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Abstract The field of molecular dynamics (MD) simulations has become indis-
pensable today to studying the conformational flexibility and dynamics of proteins
as well as protein–ligand complexes. The technique helps to replicate real-time
biological events like macromolecular dynamics on a computational platform and
allows us to understand the fold and conformational changes in the protein–ligand
complex. In addition, MD simulations enable us to estimate the thermodynamics and
kinetics associated with protein–ligand binding. In this chapter, we introduce the
basics of MD simulations and the theoretical aspects of the simulations. Further, we
describe the sequential steps in the process of MD simulation and the background
information of the steps. The chapter also discusses ligand binding and conforma-
tional changes with the help of case studies. Though the field has advanced by leaps
and bounds, there is still a necessity for better force fields and methods to accurately
predict the free energy of binding. In summary, research focusing on force fields
supported by advancements in computational power will help researchers have better
insights into protein–ligand interactions and their conformations.
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1 Introduction

Research in biomolecular dynamics has evolved over the last few decades. Among
the macromolecules of interest, proteins are essential for the growth and structural
integrity of any organism. Their three-dimensional (3D) structure and interactions
with other macromolecules or ligands help them function properly. In addition, other
molecules interact with proteins either in their active site or allosteric site, which may
change the conformations of the protein. The study of these dynamics in detail helps
us understand the underlying principles of protein function and interactions
[1]. Moreover, advances in bioinformatics and computational power have led
researchers to study the structural dynamics of proteins using various simulation
algorithms.

Molecular dynamics (MD) simulation is a theoretical method that can analyze the
protein structure, folding, and stability by visualizing it in a motion picture. MD
simulations have been widely used for studying the complexity of protein folding
and the interaction of proteins with ligands. This theoretical study has become an
integral part of analyzing the interaction of the ligand with the protein and how the
binding of the ligand influences the protein structure, dynamics, and conformation
[2, 3]. Besides, it also helps in studying the interactions and changes in terms of
energy and geometry over the evolved time period. Today, this method is a boon for
protein fold analysis and drug discovery [4].

In principle, MD simulations consider the potential energy function of each of the
atoms (force field) and determine the lowest energy state. This means that the state of
the most stable conformation, which can be seen over the time period of the
simulation run, is determined. Over the past few years, various refinements have
been made in the forcefields used for MD simulations. Among the various
forcefields used, AMBER, CHARMM, and GROMOS are the most widely used
forcefields for studying the structural dynamics of proteins at different pH and
temperature conditions [5–7]. These forcefields can be employed in various software
like GROMACS, AMBER, and NAMD, and significant information can be obtained
from the trajectory analysis [8–10].

To study the effect of the ligand on the protein conformation, one can utilize
various techniques like principal component analysis (PCA), coarse-grained simu-
lation, and umbrella sampling. Coarse-grained simulation helps overcome the time-
scale and length-scale difference in the ligand–protein interaction by considering the
atoms at a macroscopic scale. It does so by reducing the degrees of freedom of the
atoms of the protein–ligand complex, providing reduced computational stress,
thereby running smoothly. The umbrella sampling depends upon the biasing poten-
tial obtained from the mean force potential. It fixes or restrains the ligand toward an
increasing center of mass distance via the umbrella sampling. This eventually helps
in studying the ligand interaction with the atoms around it over a period of time.



Other than the specific protein–ligand interaction, any perturbation in the protein
conformations may result in diseased conditions such as Alzheimer’s disease and
cancers. Thus, understanding how a protein folds and its dynamics change when
interacting with other small molecules and macromolecules is of paramount
importance.
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2 Background of MD Simulation

We discussed that the MD simulation is a powerful computational method for the
theoretical study of biomolecules through fluctuation and conformational changes at
the atomic level. The technique uses Newton’s second law of motion to calculate the
time evolution of the molecular system. The results are obtained in the form of
trajectories that are analyzed using different tools for the position and velocity of
each atom in the system. In recent times, MD simulation is also being used to
understand the thermodynamic properties of biological events like conformational
transitions. The technique helps us understand that a protein is flexible and can thus
undergo a variety of slow and fast structural rearrangements (also known as transi-
tions), ligand binding, enzymatic regulations, and ion transport in biological
systems.

