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Preface 

The biological roles of most proteins are determined by their three-dimensional 
structure, while their interaction with substrates, cofactors, other proteins, and bio-
molecules is determined by their conformation and dynamics. In rational structure-
based drug discovery, small compounds are identified and developed to interact 
selectively with the target protein and modulate its function. Thus, an atomic-level 
understanding of the protein structure, folding, and conformational dynamics is 
essential. With several advancements in the field in the last few decades, researchers 
have developed sensitive and accurate methods to study and characterize these 
interactions and folding and, eventually, determine the structure–function relation-
ship of proteins. Spectroscopy and calorimetry are techniques that have strengthened 
their roots in protein science. Equipped with the optics and rapid sensors, spectros-
copy has helped understand proteins’ dynamics and transient interactions, which 
otherwise would have been highly challenging. Coupled with spectroscopic 
methods, computational algorithms have also been utilized to provide valuable 
information at the atomic level with the advantage of time. With this book, we 
introduce readers to state-of-the-art advancements in the field of spectroscopic and 
calorimetric techniques and how they have been integrated with computational 
methods to study protein folding, interaction, and dynamics. 

The book comprises 13 chapters dedicated to understanding protein dynamics 
using spectroscopic and computational tools. Chapter “Applications of Circular 
Dichroism Spectroscopy in Studying Protein Folding, Stability, and Interaction” 
focuses on studying protein folding, stability, and interactions using circular dichro-
ism spectroscopy. Chapter “Fluorescence Spectroscopy-Based Methods to Study 
Protein Folding Dynamics” concentrates on fluorescence spectroscopy to study 
protein folding dynamics with special attention to amyloid fibril aggregation in 
Alzheimer’s and Parkinson’s disease. Chapter “Applications of Differential Scan-
ning Calorimetry in Studying Folding and Stability of Proteins” presents an under-
standing of the folding and stability of proteins with the help of differential scanning 
calorimetry. Chapter “Nuclear Magnetic Resonance Spectroscopy to Analyze Pro-
tein Folding and Dynamics” discusses the use of nuclear magnetic resonance for
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protein folding and dynamics. The following five chapters introduce the readers to 
different computational methods available to decipher protein folding, interactions, 
and dynamics. Chapter “Molecular Dynamics Simulation Methods to Study Protein 
Structural Dynamics” familiarizes the molecular dynamics simulation methods to 
study the structural dynamics of a protein. To study the dynamic interactions 
between proteins and ligands, chapter “Molecular Dynamics Simulation to Study 
Protein Conformation and Ligand Interaction” discusses the use of molecular 
dynamics simulation to study ligand-based transitions in protein folding. 
Chapter “Monte Carlo Approaches to Study Protein Conformation Ensembles” 
analyses the use of Monte Carlo approaches to understand protein dynamics. The 
employment of Markov state models of molecular simulations to study protein 
folding and dynamics is detailed in chapter “Markov State Models of Molecular 
Simulations to Study Protein Folding and Dynamics”. The enhanced sampling and 
free energy methods are efficient and advanced methods described in chapter 
“Enhanced Sampling and Free Energy Methods to Study Protein Folding and 
Dynamics.” After this, the following four chapters discuss how spectroscopic 
methods and computational tools can be integrated to study protein folding and 
dynamics. The use of chaotropic agents to investigate the protein unfolding and 
stability using spectroscopic methods and molecular dynamics simulations is 
presented in chapter “Investigating Protein Unfolding and Stability Using 
Chaotropic Agents and Molecular Dynamics Simulation.” Chapters “pH-Based 
Molecular Dynamics Simulation for Analyzing Protein Structure and Folding” and 
“Molecular Dynamics Simulation to Study Thermal Unfolding in Proteins” discuss 
the methods available to computationally study the effect of pH and temperature on 
protein structure and folding. Finally, chapter “Principles, Methods, and Applica-
tions of Protein Folding Inside Cells” provides an insight into the principles, 
methods, and application of protein folding inside the cells. 
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The book introduces the readers to the use of both biophysical and computational 
tools to analyze protein folding, stability, and dynamics. The chapters result from 
meticulous research and critical contribution from eminent researchers of several 
decades. As editors, we believe that students, faculties, and researchers will find this 
book comprehensive, resourceful, and practical for the field of protein science. 
Finally, we thank all the authors and contributors for their time and effort in bringing 
out this book. 

Warangal, India Prakash Saudagar 
Shillong, India Timir Tripathi
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Applications of Circular Dichroism 
Spectroscopy in Studying Protein Folding, 
Stability, and Interaction 

Preeti Gupta, Asimul Islam, Faizan Ahmad, and Md Imtaiyaz Hassan 

Abstract Circular dichroism (CD) spectroscopy has been extensively used to 
determine the structure and folding of proteins. It provides valuable information 
about the protein folding phenomenon, especially the molten globule or other 
intermediates of the folding/unfolding pathway. This technique is beneficial in 
characterizing protein obtained via recombinant techniques or isolated from tissues. 
In addition, the effect of mutations on the folding and conformational stability of the 
protein can be readily assessed using CD spectroscopy. Unlike X-ray crystallogra-
phy and NMR spectroscopy, the two primary powerful structure determination 
techniques, the ease and the requirement of low protein concentrations, make CD 
spectroscopy a desirable and demanding method of choice. This chapter discusses 
applications of CD spectroscopy in measuring protein structure and stability. The 
CD spectroscopic investigation of conformational changes and protein stability 
studied through steady-state and time-resolved CD measurements have been further 
highlighted. This chapter will provide a better understanding of CD spectroscopy 
and its uses in biomolecular studies. 

Keywords Protein folding · Protein stability · Circular dichroism · Spectroscopy · 
Folding intermediate 

1 Introduction 

The characterization of recombinant proteins provides valuable information about 
their structure, proper folding, and stability which is invaluable for fundamental 
research and biopharmaceutical industries. There are many frequently used tech-
niques to monitor the conformational changes and stability of proteins in solution,
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such as differential scanning calorimetry (DSC), fluorescence spectroscopy, circular 
dichroism (CD) spectroscopy, nuclear magnetic resonance (NMR), spectroscopy, 
and X-ray crystallography [1–11]. Although widely used, all those techniques 
mentioned above have certain limitations, and hence one method is seldom enough 
for a detailed study of complex protein characterization. DSC requires high protein 
concentrations, which are challenging to achieve in the case of aggregation-prone 
proteins and at a bulk manufacturing scale in industries [12]. On the other hand, 
fluorescence spectroscopy relies on the presence of intrinsic fluorescence, making it 
an inefficacious technique to study proteins wherein the presence of a prosthetic 
group (covalently or non-covalently bound to the protein) in the close vicinity of 
fluorophore quenches the protein’s intrinsic fluorescence. Moreover, it provides no 
detailed information about the global folding of the protein but instead gives an idea 
about the local conformational changes around the fluorophores [13, 14]. However, 
there are certain limitations associated with NMR and X-ray crystallography in the 
structural determination of proteins. The ease of CD measurements and the require-
ment of low protein concentrations make it a demanding technique in structural 
biology [7, 8]. Table 1 highlights the comparison between CD, NMR, and X-ray 
crystallography. This chapter aims to discuss the uses of CD spectroscopy to obtain
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Table 1 A comparison of CD spectroscopy, NMR spectroscopy, and X-ray crystallography 

CD NMR X-ray crystallography 

Measurements can be 
performed in solution 

Measurements can be performed 
in solution 

High-quality pure protein crys-
tals are required for structure 
determination 

0.05–1 mg/mL unlabeled 
protein is required 
depending upon the 
cuvette size 

Structure determination typically 
requires a protein (labeled) con-
centration of 0.5 mM or greater 

Approximately 10 mg of pure 
protein is needed to get crystals, 
though as little as 1 mg may now 
be sufficient for some proteins 

Easy sample preparation Difficult sample preparation and 
need for high sample purity 

Difficulty in crystallizing some 
proteins 

Molecules of any size can 
be studied 

There is a size limitation (MWs 
below 40–50 kDa) 

No size limitation 

Does not give residue-
specific information 

Provide residue-specific 
information 

Provide residue-specific infor-
mation; however, protein 
dynamic study is not possible 
with the crystal 

Investigation of protein dynam-
ics in solution is possible 

Direct determination of second-
ary structures and especially 
domain movements is not 
possible 

Provide information on a kinetic 
basis, such as the internal move-
ment of proteins over multiple 
time scales and their binding 
mechanism to ligands 

Examination of small parts in 
the molecule is difficult 

Does not provide atomic-
level details 

Very powerful for atomic-level 
structural analysis in solution 

Provide atomic-level structural 
details in the crystalline state



insights into the secondary/tertiary structures and stability/conformational dynamics 
of proteins. We also highlight methodological approaches in performing the CD 
method and data analysis tools in detail.
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2 Determination of Secondary and Tertiary Structures 
of Proteins Using CD Spectroscopy 

Far-UV CD and UV/Vis CD are absorption spectroscopy techniques that investigate 
the secondary structures of proteins and charge-transfer transitions in metal–protein 
complexes, respectively. The near-infrared CD is used to study geometric and 
electronic structures by probing metal d → d transitions, while the vibrational CD 
is used for structural studies of small organic molecules, proteins, and DNA [15]. CD 
utilizes the differential absorption of the right-handed and left-handed components 
of the circularly polarized light by the chiral molecules to study their structural 
aspects. The difference in the absorption of the left-handed and right-handed circu-
larly polarized light is measured and quantified in CD experiments [16, 17]. The 
homochirality of amino acids imparts chirality to proteins [18]. All amino acids 
(except glycine) carry at least one chiral center at Cα; threonine and isoleucine have 
an additional chiral center at Cβ [19, 20]. The CD signal is observed when a 
chromophore is optically active (chiral) either (1) intrinsically by its structure, 
(2) by being covalently linked to a chiral center, or (3) by being placed in an 
asymmetric environment [8]. CD is widely used to rapidly determine the secondary 
and tertiary structure of proteins. The CD spectrum is divided into three wavelength 
regions based on the electronic transitions that predominate in the given wavelength 
range (Fig. 1). These include: 

1. The far-UV range (190–250 nm), where the contribution from peptide bonds 
dominates, is used to determine the secondary structure of proteins. A weak but 
broad n → π* transition region is present around 220 nm, and a stronger and 
sharper π → π* transition is centered at around 190 nm. 

2. The near-UV range (250–300 nm), where the aromatic side chains contribute 
significantly, gives details about the tertiary structure of proteins.

Fig. 1 CD spectral regions in proteins with their respective contributing chromophores
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Fig. 2 (a) The standard far-UV spectra are associated with different secondary structures in 
proteins. Adapted with permission from Corrêa et al. [24]. (b) The near-UV CD spectra of IgG 
monoclonal antibody. The characteristic peaks corresponding to Trp, Tyr, and Phe signals are 
shown. Source: https://www.chiralabsxl.com/Circular_Dichroism/CD_App_Protein_NUV.html 

3. The near UV-visible range (300–700 nm), where the extrinsic chromophores 
contribute, is used to monitor metal ion protein interactions [8, 21, 22].

Due to “exciton” interactions, the optical transitions of the chromophores of the 
polypeptide chain get split into multiple transitions when aligned in arrays. This 
gives characteristic CD spectra of different structural elements in the protein 
[6, 23]. For instance, α-helix rich proteins show two negative bands at 222 and 
208 nm of comparable magnitude and a strong positive band close to 193 nm. 
Proteins dominated with antiparallel β-pleated sheet structure have a negative band 
at 218 nm and a positive band at 195 nm. Disordered proteins rich in random coil 
structures show a strong negative band near 195 nm [6, 24, 25]. The far-UV CD 
spectra of various secondary structural elements in proteins are shown in Fig. 2a. 

Phenylalanine (Phe), tyrosine (Tyr), tryptophan (Trp), and disulfide bonds con-
tribute to the near-UV CD of proteins in the wavelength region 250–300 nm. This is 
the region in which these chromophores absorb. The denatured protein has a weak 
CD signal. However, if these chromophores are buried in the folded native protein, 
they give strong CD signals. The intensity of the CD signal of each chromophore 
depends on how tightly it is held in the asymmetric environment. The near-UV CD 
spectrum of proteins cannot be interpreted in terms of protein structure, unlike the 
far-UV CD spectrum is interpreted in terms of secondary structure. However, 
detailed studies can decompose the CD spectrum into bands attributed to different 
chromophores. For instance, Trp exhibits a fine-structured peak between 290 and 
305 nm. Tyr displays a peak in the range of 275–285 nm, while Phe shows a weak 
but intense peak at 255–270 nm. These characteristic peaks of amino acid residues 
emerge due to the vibronic transitions occurring in different vibrational levels of the 
excited state [8, 16, 26, 27]. The local tertiary structure of the protein can be used for 
quality control as it often reveals subtle changes from batch to batch not reflected in 
the far-UV region. Disulfide bonds also contribute to the CD spectrum in the near-
UV region [28, 29].

https://www.chiralabsxl.com/Circular_Dichroism/CD_App_Protein_NUV.html
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Simple proteins (i.e., proteins devoid of any prosthetic group) do not absorb 
above 300 nm, and hence they do not exhibit CD signals in wavelengths above 
300 nm. However, many prosthetic groups (non-protein chromophores or extrinsic 
chromophores), including flavins, pyridoxal, and heme moieties, absorb above 
300 nm. In the free state, extrinsic chromophores are either achiral or present as 
enantiomeric mixtures, so they do not show any optical activity. However, upon 
interaction with the chiral environment of the protein, they generate optical activity 
[7, 8]. The heme group is a classic example that shows no CD signal alone but 
exhibits a strong positive band (Soret band) with a wavelength maximum of 412 nm 
when incorporated in the apoprotein of hemoglobin and myoglobin. The interaction 
between heme moiety and aromatic residues of the protein is thought to be the reason 
for heme chirality and hence the CD signal in the Soret region [30]. 

