high dimension [30]. In the coarse-grained model,
discretization of the systems state space is used. This is achievable using MSM.
The advantage is that it uses discrete finite space. Due to this, the vast systems
became finite discrete models that can be solved numerically to find their properties.
It uses transition path theory (TPT) to analyze systems’ discrete states. In summary,
the analysis of the ensemble of reactive trajectories, or trajectories that originate from
a specific set of states A and go to B. Hence using such a technique provides a more
comprehensive analysis of biological protein simulations.



Markov State Models of Molecular Simulations to Study Protein Folding. . . 151

2 Markov State Model

A theoretical model, often known as the Markov State Model (MSM), is frequently
used to study the dynamic nature of biological systems. The basic idea of MSM is
making the square matrix known as the transition probability matrix (TPM). In the
case of protein dynamics, MSM can be used after obtaining initial data from MD
simulation trajectories.

2.1 Building of MSM

To develop MSM, an adaptive sampling algorithm is frequently used. Adaptive
sampling is a statistical approach for solving protein dynamics on large timescales
(100 μs to the ms) to sample conformational transitions. The adaptive sampling
algorithm is based on iterations, which are used until the desired sampling criteria are
reached [19]. The adaptive sampling process is divided into three steps: (i) to run an
MD simulation and get many short trajectories, (ii) build an MSM using trajectories,
and (iii) run a simulation trajectory based on obtained results from the MSM. MSM
uses a matrix, so it needs microstates that can be prepared in two ways: one is based
on geometric distributions (distance metric), and the other is based on a free energy
map (kinetic-based metric). The preferred one is to choose free energy minima, i.e.,
kinetic distribution, instead of the geometric distribution. The pathway of MSM is
illustrated in Fig. 2.

2.2 Microstates and Macrostates Generation

Microstates are required to construct MSM. They are the nonoverlapping discrete
configurational space. Every transition among these microstates is not dependent on
the previous state. This phenomenon is known as memoryless transition. In this
regard, one needs microstates where shifts can happen smoothly and rapidly. For
this, there is a requirement to group configurations, often known as clustering. Since
many clustering techniques are available, one must choose them wisely. One of the
clustering techniques is choosing a distance metric. The k-centers, k-medoids, and

Fig. 2 The schematic pathway of the Markov State Model (MSM)



hybrid k-centers/k-medoids clustering are some of the essential clustering algo-
rithms. To determine states, one needs to go through the MD simulations first and
then find the suitable conformations based on either the root mean square deviation
(RMSD) chosen appropriately 2 to 3 Å or based on the energy barriers. Most of the
time, it is assumed that as the degree of structural similarity is higher, the
corresponding kinetic similarity is also higher. It is known as the kinetic clustering
of microstates into larger macrostates [31].
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In Markovian microstate formation, there is a timeframe difference at which the
states occur, often known as lag time or Markovian lag (τ). Hence, after lag time τ,
the state will not be dependent on the previous state. MSM building requires a
transition probability among these microstates, which depends on the number of
microstates and lag time. Markovian lag should be large enough but not too large so
that it does not alter significantly from other trajectories, which are often considered
microstates. Markovian lag is just a method of selecting steps for trajectories that
must be chosen carefully.

Additionally, in the case of tens of thousands of microstates or huge system sizes
(such as membrane protein simulation), kinetic-based clustering can be performed
that are supersets of microstates and are named macrostates. These macrostates are
obtained using coarse-graining the model. This method collects microstates that are
quickly clumping together and are collected to form macrostates. Available lumping
procedures from microstates to macrostates are perron cluster cluster analysis
(PCCA), their improved version (PCCAC), Bayesian agglomerative clustering
engine (BACE), and super level set hierarchical clustering (SHC).

