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Abstract Protein folding and unfolding processes follow a thermodynamically
favourable transitional path. The folding process occurs on a timescale in the order
of milliseconds; therefore, observing the correct transitional pathway is challenging.
However, with the advancement of computer science, it is now possible to decipher
the structural level changes in the folding pathway of the protein using the molecular
dynamics (MD) simulation. The MD simulation can provide detailed information
about various energetic terms, structural parameters, etc. One can calculate the
secondary structure changes with respect to time using MD simulation and correlate
them with the CD spectra results. It can also generate thousands of snapshots that can
be used to determine accurate unfolding pathways through structure visualization. In
this chapter, we describe how chaotropic agents and MD simulation can be used in
combination to study the stability and unfolding process of a protein. We also
discuss the software used in the MD simulation with a detailed methodology of
the GROMACS tool. Lastly, we take two case studies to show the process of urea
and GdnHCl-induced denaturation of proteins analysed through MD simulation.
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1 Introduction

The protein unfolding studies often involves the use of chaotropic agents such as
urea and guanidinium hydrochloride (GdnHCl), which reduce the stability of the
native protein by destabilizing the hydrophobic interactions between various amino
acids [1]. They are widely used for protein unfolding analysis, but the exact
mechanism of action is still a mystery. It is well established that protein stability
depends on the hydrogen bonding network of the protein with the solvent and
intramolecular hydrogen bond interactions [2]. A proper hydrogen bond network
is required for a protein to function correctly. Several studies have shown that
chaotropic agents can directly bind to the protein or bind with the solvent and alter
the properties of the solvent [3–9]. In other cases, the presence of chaotropic
molecules also breaks the hydrogen bond network between water molecules,
which induces the weakening of the hydrophobic effects. The effect of hydrogen
bond disruption due to chaotropic agents is similar to the temperature and pressure-
induced hydrogen bond network disruption for the denaturation of the protein
[10, 11]. Additionally, the direct binding of the chaotropic molecules with the
proteins may weaken the hydrophobic interactions between the non-polar amino
acids responsible for stabilizing native proteins.

The folding energy difference between the well-folded and unfolded proteins is
typically between 5 and 10 kcal/mol. The unfolded protein is 5–10 kcal/mol less
stable than the corresponding native protein. During folding, multiple forces weaken
simultaneously with several conformations between native to unfolding transitional
states [12], indicating the level of complexity in understanding the protein unfolding
and folding process. It also suggests that multiple factors are involved in unfolding/
folding processes that should be carefully examined [13, 14]. There are a lot of
limitations in experimental methods for studying the protein folding mechanism.
They cannot provide detailed visual information about the transitional intermediates
during protein unfolding from the nanosecond to the microsecond time scale
[15]. They are also expensive in terms of money and labour. The currently available
computational approaches can simulate the protein at a microsecond time scale in the
presence of denaturants or temperature and can determine the exact unfolding steps
in the form of complete trajectories saved at different snapshots. During simulation,
several energy parameters can be analysed as well as the detailed insight molecular
mechanism of unfolding can be investigated. These trajectories can be analysed
using several software, and a lot of meaningful information can be extracted. With
the support of graphical processing units (GPUs), currently, supercomputers can
perform microsecond time simulation within a day and store petabytes of data. The
simulation of a single virus is also possible [16]. However, the addition of solvent
and other molecules in the simulation can increase the computational cost and
complexity of the simulation result analysis [17–19].
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2 Basic Concept of Protein Folding