2.1 Servers to Estimate the Secondary Structure of Proteins 
from CD Data 

Various web servers are available to estimate the secondary structure of the protein 
from CD spectroscopic data, including DichroWeb [31], BeStSel [32], and K2D3 
[33]. They usually employ reference datasets consisting of a set of proteins with 
known structures to calculate secondary structure information that best matches the 
experimental (query) spectrum. The CD contribution at each wavelength is 
weighted, providing the correct secondary structure of the protein as the output. 
These servers use a range of deconvolution methods, including the simple least 
square method and more complicated singular value deconvolution and ridge 
regression method. Generally, the more diverse the components in the reference 
database are, the more accurate the estimation of secondary structure elements in the 
query spectrum [34]. It must be noted that the specialized datasets specifically 
designed for the integral membrane proteins are to be used for their analysis as 
they tend to have transitions at somewhere different wavelengths compared to 
soluble proteins [35]. 

2.1.1 DichroWeb 

DichroWeb (http://dichroweb.cryst.bbk.ac.uk) is a freely available web server for 
determining the secondary structure of a protein based on CD and SRCD spectra. 
The server facilitates analyses utilizing five different algorithms, including 
CDSSTR, SELCON3, and VARSLEC (SVD methods with variable selection func-
tions), CONTINLL (a regression restraint method), and K2D (a neural network 
method now replaced by the stand-alone K2D3 method). The server accepts data 
in a wide range of formats, including those output from both CD and SRCD 
instruments, and uses seven reference databases for structure prediction depending

http://dichroweb.cryst.bbk.ac.uk


upon the protein to be analyzed. It generates an output file containing calculated 
secondary structures, a tabular and graphical display of experimental, calculated, and 
difference spectra, and a goodness-of-fit parameter (normalized root mean squared 
deviation or NRMSD) for the analyses [34]. 
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NRMSD is an important parameter that tells us about the correspondence 
between the experimental and calculated spectra and is thus used to judge the 
accuracy of the results. It is important to note that a low value of NRMSD is required 
but is insufficient to conclude the correctness of the result obtained from the analysis 
[34, 36]. DichroWeb highlights the importance of precise protein concentration and 
path length and requires the input data to be down to at least 190 nm and properly 
subtracted baselines before submission for accurate analysis. It also emphasizes that 
the best NRMSD is not always the precise solution and that the reference databases 
do not work well for peptides and membrane proteins [36]. 

2.1.2 BeStSel 

BeStSel server (https://bestsel.elte.hu/index.php) is explicitly designed to analyze 
β-sheet rich proteins. However, it can be utilized for structural analysis of any protein 
class, including membrane proteins, amyloid fibrils, and protein aggregates. A 
comprehensive structural analysis of different secondary structure elements that 
includes parallel and antiparallel β-sheets and three types of twists, viz. left-handed, 
relaxed, and right-handed twisted sheets, is performed by the BeStSel server. Based 
on the structural analysis, it speculates the protein fold down to the topology level 
organization of the CATH protein fold database [32, 34]. Although BeStSel provides 
precise secondary structure estimation for a wide range of proteins, the analysis of 
some special structure types is unsuitable for this server. Such structures include 
polyproline-II helix (a characteristic structure of collagen-like fibrillar proteins), 310-
helices (present in high amounts in some globular proteins), and various types of 
turns that are the major structural components of short peptides [32]. Also, BeStSel 
produces large RMSD values for intrinsically disordered proteins (IDPs) and is not a 
useful tool for studying this class of proteins [37]. 

2.1.3 K2D3 

The K2D3 server (http://cbdm-01.zdv.uni-mainz.de/~andrade/k2d3/) is based on a 
neural network approach and a successor to the K2D method. The theoretical CD 
spectra of a non-redundant set of structures representing most proteins in the PDB 
are calculated using DichroCalc (https://comp.chem.nottingham.ac.uk/dichrocalc/). 
These theoretical CD spectra then serve as a reference dataset which is directly 
applied to predict protein secondary structure. Using the most similar CD spectra in 
the reference database and weighing their distances from the query spectrum, a 
predicted CD spectrum is generated. The output contains the query spectrum 
overlaid on the back-calculated spectrum along with the estimated values of

https://bestsel.elte.hu/index.php
http://cbdm-01.zdv.uni-mainz.de/~andrade/k2d3/
https://comp.chem.nottingham.ac.uk/dichrocalc/


α-helix and β-sheet. No parameter that depicts the fit quality is presented in the 
K2D3 server. However, if the distance between the query spectrum and the most 
similar spectrum in the database is greater than a threshold value, a warning signal is 
displayed [33]. 

Applications of Circular Dichroism Spectroscopy in Studying. . . 7

3 Determination of Conformational Changes in the Protein 
Using CD Spectroscopy 

The conformation and structural stability are key determinants of the physiological 
functions of proteins. Structural perturbation in protein is one of the main reasons for 
the onset and progression of several diseases, including neurodegenerative disorders 
and cancer. For example, misfolding of α-synuclein and amyloid β leads to protein 
oligomerization and fibrillation, resulting in Parkinson’s and Alzheimer’s diseases, 
respectively [38, 39]. The structural alteration in the prion protein in a cell membrane 
environment with subsequent deposition of amyloid plaques is known to cause prion 
disease [40]. Genomic instability that results from mutations in crucial genes is a 
hallmark of almost all cancers [41]. The phenotypic outcomes of mutations on 
proteins include activity, binding mode and interactions, complex stability, and 
turnover rate. 

Proteins bind to their specific targets in a precise manner, and the specificity of 
these interactions is predominantly defined by the structural and physicochemical 
properties of binding interfaces [42–44]. Any structural alteration in the protein due 
to genetic mutation disrupts the binding with the intracellular target, hindering the 
functionality of the protein. For instance, missense mutations in the BRCT domain 
inhibit the ability of BRCA1 for substrate recognition. Consequently, the functional 
role of BRCA1 in the DNA damage repair pathway is hindered and responsible for 
most hereditary breast and ovarian cancer cases [45]. Protein misfolding/unfolding 
and degradation also play crucial roles in developing lung diseases, particularly 
COPD (chronic obstructive pulmonary disease) and idiopathic pulmonary fibrosis 
and their associated clinical complications [46, 47]. 

Protein denaturation and aggregation are major problems during manufacturing, 
storage, and transport in biotechnological and pharmaceutical industries [48]. For 
instance, therapeutic proteins like antibodies and insulin denature in the bulk solu-
tion or at different interfaces during mass production in pharmaceutical companies. 
The functionality of a protein in the physiological environment or industrial appli-
cations is highly dependent on its native conformation. Thus, it is imperative to 
monitor conformational changes in the protein due to mutations, pH fluctuations, 
heat, denaturants, or binding interactions with ligands and analyze their functional 
consequences. CD is a reliable and convenient spectroscopic technique to detect 
conformational changes in the protein. Moreover, the time dependence of protein 
structural changes can be determined using the time-resolved CD measurements. CD 
is also essential in studying peptides that are not feasible by X-ray crystallography



[7]. A classic example of such a study is the switching between α-helix and β-sheet 
structures in prion peptides [49]. 
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4 Analyzing the Conformational Changes in a Polypeptide 
Sequence upon Mutations Using CD 

CD measurements can easily detect structural alterations in the protein upon muta-
tions. Figure 3a shows the far-UV CD spectra of wild-type CopR protein and its 
mutants (Dim1-7). The wild-type protein shows an α-helical structure as depicted by 
a positive band at around 192 nm and two negative bands near 208 and 222 nm. The 
far-UV CD spectra of mutant proteins (Dim1, Dim3, Dim4, and Dim5) show minor 
deviations in the ellipticity pattern compared to the wild-type protein. This indicates 
that mutations did not drastically perturb the secondary structure of the proteins. In 
contrast, the CD spectrum of Dim6 shows a drastic reduction in α-helical content, 
pointing toward the significant structural perturbations upon single point mutation. 
The CD spectrum of Dim7 also shows conformational changes, but they are less 
pronounced than those in Dim6 [50]. 

Fig. 3 A transcriptional activator protein. (a) Far-UV CD spectra of wild-type and mutant forms 
(Dim 1–7) of CopR. Adapted with permission from Steinmetzer et al. [50]. (b) Far-UV CD and (c) 
near-UV CD spectra of wild-type and mutant γS-crystallin (V42M). Adapted with permission from 
Vendra et al. [51]
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Another example of monitoring mutation-induced structural changes in the 
protein is γS-crystallin. Figure 3b, c compares the far-UV and near-UV CD spectra 
of the wild-type and mutant γS-crystallin (V42M). The far-UV CD spectrum of the 
wild-type γS-crystallin displays two spectral bands, a negative band near 218 nm and 
a positive band at 195 nm, signifying the β-sheet secondary structural fold of the 
polypeptide chain. It should be noted that far-UV CD spectral profiles of wild-type 
and mutant protein were almost identical, indicating that the V42M mutation does 
not significantly affect the secondary structure of the protein. Strikingly, the near-
UV CD spectra reveal that the tertiary structure around the aromatic residues is 
moderately altered in the mutant protein [51]. 

5 Analysis of Protein–Ligand Interactions 

The binding of proteins with specific ligands such as cofactors, substrates, or 
regulatory molecules leads to structural changes vital for their physiological func-
tion. Such conformational changes may be monitored by the far-UV CD, near-UV 
CD, or both [52]. However, if the binding occurs near the aromatic amino acid 
residues, then small structural changes are easier to detect in the near-UV region 
since the CD contributions of the aromatic residues are highly sensitive to their 
environment. In contrast, the major structural changes in the protein’s backbone are 
usually reflected in the far-UV CD spectrum [53, 54]. 

The study of ligand binding to a macromolecule is amenable if the signal from the 
complex is different from the sum of the signals from the components. Protein– 
protein interaction is a widespread and important biological regulatory phenomenon 
within cells. CD is a valuable technique for studying protein–protein interactions as 
changes occur in the secondary or tertiary structure of one or both components. The 
binding of small-molecule ligands such as metal ions or drugs is often accompanied 
by changes in the CD signal due to changes in the secondary or tertiary of the protein 
or the ligand. Small-molecule ligands usually have no or weak CD signal when free 
in solution. Still, they can show notable ellipticity when bound in the asymmetric 
environment of the binding pocket on the protein. Apart from protein–protein and 
protein–small-molecule interactions, the CD is specifically applicable to investigate 
protein–nucleic acid interactions as nucleic acids have strong signals in the near-UV 
region (250–300 nm), where proteins usually absorb weakly [55]. 

Human polynucleotide kinase (hPNK) acts by transferring the γ-phosphate of 
ATP to the 5′ ends of nucleic acids. Hence, the binding of ATP to hPNK is crucial 
for the proper functioning of the hPNK. Figure 4 shows the conformational changes 
occurring in hPNK upon binding to ATP. Two negative CD bands at 218 and 
209 nm are observed in the CD spectrum of hPNK, a characteristic of the mixed 
α/β structure, with the band near 218 nm being attributed to the presence of 
β-structure in the protein. The binding of ATP to the activity of hPNK induces a 
substantial conformational change, as suggested by a decreased ellipticity value. The 
analysis of CD data indicated an increase in β-sheet structure and decreased α-helical



content in hPNK upon ATP binding [56]. The near-UV CD spectra also showed the 
perturbed environment of aromatic amino acid residues upon adding ATP. A 
substantial increase in the CD signal at the Trp peak near 291 nm is observed in 
the presence of ATP. Strikingly, two well-defined peaks attributed to tyrosine 
residues are observed at 284 and 278 nm instead of a broad shoulder around 
279 nm in hPNK alone. The CD bands corresponding to Phe residues also show 
reduced ellipticity values in the apoprotein [56]. 
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Fig. 4 Far-UV (left panel) and near-UV (right panel) CD spectra of hPNK alone (●) and in the 
presence of ATP (▲). Adapted with permission from Mani et al. [56] 

Fig. 5 Far-UV (left panel) and near-UV (right panel) CD spectra of SbmA with and without Bac7. 
Adapted with permission from Hussain et al. [54]. ΔA (absorption unit) = θ (ellipticity in 
millidegree)/3298.2 

Another example where CD spectroscopy was used to monitor structural changes 
upon ligand binding is a bacterial inner membrane protein, SbmA, of a Gram-
negative bacterium. SbmA is required to directly uptake the eukaryotic glycopep-
tides and antimicrobial peptides. The far-UV CD spectroscopy study showed that 
SbmA interacts with a proline-rich peptide, Bac7, and induces conformational 
changes, as revealed by the decrease in the CD signal in the wavelength range of 
190–250 nm (Fig. 5). The dissociation constant (Kd) calculated after fitting the CD



data was 0.26 μM showing the high binding affinity of Bac7 to SbmA. In contrast to 
far-UV CD spectra, no significant changes are observed in the near-UV CD spectral 
range, indicating that no aromatic residues are present in close vicinity at the binding 
interface of protein and ligand [54]. 
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6 Determination of Protein Folding Pathways 

The proper folding of a polypeptide chain into its biologically functional native 
structure is one of the fundamental processes of biology. Misfolding proteins in the 
cellular milieu often leads to fatal human and animal diseases. In the industrial 
context, overexpression of recombinant proteins leads to misfolding and aggrega-
tion, causing significant loss of the final product. CD is one of the many biophysical 
techniques routinely used to understand various aspects of the protein folding 
process, including the kinetic and thermodynamic properties of folding intermedi-
ates. Investigating protein folding mechanisms in vitro also provides valuable 
information about cellular processes such as protein trafficking and degradation. 