2.3 MSM Model and Validation

After obtaining the microstates, the next step is constructing the transition count
matrix (TCM). It is a matrix that describes the transition from one state to another.
The transition count matrix in general form is shown below:

M=
a11 a12......... a1n
a21 a22......... a2n
⋮
an1

⋱ ⋯ ⋯
an2 ⋱ ⋯ ann

where aij denotes the transition from ith state to jth state. For example, if the states
chosen from trajectories named A, B, and the trajectory are given as:

Trajectory : AABBBABABAABB:

Also, if the trajectory is chosen one step, then the number of transitions from A to
A is 2 (NAA = 2), from A to B is 4 (NAB = 4), from B to A is 3 (NBA = 3), and from
B to B is 3 (NBB = 3). Then the TCM can be written as mentioned in Table 1.
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A B

2 4
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A B

2 3

4 3
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Table 1 Transition count
matrix representing the transi-
tion between states A and B

From\To

A

B

Table 2 Transpose of the
transition count matrix

From\To

A

B

The transition count matrix is usually not symmetric, so it is necessary to make a
symmetric matrix and any symmetric matrix. One must follow the symmetry
property of the matrix, which is defined as any (square) matrix. It is written as the
sum of a symmetric matrix and an antisymmetric matrix [32].

M=
M þMT½ �

2
þ M-MT½ �

2

where MT is the transpose of M, [M + MT] is symmetric, and [M - MT] i
antisymmetric.

This matrix should be symmetric because the transition between states depends
not only on the forward direction but also on the reverse direction and is transpos-
able. The transpose matrix describes moving from one state to another in either a
forward or reverse direction. The transpose of TCM is shown below:

MT =
a11 a21......... an1
a12 a22......... an2
⋮
a1n

⋱ ⋯ ⋯
a2n ⋱ ⋯ ann

For the transpose matrix, the row (horizontal elements) is changed into a column
(vertical components) and vice versa, as shown in Table 2.

Averaging the transition matrix counts by adding a transition matrix, and their
transpose matrix gives symmetry.

Msymm =
M þMT

2

The symmetry matrix is shown below:

Msymm
ij =

1
2

a11þa11 a12þa21......... a1nþan1
a21þa12 a22þa22......... a2nþan2

⋮
an1þa1n

⋱ ⋯ ⋯
an2þa2n ⋱ ⋯ annþann

For the present example, the symmetric matrix is shown in Table 3.
After this, reversible TPMwill be calculated for each element of the matrix. There

are two requirements for the TPM that must be rigorously followed. First, the total



A B

A B

probability in each row is equal to unity, and second, elements should be nonneg-
ative. There is no negative value meaning because probability only contains values
between zero and one. Another essential point about transition probability is that it
depends only on the time difference, i.e., the transition should be homogeneous [33].
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Table 3 Symmetry matrix
for present trajectory

From\To

A 2 3.5

B 3.5 3

Table 4 The transition prob-
ability matrix for a given
trajectory

From\To

A 0.222 0.778

B 0.636 0.364

Pij =
Msymm

ij

j
i Msymm

ij

The transition probability matrix is shown below:

Mprob =
P11 P12......... P1n

P21 P22......... P2n
⋮
Pn1

⋱ ⋯ ⋯
Pn2 ⋱ ⋯ Pnn

For the present example, the transition probability matrix will be shown in
Table 4.

Auxiliary equation : M- λIj j= 0;

where I is an identity matrix, and λ is for eigenvalues.
After solving the auxiliary equation for the TPM, one can get the eigenvectors

and corresponding eigenvalues. The total sum of eigenvalues is to be zero. From
eigenvalues data, one can analyze that the most positive value gives the most
fluctuation from the equilibrium states, and the least negative value is in the most
equilibrium states. There are several methods and tests to validate the models, such
as Chapman–Kolmogorov equation model-based test, correlation function test,
Bayesian Model selection, Swope–Pitera eigenvalue test, etc.