Anfinsen’s hypothesis shifted the concept of protein folding from the disulphide
bridge protein folding theory towards the complete protein folding analysis through
the eyes of computer scientists or polymer physicists in 1973 [20]. One had to cease
thinking in terms of atomic coordinates to demonstrate the uniqueness (stability) of
the native structure. It was stated that the necessary pieces of knowledge for folding
must be present in the sequence, which was established as the Anfinsen thermody-
namic hypothesis [21]. It essentially assumes that the sequence controls the interac-
tions present in the native structure. This is the central idea behind the fascinating
intersection of two major lines of research into the prediction of protein structure and
the study of protein folding kinetics [22, 23]. Protein folding occurs through an
enormous number of possible conformations that cannot be calculated through
conventional chemical methods. Levinthal’s paradox describes the astronomical
number of local minima in the conformational space and the resulting inability to
completely explore all conformational spaces. It has been established that even a
straightforward explanation of protein folding based on the hydrophobic/hydrophilic
model on a cubic lattice is nondeterministic polynomial (NP)-complete in this regard
[24]. Overall, the link between sequence and structure and the elucidation of folding
processes are challenging issues that are listed among the most significant scientific
questions of the twenty-first century [25]. By virtue of their fundamental character-
istics, Levinthal’s paradox and Anfinsen’s hypothesis appear at odds. To assure
convergence towards the native state within a definite time, the folding process must
first be constrained along a particular path (kinetic control). Conversely, the interim
path (thermodynamic control) is comparatively irrelevant because it relies on the
function, which is biased towards the final confirmation of the protein. Within the
framework of the landscape theory of protein folding, in which both types of
regulation are acknowledged, these contradictory criteria become consistent
[26, 27]. According to the present theory, parallelization makes more sense early
in the folding process and becomes more sequential in the latter stages [28, 29].

3 Chaotropic Agents and Their Mechanism of Action

The chaotropic agents (chaotropes) are chemical entities that disrupt the structure of
biological macromolecules, such as nucleic acids and proteins, via the denaturation
process. These molecules disrupt the non-covalent interactions such as van der
Waals forces, hydrogen bonds, electrostatic interactions, and hydrophobic effects
and increase the entropy of the system. The tertiary structure of well-folded bio-
molecules depends on these non-covalent forces; hence, increasing the concentration
of chaotropes in the solution leads to the destabilization of protein followed by
denaturation and reduced enzyme activity. The proper folding of a protein is
depended on the hydrophobic interactions between the amino acids. Due to the



disordered water molecules, the chaotropic solutes reduce the net hydrophobic
effects of the hydrophobic regions. This leads to the solubilization of the protein’s
hydrophobic regions via denaturation. This is also implicated in the case of hydro-
phobic regions of the lipid bilayers, where a high chaotropic concentration leads to
cell lysis by disrupting membrane integrity [30].
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Fig. 1 Chemical structures of a few chaotropic agents. (a) lithium acetate, (b) ethanol, (c) lithium
perchlorate, (d) magnesium chloride, (e) n-butanol, (f) thiourea, (g) guanidinium chloride, (h)
sodium dodecyl sulphate, (i) 2-propanol, (j) phenol and (k) Urea

The dissociation of chaotropes in solution results in different chaotropic effects.
While the chaotropic solvents such as ethanol affect the non-covalent intramolecular
forces, the chaotropic salts affect the charged interactions such as salt bridge, etc. A
strong hydrogen bond network in proteins is observed in the non-polar medium;
therefore, chaotropic salts that can increase the chemical polarity can affect the
hydrogen bond network. This happens due to the smaller number of water molecules
that can effectively solvate the ions. It leads to the ion–dipole interactions between
the hydrogen bonding species and salts which are stronger and more favourable than
normal hydrogen bonding [31, 32]. The common chaotropic agents are urea,
guanidinium chloride (GdnHCl), thiourea, and sodium dodecyl sulphate (SDS).
The chemical structure of a few chaotropic agents is shown in Fig. 1.
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4 Molecular Dynamics (MD) Simulation

The molecular dynamics (MD) simulation method was introduced in the 1970s
[33, 34]. Currently, with the improvement of computational power, it can be used
to simulate from thousands of atoms to the complete virus, proteins, nucleic acids,
nucleosomes [35, 36] or ribosomes [37, 38], etc., using the explicit water models.
Today, simulations of �50,000–100,000 atom size systems are in routine practice,
and even simulations of more than 1,000,000 atoms are also possible when good
computational facilities are available. This was made possible due to the improve-
ment in the MD algorithms and new computing capabilities from the past few
decades.