A CD spectrophotometer coupled with the stopped-flow system is regarded as 
one of the best tools to study the mechanism of unfolding and refolding of proteins. 
This system provides the structural data of protein during the refolding process at a 
sub-millisecond time scale which can be used to explore the mechanism of the 
protein folding pathway [57, 58]. Figure 6 shows the refolding measurements of the 
denatured cytochrome c in the far-UV and near-UV regions using a stopped-flow 
system attached to the CD spectrophotometer. The changes in the CD signal at 
222 nm are faster and occur within the time scale of 200 ms, suggesting the fast 
refolding of the secondary structure of the protein. However, the ellipticity changes 
at 289 nm, reflecting the environment around aromatic residues is relatively slower. 
Overall, the refolding kinetics measurements indicate the brief existence of an 
intermediate state with a folded secondary structure and flexible aromatic residue

Fig. 6 Refolding kinetics of cytochrome c monitored at 222 nm (left panel) and 289 nm (right 
panel) using a stopped-flow CD system. Adapted with permission from [57]



side chains in the tertiary structure during the early stages of the refolding 
process [57].
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7 Determination of Protein Stability 

The stability of a protein is the fundamental property defined by the physicochemical 
conditions under which the protein is optimally functional. Hence, it is important to 
identify conditions that maximize the structural stability of the protein not only from 
the view of basic protein research but also to have a good yield of therapeutic 
proteins and other protein-based formulations in biotechnological industries. By 
improving the structural stability of the protein, off-pathway processes such as 
denaturation and aggregation could be prevented. However, it is important to note 
that the conditions (e.g., ionic strength, pH) that optimize the protein’s physical 
stability might have deleterious effects on its chemical stability (e.g., deamination, 
oxidation). Therefore, the most stable protein formulation is achieved while consid-
ering all aspects of product quality, even with a bit of compromise with the physical 
and chemical stability of the protein [59]. Various methods that can be employed to 
measure the stability of the protein require the disruption of the native protein 
structure either by chemical or physical means. The conformational stability is 
essentially proportional to the resistance of the protein toward perturbation. The 
physical denaturation tools used to assess protein stability include temperature, high 
pressure, mechanical agitation, ultrasound, and ultraviolet radiations [60–64]. In 
comparison, the chemical denaturation of protein can be achieved by strong acids 
and bases, high concentrations of inorganic salts, salinity, organic solvents, and 
heavy metal salts [65–69]. 

7.1 Thermal Denaturation 

Temperature is the most widely used tool for the physical denaturation of protein. 
Ideally, the thermal denaturation of a protein should be studied at its isoelectric 
point. However, the native protein is the least soluble at this pH, and the denatured 
protein is more prone to aggregation. Another disadvantage is that proteins usually 
get denatured far above the physiological or storage temperature. This requires long 
extrapolations of data to lower temperatures during thermodynamic analysis, which 
is often error-prone [70]. Furthermore, the thermal denaturation of proteins near their 
isoelectric points is usually an irreversible process that makes the calculation of 
stability parameters from the analysis of thermodynamic data highly unreliable and 
ambiguous. In such a case, physical stability rankings are presented only on Tm 

values, representing only a small part of the protein conformational stability curve as 
a function of temperature [71]. Irreversible protein denaturation is mostly followed 
by aggregation, affecting the accuracy of the measured Tm values [72–



74]. Additionally, the Tm value depends on the rate with which the temperature 
increases during the measurement, further complicating the stability extrapolations 
to lower temperatures. 
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Fig. 7 Thermal unfolding of MTH1880. (a) Far-UV CD spectra measured at 10 °C intervals during 
the heating cycle (25–105 °C); 25 °C (black triangle), 45 °C (red square), 65 °C (blue circle), 75 °C 
(yellow square), 85 °C (pink triangle), 95 °C (green square), and 105 °C (pink circle). (b) A plot of 
fraction unfolded ( fu) derived from molar ellipticity measured at 222 nm as a function of temper-
ature. The midpoint temperature of the unfolding transition (Tm) is  76  °C. Adapted with permission 
from Kim et al. [79] 

The changes in the CD signal at a specific wavelength and as a function of 
temperature provide information about the thermodynamics of the protein unfolding 
process. The parameters retrieved from the CD thermodynamic data include the 
melting temperature or the midpoint temperature of the unfolding transition (Tm), the 
free energy of unfolding (ΔG), the van’t Hoff enthalpy (ΔH ) and entropy (ΔS) of  
unfolding, and the heat capacity changes (ΔCP) of the unfolding transition 
[75]. Additionally, the analysis of CD spectra of protein acquired as a function of 
temperature provides information about the presence of intermediates in the folding 
pathway [7]. It should be noted that stability parameters obtained from the thermal 
denaturation curve of a protein must be validated by other experiments, such as the 
differential scanning calorimetry (DSC) measurements. In addition, an accurate 
determination of stability parameters from the analysis of optical denaturation curves 
depends on the temperature dependence of the pre- and post-transition baselines 
[76–78]. 

Figure 7 shows the thermal unfolding transition of MTH1880, a thermophilic 
protein from Methanobacterium thermoautotrophicum, probed by CD spectroscopy. 
Far-UV CD spectra were acquired with increasing temperature from 25 °C to 105 °C 
at an interval of 10 °C (Fig. 7a). MTH1880 shows the α-helical secondary structure 
in the temperature range of 25–45 °C, suggesting that the protein retains its native 
structural fold till 45 °C. The CD signal begins to decline continuously from 55 °C  to  
95 °C, where the protein is completely denatured and does not seem to show any 
further change in ellipticity with a further increase in the temperature. The thermal 
unfolding of MTH1880 follows a two-state transition unfolding pathway [79]. The 
raw CD data were converted into fu, i.e., the fraction unfolded [77], which is used to



generate a fu versus T plot (Fig. 7a). The normalized denaturation curve is fitted to 
the sigmoidal curve to derive thermodynamic parameters. The midpoint of unfolding 
transition or melting temperature (Tm) of MTH1880 was 76 °C as defined by 
fu = 0.5. 
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Fig. 8 Thermal unfolding 
of EcHUa2 followed by CD 
spectroscopy at 200 and 
222 nm. An intermediate 
state is populated at around 
48 °C in the melting curve. 
Adapted with permission 
from Ramstein et al. [80] 

Folding intermediates provide crucial information regarding the folding and 
assembly pathways. Thermal denaturation studies of protein often detect such 
folding/unfolding intermediates. Figure 8 shows the melting curve of Escherichia 
coli histone-like HU protein (EcHUa2) obtained by plotting the CD signals at 
200 and 222 nm as a function of temperature. The thermal transition curve at 
200 nm is biphasic, indicating a three-state denaturation mechanism (N → I → U ) 
for EcHUa2 unfolding. An intermediate state is populated between N and U states at 
around 48 °C. The presence of two melting temperatures marks the denaturation 
process, i.e., 37.8 °C and 54.8 °C, corresponding to N → I and I → U transitions, 
respectively [80]. 

7.2 Chemical Denaturation 

As discussed above, thermal denaturation studies of protein are often complicated 
and suffer from unreliable thermodynamic parameters if the unfolding process is 
irreversible. Different approaches are used to measure the protein stability in such a 
case, which employ chemical denaturants to unfold protein near-physiological 
temperature. Commonly used denaturants in isothermal chemical denaturation stud-
ies are urea and guanidine hydrochloride (GdnHCl) [81–83]. These chemical dena-
turants can prevent aggregation by keeping the unfolded protein species in stable and 
solubilized form, thus reversing the unfolding reaction. However, there are a few 
exceptions to this; for instant, low concentrations of GdnHCl fail to keep the 
denatured protein in the soluble form [84, 85].
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Fig. 9 Chemical denaturation of HCAII followed by CD spectroscopy. (a) Far-UV CD spectra of 
HCAII at various [Urea]. (b) Urea-induced denaturation is curved, followed by plotting the change 
in [θ] at 222 nm as a function of [Urea]. The inset shows the dependence of the optical properties of 
intermediates, yXI and yXII, on [Urea]. Adapted with permission from Wahiduzzaman et al. [95] 

Measurement of typical urea (or GdnHCl)-induced denaturation curve monitored 
by CD involves (i) preparation of samples where the increasing concentration of 
denaturants are added to the protein solution followed by incubation at room 
temperature until the equilibrium is reached to ensure complete unfolding [59] and 
(ii) plotting of the CD signal at a given wavelength (θ, the raw ellipticity or [θ], the 
mean residue ellipticity) as a function of [denaturant], the molar concentration of the 
denaturant. The denaturation curve is analyzed for stability parameters, namely 
ΔGD 

0 (Gibbs free energy change (ΔGD) associated with N $ D process in the 
absence of the denaturant), m (dependence of ΔGD on [denaturant]), and Cm 

(midpoint of denaturation curve). Analysis of the GdnHCl-induced and urea-induced 
denaturation curves is discussed elsewhere [86–93]. This analysis assumes that the 
protein denaturation is reversible. The preparation of protein samples for checking 
the reversibility of the denaturation by urea (or GdnHCl) is described elsewhere 
[86]. It should be noted that estimates of stability parameters depend on the mech-
anism of denaturation. However, it has to be validated whether the denaturation is a 
two-state process [94]. 

Figure 9 shows the stability studies of human carbonic anhydrase II (HCAII) 
employing the chemical denaturation method. Here, far-UV CD spectra of HCAII 
were collected at different urea concentrations (Fig. 9a). It was noted that the 
α-helical content increased with the addition of low concentrations of urea 
(0–2 M). Further increase in the urea concentration leads to the peak shift toward 
218 nm, indicating the transformation of the α-helix into the β-sheet structure 
[95]. To obtain the denaturation curve, the molar ellipticity at 222 nm was plotted 
as a function of [Urea] (Fig. 9b). HCAII undergoes a cooperative triphasic unfolding 
profile with two distinct intermediate species (XI and XII) populated at around 2 and 
4 M [Urea] on the denaturation pathway N $ XI $ XII $ D. From 0 to 2 M urea, a 
continuous gain in secondary structure was observed that reduced successively with



further increase in [Urea] until the protein is completely denatured. Values of the 
midpoint urea unfolding concentration (Cm) for transitions, N $ XI, XI $ XII, and 
XII $ D, were obtained after analyzing the denaturation curve, assuming that each 
transition curve follows a two-state mechanism (CmI = 1.33 M, CmII = 3.25 M, 
CmIII = 5.78 M) [95]. 
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Fig. 10 GdnHCl-induced chemical denaturation curves of SOD1and its mutants monitored by CD 
spectroscopy. SOD1pWT (blue), SOD1E100G (red), and SOD1V14G (black). Adapted with permission 
from Tompa et al. [97] 

Chemical denaturation studies provide valuable information about the 
destabilizing mutations that make the native protein either non-functional or prone 
to aggregation leading to devastating diseases [96–99]. Figure 10 shows the 
destabilizing effects of two single point mutations on the wild-type SOD1, whose 
misfolding and aggregation have been implicated in ALS. The GdnHCl-induced 
unfolding of SOD1pWT and its mutants, SOD1E100G and SOD1V14G , was monitored 
using the far-UV CD. The denaturation curves of both wild-type and mutant proteins 
follow a two-state unfolding transition. The Cm values corresponding to the transi-
tion midpoints were 4.2, 3.7, and 3.0 M for SOD1V14G , SOD1E100G , and SOD1pWT , 
respectively. This indicates that both mutations destabilize the wild-type 
SOD1protein. Although both mutations are positioned far away from the dimer 
interface and metal-binding site, they somehow perturb the metal loading to the 
active site. The partially metallated SOD1 was prone to misfolding and aggregation, 
causing neurodegenerative disorder [97].
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8 Time-Resolved CD Measurements 

CD spectroscopy has long been known as a reliable technique to determine the 
structural elements of proteins. It was used only to investigate the static structural 
properties in the past. However, it can now be employed to study protein dynamics 
with kinetic measurements using time-resolved CD spectroscopy. CD spectroscopy 
can be coupled with stopped-flow kinetic techniques to determine time dependence 
structural changes in the protein. The critical time-resolved CD measurements can 
detect events occurring on the millisecond resolution at a single wavelength 
[100]. The information from such studies provides mechanistic details of the protein 
folding phenomenon. Various excellent examples of time-resolved CD measure-
ments are available in the literature [101–103]. Based on them, it seems that small 
proteins fold rapidly following a two-state transition without any detectable inter-
mediate state(s). In contrast, larger proteins (more than 100 amino acids) usually fold 
via multi-state transition pathways. The native-like secondary structure is formed at 
the early folding stages, followed by acquiring tertiary structure interactions for 
larger proteins. The early intermediates formed often possess “molten globule” type 
characteristics. 