3 MSM to Understand Protein Folding and Dynamics

The initial studies of using MSM were started by studying peptide folding [34–36]
and other small systems [37]. Further, it was applied in protein folding, protein–
ligand binding, nucleic acids, and other biological problems (Fig. 3). It is used to



analyze small-timescale and large-timescale simulations to gather relevant informa-
tion. We now discuss howMSM is used to understand protein folding and dynamics,
focusing on ensemble sampling and conformational fluctuations.
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3.1 Peptide Modeling

Researchers have tried to address the issues related to understanding the mechanism
of protein folding and finding the nature of folds. MD simulations have been
regularly used along with experimental studies. In 2004, Swope et al. developed
an algorithm to study the kinetics of protein folding. They applied it to a small
peptide, a C-terminal alpha-hairpin motif from protein G. They used a Boltzmann-
weighted ensemble to formulate the transition function from MD simulation
[35]. They found the pattern and number of hydrogen bonds in a peptide. The
Markov model depends on finding the finite number of metastable states; thus,
identifying them is a critical and essential step. Hence, the clustering algorithm

Fig. 3 Applications of MSM in protein folding and protein dynamics



was applied to get kinetics-based states that were long-lived in dynamic systems.
This kinetics-based clustering was used by Noe et al., who tested ALA8 and ALA12

peptides [36]. This study, by Noé et al., brought a new direction to form metastable
states, which consider dynamic behavior and not geometric proximity. Following
this method, the automated algorithm was proposed, which detects the kinetically
metastable states and was tested on three peptides [38]. After this, the master
equation was developed by Buchete & Hummer for studying MD simulation of
peptide folding at an atomistic level [39]. ALA5 peptide was used for the study,
which was intended to form a small helix. In recent studies, this technique has been
used to study peptides like amyloid-β peptide (Aβ), which is responsible for
Alzheimer’s disease [40].
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3.2 Protein Folding

Protein folding prediction through an in silico approach has been a mystery since the
inception of protein simulation. Protein folds have numerous possibilities, as stated
by the Leventhal paradox [41]. However, protein folds within a few microseconds in
natural states and retains its native fold to function [42]. At the same time, predicting
protein folding, understanding different folding conformations, and the folding rates
also matter [43]. Several mechanisms have been proposed to explain the protein
folding process, from a simple two-state model [44] to more complex models
[45]. Also, it has been observed that some proteins do not fold and exist in an
intrinsically disordered state [46].

Additionally, the misfolding of protein also occurs and has been observed in
neurodegenerative disorders [47]. Thus, gathering the information on the folded and
unfolded states is not enough, but the intermediate, misfolded, and disordered should
also be analyzed. MSM uses the MD simulation data to find transition probability
between different finite states. Initially, the model is constructed using geometric
conformation similarity [48, 49]. The obvious choice is to use RMSD between the
conformations by limiting it to a smaller cut-off value [50]. However, the RMSD is
based on a protein backbone and is used to generate distance metrics. Hence, side
chain and dihedral angle flip may hinder the results. The assumption is that the
conformations with smaller deflections may have similar kinetic stability. However,
finding more kinetically relevant metastable states should be carried out. Different
clustering algorithms have been used [51], such as k-centers clustering, k-medoids
clustering, and a hybrid of both k-clustering methods. The k-center clustering
algorithm aims to find clusters with approximately the same radius and map different
conformations to the nearest center of the cluster so that the distance from a distance
is minimum. Li et al. & Voelz et al. used this clustering algorithm to improve the
microstate generation efficiently [29, 52]. In the case of k-medoid clustering, the
optimization is performed for the average distance between the center and other
cluster points. In protein folding, this algorithm creates many clusters in the folded



scenario and very few in the unfolded system [53]. The hybrid approach of both the
k-clustering techniques was used to build MSMBuilder2 [54].

Markov State Models of Molecular Simulations to Study Protein Folding. . . 157

3.3 Protein–Ligand Binding

Analyzing the interaction of a protein with its substrate/inhibitor can provide critical
information about the protein’s function [5, 55]. The binding of small molecules to
proteins or detecting new binding sites could be performed using MSM methods.
Earlier, binding kinetics has been studied by constructing MSM to find long-lived
intermediates of trypsin inhibitors [56]. The induced fit model (conformation
changes due to ligand binding) and conformation selection model (ligand bind to
protein without changing in protein’s conformation) are used to detect protein–
ligand recognition [57–59]. But later, it was observed that both are found in real-
life scenarios [60–62]. In an earlier study to find the contribution of both methods, an
analytical model based on a three-pronged approach of MD simulation, flux, and
MSM was developed [63]. The choline-binding protein (ChoX) was used as a case
study, and MD and MSM methods were used to find parameters for flux
analysis [61].