The input structure of any biomacromolecule can be obtained using computa-
tional modelling tools or experimental methods [39]. The simulated systems can be
represented at different levels of time scale. The atomistic representation model is
the best for the reproduction of actual systems. Although, in the case of long
simulations or large biological systems, the coarse-grained representation is leading
popularity [40]. There are many representation approaches, but the explicit solvent
model is the simplest, most popular, and most effective [41–46]. However, increas-
ing the system size in this model increases the size of simulated systems. This
solvent model can achieve the solvation effects that happen in a real solvent,
including those of entropic origin, like the hydrophobic effect. After building the
complete system, using the deriving equations, the forces that act on each atom can
be obtained using the force field. In the force field, the potential energy is inferred
from the molecular structure [47–52]. The complex equations represent the force
field terms which are easy to calculate. There are several simple molecular features
that characterize the force field terms, such as bond angles and length, which are
represented by springs, bonds rotations, and Lennard-Jones potential represented by
periodic functions, electrostatic and van der Walls interaction calculation by Cou-
lomb’s law. These terms guarantee that force and energy calculations be very fast for
large biological systems. Currently, the parameterization of the force field differs in
various atomistic molecular simulations. There are several parameters in the force
field which cannot be interchanged, and also, not all force fields allow to represent
the all-molecule types though the simulation trajectories and analysis for all the force
fields are similar [53, 54]. When the acting forces on each atom are calculated,
Newton’s classical law of motion is utilized for the acceleration and velocities
calculation, including the update of the position of each atom. The MD system
movement integration is done using numerical methods; therefore, to avoid insta-
bility, a time step shorter than the fastest movement in the molecules is used. This
short-time integrator usually lies between 1 and 2 fs for the atomistic simulation and
plays a crucial role in the overall simulation.

The long microsecond simulations hardly scratch the time scales for the biolog-
ical systems and require iterating over the calculation cycle 109 times. The coarse-
grained simulations are generally better with these limitations. They use a more
simplified MD system and represent larger time steps for integration; hence, they can



run the large-scale simulation of large biomacromolecules with good accuracy. The
long simulations can run with several advantages that include fine-tuning several
energetic parameters and parallelization of the simulation by using graphical
processing units (GPUs) that can increase accuracy and improve the simulation
speed. The current generation of computers can parallelize the process, which
leads to faster MD simulation.
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Several MD simulation software are available, and the most widely used are
CHARMM [55], GROMACS [56], AMBER [57] and NAMD [58]. These software
are well compatible with the messaging passing interface (MPI). Due to a large
number of cores in the computers, the MPI can significantly increase the computa-
tion power and reduce the computational time. The MD simulation process can be
divided into multiple CPU cores that can reduce computational time; this technique
is known as spatial decomposition. The part of the complete system is used for the
simulation in each processor. This division of MD simulation systems is based on the
particle’s position in space and not on the list of particles. The region of the space is
dealt by each processor instead of the particles present in the MD simulation system.
The processor communication is also reduced because only the neighbouring regions
of the simulation share information among them [59]. Nowadays, GPUs are becom-
ing the breakthrough in the case of MD simulation due to their ability to accelerate
the simulation speed. The currently available MD simulation tools are compatible
with GPUs, and even some MD simulation programs, such as ACEMD [60], are
written to run on GPU systems. The combination of CPUs and GPUs is the default
strategy in the case of atomistic simulations. Currently, high-performance computing
(HPC) is the most popular among computational scientists, while GPU development
is leading to the greater use of personal computers for atomistic simulations
than HPC.

5 Application of MD Simulation in Investigating Protein
Unfolding

As described earlier, MD simulation can mimic the in vivo conditions and can
provide information on the real dynamics of the system, including effects of muta-
tion in a protein [61–63], protein–ligand interactions [64–67] and protein unfolding
[68–70]. The stepwise methodology of the MD simulation process is briefly
described below [71, 72].

1. The biological macromolecules should be prepared. The structure may be
modelled if an experimental structure is unavailable in the PDB (https://www.
rcsb.org). All the hydrogen atoms should be added to the PDB structure.

2. The PDB file should be placed in a box, which can be cubic, dodecahedron, etc.
3. The explicit water molecules should be filled into the box.
4. The concentration of chaotropes should be calculated in the number and added

to the simulation box by replacing the water molecules.

https://www.rcsb.org
https://www.rcsb.org
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5. The MD systems should be neutralized by adding ions.
6. Energy minimization should be performed to remove the steric clashes of the

systems caused by the addition of water and chaotropic agents.
7. The number of volumes and temperature (NVT) and the number of pressure and

temperature (NPT) simulations should be run to fix the volume, pressure and
temperature of the system. After this simulation, the quality of the system can be
assessed by plotting all the graphs (pressure, volume, temperature, etc.).