In many experimental cases, a rapid burst phase in protein folding kinetics is 
reported using stopped-flow CD spectroscopy. The process occurs during the dead 
time of the instrument and produces an initial CD signal that differs from that 
expected for the unfolded protein, referred to as the burst phase. This difference in 
CD signal indicates that a substantial structural change occurred from D to N states 
during the initial burst phase [58]. An example of protein folding kinetics investi-
gated using stopped-flow CD spectroscopy is shown in Fig. 11. The C-terminal 
domain (CTD) of spidroin 1 from the Ma gland (MaSp1) of the nursery web spider 
Euprosthenops australis was chemically denatured and refolded by rapid mixing 
into the buffer solution. A rapid burst phase of approximately 10 ms was observed 
within the dead time, which is beyond the detectable time resolution of the instru-
ment. This was followed by a slow, single-exponential relaxation decay phase on the 
time scale of seconds [104]. To obtain the molecular details of the slow phase, the 
folding kinetics was measured at different protein concentrations (Fig. 11). After 
fitting exponential data of various protein concentrations, the time constants are 
almost identical within the error limits. This shows that the slow phase follows a 
mono-molecular folding event and is independent of protein concentration. It is also 
speculated that a dimeric intermediate is formed from the association of unfolded 
monomers during the rapid, unresolved burst phase. The event of biomolecular 
dimerization occurs too rapidly to be observed at the protein concentrations needed 
for sufficient signal in CD spectroscopy.
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Fig. 11 Folding kinetics of CTD of spidroin 1 from the Ma gland of Euprosthenops australis. The 
far-UV CD stopped-flow spectroscopy measures the kinetic transients. Chemically denatured wild-
type CTD samples at different protein concentrations (24, 38, and 100 μM) are refolded by rapid 
mixing into the buffer solution. The data fits the mono-exponential decay function and is depicted as 
a black line. Adapted with permission from Rat et al. [104] 

9 Concluding Remarks 

The protein folding phenomenon is of fundamental and practical importance, mak-
ing the biophysical studies of protein folding and stability highly crucial. CD 
spectroscopy is an invaluable tool that monitors structural changes at the secondary 
and tertiary levels and in millisecond time resolution. It is a fast, reliable, and 
inexpensive technique for the initial investigation of recombinant proteins or those 
purified from tissues. Unlike X-ray crystallography and NMR spectroscopy, the two 
primary powerful structure determination techniques, the ease and the requirement 
of low protein concentrations, make CD spectroscopy a desirable and demanding 
method of choice. This chapter provides a comprehensive overview of the CD 
spectroscopy technique, its principle, and its applications in protein structural biol-
ogy. Although CD could monitor fine structural details, more advanced and sophis-
ticated instrumentation must be developed to detect events occurring too fast to be 
observed by currently available stopped-flow CD instruments. With the develop-
ment of synchrotron radiation circular dichroism (SRCD) that uses high-intensity 
light sources, the measurement of data at lower wavelengths having more electronic 
transitions and thus giving more structural details has become feasible. The high 
signal-to-noise ratio conferred by SRCD enables the CD measurements in the 
presence of detergents, lipids, and other absorbing buffers. 
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Fluorescence Spectroscopy-Based Methods 
to Study Protein Folding Dynamics 

Ritesh Kumar, Timir Tripathi, and Prakash Saudagar 

Abstract The biological function of a protein is characterised by its three-
dimensional conformation and encoded by its amino acid sequence. Tremendous 
effort has been devoted to understanding the mechanism of protein folding and how 
the amino acid sequences encode the correct functional conformation of a protein. 
Fluorescence-based methods, such as time-resolved spectroscopy, fluorescence cor-
relation spectroscopy, or labelling of the proteins by external fluorescent dyes, have 
been employed to understand the protein folding dynamics. Herein, we describe 
recent fluorescence spectroscopy-based techniques used to study the conformational 
dynamics of a protein. Furthermore, these techniques are commonly available in 
most research laboratories and are used to study the protein–protein, protein–DNA, 
and protein–ligand interactions. We focus on the extrinsic fluorescent dyes to 
characterise the folding intermediates and detect the amyloid fibril aggregation in 
Alzheimer’s and Parkinson’s diseases. 

Keywords Fluorescence spectroscopy · Protein folding · Extrinsic fluorescent 
dyes · Protein aggregates · Intrinsic fluorophore · Fluorescence anisotropy 

1 Introduction 

Protein folding is a unique mechanism by which the linear sequence of amino acids 
transforms into a functional three-dimensional (3D) native state [1, 2]. It always 
excites biophysical researchers how such a linear chain of polypeptides transforms
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into a well-folded tertiary structure. It is essential to understand the kinetics of 
protein folding through which the linear structure acquires the correctly folded 
native state. Several biophysical methods, including circular dichroism 
(CD) spectroscopy, optical spectroscopy, fluorescence spectroscopy, single-
molecule fluorescence methods, and infra-red assessments, are used to measure the 
kinetics of the protein folding dynamics [3–7]. These methods measure the real-time 
changes in protein folding and functional dynamics. Among the spectroscopic 
techniques, fluorescence-based methods are one of the most powerful tools for 
analysing protein folding dynamics [8–11].
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In an experimental setup, the native state protein can be denatured using chemical 
denaturants such as urea or guanidium hydrochloride (GdnHCl), the addition of 
acids or bases, increasing temperature, and eliminating ligands. The ultimate goal of 
protein denaturation is to understand the frame-by-frame conformational changes 
occurring in a protein and to measure the kinetics of folding dynamics in real time. 
Although the kinetic study of protein folding dynamics has been challenging, 
significant understandings are made, including, but not limited to, the uncovering 
folding intermediates, the thermodynamics of folding pathways, the extent of fold-
ing transition path time, and the examination of secondary structural changes 
[12, 13]. In this chapter, we discuss the fundamental aspects of fluorescence spec-
troscopy to study the protein folding dynamics and recent advancements in the uses 
of fluorescence spectroscopy. 

2 Fluorescence Spectroscopy to Study the Kinetics 
of Protein Folding Dynamics 

2.1 Fluorescence Principle 

Fluorescence is a simple yet one of the most sensitive tools to study protein folding, 
denaturation, and aggregation. It is a three-step process which occurs in the mole-
cules called fluorophores. Fluorophores absorb light at a particular wavelength and 
emit it at different wavelengths upon excitation by light. 

The phenomenon of fluorescence takes place when the fluorophore is excited by a 
photon of energy (hνex) from the ground state (S0) to a higher excited state (S1). The 
higher excited state lifetime is typically between 1 and 10 ns. During this time, the 
fluorophore undergoes conformational changes and collides with the solvent. This 
process causes a loss of energy. The electron from the higher energy state S1 is 
partially dissipated, yielding a lower energy state S2. From this state (S2), the 
electron comes back to the ground state (S0) by quenching due to molecular collision 
with solvent molecules, fluorescence resonance energy transfer (FRET), or by 
intersystem crossing. The molecules not excited by the absorption of photons also 
return to the ground state (S0). A photon of energy (hνem) is released upon returning 
the fluorophore to the ground state (S0) from excited stated (S2). The difference in



energy between hνex-hνem is termed as stokes shift. In intersystem crossing, the 
electrons return to the ground state (S0) by a non-radiative process or emission of 
light called phosphorescence [14–16]. 
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The entire process of fluorescence is cyclical, in which a single fluorophore 
molecule generates a large number of detectable photons unless the fluorophore is 
destroyed in the excited state by the process called photobleaching. In the case of 
polyatomic molecules, the photons of energy hνex and hνem are replaced as broad 
energy spectra termed as fluorescence excitation spectrum and fluorescence emission 
spectrum, respectively [17, 18]. 

2.2 Fluorescence Instrumentation 

To investigate the kinetics of protein folding dynamics, it is necessary to differentiate 
the features of the spectrofluorometer used and the available experimental options. 
The spectrofluorometer consists of four essential components: an excitation mono-
chromator, a sample compartment, an emission monochromator, and a detector. The 
xenon arc lamp is generally used as a light source. The fluorophore is kept in the 
sample compartment with the sample. The detector records the photons generated 
during emission and produces a recordable output electrical signal. The detector is 
placed at a right angle to the excitation beam to reduce the excitation light on the 
detector (Fig. 1) [19]. 

For anisotropy measurements, a set of polarisers are used between the sample 
compartment and excitation monochromator as well as the emission monochromator 
[20, 21]. Time-resolved fluorescence spectroscopy consists of a pulsed laser source, 
a monochromator that selects the excitation wavelength, and a single photon detector 
connected with a multi-channel photomultiplier for converting the time to amplitude 
(Fig. 2). This provides an accurate measurement of the time between two events 
(start and stop signals) and obtains a histogram of photons emitted as a function of 
time [22–24]. 

The intensity of fluorescence follows the parameters defined by the Beer-Lambert 
law of absorbance, such as the optical path length, molar extinction coefficient, and

Fig. 1 Schematic 
representation of the 
fluorescence spectroscopy 
instrumentation



solute concentration. In the case of turbid solutions, it weakens the excitation beam, 
and the sample that is facing toward the beam only undergoes fluorescence, termed 
the inner filter effect. Moreover, in the case of overlapping excitation and emission 
spectra, the light emitted inside the solution is reabsorbed by neighbouring mole-
cules, producing a weak emission spectrum [16].
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Fig. 2 Schematic 
representation of the time-
resolved fluorescence 
spectroscopy 
instrumentation 

2.3 Fluorescence Measurement Using Intrinsic 
Fluorophores 

Protein folding dynamics is a highly regulated phenomenon by which a protein 
adopts its native 3D confirmation. It occurs through the formation of secondary 
structures followed by tertiary and sometimes quaternary structures in the case of 
oligomeric proteins [25]. Secondary structures of a protein can be investigated using 
the methods of CD spectroscopy, whereas the tertiary structure can be monitored 
using the intrinsic fluorescence property of a protein. There are three aromatic amino 
acids (tyrosine, tryptophan, and phenylalanine) that contain intrinsic fluorescence 
properties. Tyrosine and tryptophan provide sufficient quantum yield upon absorp-
tion of photons, whereas phenylalanine provides the lowest quantum yield (quantum 
yield for tyrosine 0.13, tryptophan 0.14, and phenylalanine 0.02). The quantum yield 
is calculated as the ratio of the number of photons emitted to the number of photons 
absorbed. The excitation wavelength of tryptophan is 280 nm, tyrosine 285 nm, and 
phenylalanine 258 nm, while the emission wavelength is 350, 304, and 282 nm, 
respectively, in water (Table 1)  [26–28]. 

To selectively excite tryptophan only, the excitation wavelength should be at 
295 nm. More importantly, the fluorescence properties of these residues are 
extremely sensitive to the environment in which the folding or unfolding of a protein 
occurs. In the native confirmation, tryptophan and tyrosine residues are mainly



buried in the hydrophobic core of a protein, whereas in a partially folded or 
denatured state, these residues are exposed to the solvents. In a hydrophobic 
environment, tryptophan and tyrosine give higher quantum yield and hence high 
fluorescence intensity. In a hydrophilic environment, the tyrosine and tryptophan are 
exposed to the solvent and have a lower quantum yield, leading to low fluorescence 
intensity [28]. 
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Table 1 Intrinsic fluorescence spectra of aromatic amino acids in water 

Aromatic amino acids λexcitation (nm) λemission (nm) Quantum yield 

Tryptophan 280 350 0.14 

Tyrosine 285 304 0.13 

Phenylalanine 258 282 0.02 

The tryptophan residue is also highly sensitive to solvent composition. When it is 
fully buried in the protein core and less exposed to the solvent, the emission 
spectrum is 325 nm, whereas, upon denaturation, the emission spectrum shifts to 
350 nm [29, 30]. The shift in the emission spectra depends on the surrounding water 
molecules as well the orientation of the indole ring of tryptophan. Thus, tryptophan-
containing proteins exhibit an emission spectrum between 330 and 350 nm, 
depending upon the environment and polarity of the solvent [31]. In tyrosine-
containing proteins, the hydroxyl group of tyrosine is ionised at higher pH or in a 
buffer containing 2.0 M acetate and forms a tyrosinate complex. Instead of the 
maximum emission spectrum of 304 nm by tyrosine, tyrosinate shows a fluorescence 
spectrum at 340 nm and overlaps with the emission spectra of tryptophan [32]. The 
fluorescence signal generated by tryptophan can be easily quenched by electron-rich 
molecules such as amines, histidine groups, and carboxylic acids [33]. 

2.4 Fluorescence Measurement Using Extrinsic 
Fluorophores 

The intrinsic fluorescence is limited to naturally occurring fluorescent amino acids 
(tryptophan, tyrosine, and phenylalanine); however, extrinsic fluorescence probes 
can be chemically attached to a protein, which can provide additional avenues for 
characterising protein folding dynamics [34]. These extrinsic dyes can bind to a 
protein through non-covalent interactions, such as electrostatic or hydrophobic 
interactions. Furthermore, they can bind covalently to proteins via the alpha-amino 
group at the N-terminus, epsilon-amino group of lysine residues, and thiol group of 
cysteine residues [34]. 

The extrinsic fluorophores are generally non-fluorescent in an aqueous environ-
ment but become highly fluorescent in non-polar solutions or upon binding to the 
hydrophobic pockets of a protein. These dyes are widely used in various applications 
of protein characterisation, such as to study the kinetics of protein folding/unfolding, 
to investigate the active site of an enzyme, to monitor conformational changes, and



Extrinsic fluorescence probes

to measure the hydrophobic surfaces in a protein. The commonly used extrinsic 
fluorescent dyes are 1-anilinonaphthalene-8-sulfonate (ANS), the dimeric analogue 
of ANS 4,4′-bis-1-anilinonaphthalene-8-sulfonate (Bis-ANS), 9-(dicyanovinyl)-
julolidine (DCVJ), Thioflavin T (ThT), Nile Red, and Congo Red [35–39]. Stryer 
et al. described the binding of ANS on the hydrophobic pocket of apohemoglobin 
and apomyoglobin, leading to an increase in the quantum yield, hence more fluo-
rescence intensity [40]. Rosen and Weber first characterised the dye Bis-ANS, which 
is the most commonly used dye in protein folding dynamics [35]. Several fluorescent 
methods widely use extrinsic fluorophores for protein characterisation, such as 
steady-state fluorescence, anisotropy, time-resolved fluorescence, and fluorescence 
correlation spectroscopy (FCS). 
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2.4.1 Steady-State Fluorescence 

Steady-state fluorescence is widely used to characterise amyloid fibrils, amyloid 
precursor proteins, amyloid-like, and colloidal-like protein aggregates. Several dyes 
such as ThT, Congo Red, curcumin derivatives, thienoquinoxaline-based styryl-
quinoxaline, and boron-dipyrromethene-based dyes are used to probe amyloid-β 
fibrils and aggregates in case of Alzheimer’s disease (Table 2) [41–44]. 