For a protein to function, structural fluctuations and flexibility are very crucial.
According to the Levinthal paradox [11, 12], the average time taken would be of the
order of 1010 years if the process of protein folding was to occur randomly,
considering all accessible configurations (around 1030 configurations) and a time
of 10-12 s to search each configuration [4]. The fact that the protein folding process
occurs in an immensely shorter time (between picoseconds and milliseconds) proves
that the event of protein folding is not a result of a random search toward the correct
functional form among the vast configurational space. To explore such configura-
tional spaces, techniques like umbrella sampling have been developed [13].

Before performing MD simulations, it is essential to choose an initial configura-
tion of the proposed system that does not have high potential energy. A velocity must
be assigned to the system. To rule out instabilities during simulation, energy
minimization is required. Further, a potential energy function (forcefield), which
describes the forces that act between the atoms as a function of their positions, is
assigned to the system. This gives an initial distribution of the velocities of the atoms
and the values of the starting coordinates for the atoms in the system. During the
course of the simulation, the trajectories are obtained at different time points and are
analyzed. This equilibrium distribution of velocities throughout the system is done
via the Maxwell–Boltzmann distribution.
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2.1 Theory Behind MD Simulation

It is well known that the MD algorithms calculate the classical time evolution of the
system using Newton’s second law of motion, i.e.,

Fi =miai

Fi

mi
=

vi
t

Fi

mi
=

d2xi
dt2

where Fi = force exerted on molecule “i,” mi = mass of the particle, and
ai = acceleration of molecule “i.”

The potential energy of the system can be explained as the sum of the individual
contribution of both bonded and non-bonded interactions in the system, i.e.,

V rð Þ=Vbonded þ Vnonbonded:

Bonded interactions are the sum of four simple harmonic species that describes
bond stretching and angle bending. It includes all the parameters responsible for
bond stretch and angular bending, including rotational torsion and improper
torsion [14].

Vbonded =Vbond þ Vangle þ V torsion þ V improper:

Vbond represents the energy involved in stretching the bond length in an interac-
tion and can be explained with the help of Morse potential, a robust interatomic
interaction model used for the potential energy calculation of a diatomic molecule.
Morse potential is computationally expensive and requires three parameters per bond
evaluation. Mathematically it can be represented as

Vmorse Ið Þ=De 1- e - a I- I0ð Þð �2

a=ω
μ

2De

ω=
k
μ

where k = stretching constant, De = depth of potential minimum, l = bond
length, l0= equilibrium value of bond length, μ= reduced mass, and ω= frequency
of bond vibration in small displacement from l to l0.
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However, to overcome the problem of extensive mathematical calculations, a
harmonic potential (Hooke’s law) was proposed with an approximation that was
adequate for explaining bond stretch energy. According to this method

Vbond Ið Þ= k
2

I- I0ð Þ2

Vangle θð Þ= k
2

θ- θ0ð Þ2

where Vangle= energy due to the deviation of angles from their equilibrium values
and θ = angle formed between two and three atoms.

Vtorsion is the torsion angle term in the force field model. It represents the effective
barriers for the rotation around chemical bonds. The barriers are due to the steric
interactions between the atoms and a group of atoms that are separated by three
covalent bonds [15].

V torsion φð Þ=Kφ 1- cos nφ-φ0ð Þð

where Kφ = barrier height, φ = torsional angle, φ0 = angular position of the first
minimum in the potential, and n = number of minima.

Vimproper is the improper torsion that arises to maintain chirality.

V improper ωð Þ=Kφ ω-ω0ð Þ2

where ω = improper dihedral angle and ω0 = improper dihedral angle at
equilibrium positions.

The non-bonded interaction is composed of two components, i.e., the van der
Waals interaction energy and the electrostatic interaction energy. Energy determi-
nation is considered the most time-consuming part of the simulation as they have
long-range interactions of the atoms in the system to be considered.

V non- bondedð Þ =Vvdw þ V ele

Vvdw arises from a balance between repulsive (short-range and arises due to
electron–electron interactions) and attractive forces (long-range force and arises
due to electron fluctuations which generate dipole in an atom). It can be demon-
strated using Lennard-Jones potential, i.e.,

V rð Þ = 4 2 σ
r

12
-

σ
r

6

where σ = collision diameter and E = well depth.
Vele act at longer ranges compared to van der Waals interactions. It can be

represented as



q q
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Vele = i j

i j

4π 2 rij

where qi, qj = partial atomic charge, E = dielectric constant, and rij = relative
distance.

Therefore, the potential energy can be represented as

V rð Þ = Vbond þ Vangle þ V torsion þ Vvdw þ V ele

Though the mathematical calculations per atom are higher for a simulation
system, the molecular mechanic forcefields provide a reasonable compromise
between accuracy and efficiency.