8. Finally, the MD simulation should be run, and values should be saved at 1 to 2 fs
time intervals.

9. Lastly, the obtained trajectories should be pre-processed by removing the
periodic boundary condition (PBC) artifacts. Several results can be obtained in
the form of various graphs, such as root mean square deviation (RMSD), root
mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible
surface area (SASA), principal component analysis (PCA), and secondary
structure analysis.

10. The trajectories can also be visualized, and the unfolding of the
biomacromolecules can be recorded in the form of a trajectory. These graphical
and visual analyses can give a glimpse of the complete unfolding process of
proteins.

These steps are generally used in all the MD simulation protocols to perform the
unfolding analysis of a protein. The graphical user interface (GUI) simulation
software such as Desmond and YASARA can be used for this process in a few
steps, while the command lines tools such as AMBER and GROMACS complete it
in many steps. The general methodology and concept are the same for all the
software. Now we discuss two case studies of protein unfolding using urea and
GdnHCl.

6 Case Studies

6.1 Urea-Induced Unfolding

We have reported the urea-induced unfolding of the Acinetobacter baumannii UDP-
N-acetylglucosamine enolpyruvyl transferase (AbMurA) [69]. The structural and
unfolding features of AbMurA were analysed using multiple spectroscopic methods,
including circular dichroism and fluorescence spectroscopy [73]. The data showed
the protein unfolds in a three-state manner with the presence of an unfolding
intermediate at 3.5 M urea. The spectroscopic data was complemented using data
from multiple 100 ns MD simulations [69]. To study the unfolding behaviour of the
AbMurA enzyme, we created six systems where we placed the AbMurA in water,
3.5 M, and 8.0 M urea, and simulated at 300 and 400 K temperatures. In total, we
created six systems (AbMurAH2O, AbMurA3.5 and AbMurA8.0 at 300 and 400 K)
and generated trajectories at 100 ns. The results were analysed in terms of RMSD,



RMSF, Rg, SASA, PCA, structural analysis, and secondary structure analysis. We
briefly discuss the results; for a detailed analysis, readers can refer to the original
article [69].
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Fig. 2 (a) RMSD, (b) RMSF. The black, blue, red, green, cyan and magenta represent
AbMurAH2O (300 K), AbMurAH2O (400 K), AbMurA3.5 (300 K), AbMurA3.5 (400 K), AbMurA8.0

(300 K) and AbMurA8.0 (400 K), respectively

We first calculated the RMSD to study the detailed dynamics of the system. At
300 K, the average RMSD value for the AbMurAH2O, AbMurA3.5 and AbMurA8.0 at
300 K were 0.41, 0.71, and 1.30 nm, respectively (Fig. 2a). Figure 2a shows that
AbMurAH2O quickly achieved the equilibration state and showed a stable trajectory
till 100 ns. The AbMurA3.5 showed an increase in the RMSD value initially, while
after 40 ns, it achieved the equilibration state. In the case of AbMurA8.0, an abrupt
pattern was observed till 65 ns and then attained the equilibration state. The average
RMSD values represent that urea addition in the systems induces instability in the
AbMurA enzyme. We then calculated the RMSD values of AbMurAH2O,
AbMurA3.5 and AbMurA8.0 at 400 K (Fig. 2a). 400 K temperature can immediately
unfold the protein and provide information on the proper unfolding pathway in the
presence of urea. In 400 K, AbMurAH2O attained the equilibration state after 20 ns,
while the other two systems, AbMurA3.5 and AbMurA8.0, achieved the equilibration
state after 40 ns and remained stable till 100 ns. The average RMSD values were
0.93, 1.36, and 2.18 nm for AbMurAH2O, AbMurA3.5 and AbMurA8.0. The RMSD
result analysis represents that all the systems got the equilibration state and can be
further used. It also showed that at 3.5 M concentration of urea, the AbMurA formed
an intermediate state, while at 8.0 M of urea, it was completely unfolded.