The absorption fluorescence properties of ThT are generally affected by solvent 
polarity, viscosity, and the rigidity of the microenvironment. ThT, upon interaction 
with amyloid-β fibrils, shows increased quantum yield and emission maximum at

Table 2 Fluorescence spectra of extrinsic fluorescence probes 

λexcitation 
(nm) 

λemission 
(nm) 

Thioflavin T (ThioT) 450 482 

Congo red 525 625 

2-anilinonaphthalene-6-sulfonate (2,6-ANS) 350 417 

4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonate (Bis-ANS) 360 493 

Nile-red 540–600 640 

9-(2,2-Dicyanovinyl) julolidine (DCVJ) 433 498 

9-(2-Carboxy-2-cyanovinyl) julolidine (CCVJ) 279 441 

2-(p-toluidinyl) naphthalene-6-sulfonate (TNS) 395 440 

Thienoquinoxaline 468 530–580 

Styryl-quinoxaline 468 530–580 

Curcumin 420 500 

Curcumin derivatives CRANAD-1 540 640 

Curcumin derivatives CRANAD-2 640 715–800 

Boron-dipyrromethene (BODIPY) 500 650 

Triazole-BODIPY 525 540 

5,5′,6,6′-tetracholoro-1,1,3,3′-tetraethylbenzimidazolyl 
carbocyanine iodide (JC-1) 

490 500–600



480 nm. Several studies have reported the interaction of ThT with β-sheet structures 
and increased fluorescence intensity. However, it should be noted that ThT also 
induces fluorescence upon binding to some non-β-sheet rich structures, e.g. in 
transthyretin and acetylcholinesterase [45–47].
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In combination with ThT, Congo Red is also used to analyse amyloid-β fibrils and 
aggregates. This dye interacts with the amyloid via non-ionic bonds in alkaline 
ethanolic solutions. The UV absorption maxima of Congo Red dye changes from 
450 to 540 nm upon binding to amyloids [48, 49]. In addition, amyloid fibrils made 
in vitro from the bovine insulin showed a CD spectrum between 300 and 600 nm 
upon binding to Congo Red dye [50]. In an aqueous solution, the dye oligomerises 
itself and binds amyloid as an oligomeric ligand [39, 51]. 

Conversely, the colloidal proteins in food industries, such as casein and gliadins, 
have been characterised using the fluorescent probe Nile Red and curcumin deriv-
atives [52, 53]. The electron transfer from the diethyl amino group of Nile Red to the 
electron-withdrawing group induces fluorescence. The excitation state of Nile Red is 
dependent upon the polarity of the medium. It’s quantum yield decreases in polar 
solvents, whereas more fluorescence is observed in non-polar solvents. The fluores-
cence intensity of Nile Red is reported to increase in the order of methanol, ethanol, 
and DMSO, in comparison to water [38]. The sensitivity of Nile Red towards the 
polarity of the environment provides an edge to investigate the conformation of 
proteins during aggregation and unfolding [54]. 

2.4.2 Steady-State Fluorescence Anisotropy 

Steady-state fluorescence anisotropy measures the differences in the rotational 
displacement between bound versus free molecules during the lifetime of the excited 
state of the molecule [21, 55]. This method is widely used to investigate protein– 
protein, protein–ligand, and protein–DNA interactions. The anisotropy measure-
ments are performed with the illuminating sample with vertically polarised light in 
such a way that the electric vector of the excitation light is oriented parallel to the 
z-axis. The fluorescence intensity of the samples is measured with the emission 
polariser oriented parallel or perpendicular to the excitation polariser. The fluores-
cence anisotropy using the vertically polarised excitation is obtained using the 
following equation: 

A= 
Ivv- Ivhð Þ  
Ivvþ 2Ivhð Þ  

Here, Ivv is the fluorescence intensity of the sample collected with excitation 
polariser oriented vertically or parallel to the emission polariser, and Ivh is the 
fluorescence intensity when vertically polarised excitation and horizontally or per-
pendicular polarised emission [4, 56].
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2.4.3 Time-Resolved Fluorescence 

Time-resolved fluorescence measurement is a technique to monitor molecular inter-
actions as a function of time. The sample is excited with a pulse of light, and the 
decay of the emission wavelength is detected over time [57]. The primary applica-
tion of this technique is in studying protein oligomerisation and amyloid fibril 
formation [58]. Dyes such as ANS, Bis-ANS, and DCVJ are extensively used in 
this technique for the detection of the oligomeric state of a protein [59, 60]. 

ANS and Bis-ANS dyes are sensitive to the surrounding environment, and their 
fluorescence properties are easily affected by changing viscosity, polarity, and 
temperature of the medium. In case of decreasing the dielectric constant of the 
solvent, or changing the solvent from aqueous to organic, the quantum yield or 
fluorescence intensity of ANS and Bis-ANS increases. ANS and Bis-ANS bind to a 
protein molecule via hydrophobic and electrostatic interactions. The negatively 
charged sulfonate group of ANS and Bis-ANS forms ionic interactions with the 
positively charged arginine, lysine, or histidine moieties of the protein. Bis-ANS 
primarily interacts with a protein via hydrophobic interactions, and because of its 
different size than ANS, it binds with more affinity leading to enhanced quantum 
yield compared to ANS binding [61–63]. 

In contrast to the other fluorescent dyes, DCVJ is more sensitive toward the 
viscosity of the environment rather than the polarity [64]. The electron-donating 
groups of nitrogen in the ring of DCVJ transfer their electron to the nitrile groups. In 
the case of glycerol as a solvent (highly viscous), the quantum yield of DCVJ and 
similar dyes such as 9-(2-carboxy-2-cyanovinyl)-julolidine (CCVJ) are found to be 
increased [65]. These characteristic features of DCVJ and CCVJ are employed to 
investigate the viscosity of blood plasma [66]. Upon binding the dye to the protein, 
the viscosity of the microenvironment inhibits the intramolecular rotation and hence 
increased fluorescence intensity. 

2.4.4 Fluorescence Correlation Spectroscopy 

Fluorescence correlation spectroscopy (FCS) measures the variability of the fluo-
rescence molecule in a living cell or in a solution to understand molecular events 
such as conformational changes in the molecule [67]. It is a powerful technique for 
understanding the dynamics of extremely low-concentrated biomolecules. Unlike 
other fluorescence techniques where emission spectra are measured, FCS can mea-
sure the spontaneous change in fluorescence intensity caused by minute changes in 
the thermal equilibrium [68, 69]. 

The biomolecule must be labelled with a fluorescent dye for FCS analysis 
[70]. Photostability is the most crucial determinant for the dye to withstand the 
high-power laser. Initially, fluorescein, a very good fluorophore in fluorescence 
spectroscopy, was tested for the FCS analysis, but it has a high photobleaching 
effect after laser that leads to artefacts in the analysis of single-molecule applications.



Engineered dyes with a high photostability, such as Alexa488 and other Alexa dyes, 
demonstrate a wide range of excitation and emission wavelength. Several other dyes, 
such as cyanine dyes (Cy2, Cy3, Cy5) and rhodamines (rhodamine green, 
rhodamine B, rhodamine 6G), are found useful in FCS analysis and have a low 
photobleaching effect [71, 72]. The general disadvantage of using external dyes is 
the need to label the biomolecule before performing an experiment. Labelling the 
biomolecule is not suitable in intracellular measurements, where we need to label the 
biomolecules inside the cell [73]. In this case, an autofluorescent protein such as GFP 
can be cloned along with the protein of interest and the expression and other 
biophysical dynamics can be measured using the FCS and fluorescence 
microscopy [74]. 
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3 Conclusions 

In this chapter, we briefly discussed the basics of various fluorescence spectroscopic 
techniques, including labelling by extrinsic fluorophores and fluorescent dyes such 
as rhodamine and cyanine to understand the conformational dynamics of a protein. 
By combining fluorescence spectroscopic techniques with other spectroscopic or 
simulation-based techniques, the protein folding dynamics and assembly can be 
deciphered. The main advantage of fluorescence spectroscopic methods to under-
stand conformational dynamics is their availability in most research laboratories and 
easy data processing. 
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Applications of Differential Scanning 
Calorimetry in Studying Folding 
and Stability of Proteins 

Banesh Sooram, Neharika Gupta, Vihadhar Reddy Chethireddy, 
Timir Tripathi, and Prakash Saudagar 

Abstract Over the last few decades, the analytical method of differential scanning 
calorimetry (DSC) has been established to investigate the stability, folding, and 
binding of proteins. The technique typically measures the differential heat between 
the test and reference samples. The deconvoluted thermogram can provide crucial 
information on process development and whether there are any stable transition 
states. Information about all the significant thermodynamical parameters can be 
extracted from the denaturation curve of a protein. DSC offers several advantages 
over other spectral methods like fluorescence and circular dichroism 
(CD) spectroscopy. For instance, CD and fluorescence spectra can only provide 
information on the secondary structural content of a protein, whereas DSC can be 
used to study protein stability and different transition states in folding. This chapter 
summarises the utility of DSC in studying protein stability and folding. 

Keywords Calorimetry · Thermogram · Co-operative equilibrium folding · Heat 
capacity 

1 Introduction 

Calorimetry is the fundamental technique for measuring the thermal properties of a 
molecule to establish a relationship between temperature and particular physical 
attributes of the molecule [1]. Differential scanning calorimetry (DSC) is a thermo-
analytical technique for determining the effect of temperature and time on a
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molecule’s chemical and physical properties [2]. The method offers both qualitative 
and quantitative information regarding endothermic and exothermic processes and 
alterations in the heat capacity [3]. This method maintains the reference and sample 
material at the same temperature while measuring the energy required to maintain 
the zero temperature difference [4].
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Depending on the phase transition process, either more or less heat energy must 
be provided to the sample to avoid any temperature difference between the sample 
and the reference chamber [5]. If the process is exothermic (neutralisation, combus-
tion, oxidation, and reduction processes), the sample reaction releases heat, so less 
heat is required from the source to attain the desired temperature. In contrast, if the 
reaction is endothermic (melting, boiling, vaporisation, sublimation, and 
crystallisation processes), more heat must be supplied [6]. In order to assess the 
thermodynamic properties of biomolecules and nanoscale materials, calorimeters are 
extensively employed in the fields of chemistry, biology, biotechnology, physics, 
and pharmacology [7]. DSC measures how a sample’s physical characteristics and 
temperature change over time. In other words, it is a tool for thermal analysis that 
calculates the temperature and heat flow related to material transitions as a function 
of temperature and time [8]. DSC measures a heat quantity radiated or absorbed by 
the sample during a temperature shift based on the intersample temperature differ-
ence between the sample and reference material [7]. 

The molar heat capacity of samples can be determined using the DSC as a 
temperature function [9]. DSC profiles offer information on the thermal stability of 
proteins and, to a certain extent, act as a structural signature that can be used to 
evaluate structural conformation [10]. The recorded thermogram provides informa-
tion on the melting temperature (Tm) and enthalpy (ΔH ) values to ascertain the 
structural stability and folding of a protein [11]. Comparisons are made between the 
sample and reference, and variations in the obtained values signify variations in 
structural conformation and thermal stability. DSC is regularly used to study the 
stability testing of pharmaceutical formulations, protein stability, protein folding, 
and ligand binding to a particular protein target [12]. 

2 Theory and Governing Equations 

Based on the mode of operation, differential scanning calorimeters can be of two 
types: heat-flux DSCs and power-compensated DSCs [13]. In a heat-flux DSC, the 
sample material in a pan and an empty reference pan are set on a thermoelectric disc 
encircled by a furnace. Both pans receive heat from the furnace through the ther-
moelectric disc at a linear heating rate [14]. However, because of the sample’s heat 
capacity (Cp), there would be a temperature difference between it and the reference 
pan [14]. This temperature difference is monitored by area thermocouples, and the 
resulting heat flow is calculated using the thermal version of Ohm’s equation [7].
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q= 
ΔT 
R

ð1Þ

where q is the sample heat flow, ΔT is the temperature difference between the sample 
and reference, and R is resistance. 

The molar heat capacity obtained through a differential scanning calorimeter is 
used to calculate the Gibbs free energy (ΔG), entropy (ΔS), and enthalpy (ΔH ). The 
change in heat capacity of the sample can be obtained from the following expression: 

ΔCp =Cpsample -Cpreference ð2Þ

The Gibbs free energy and other thermodynamics values can be obtained from the 
following equations [7, 15]: 

ΔSðTÞ= 
T 

T0 

ΔCp 

T 
dT ð3Þ

ΔG T =ΔH T - TΔS T 4 

In the above equations, T0 and T represent the sample’s initial transition and final 
transition temperatures, respectively. 

The native (folded) and denatured (unfolded) conformations of a biomolecule are 
in an equilibrium state when it is in solution [16]. The more stable the molecule is, 
the higher the thermal transition midpoint (Tm) [17]. The DSC measures the enthalpy 
(ΔH ) of unfolding caused by heat-induced denaturation. It is also used to calculate 
the change in the heat capacity (ΔCp) during denaturation [17]. The mechanisms 
behind the folding and stability of native biomolecules can be analysed using DSC 
[18]. Moreover, DSC is used to understand the protein’s physiological environment, 
hydrogen bonds, conformational entropy, and hydrophobic interactions [19]. The 
accurate and high-quality DSC data provides crucial information on protein stability 
for the formulation of prospective therapeutic candidates and process development 
[20]. Proteins and nucleic acids can form macromolecular assemblies (>5000 Da) 
and undergo thermally induced conformational changes [21]. The distribution of 
non-covalent bonds during these structural changes causes heat to be absorbed. 
Using differential scanning calorimeters, this heat intake is quantified [22]. 

3 Instrumentation 

Thermal scanning causes transitions in macromolecules such as protein or nucleic 
acid polymers [23]. The transitions occur from the native state to partially unfolded 
states (intermediate) to the fully denatured state. The thermally induced transition 
can resemble a two-step process between the native and unfolded states, especially 
regarding small protein unfolding [24]. On the other hand, nucleic acids exhibit



strong cooperativity with many domains melting simultaneously or for smaller DNA 
pieces through several intermediate states [23]. The instrument must have several 
crucial components to examine these changes. The calorimetric device should be 
highly sensitive to the minor energy changes associated with the unfolding process, 
even at low concentrations. A typical instrument setup for DSC is shown in Fig. 1. 
To accomplish this high sensitivity, a differential power compensation system 
between a reference and sample cell, and approaches to regulate temperature and 
scan rate throughout the thermal experiment are used. Depending on the instrument, 
the cells in these devices have volumes of 0.15 to 0.8 mL of solution and are 
designed as either a capillary or an inverted lollipop [23]. 
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Fig. 1 Typical assembly of DSC instrument. The DSC contains two electrodes, one for each 
reference and sample. There is a lid and a purge gas inlet. At the base, there is a heating block. A 
thermos electric disk is placed below the sample and references. (Figure adapted with permission 
from [25]) 

The sample and reference holder are designed in such a way that they can 
withstand high pressure and temperatures [26, 27]. In the case of a high-temperature 
environment, the holders are made of platinum or ceramic, whereas for low temper-
atures, aluminium holders are used [28]. The shield that surrounds the cells either 
regulates scanning temperature or serves to maintain the shield and the cells at the 
same temperature [28]. In the nano DSC series, the temperature program that 
maintains the scan rate and scan temperature of the shield during the process is 
controlled by a computer [23]. As there is thermal contact between the cells and the 
shield, the cells’ temperature rises in response to an increase in the shield’s temper-
ature [24]. Temperature sensors are placed between the sample and reference to 
determine the temperature difference. If there is a temperature difference, heaters on 
the cell surfaces provide the cells with compensating power. The calorimetric output 
is saved as the power compensation signal [27]. 