3 Steps in MD Simulation

3.1 Initialization

MD simulations for a biomolecular structure require an initial structure that can be
used as a starting point. This structure can be obtained from the X-ray crystallo-
graphic or cryo-electron microscopic (cryo-EM) structures available in the protein
databank (PDB). Structures from nuclear magnetic resonance (NMR) and homology
models can also be used. The selection of the initial structure is critical to obtain
better-quality results. Before proceeding toward simulation, energy minimization of
the structure is required to eliminate structural distortions that arise due to strong van
der Waals interactions and result in unstable simulation. Once the structure is
obtained, the next step is to set up the periodic boundary conditions.

3.2 Periodic Boundary Conditions

Defining the periodic boundary is an important step in MD simulation. The step
allows one to simulate a small part of a large system specifically. Here, all the atoms
present in the computational cell or box (MD cell) are replicated to create an infinite
lattice throughout the space. Each particle in the MD cell interacts not only with
other particles within the computational box but also with their mirror images in the
nearby boxes. Most MD simulations are done in a cubic or octahedral computational
cell. The Ewald method is the most common method used for calculating the
electrostatic energy of a system on the lattice with periodic boundary conditions.
Total electrostatic energy from image cells can be calculated as a summation of real
space (Vr), reciprocal space (Vk), correction due to excluding pairs (Ue), and a self-
term (Us) [15].
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In MD simulation, constant temperature is essential that can be maintained
through coupling to a Berendsen thermal bath. Velocities are scaled by a factor at
every step.

X= 1þ δt
τ

T
T0

- 1

where T = the time constant and T0 is the reference temperature that tells the
strength of the coupling between the thermal bath and the system.

3.3 Energy Minimization

Minimization algorithms are employed to identify the geometry of the system that
corresponds to the minima of the potential energy surface. The minima values can be
very large when a biomolecular system comprises thousands of atoms, and a large
number of degrees of freedom is taken. The algorithms used for minimization are
important in MD because it is essential to start a simulation from a well-minimized
structure that helps avoid any high-energy interactions that might hinder the system.

∂f
∂Xi

= 0

∂2f
∂X2

i

> 0

where I = [1, . . ., N], given function f, which depends upon the variable x1,
x2,. . .. . .xn.

The minimum of f is the point at which the first derivative of the function
corresponding to each variable is zero, and the second derivatives of the function
are all positive. The energy minimization method can be divided into first and second
derivative techniques.

3.3.1 First-Derivative Techniques

The first-derivative techniques include the steepest descent and conjugate gradient
[16, 17]. The first derivative of energy shows where the local minima lie, and the
magnitude gradient indicates the steepness of the local slope. While the second
derivative indicates the function’s curvature and the information that can be utilized
to determine where the function will change with direction. The first-order minimi-
zation algorithm is the steepest descent, and in this, the coordinates of the atoms are
changed gradually until the system moves close to the minimum energy point. A line
search algorithm is used iteratively to locate the minimum point. Even when the



starting initial structure is far away from the minimum, the steepest method can
achieve the minimum through iterative steps. Because of this advantage, it is
recommended to start with the steepest descent algorithm for energy minimization.
The conjugate gradient is another first-order minimization algorithm that accumu-
lates information about the function from one iteration to the next [15].
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3.3.2 Second-Derivative Techniques

The Newton-Raphson method is a second-order derivative method used to invert the
Hessian matrix for energy minimization [18]. The technique provides the curvature
of the function that tells about the change in the direction of the function. For large
systems, the technique requires higher computational effort and large storage
requirements. In most cases, the steepest descent and the Newton-Raphson method
are used in combination. However, in the steepest descent method, the structure can
be brought to the minimum closely, while in the Newton-Raphson method, a few
steps are required to reach the minimum.

3.4 Thermostats and Barostats

Thermostats and barostats are used for equilibrium. The objective of the equilibrium
phase is to perform the simulation until the properties like structure, pressure,
temperature, and energy are stable with respect to time and to bring the system to
equilibrium from the initial configuration. During this phase, each atom of the
system is assigned an initial velocity selected from the Maxwell–Boltzmann distri-
bution at a low temperature. Slowly, new velocities are assigned with a gradient
increase in the temperature. This process is repeated until the desired temperature is
obtained. The equilibration is usually conducted using a Berendsen thermostat and a
Parrinello-Rahman barostat [19, 20].