The RMSF values for the systems were also calculated at 300 and 400 K
(Fig. 2b). At 300 K, the RMSF values for the AbMurAH2O were stable, though a
higher peak was observed between 115 and 125 residues (with RMSF value between
0.23 and 0.78 nm). When 3.5 M urea was added to the system, RMSF values of
>0.5 nm were observed for all the systems. In the case of AbMurA8.0, high RMSF
values were observed, indicating that the addition of urea induces changes in the
structural conformations followed by protein unfolding. At 400 K, an average



fluctuation between 0.2 to 0.5 nm was observed for AbMurAH2O. High RMSF
values of >0.5 nm were observed for residues 35–49, 66–70, 323–352 and
411–148. AbMurA3.5 showed RMSF values between 0.5 and 1.0 nm for all the
systems. AbMurA8.0 showed higher RMSF values for all the residues representing
complete structure loss at 8.0 M urea. The overall RMSF analysis indicates that the
addition of urea disrupts the original conformation of AbMurA.
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Fig. 3 (a) Radius of gyration. (b) Number of hydrogen bonds. (c) Solvent accessible surface area.
(d) Solvent accessible surface area versus residues. The black, blue, red, green, cyan and magenta
represent AbMurAH2O (300 K), AbMurAH2O (400 K), AbMurA3.5 (300 K), AbMurA3.5 (400 K),
AbMurA8.0 (300 K) and AbMurA8.0 (400 K), respectively

We also calculated the Rg values for all the systems using the last 60 ns
equilibrated trajectories. Compared to other systems, higher Rg values were
observed for 8.0 M urea at 300 and 400 K. For other systems, the Rg values for
AbMurA3.5 were more than AbMurAH2O (Fig. 3a). The number of hydrogen bonds
for all the systems was also calculated (Fig. 3b), which was in the order of
AbMurAH20 > AbMurA3.5 > AbMurA8.0. This suggests that the addition of urea
leads to the loss of hydrogen bonds. The average number of hydrogen bonds was
270, 264, and 258 for AbMurAH20, AbMurA3.5, and AbMurA8.0, respectively, at
400 K. The SASA values were also analysed (Fig. 3c), which closely agreed with the
Rg data. Higher SASA values were observed for the AbMurA3.5 and AbMurA8.0



than AbMurAH20, representing the unfolding of the protein. For residual SASA, we
analysed the SASA value of tryptophan residue, which indicates that the addition of
urea increases the exposure of tryptophan towards the solvent followed by unfolding
(Fig. 3d). Collectively, all results suggest that the addition of the urea induces the
unfolding of the AbMurA protein.
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Fig. 4 (a) Eigenvalue versus eigenvector. (b) 2D project plot. (c) eigRMSF values. The black,
blue, red, green, cyan and magenta represent AbMurAH2O (300 K), AbMurAH2O (400 K),
AbMurA3.5 (300 K), AbMurA3.5 (400 K), AbMurA8.0 (300 K) and AbMurA8.0 (400 K),
respectively

The PCA was carried out to analyse the correlated motions induced by the
addition of urea (Fig. 4). Since the first few eigenvectors represent the overall
dynamics of the system, hence first five eigenvectors were considered (Fig. 4a).
AbMurAH20 showed less correlated motions, while AbMurA3.5 and AbMurA8.0

showed higher correlated motions. The pattern was the same for both 300 and
400 K temperatures. PCA data also showed a partial unfolding of the protein at
3.5 M urea and complete unfolding at 8.0 M urea. The first two eigenvectors were
then taken and plotted (Fig. 4b). The data showed a stable cluster for the AbMurAH20

and dispersed clusters for AbMurA3.5 and AbMurA8.0. Lastly, the eigRMSF values
(Fig. 4c) were analysed, which showed a similar pattern to the RMSF values. Higher



residue fluctuations were observed in AbMurA3.5 and AbMurA8.0 systems, while
lower fluctuations were observed for AbMurAH20. The overall PCA results con-
cluded that at 3.5 M of urea, the AbMurA formed an intermediate folding state, while
complete unfolding was observed at 8.0 M urea.
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Fig. 5 Time-dependent secondary structural changes. Structural features obtained from the snap-
shots generated at 20 ns time intervals at (a) 300 K and (b) 400 K for AbMurA