The power compensation signal is adjusted by computer control to compensate 
for cell mismatch because it is difficult to precisely match the thermal properties of



the cells [29]. This adjustment will be visible in the baseline of the calorimetric scan 
[29]. The experiment is run strictly under adiabatic conditions without any heat 
transfer to the surroundings to maintain a minimal temperature difference between 
the cells and the shield. This instrument’s scanning is not adiabatic because a 
temperature gradient is needed to cool the cells [14]. When a thermal event happens 
within the sample, thermal sensors on the cells detect differences between the sample 
and reference, and power compensation is used to keep the cells at almost the same 
temperature throughout the scan. Area thermocouples are used to measure the 
temperature difference between pans. For high-temperature or corrosive conditions, 
a platinum-rhodium thermocouple is used, whereas for low-temperature conditions, 
copper-constantan or chromel-alumel thermocouples are used [25, 29]. 
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3.1 Types of DSC Instruments 

DSCs are categorised into two subtypes: heat-compensated DSC (heat-exchanging 
calorimeter) and power-compensated DSC (heat-compensating calorimeter) 
[30]. They both differ in design and measurement principles. However, both possess 
the feature of measuring the signal proportional to the heat flow rate (J.s-1 ), which 
facilitates the evaluation of a transition’s time dependence using the (t) curve. In 
addition to these two typical configurations, flash DSC and temperature-modulated 
DSC are also available nowadays [30]. 

3.1.1 Heat-Compensated DSC 

In a heat-compensated DSC, heat exchanged between the sample and its surround-
ings can be measured using a well-defined heat conduction path with a specific 
thermal resistance. Measurement systems to implement the heat exchange path 
include disk-type, turret-type, and cylinder-type. The disk-type measurement sys-
tem, which uses a disc as a solid sample support and enables efficient heat exchange, 
is the most popular. The heat from the furnace is transmitted uniformly to the sample 
and the reference through the thermoelectric disk. The disc, which supports the 
sample and the reference crucible, has temperature sensors embedded into it. To 
minimise measurement errors, the arrangement of the sample and reference crucible 
and the temperature sensors coupled to them must be the same. According to 
Fourier’s law, the temperature gradient drives the heat flow (i.e. thermodynamic 
affinity). The difference between the flow into the sample chamber and that into the 
reference corresponds to the heat flow into the sample itself. The heat flowing into 
the reference and sample crucible is equal if the sample crucible is empty. This 
system makes it possible to quickly and precisely measure over a broad temperature 
range. Depending on the equipment, the heat-flux DSC can often be used in the 
temperature range of 190 °C to 1600 °C. The DSC measurements can be performed 
in environments such as nitrogen or argon to prevent sample oxidation [30].
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3.1.2 Power-Compensated DSC 

In a power-compensated DSC, the sample and reference crucibles are installed in 
separate furnaces with an independent heating resistor and temperature sensors 
within each micro-furnace. The same electrical power is applied to both furnaces 
during the heat-up process. The reference and sample are heated and maintained at 
the same temperature using separate temperature controllers. A temperature differ-
ential between the sample and the reference occurs when any thermal reactions take 
place in the sample. The temperature difference is both the recorded signal and the 
input signal of the second controller circuit. By increasing or reducing an additional 
heating power of the sample furnace, the second circuit adjusts for the reaction heat 
flow rate of the sample. The compensating heating power, i.e. ΔP, is directly 
proportionate to the residual temperature difference ΔT. The electrical power nec-
essary to achieve and maintain a state of zero temperature difference is recorded 
rather than the temperature difference between the two crucibles [30]. 

3.1.3 Nano-Calorimeter or Flash DSC 

For some research, where physical and chemical processes happen significantly 
more rapidly than the normal scan rate of 10 K/min, a standard DSC’s scanning 
rate is insufficient [31]. The low scan rate of a typical DSC makes it challenging to 
investigate various phenomena, including metastability, molecular rearrangement, 
and a variety of kinetic events. Researchers developed ultrafast DSC equipment to 
address these issues. Such a device was frequently referred to as nano-calorimetry or 
flash DSC. The scanning rate of these types of DSCs can go up to 750 K/min 
[32]. The advantage of flash DSC is that it resembles the temperature–time ramp that 
usually occurs for the cooling rates used in realistic processes. Additionally, the 
higher sensitivity makes it possible to measure the signals for delicate transitions and 
small material masses at low heat flow rates. A significantly widened scan range, 
i.e. from very low scan rates to ultrahigh cooling and heating rates, can be operated 
by the power compensation twin-type, chip-based fast scanning calorimeter (FSC). 
The scan rates for cooling and heating can approach 40,000 and 50,000 K/s, 
respectively. As a result, more than seven orders of magnitude of scan speeds can 
be covered when using flash DSC in conjunction with conventional DSC [33]. 

3.1.4 Temperature-Modulated DSC 

DSC signals sometimes include a complexity of overlapping dynamic processes, 
leading to the complicated form of the temperature dependency of the heat capacity. 
However, using a traditional DSC with the typical linear heating rate, the kinetic and 
thermodynamic contributions to the heat capacity cannot be deconvoluted. 
Temperature-modulated DSC (TMDSC) was designed to overcome the drawbacks



of conventional DSC methods. After the discovery of frequency-dependent mea-
surements, Reading et al. developed the first commercial TMDSC, which integrates 
a single frequency oscillation with a typical linear DSC heating rate. Here, the 
normal temperature scan used in a typical DSC is generally overlaid by a 
low-frequency sinusoidal perturbation with a range of approximately 0.001 to 
0.1 Hz [34]. 
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T tð Þ= To þ qt þ At sin ωtð Þ ð5Þ

where At and ω are the amplitude and angular frequency of the sinusoidal oscillation, 
respectively. 

3.2 Method and Sample Preparation for DSC 

The crucial part of any DSC experiment and analysis is providing an optimum 
pressure to suppress the boiling temperature and prevent bubble formation in the 
sample and reference cells [35]. The pressure should not exceed the cell’s tolerance 
as it may damage the cell. Nitrogen gas is purged through the cells to prevent the 
abovementioned problems [35]. A proper cleaning detergent is used to remove any 
remnants after each experiment. Moreover, it is essential to preheat or maintain the 
sample holder to maintain the experiment’s integrity. Sample preparation is the 
second most important factor for the DSC experiment [36]. The protein samples 
need to be adequately dialyzed and filtered, ensuring the proper purity and homog-
enisation of the sample. Further, the protein concentration should be estimated using 
an appropriate method, as the typical proteins concentrations for a DSC experiment 
range from 0.5 to 1.0 mg/mL [37]. Finally, the sample is degassed to remove 
microbubbles that might interfere with the experiment’s sensitivity. During the 
experiment, a blank or control sample is also used, which typically contains the 
buffer only [11]. 

Scanning both reference and test samples is done at constant pressure inside the 
cells because DSC calculates a protein’s excess heat capacity at constant pressure in 
relation to a reference sample as a function of temperature [38]. Usually, a protein’s 
or solution’s heat capacity (Cp) changes gradually with temperature, but when a 
thermal event like denaturation occurs, it changes abruptly. The protein unfolding or 
melting is an endothermic event; thus, it needs energy to raise the temperature of the 
sample. The excess heat provided to the sample reflects in the specific heat capacity 
of the sample. The DSC curve is a plot between excess heat capacity (Cp) versus 
temperature. In the DSC curve, a peak appears, and the temperature corresponds to 
the transition midpoint (Tm), where maximum heat capacity can be seen. The area 
under the peak for the Tm curve represents the ΔH, as shown in Fig. 2. The value ΔH 
represents the secondary structural content of the protein sample [38, 39].
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Fig. 2 A typical DSC thermogram. The DSC thermogram represents a plot generated by taking the 
temperature on X-axis and heat capacity (Cp) on Y-axis. The sharp peak midpoint is Tm, and the 
area under the curve can be used to calculate other thermodynamic parameters. (Figure adapted with 
permission from [39]) 

4 Current Approaches to Studying Protein Folding 
and Stability 

Today, many methods are available for studying proteins, including fluorescence 
spectroscopy, circular dichroism (CD) spectroscopy, NMR spectroscopy, and DSC 
[40–43]. CD uses the absorption difference in polarised light. Because a protein’s 
supramolecular structure affects the CD in addition to its molecular structure, it is 
feasible to quantify the quantity of secondary and tertiary structures in a protein 
using the CD spectroscopy [44]. Tryptophan, tyrosine, and phenylalanine are fluo-
rescent amino acids whose excitation and emission spectra depend on their sur-
roundings [45]. For instance, buried tryptophan or tyrosine containing proteins do 
not show a higher fluorescence intensity [45]. When these residues are exposed to a 
polar solvent or submerged in the hydrophobic core of a protein, their fluorescences 
are different. Since the spectra of fluorescent amino acids vary as a protein unfolds, 
fluorescence can be utilised to monitor changes in the tertiary structure of a protein 
[46]. By measuring a protein’s excess heat capacity as a function of temperature, 
DSC captures the thermal events that occur in a protein during heating. This is 
accomplished by comparing the energy requirements for raising the temperature of a 
protein sample and a reference by the same amount. Thus, DSC can track the 
unfolding of proteins by measuring the energy released or absorbed by the heat 
events accompanying protein denaturation. Only DSC allows for the direct deter-
mination of the enthalpy of denaturation from experimental data among the methods 
mentioned above [47]. Protein folding Tm is frequently measured using CD



spectroscopy. There is virtually little value for CD spectroscopy in studying complex 
structures like-hairpin peptides [48]. Measuring CD spectra at various temperatures 
is essential to estimate the Tm. After this, the molar ellipticities recorded at particular 
wavelengths are plotted against temperature to ascertain the Tm [48]. 
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Differential scanning calorimetry is a sophisticated method of determining tran-
sition temperatures. We may determine the thermodynamic properties of the folding 
transition using this method in addition to the folding-transition temperature 
[49]. Because the experimental output of DSC reflects the energetics of all confor-
mations that become minimally occupied during thermal unfolding, it is a very 
effective method for studying protein folding and stability [50]. 

5 DSC as a Tool to Study the Protein Folding 

Protein folding can be studied using DSC. The denaturation of a protein is detectable 
as an endothermic peak in a DSC curve as the device monitors heat capacity (Cp), 
which is maximum at the transition midpoint (Tm) [51]. Proteins with a higher Tm are 
more thermostable and are used as an indicator of thermostability [51]. The sharp-
ness of the transition peak can be determined by calculating its breadth at half-peak 
weight, which is a sign of the cooperativity of the unfolding [52]. A narrow peak in 
the thermogram indicates multi-state denaturation, whereas a broad peak denotes a 
co-operative transition [53, 54]. The unfolding and stable intermediate states can be 
inferred by comparing the experimentally determined enthalpy and calculated 
enthalpy [54]. The scanning must be thermodynamically reversible, which means 
that the system must be in equilibrium and that the protein must not aggregate during 
or after the denaturation to obtain relevant parameters [7]. If aggregation occurs, 
more processes are going on besides the unfolding that impacts the data. 

5.1 Folding of PBX DB (Pre-B-Cell Leukaemia 
Transcription Factor Homeodomain) 

For small proteins, folding and unfolding are highly co-operative processes distin-
guished by a few short-lived or lack of thermodynamically stable partially folded 
intermediate states [55]. The structural component of a protein, due to local interac-
tions, demonstrates two-state folding/unfolding activity and is referred to as a 
co-operative folding unit or co-operative equilibrium folding unit [55]. These pro-
teins fold very quickly, i.e. in a microsecond time scale, and if they have any short-
lived intermediate states, it is difficult to distinguish them between transition 
[56]. Large proteins that fold in a non-cooperative manner do not produce any 
distinct energy barriers; hence it is difficult to understand the folding pathway. The 
DSC is an elegant method which can be employed to study both small and large



protein folding pathways. A protein, pre-B-cell leukaemia transcription factor 
homeodomain (PBX DB), when studied DSC produces a broad DSC thermogram, 
which fits well into a two-state folding and linear heat capacity baselines (Fig. 3) 
[52]. In contrast to the established laws, the folded state has higher heat capacity than 
the denatured state of the protein. Upon denaturation, the protein is not compact and 
has a higher solvent accessible surface area (SASA). The hydrophobic residues 
exposed to the solvent may increase specific heat but not otherwise. The reason 
could be linked to the pre-unfolding states of the protein. This behaviour is also 
observed in other marginally stable proteins and suggests the specific heat capacity 
emanates from the temperature rather than solvent exposed hydrophobic residues. 
The DSC thermogram for PBX DB suggests that the folding process in this protein is 
endothermic pre-unfolding [52]. 
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Fig. 3 DSC thermogram of PBX homeodomain fitted to the global folding model. The (i), (ii), and 
(iii) correspond to denatured- and native-state heat capacity baselines and a theoretical baseline 
calculated using a set of representative globular proteins, respectively. Experimental PBX-HD DSC 
data (thick dashed line) fit into a global folding model (thin continuous line). (Figure adapted with 
permission from [52]) 

5.2 Folding of Tetratricopeptide Repeats 

Tetratricopeptide repeats (TPRs) are 34 amino acid residue alpha-turn-helix peptides 
that belong to the all alpha-helical class of proteins [19]. They stack together and 
form a non-globular stable structure. Several studies have observed modular multi-
state folding as opposed to two-state folding. Two such peptides containing consen-
sus linear repeats are, CTPRa2 to CTPRa10 and CTPR2 to CTPR3, which showed a 
reversible transition during the thermal unfolding process [57]. The DSC thermo-
gram of these peptides showed a single sharp peak corresponding to the transition, 
and a reversible unfolding of all CTPRa and CTPR proteins was observed [58]. This 
was verified by repeating the experiments at various protein concentrations and 
putting samples through many cycles in the calorimeter cell. The data demonstrated



that the Tm did not change noticeably, with a variation of just 0.4 K [57]. The excess 
heat capacity was calculated using heat capacity adjusted for protein content, buffer 
reference subtracted, and progress baselines removed. Using previously reported 
values of Cp presumed to be temperature-invariant, each trace was numerically 
integrated to produce the area under the heat capacity endotherm and a Tm [57]. 
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5.3 Folding Mechanism of the Bovine Pancreatic Trypsin 
Inhibitor 

DSC can be used to study the equilibrium folding process in proteins, where data is 
obtained through an analytical thermodynamic mode [59]. For instance, modifica-
tions of the 58 amino acid bovine pancreatic trypsin inhibitor (BPTI) with alanine at 
21 and 27 positions exhibit co-operative two-state folding, and their thermodynam-
ics were comparable to those of the wild-type variation, which contains 10 alanine 
residues [60]. The disulphide bonds in the protein were not altered; however, 
mutations were made at locations not necessary for defining tertiary structure. 
Intriguingly, a typical co-operative structure can be obtained even with the above-
modified sequences. The DSC measurements for BPTI demonstrate that the high-
temperature denatured state has a higher heat capacity level than the low-temperature 
native state [60]. Among other minor contributions, the exposure of hydrophobic 
groups to solvent in the denatured form is the leading cause of this significant and 
positive change in heat capacity during the unfolding [60]. Although it may be 
measured directly from the DSC thermogram, measuring ΔH at multiple Tm values 
yields a more accurate result (usually by pH variation). The values for the mutants 
were marginally lower than those for wild-type BPTI. However, this is likely owing 
to the substantial mutational change in these proteins (11 or 12 residues mutated to 
alanine) [60]. 