3.5 Production Stage

After the successful completion of the equilibration of the system, the desired MS
simulation time length is assigned between picoseconds (ps) and milliseconds (ms).
During the production run, no velocity scaling is performed, and hence the temper-
ature becomes a calculated property. Various properties are computed during the
production run and are stored for further analysis. During the production run,
millions of non-bonded interactions are generated. Thus, it is necessary to evaluate
the non-bonded interactions during simulation. One of the easy ways to do so is by
extending the time step, which improves the simulation performance. However, we
do not consider the bond vibrations during simulation because errors are generated



immediately after the production run starts in bond vibration. These errors can be
excluded entirely by adding bond constraints using SHAKE algorithms [21].
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3.6 Analysis of the MD Data

Simulation information generated after the production run can be analyzed in
different ways. One of the most important jobs during the analysis of the ligand–
protein complex is to determine whether the apoprotein is stable and close to the
experimentally retrieved structure or not. The basic method to check the stability and
change in conformation is by calculating the root mean square deviation (RMSD),
root mean square fluctuation (RMSF), radius of gyration (Rg) and hydrogen bond
(H-bond), and principal component analysis (PCA) from the simulation data.

The RMSD is used to measure the structural stability of the protein–ligand
complex. It provides information about the deviation produced by the complex
during the MD simulation compared to the initial reference structure by calculating
the Cα values of the protein backbone. Mathematically, it can be represented as

rαi - rβi
1=2

=
1
N

i

rαi - rβi
2

The RMSF is used to measure the local changes that are present along the chain of
the protein. It is the measure of the displacement of a particular atom or a group of
atoms relative to the initial structure used for the simulation and is averaged over the
number of atoms in the structure. The calculation involves a rigid alignment of
structure in each frame of the simulation run with respect to the reference frame. It is
mathematically represented as

RMSF=
1
Nf f

rfi - ravgi

2

The Rg determines the distribution of the atoms present in a protein around the
axis of the protein. Rg is given by the length that measures the distance between the
point where the atom is rotating and the point where the energy transfers with
maximum effect. It is mathematically represented as

Rg=
1
N i i

ri - rcmð Þ2

Hydrogen bonds are known to play a vital role in ligand binding. They are
important for the effective ligand binding and conformational change in the protein’s
active site. Mathematically, it is calculated as
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UHB rð Þ= A
r12

-
C
r10

The PCA is a machine learning tool that converts a set of correlated observations
to a set of linearly independent components. This transformation to the new coordi-
nate system represents the first coordinate with the highest variance, the second
coordinate with the second highest variance, and so on. PCA is used to analyze the
motion of flexible regions in the protein. Furthermore, it can also be used to analyze
the poorly equilibrated regions in a protein. The calculation of PCA involves the
following basic steps

1. Creation of coordinate covariance matrix—It is a 3×3 matrix that consists of the
coordinates x, y, and z of the sample at different times.

2. Calculation of principal components and coordinate projections—It gives us the
eigenvectors of the matrix.

3. Visualization of the principal components.

The molecular mechanics (MM) energies combined with the Poisson–Boltzmann
or generalized Born and surface area continuum solvation (MM/PBSA and
MM/GBSA, respectively) methods are used to estimate the ligand binding affinities
in the simulation run system. They help in deciding the strength of binding of the
ligand to its receptor and studying the stability of the complex. The sample is first
simulated over a given period of time. Further, snapshots are taken at regular
intervals in time from the simulation to calculate the free energy of the sample.
For explicit solvation in water, the free energy is mathematically determined as

G=Eint þ Eele þ Evdw þ Gpol þ Gnp - TS

where Eint = molecular mechanics internal energy, Eele = electrostatic internal
energy, Evdw = van del Walls energy, Gpol = polar solvation free energy, and
Gnp = nonpolar solvation free energy.

Moreover, the binding free energy between the protein and the ligand is mathe-
matically represented as

ΔG= G PLð Þ-G Pð Þ-G Lð Þh iPL
where PL, P, and L are protein–ligand complexes, protein, and ligand, respec-

tively, whose free energies are calculated using the equation above. Brackets
indicate the average over the snapshot taken. Depending on the protein being
analyzed, the r2 value obtained from the correlation coefficients ranges from 0.0
to 0.9.
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4 Ligand Binding and Fold Transitions

The first-ever simulation of a protein was conducted as early as 1944 using a small
protein bovine pancreatic trypsin inhibitor [22]. From the simulation, McCammon
and his team revealed the fluidic characteristics of a protein interior for the first time.
The simulation lasted for 9.2 ps and opened up a new realm in molecular biology and
drug discovery. Today, the advancements in computational power allow one to
perform even microsecond (μs) simulations at the atomistic level.