The MD simulation can produce trajectories that can be visually analysed using
any visualization software. We analysed the trajectories at 20 ns intervals to obtain a
visual representation of the urea-induced unfolding at 300 and 400 K temperatures
(Fig. 5). Firstly, we analysed the structural snapshots at 300 K for AbMurAH2O,
AbMurA3.5 and AbMurA8.0. It is evident from Fig. 5a that AbMurAH2O did not
unfold till 100 ns while there were minor structural changes in the AbMurA3.5

intermediate state. The AbMurA8.0 started unfolding after 40 ns. It showed the
disappearance of the stable secondary structures, such as alpha helices and beta
sheets, and an increase in turns and loops. The data showed that 8.0 M urea induces
the structural unfolding in the protein. We then analysed the structural changes at
400 K for AbMurAH2O, AbMurA3.5 and AbMurA8.0. The structural snapshots at
20 ns time intervals are shown in Fig. 5b. The data shows that the presence of urea at
400 K temperature induces large structural changes in the protein. At 400 K, the
intermediate state at 3.5 M urea also showed structural disruption, while major



changes were observed in the presence of 8.0 M urea. AbMurA8.0 showed total
disruption of the structure after 40 ns. The data showed the presence of an interme-
diate state at 3.5 M urea while a complete structure disruption at 8.0 M urea.
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The secondary structure analysis was carried out to analyse the secondary struc-
ture level changes with respect to time (Fig. 6). The coils, turns and bends were
found to be increased at higher concentrations of urea while beta sheets and alpha
helices disappeared. First, the secondary structural changes at 300 K were analysed
(Fig. 6a). The AbMurA in water showed a stable secondary structure and no major
changes throughout the simulation, while at 3.5 M urea, the AbMurA showed a few
changes, such as an increase in coils, bends and turns but no major losses in the
stable secondary structures. The AbMurA at 8.0 M urea showed much higher turns,
coils and bends and loss of helices and sheets. From residues 1–130, we observed the
loss of rigid structures and increased bends, turns and coils. The overall analysis
showed that at 3.5 M of urea, AbMurA showed minor changes in the secondary
structures, while at 8.0 M of urea, major structural changes occurred. The secondary
structural changes were also analysed at 400 K for AbMurAH2O, AbMurA3.5 and
AbMurA8.0 (Fig. 6b). Here also, it was observed that AbMurAH2O showed stable
structures with a few temperature-induced changes. The AbMurA3.5 showed an
increase in the coils, bends and turns and minor changes in helices and sheets. The
AbMurA8.0 system showed a much higher number of bends, turns and coils and the
disappearance of sheets and helices. Only a few beta sheets were observed, while the
alpha helices completely disappeared. The data indicated that in 8.0 M urea, the
AbMurA completely lost secondary structures.

The combined spectroscopic and MD simulation data showed the structural
characteristics of AbMurA in native (AbMurAH2O), intermediate (AbMurA3.5) and
unfolded (AbMurA8.0) states [69]. The data obtained from the MD simulation
revealed the atomistic and structural basis of the unfolding of AbMurA, which
was not possible using only spectroscopic methods.

6.2 GdnHCl-Induced Unfolding

GdnHCl is another chaotropic agent widely used for denaturation studies of proteins.
It can also be added to the MD simulation box, and the structural changes can be
captured at different time scales. We discuss a case study from the work of Syed et al.
[74]. Firstly, they carried out the unfolding analysis using the series of in vitro
experiments and then, for analysing the atomic level structural changes, they carried
out the detailed MD simulation analysis. The authors described the folding pattern of
the 196–443 residues of human integrin linked kinase (ILK) with 100 ns MD
simulation in water, 2.0, 4.0, 6.0, and 8.0 MGdnHCl concentrations. We will discuss
key findings from this study related to the MD simulation. They created a total of five
MD systems and analysed parameters such as RMSD, RMSF, Rg, SASA, the
number of hydrogen bonds, etc.
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Firstly, they calculated the potential energy of the system, where they found that
ILKH2O, ILK2.0, ILK4.0, ILK6.0 and ILK8.0 showed -2.92196, -358,821, -
411,597, -439,100, -1,044,520 kJ/mol energy, respectively. The potential energy
of the systems represented that ILKH2O is more stable than GdnHCl systems.

To find the deviation from the initial structure, the authors calculated the RMSD
value for all the systems. The average RMSD for ILKH2O, ILK2.0, ILK4.0, ILK6.0 and
ILK8.0 were 0.33, 0.40, 0.34, 0.27 and 0.36 nm, respectively (Fig. 7a). The figure
indicated that the ILK2.0, ILK4.0 and ILK8.0 showed more deviation than ILKH2O.
The authors observed less RMSD value for ILK6.0. They observed higher changes at
2.0 M GdnHCl concentration throughout the simulation. The ILK4.0 and ILK8.0

systems showed a little higher RMSD value than ILK in water, representing that at
this GdnHCl concentration, partial conformational changes are occurring in the ILK
protein. The RMSD analysis showed that all the systems were stable and generated
trajectories that can be further utilized for other studies.