3.4 Analyzing Intrinsically Disordered Proteins

Intrinsically Disordered Proteins (IDPs) are proteins that do not have a stable 3D
structure. They bind to nucleic acids or other proteins for their functions. IDPs are
dynamic ensembles that continuously change their internal conformation with high
structural heterogeneity [64, 65]. However, IDPs are responsible for several cellular
functions and are involved in many diseases like diabetes, cancer, neurodegenerative
diseases, and cardiovascular diseases [66–69]. While interacting with partners, IDPs
are coupled binding and folding reactions, which is essential for their function.
Similar to ligand binding, induced fit, conformational selection, and a combination
of both models are used to study IDPs. However, the kinetics of the binding-folding
reaction, specifically binding to a partner or conformation without a partner, requires
detailed investigation [70, 71]. Here, MD simulation can provide a contemporary
way to analyze IDP folding at the atomistic level. To achieve this, MD simulations of
IDPs should be performed so that the whole binding-folding pathways can be
analyzed. Such simulation trajectories are complex to study; however, MSM tech-
niques can help to identify metastable states in the pathway and the transition
probability [72, 73].
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3.5 Native State Conformation Changes

Generally, the rational structure-based drug design does not take into account
protein-conformational changes. Approximately 15% of proteins have deep active
sites related to their activity [74]. Hence, conformational heterogeneity is essential to
understand protein behavior. This could provide information on the novel active
sites or transient catalytic sites, which are allosteric or can block protein–protein
interaction [75–78]. Since MD simulation can provide the system’s dynamical
behavior, if coupled with MSM, it can provide a set of ensembles where the
metastable state is in an equilibrium state. Also, the advancement in MSM to capture
kinetic and thermodynamic properties makes it a more viable option to identify the
transient active site. There are several examples where similar approaches have been
used to find cryptic pockets and allosteric sites. Among such studies, the TEM-1
beta-lactamase was used and observed that several such allosteric sites were present
[79]. Such studies could also be performed with novel proteins to find active or
allosteric sites.

4 Summary

Advancements in computational power, such as parallel programming and GPUs,
have made the MD simulation more achievable. However, analyzing the simulation
data is challenging. MSM is based on finite ensembles and uses clustering methods
to create ensembles. Before MSM, geometric clustering was used, but MSM pro-
vides enhanced metastable states, which means it is the kinetic energy-based state. It
is a coarse-graining of a system’s dynamics, which depicts the underlying free
energy landscape that governs the system’s structure and dynamics. Identifying
states in a kinetically relevant scheme and effectively using state decomposition to
construct a transition matrix are the two main issues for creating an MSM. To build
the MSM model, the traditional geometric clustering method is used to develop
microstates. These microstates are further used to build a transition matrix. This step
takes care of finding kinetically related microstates. This information is used to build
MSM. However, adaptive sampling is used to improve the MSM model. Further,
validations can be done by Bayesian Model selection, Swope–Pitera eigenvalue test,
and other such tests (Fig. 4).

Protein folding and the dynamics of the native 3D structure are critical biological
phenomena [80]. MD simulation can provide a way to understand these processes in
millisecond simulations [81–83]; however, analyzing such data requires sophisti-
cated protocols and methods [84, 85]. MSM provides a convenient and interpretable
solution [86]. With the current advancement in computational power and algorithm,
the use of MSM has increased and will continue to grow. This technique can also
analyze and comprehend complicated systems such as membrane proteins, peptide
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folding, IDPs, and other biological systems; hence, it is emerging as a critical in
silico approach.
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