5.4 Studying Protein Aggregation 

DSC calculates the heat capacity compared to the references. Such heat capacity 
variations are also observed in considerably less specialised condensation processes, 
such as protein aggregation, proving that they are not solely a characteristic of 
natural protein unfolding [61]. One such instance is insulin, which in solution, 
forms amyloid-like fibrils upon thermal denaturation [62]. Typically the DSC 
thermogram shows a positive heat capacity curve, but the aggregated insulin 
shows a negative effect (thermogram peak appears in reverse position in thermo-
gram) (Fig. 4)  [62]. In a normal folding process similar peak but towards a positive 
direction was found, and the negative peak in insulin indicates the sample is 
aggregated. According to this, condensed or closely packed polypeptides, resulting



from specialised folding or non-specific aggregation, have a lower heat capacity than 
the unwound chain exposed to water. Heat capacity alterations reflect general 
changes in the polypeptide environment [64]. 
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Fig. 4 A typical DSC 
thermogram of insulin in 
solution. The DSC 
thermogram represents a 
plot generated by taking the 
temperature on X-axis and 
heat capacity (Cp) on  
Y-axis. The properly folded 
form has a positive peak, 
whereas a negative peak 
represents the aggregated 
form of insulin 
(Figure adapted with 
permission from [63]) 

5.5 Fast Folding Proteins 

The ultrafast folding of small protein domains that fold and unfold on a microsecond 
timescale has theoretical speed limitations of the process and on a time regime that is 
becoming more and more accessible to computer simulations [19]. It might seem odd 
at first that an equilibrium technique like DSC could be useful for research on 
systems that fold rapidly, but because of its fundamental properties and close 
relationship to the protein folding and unfolding kinetics, DSC measurements can 
theoretically be used to obtain data on the folding free energy surface and energetic 
barriers [65]. Under conditions of strong native bias, it was argued that the landscape 
theory would predict downward protein folding over modest or negligible energy 
barriers [65]. Some proteins may continue to fold downward under all equilibrium 
conditions, according to a phenomenon known as a one-state or global downhill 
folding [66]. There is only one ensemble of structures existing in this scenario for 
each set of parameters, and as parameters change, this ensemble’s average properties 
alternate between native and denatured-like structures [66]. With this behaviour, it is 
possible to characterise the entire folding process at high resolution using an



equilibrium technique like NMR [19]. Furthermore, it has been suggested that global 
downhill folding provides biological benefits by allowing proteins to act as molec-
ular rheostats, constantly changing their structural composition [67]. 
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The catalytically promiscuous isoform of glutathione S-transferase, GSTA1-1, 
has a unique low-temperature shoulder, which was revealed from the DSC data 
using a variable barrier model [68]. Through ligand binding, mutation, and CD 
investigations, it has been determined that this event is related to repacking of the 
C-terminal helix rather than any unfolding of the protein. After deconvoluting the 
DSC scan, analysis of the isolated low-temperature transition supports the idea that 
the folded C-terminal helix around the active site is sampled conformationally 
without encountering a significant free energy barrier. In contrast, at higher temper-
atures, the rest of the protein unfolds with clearly defined large barriers [68]. Com-
paring this dynamic flexibility to other substrate-specific isoforms that do not have 
the low-temperature shoulder, the enzyme was shown to be more promiscuous at its 
functional temperature. It would be fascinating to determine whether the dynamics 
of these helix motions are consistent with such a barrierless regime and why this 
flexibility is connected to the significant heat absorption detected by DSC. 

The DSC of the GYF domain from human CD2BP2 provides another illustration 
of the distinct properties of native and denatured state heat capacity levels in a small, 
barely stable protein [69]. Given that data from DSC and CD thermal denaturation 
were fitted to a global two-state equilibrium model for this protein, it is fascinating to 
analyse the time scale of its folding kinetics. It will be interesting to look into the 
dependability and practical applications of the different methods of removing bar-
riers from DSC data in more detail [69]. 

5.6 DSC as a Tool to Measure Barrier Heights in Protein 
Folding 

The absence of experimental techniques to precisely determine the free energy 
barrier’s height is a significant challenge to understanding protein folding events 
[65]. This is particularly disappointing because, as predicted by theory, if folding 
barriers are low, it might be able to directly resolve folding mechanisms. The DSC is 
an effective tool for extracting folding barriers from equilibrium DSC thermograms. 
A study used DSC data to calculate the thermodynamic barrier heights for 
15 proteins [65].
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6 DSC as a Tool to Determine Protein Stability 

It is established that the formation of distinctive three-dimensional (3D) structures in 
small single-domain proteins is reversible, and the process is governed by thermo-
dynamics [70, 71]. Therefore, it is essential to understand the thermodynamics of 
these processes. To accomplish this, it is necessary to make direct measurements of 
the effect of heat using highly sensitive calorimetric techniques like DSC. Thermal 
protein stability has two components: kinetic and equilibrium, and both can be 
quantified using DSC [19]. DSC can also evaluate the fundamental thermostability 
of proteins, or their susceptibility to heat denaturation, as shown by the measured Tm 

from the thermogram. When there is an irreversible denaturation, this Tm may have 
an apparent or an equilibrium thermodynamic value. It is crucial to distinguish 
between recorded thermostability and the degree of equilibrium stability relevant 
to physiological or experimental situations at low temperatures. If the values of 
ΔCpD-N in two proteins with an equal Tm value are not the same, their equilibrium 
stabilities could be significantly different at lower temperatures. The measured 
ΔHD-N andΔCpD-N in standard equations are necessary for extrapolating equilibrium 
stability far from the Tm, where the stabilising free energy (ΔGD-N) is zero for a basic 
reversible system. 

ΔGD-N = ΔHD-N þ ΔCpD-N T- Tmð Þ
- ΔHD-N=Tm þ ΔCpD-N ln T=Tmð Þ ð6Þ

6.1 Advantages of DSC over Other Techniques in Studying 
Thermal Denaturation 

DSC is a versatile technique to study thermal denaturation. Since it monitors the heat 
absorption directly rather than relying on changes in the spectroscopic signal (like 
thermal denaturation based on CD or fluorescence), it can better resolve numerous 
overlapping processes. To allow scans at higher temperatures, up to 140 °C without 
the sample boiling, a small amount of extra pressure is typically provided to the 
sample and reference cell during a DSC measurement [19]. This feature allows 
studying proteins obtained from thermophilic and hyper-thermophilic organisms 
with melting temperatures above 100 °C  [72]. Biotechnological applications require 
understanding how this stability is attained (through equilibrium or kinetic mecha-
nisms) and how certain sequences and structural features provide greater thermosta-
bility. The preferred approach to figure this out is DSC since it allows for a complete 
thermodynamic characterisation that can explain how the thermal equilibrium 
depends on temperature and, consequently, the process by which thermostability is 
achieved.
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The remodelling of thioredoxin enzyme from extinct species using paleogenetics 
has also shown notable improvements in thermostability [19]. The Tm of these 
ancestral sequences was around 25 °C greater than that of modern E. coli or 
human thioredoxin, consistent with the environment gradually cooling over approx-
imately 5 billion years [19]. The Tm of a protein is a known parameter that can reveal 
valuable characteristics, such as the likelihood that the protein to crystallise success-
fully for high-resolution structural work and the potential shelf life of the protein in a 
specific pharmaceutical formulation [73]. These correlations show that populating 
the native state is necessary for orderly crystal packing and growth and that the 
denatured state or unfolded intermediates are the most frequent sources of material 
for irreversible processes, such as aggregation, that result in functional loss. It is 
known that increasing Tm through conditions or stabilising additives is valuable to 
optimise for crystallisation success. Likewise, one of the primary methods used 
commercially to aid the structural determination of GPCR proteins is to increase the 
Tm by mutagenesis [74]. 

The most widely used methodology for high-throughput protein Tm measure-
ments includes the use of a fluorescent reporter dye (SYPRO orange) in differential 
scanning fluorimetry (DSF), which increases fluorescence upon interaction with the 
hydrophobic groups that are usually buried in the protein core and serves as an 
indicator of unfolding [75]. It has been demonstrated that the values of Tm from the 
DSF and the DSC closely correlate. The absolute results from DSF are consistently 
lower, which may be caused by the reporter dye’s destabilising effect or issues with 
the method of fitting to Tm [75]. The area and breadth of the enthalpic heat 
absorption peak may be utilised as additional markers for good crystal growth, 
although DSC may not have the throughput of fluorescence-based approaches. 

Studies on protein stability and denaturation are also crucial in biopharmaceutical 
formulations due to the rise in protein-based treatments. Protein-based therapeutics 
are typically injected in small amounts from a highly concentrated solution; there-
fore, they must be produced in a way that allows the active protein to be stored 
without degrading [76]. Like other covalent changes, glycosylation and PEGylation 
of proteins have differential effects on their thermal stabilities [77]. Water can be 
excluded from proteins in several ways, with freeze-drying being the most popular, 
which can improve protein storage. DSC can assist in developing these processes 
and evaluating the protein’s viability upon dissolving back into the solution [78]. It is 
frequently used in conjunction with DSF and other analytical procedures that use 
temperature, with the apparent Tm value serving as a crucial predictor of the desired 
shelf life [78]. 

The excipients used in a formulation often have indirect effects on the solvent that 
impact the protein’s ability to self-associate, but in rare cases, they can function to 
stabilise the system by binding to the protein in its native state [19]. By shifting the 
equilibrium in a simple mass action effect, ligands will make the binding competent 
state more stable [30]. If this stabilisation can be quantified, for instance, in an 
increasing Tm shift, then the binding affinity of the ligand can be determined. This 
method of analysis of DSC data is well known and can determine exceedingly tight 
binding affinities. The change in Tm value can be significantly large on ligand



binding [79]. When the metallo-chaperone Sco binds to Cu(II), its Tm rises by 23 °C, 
corresponding to Kd = 3.5 pM. Similarly, the binding of a variety of HIV protease 
inhibitors from clinical and experimental studies raised the protein’s Tm by 6 °C to  
22 °C, translating to nM or tighter affinity when extrapolated from the Tm to 25 °C. 
Two mutants (D25N and D29N) in the protease active site demonstrated noticeably 
lower inhibitor binding, as shown by the smaller Tm shifts detected in contrast to the 
wild-type. 
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6.2 DSC to Determine the Stability of Coacervation: 
Lysozyme and Heparin 

Complex coacervation is the process of interaction of two molecules with opposing 
charges, usually both of which are macromolecules [80]. This process sometimes 
leads to the formation of a precipitate known as a complex flocculate. Thus, it is used 
in protein separation processes, resulting in phase separation between the complex 
and the bulk solution. It has been found that the formation of complexes often results 
in elevated thermal stability [81]. Lysozyme, a 14 kDa protein with a pI = 10.5, 
interacts with heparin glycosaminoglycans (GAGs) between the pH range 2 and 
10, forming a coacervate or flocculate. Upon mixing, they form an insoluble, white 
complex. DSC was used, and thermograms were produced by scanning from 15 °C 
to 100 °C at a rate of 90 °C per h. Samples were first vacuum degassed for 5 min. The 
complexes had a lysozyme-heparin ratio of 5:1, with a protein content of about 5 mg/ 
mL. The unfolding enthalpies and melting temperatures were calculated using 
Origin software [81]. DSC studies proved that this interaction might be potentially 
detrimental to thermal stability. Lysozyme stability decreased after complexation, 
which indicates that heparin has a stronger affinity for the unfolded state than the 
native state. Other proteins may experience similar instability when they come into 
contact with highly charged polymeric substances or surfaces [81]. 

6.3 Structural Transitions in Recombinant Human IFNα2a 
as a Function of pH and Temperature 

Interferons are cytokines that have anti-viral, anti-proliferative, and immuno-
regulatory effects in humans [82]. IFNα2a is one interferon subtype, having a 
molecular weight of ~19 kDa, 165 amino acids, four cysteines, and two disulphide 
bonds. The 3D solution structure of IFN2a was determined by NMR, showing that it 
is an all-helical protein with six α-helices [83]. During unfolding, IFN2a produces a 
range of partially unfolded states and intermediates, which are sensitive to the pH 
and temperature of the solution. These partially unfolded conformations significantly 
influence the aggregation and subsequent long-term stability of IFN2a in solution.