To start with any ligand binding, the primary requisite is the availability of the
target protein structure. This may be a limitation as the number of experimentally
determined structures is still less than the number of proteins existing in nature. The
problem can partially be solved by its homologous proteins and by predicting the
structure using homology modeling [23]. For proteins that do not exhibit any
homology, their structures can be predicted de novo using Robetta, I-TASSER, or
AlphaFold [24–26]. Once the structure is solved, the ligands can be docked into the
rigid or semirigid target structures. The drawback, however, is that the docking
process does not consider the flexibility of the target protein, and any critical fold
change that occurs cannot be analyzed. To overcome this, all-atom MD simulations
can be employed to obtain conformation ensembles of the target protein, which can
be used later for ensemble docking. If there is a computational limitation, coarse
grain simulation [27, 28] can be done, and representative conformations can be
obtained. The atomistic models can then be converted using tools such as backward.
py [29]. Once the structure is confirmed, the next step is to perform ensemble
docking, where the ligand is docked against each structure of the conformational
ensemble. Performing global docking against a conformational ensemble of the
target protein with a large dataset of ligands requires computational power. How-
ever, the ligand-binding site can be identified using tools such as fpocket [30] and
ConCavity [31]. Once the ligand-binding site is predicted based on the geometry of
the ligand and the target protein, one can perform the docking more efficiently.

There are several ways to understand the protein–ligand interactions and fold
changes with respect to the binding. The most accurate way is to perform all-atom
simulations for the ligand–protein complex. However, there are other docking
algorithms supported with CHARMM forcefield that employ multiple strategies to
obtain better protein–ligand interactions, such as CDOCKER [32], EADock [33],
etc. Even though the methods use forcefields, they fail to account for the entropy
changes, and therefore the accuracy of the final results in the docking is
compromised [34]. Long timescale MD simulations are an easy and effective way
to sample the protein–ligand interactions. Long timescale simulations allow deter-
mining not only the interactions but also the fold changes that occur in the target
protein due to ligand binding. These simulation results enable direct comparison to
the experimental results and serve as a benchmark for ligand-binding studies.
However, as discussed earlier, they are expensive, and most research groups cannot
access them. However, coarse-grained model simulation can work around this
problem. The method maps several heavy atoms into one site, reducing the total



number of particles, thereby, the computational power. One can refer to Souza et al.
[35] for a better understanding of the concept. The coarse grain simulations fail to
provide the desired accuracy in the ligand binding, even if the back mapping is
performed. Therefore, to achieve high accuracy and better binding free energy
results, it is recommended to run a long timescale simulation of the ligand–protein
complex.
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Some simulations require the sampling of the conformational space to obtain
statistically reliable results. Though this is not reliant on the resolution of the model,
it is critical since there are systems with two states with high-energy crossover. To
overcome this issue, there are various enhanced sampling methods such as Ligand
Gaussian accelerated molecular dynamics simulations [36], metadynamics [37],
Markov state models [38, 39], and replica-exchange molecular dynamics [40].

5 Case Studies

In this section, we will discuss the docking and simulation of ligand–protein, how
the pipeline works, and the analysis of the simulation results. For this, we will use a
study by Sasidharan et al. where natural compounds were virtually screened against
the tyrosine aminotransferase (TAT) from Leishmania donovani [41]. The initial part
of the study concentrated on the virtual screening of 1,83,659 compounds from the
ZINC15 database with the protein. The top 10 compounds were then docked
independently against TAT using Autodock v4.2. For the docking, authors framed
the grid around the active site of the TAT enzyme housing the K286 residue, and
500 LGA docks were conducted to obtain the best-docked conformation. The top
5 compounds with the highest binding affinity and interactions (Fig. 1) with the
active site cavities were chosen and carried forward for simulations.