After RMSD analysis, the authors calculated the Rg and analysed it in detail. Rg
is an important parameter to describe the unfolding pattern of a protein. The average
Rg values for the ILKH2O, ILK2.0, ILK4.0, ILK6.0 and ILK8.0 were 1.72, 1.72, 1.71,
1.76 and 1.76 nm, respectively. The Rg values were plotted with respect to the time
(Fig. 7b) that showed that ILK is getting unfolded at 6.0 and 8.0 M concentrations of
GdnHCl while conformation changes occur in the ILK at 4.0 M. The ILK2.0 showed
a similar Rg value as ILK in water. It indicates that ILK6.0 and ILK8.0 lost compact-
ness and got unfolded.

To determine the GdnHCl-induced residue level changes, RMSF analysis was
performed (Fig. 7c). It was seen that the addition of GdnHCl to the systems alters the
original conformation of the protein and induces structural changes. Higher residual
changes occurred between residues 221–230, 257–263, and 280–293, including the
N- and C-terminals. It represents that GdnHCl disrupts the charge–charge interac-
tions in the protein and induces global changes that lead to the unfolding of the ILK.

The SASA analysis was carried out to analyse the solvent accessible surface area
changes induced by the GdnHCl. The average SASA values for ILKH2O, ILK2.0,
ILK4.0, ILK6.0 and ILK8.0 were 132.31, 132.51, 131.40, 133.04 and 134.09 nm2,
respectively (Fig. 7d). It was observed that ILK6.0 and ILK8.0 showed higher SASA
values, indicating the unfolding of ILK. The ILK2.0 and ILK4.0 systems showed
similar SASA values as the ILK in water. From the overall SASA analysis, it was
observed that 6.0 and 8.0 M GdnHCl induces the unfolding in the ILK protein.

The folding of the protein strongly depends on the formation of hydrogen bonds.
More number of hydrogen bonds in a protein represents a compact and well-folded
structure, while a lesser number of hydrogen bonds represents a less compact and
elongated structure. The authors plotted the number of hydrogen bonds with respect
to time (Fig. 8). The average number of hydrogen bonds between ILK and water
molecules were 420, 389, 346, 328 and 361 for ILKH2O, ILK2.0, ILK4.0, ILK6.0 and
ILK8.0, respectively (Fig. 8a). The hydrogen bonds between ILK and GdnHCl were
also calculated (Fig. 8b). The average number of hydrogen bonds between ILK and
GdnHCl was 18, 26, 41 and 30, respectively, for ILKH2O, ILK2.0, ILK4.0, ILK6.0 and
ILK8.0, respectively. The result indicates that adding GdnHCl decreases the ILK
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interaction with water while increasing the interaction with GdnHCl itself. A proper
hydration state is required for the solubility of the protein; therefore, it represents that
the addition of GdnHCl is disrupting the original conformation of the ILK and
inducing the folding in the protein.
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Fig. 8 Number of hydrogen bonds. (a) Intramolecular hydrogen bonds of ILK. (b) Hydrogen
bonds between ILK and GdnHCl. The ILKH2O, ILK2.0, ILK4.0, ILK6.0 and ILK8.0 are represented by
black, red, green, blue and yellow colours

From the overall result, the authors concluded that ILK showed higher unfolding
at 6.0 and 8.0 M GdnHCl concentrations, representing that the addition of chaotropic
agents leads to the unfolding of ILK.
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7 Conclusions

Chaotropic agents belong to several chemical families and can induce the denatur-
ation of biomolecules. They follow different mechanisms to alter the structures and
denature proteins. Several in vitro spectroscopic methods are available to analyse the
effect of the chaotropic agents on proteins, but they cannot provide information on
the atomic level changes in the protein structure with respect to time. MD simulation
is emerging as an essential tool to track the structural changes and generate thou-
sands of the conformations of a protein. It can also be used to visualize trajectories to
analyse the detailed structural level changes. We discussed two case studies using
urea and GdnHCl in MD simulation to study the unfolding of proteins in detail. The
data showed that the MD simulation result agreed well with the spectroscopic
findings and provided several additional atomistic information. Further improve-
ments in the force field and algorithms may help gather precise conformational
changes induced by chaotropic agents against the biological macromolecules.
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