The simulations were carried out using GROMACS v5.1.4. The complexes were
energy minimized by steeped descent method and were temperature and pressure
equilibrated using a modified Berendsen thermostat and Parrinello–Rahman
barostat, respectively. The electrostatic interactions were computed with the help
of particle mesh Ewald. The trajectory analysis showed that all complexes with the
protein were stable throughout the simulation period. The RMSD of the Cα back-
bone (Fig. 2a) showed the stability of the complexes, while the Rg (Fig. 2c), along
with solvent accessible surface area (Fig. 2d), corroborated the stability of the
complexes. The RMSF analysis showed higher fluctuations in the N-terminal
(Fig. 2b), and the reason for the same was deciphered by the authors in another
study [42]. The study then concentrated on the binding of the ligands to the TAT. An
average of 1–3 hydrogen bonds formed between the compounds and the protein
(Fig. 3a). The authors eliminated the compound TI 2 from further studies owing to
the presence of several metastable states (Fig. 3b). The simulation data showed that
the compounds TI 1, TI 3, TI 4, and TI 5 could bind to TAT with high affinity. The
authors proved the inhibitory activity of the compounds by in vitro inhibition
kinetics.
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Fig. 2 Trajectory analysis of compounds TI 1–5 complexes with the TAT enzyme. (a) RMSD, (b)
RMSF, (c) Rg, (d) SAS. The analysis of all four trajectories shows the stability of the TI complexes.
(Figure adapted with permission from Sasidharan and Saudagar [41])

To understand the concept of PCA and MMPBSA, we use a study by Shweta
et al. [43]. Here, the authors followed a similar protocol and simulated the top two
protein–compound complexes. Besides RMSD, Rg, SASA, and RMSF, the authors
also conducted the PCA (Fig. 4), which showed that the ligand-bound forms are
more rigid than the apo-form. The changes in the large motions were limited upon
binding to the ligands chrysin and genistein. Furthermore, MMPBSA calculations
showed binding energies of -78 kJ/mol and -76 kJ/mol for genistein and chrysin,
respectively, which were higher than the control ATP (-54 kJ/mol). The breakdown
of the binding energy is given in Table 1. The binding energy contributed by each
residue in the target protein using the MMPBSA tool can also be studied [44]. Sev-
eral such studies can be referred to understand the protein–ligand binding analysis
using MD simulations [45–50].

The studies of protein–ligand interactions and transitions are not limited to small
compounds but also protein–macromolecule interactions. Gosu et al. studied the
effect of mutations on the MDA5 protein responsible for Aicardi-Goutières syn-
drome and Singleton-Merten syndrome [51]. The effect of mutation of residues like
L372F, A45T, R779H, and R822Q was studied, and the interactions of the mutated
proteins with RNA were analyzed. The authors represented the PCA of the simulated
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Fig. 3 Hydrogen bond analysis between TI 1–5 compounds and TAT enzyme. (a) H-bond analysis
of TI 1–3 with TAT. (b) H-bond analysis of TI 4 and 5 with TAT. (Figure adapted with permission
from Sasidharan and Saudagar [41])



Component

complexes in porcupine plots (Fig. 5) that revealed the effect of mutations on the
large-scale motions of the whole protein as well as the fold changes occurring over
the simulation period due to mutations. Hence, MD simulations can be used to study
both protein–ligand and protein–macromolecule interactions for both drug discovery
and mutation effects [52–57].
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Fig. 4 Principal component analysis of large motions in the simulated structures. Apo-LdMPK4,
ATP complex, GEN complex, and CHY complex with LdMPK4 are shown in black, red, green, and
blue, respectively. (Figure adapted with permission from Shweta et al. [43])

Table 1 Binding free energy
of MAPK4 with ligands ATP,
GEN, and CHY

Ligand

ATP GEN CHY

EvdW (kJ/Mol) -103.47 -104.923 -105.592

Eelec (kJ/Mol) -3.588 -10.134 -11.382

Gpolar (kJ/Mol) 60.086 46.500 49.818

Gnon-polar (kJ/Mol) -7.973 -9.653 -9.007

ΔGbind (kJ/Mol) -54.946 -78.211 -76.164
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6 Conclusions

Currently, the field of simulation is making an enormous impact in understanding the
atomistic details of macromolecules. MD simulations now help researchers to drive
the wet-lab experiments based on the simulation data. A detailed conformational
understanding of a macromolecule explains the dynamics of the ligand binding as
well as the fold transitions that accompany the ligand binding. The accuracy and free
energy calculations are more accurate than the docking scores and, therefore, can be
relied upon. Though the dynamics of proteins happen at msec timescale in real time,
it is not possible, at least at the moment, to simulate all the proteins to that extent.
Meanwhile, it is challenging to understand the dynamics using wet-lab experiments.
Therefore, researchers must balance these techniques and consider the trade-off to
achieve the best possible results. This research area is advancing day by day, with
improvements in algorithms and forcefields. With increased computational power
and refined algorithms, scientists hope to make simulations widely available at lower
costs.
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