The structural characteristics of IFN2a were investigated using Trp fluorescence 
emission, fluorescence quenching, near- and far-UV CD spectroscopy, and DSC at 
pH values (2.0–7.4) and temperatures (5–80 °C). DSC data showed that the begin-
ning of unfolding was about 55 °C for pH 7.4 and 60 °C for pH 5.0, respectively 
[83]. The changes in the tertiary and secondary structures of IFN2a at moderate 
temperatures were indicated at lower pH (pH 3.0 and 4.0) by an increase in heat 
capacity throughout a wide temperature range in the DSC experimental studies. 
However, at pH 5.0 and 7.4 in the lower temperature range (15–50 °C), DSC was 
insensitive to the minor modifications shown in the tertiary structure of IFN2a [83]. 
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6.4 Analysing Thermal Stability of Therapeutic Monoclonal 
Antibodies Using DSC 

High selectivity and specificity monoclonal antibodies (mAbs) make up a significant 
and expanding percentage of the biotherapeutics industry [84]. The IgG class 
includes the bulk of commercially available mAbs. IgGs have 16 inter- or intra-
molecular disulphide linkages and are made up of two heavy and light chains. Each 
heavy chain is disulphide coupled to a light chain, and disulphide bonds connect the 
two heavy chains. IgGs have crystallisable (Fc) and antigen-binding (Fab) domains; 
the Fab attaches to the antigen, while the Fc binds to Fc receptors, which control 
immune responses [85]. Knowledge of therapeutic protein stability has become more 
crucial as the development of biopharmaceutical products has grown rapidly. More 
importantly, screening a buffer that retains the stability of such formulations is vital. 
Several techniques have been established to study the stability of therapeutic anti-
body formulations, but DSC has been successfully used in high-throughput screen-
ing in these experiments. 

Post-translational modifications affect the stability of a protein by either increas-
ing or decreasing the stability of mAbs [86]. A study recorded the DSC thermograms 
to study stability in the presence of glycosylated or deglycosylated human IgG1 
antibodies and suggested that the antibodies have three peaks in their DSC thermo-
gram [87]. The first peak with the lowest Tm represents the thermal transition of the 
CH2 domain in the Fc region. The second peak with the largest peak height 
represents the Tm of the Fab region. The third peak with the highest Tm is the 
contribution of the CH3 domain in the Fc region (Fig. 5)  [88, 89]. Sometimes, the 
thermal transitions between the Fab region and the CH3 domain are so near as to 
combine the last two peaks in the thermogram into a single peak. Similar character-
istic peaks were observed when mAbs, mAb1, mAb2, and mAb3 were subjected to 
DSC. In addition, the deglycosylated forms of the above antibodies have lower 
transition temperatures (6 � 8 °C) at CH2 transition [89]. This finding supports 
earlier findings by Mimura et al. and implies that the oligosaccharide chain stabilises 
the CH2 domain during temperature-induced unfolding while not affecting other



mAb domains [90]. The interactions between the two oligosaccharide chains or the 
oligosaccharide chain and the CH2 domain potentially stabilise the compound [89]. 
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Fig. 5 Typical thermal denaturation thermogram for monoclonal antibodies. CH2 represents the 
constant heavy chain2, and CH3 represents the constant heavy chain3; both belong to the Fc region 
of an antibody (Figure adapted with permission from [88]) 

Another work studied the role of variable domains on the stability of humanised 
IgG1 mAbs. The study recorded the DSC thermogram for Fab and Fc fragments of 
three antibodies [91]. With a few exceptions, the entire antibody’s DSC thermogram 
shows two peaks, and the transition with the higher experimental enthalpy includes 
the contribution from the Fab fragments. Even for Fab fragments originating from 
the same human germline, the apparent melting temperatures differed substantially, 
despite the measured enthalpy for all three investigated Fab fragments being similar 
[91]. The IgGs containing variable domains generated from complementarity deter-
mining regions (CDRs) grafting and humanisation could destabilise the Fab frag-
ment with respect to the CH3 domain. The first transition represents the unfolding of 
the Fab fragment and the CH2 domain, while the second transition represents the 
unfolding of the CH3 domain [91]. In other cases, the DSC profile can also show 
three transitions, with the Fab unfolding at a different temperature than the CH2 and 
CH3 domains melting. If the model above cannot characterise the DSC profile of a 
humanised IgG1 monoclonal antibody, it may indicate considerable structural het-
erogeneity and/or disruption of the Fab co-operative unfolding. Low stability or 
heterogeneity of the Fab fragment might make long-term storage or manufacturing 
consistency difficult [91].
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6.5 Effects of Electrostatic Repulsions on the Stability 
and Aggregation of the NIST Monoclonal Antibody 

The NIST monoclonal antibody (NISTmAb) is a humanised recombinant IgG1 
generated in the suspension culture of murine cells. The stability and aggregation 
tendency of NISTmAb at four different pHs (5, 6, 7, and 8) were investigated with or 
without NaCl. To calculate the ΔG and Tm of different domains, HDX-MS and DSC 
were used, respectively [92]. The Tm and the temperature at which NISTmAb begins 
to aggregate were determined using nano-DSF. During DSC studies, the temperature 
differences between the reference and sample cells were continuously recorded and 
converted to power units. Samples were heated at a rate of 1 °C/min from 25 °C to  
110 °C. In the presence of NaCl, NISTmAb was more conformationally stable at a 
pH closer to its pI than at a pH distant from its pI [92]. The stabilising effects were 
not localised; they were global. However, the onset of aggregation temperature 
experiments revealed that NISTmAb is less likely to aggregate at a pH far from its 
pI, especially when NaCl is absent. This contradictory result, i.e. high conforma-
tional stability yet a high aggregation tendency close to its pI value, can be justified 
by intra- and intermolecular electrostatic repulsions using the Lumry-Eyring model. 

7 Conclusions 

In the past few decades, the analysis of DSC data using defined thermodynamic 
models has been essential for improving our understanding of protein stability. 
Along with other spectroscopic methods, it emerged as a valuable tool for under-
standing and investigating the unfolding and stability of proteins [42, 43, 93, 
94]. This method is used for a single sample and is helpful in high-throughput 
screening. The applications are not limited to only therapeutic molecules but are also 
valuable in studying biomolecular interactions and antibody stability in the presence 
of polysaccharides. Ultrafast folding proteins have made it possible to use DSC to 
examine the whole folding and unfolding free energy landscape with inherently 
broad conformational ensembles and minimally co-operative folding, including 
those conformations near the top of the folding barrier. Studies indicate that the 
plasma proteome gives a signature thermogram, mainly due to the denaturation of 
major plasma proteins, and this thermogram varies from healthy to patient plasma 
samples. The DSC can be employed in the health and diagnostic industry; however, 
further studies are needed to establish this as a reliable diagnostic tool for studying 
plasma proteome. Drug screening for a particular target has also been reported using 
DSC. More importantly, automated DSCs can be employed for large-scale screening 
of drug molecules against a specified target. Apart from this, the method can also be 
used in food authenticity testing. Linking DSC with other instruments can provide 
real-time data. For instance, a combination of FTIR or NMR with DSC can give the 
structure of a biomolecule along with its thermal stability. Moreover, the



combination of SAXS/DSC can be employed to study the crystallisation of poly-
mers. The main limitations of the DSC are reproducibility of data across various 
labs, as the data varies with operational factors such as the operator. The thermody-
namic values may change even in small changes in the system or improper setup. 
The purity of pharmaceutical products obtained through this method also needs more 
validation as the method is sensitive to contamination. It is also challenging to use 
this method to differentiate materials with the same transition temperatures. Identi-
fying the type of molecules (e.g. using FTIR) and separation (e.g. using HPLC) can 
resolve such limitations. Recent trends suggest that the method could be useful in 
disease diagnosis and metal alloy industries to check thermal stability. In conclusion, 
the DSC has emerged as an effective technique that helps analyse material properties 
such as glass transition temperature, melting, crystallisation, specific heat capacity, 
purity, oxidation behaviour, thermal stability, etc., for a wide range of materials, 
including proteins, polymers, plastics, pharmaceuticals, food, organic compounds, 
chemicals, petroleum, biological samples, and many more. 
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Nuclear Magnetic Resonance Spectroscopy 
to Analyse Protein Folding and Dynamics 

Nikita V. Saibo, Soumendu Boral, Rituparna Saha, Amit K. Das, 
and Soumya De 

Abstract Proteins are nanoscale machines that perform all the work in living 
systems. Their function depends on their three-dimensional (3D) structure. These 
nanomachines are manufactured as linear polymeric chains in the living cell and self-
fold into the complex 3D structures that are required for their functions. Mutations in 
proteins (manufacturing defects) may result in misfolding and aberrant functions, 
leading to various diseases. Hence, understanding the process of protein folding is 
very important. Several experimental techniques have been used to study protein 
folding. In this chapter, we will discuss solution-state NMR spectroscopy as a 
versatile technique to study the mechanism, thermodynamics, and kinetics of protein 
folding. We describe the basics and the applications of various NMR methods and 
discuss the recent developments in this technique for studying protein folding. 

Keywords Thermodynamics · Kinetics · Energy landscape · Misfolded proteins · 
Protein aggregation · Spectroscopy · Real-time · Timescale · Folding-unfolding 
transition · Equilibrium 

1 Introduction 

Proteins are nanomachines that carry out almost all the functions in living systems. 
The activity of a folded protein is defined by its three-dimensional (3D) structure. 
Understanding how proteins fold into their functional three-dimensional form from a 
linear polymeric chain is the crux of the protein folding problem [1]. Levinthal’s 
paradox points out that a polypeptide chain (>100 residues) will require a large 
amount of time (>1027 years) to fold if it randomly samples all possible
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conformations [2]. However, most proteins fold within a few seconds. Thus, it was 
clear that proteins undergo a biased search and sample a very small number of 
conformations to reach the final folded state. This was very elegantly depicted by the 
theoretical constructs of the energy landscape and folding funnel [3, 4]. The energy 
landscape is described as a partially rugged funnel where the folding is guided down 
to the low-energy native state by overcoming the entropy of the unfolded states [3– 
5].
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This description of protein folding provided the necessary framework to ask 
specific questions regarding the folding process that can be answered by experi-
ments, such as What is the kinetics of protein folding? Are there any folding 
intermediates? Which part of a protein folds first, or which secondary structures 
form first? And finally, do proteins undergo folding in the same manner in vivo as 
they do in vitro? The in vivo crowded environment might play a role in changing the 
energy landscape of protein folding through its influence on protein stability. Protein 
folding and unfolding are essential events in the cell, thereby understanding their 
mechanism at an atomic level has fundamental biological relevance. Protein folding 
is also prone to errors [6]. Misfolding of proteins is involved in diseases, often with 
mutations that may stabilize the misfolded states or destabilize the correctly folded 
form [7]. 

Misfolded proteins with exposed hydrophobic residues may accumulate and can 
form potentially toxic aggregates [8]. Protein folding in vivo is thereby assisted by 
chaperone proteins such as Hsp60, Hsp70, and Hsp90 systems that function as 
molecular chaperones in de novo folding by shielding the exposed hydrophobic 
residues of the proteins in their non-native conformations [9]. The toxic protein 
aggregates may sequester components of chaperone networks, as seen in Hsp40 
co-chaperones [10, 11]. Certain mutations can lead to dysfunctional metastable 
proteins that are prone to degradation, e.g. cystic fibrosis, where the mutations in 
cystic fibrosis transmembrane conductance regulator (CFTR) cause the protein to be 
misfolded and targeted for degradation [12]. Misfolding can also lead to improper 
subcellular localization and may result in a loss of function of the protein in its 
correct location, e.g. liver damage and emphysema due to mutation of α1-
antitrypsin, a secreted protease inhibitor [13, 14]. Aggregation of toxic metastable 
proteins is associated with various neurodegenerative diseases such as Alzheimer’s 
disease, Parkinson’s disease, Huntington’s disease, type II diabetes, and certain 
forms of heart diseases [7, 8, 15–18]. It is still unclear how these aggregates form 
or the propensity of the misfolded proteins to form aggregates. In order to identify 
how protein folding and misfolding events may lead to diseases, it becomes imper-
ative to understand the molecular descriptions of the protein folding pathways. 

Experimental techniques such as nuclear magnetic resonance (NMR) spectros-
copy, fluorescence resonance energy transfer (FRET), atomic force microscopy 
(AFM), mass spectrometry, and circular dichroism (CD) have provided important 
insights into the folding–unfolding mechanisms of proteins [19]. Among these 
techniques, NMR spectroscopy stands out as it can provide information at atomic 
resolution. NMR spectroscopy has played a crucial role in the biophysical studies of 
protein folding. While other spectroscopic methods, such as CD or fluorescence, are



instrumental in defining the kinetics or thermodynamics of the folding of a protein, 
they do not provide detailed structural information on the folding intermediates. In 
contrast, NMR can present residue-wise structural information on the folding inter-
mediates [20]. Clever use of stopped-flow techniques with NMR, as well as the 
development of fast acquisition methods, has enabled observing folding events in 
real time by NMR. Also, hydrogen exchange and other NMR dynamics experiments 
provide structural and thermodynamic information on higher energy conformations 
with a very small population. In this chapter, we will discuss the various methods 
that have been developed in NMR spectroscopy to study protein folding. 
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2 Studies of Protein Folding and Unfolding at Equilibrium 

NMR spectroscopy is a versatile technique that can be used to determine the 
structures of proteins in a solution [21–25], study protein dynamics in multiple 
timescales [26–30], study oligomerization and aggregation of proteins [31], as 
well as study intrinsically disordered proteins [32–34]. The atoms of hydrogen, 
nitrogen, and carbon are the typical NMR probes, which are distributed throughout 
a protein, and provide comprehensive structural and dynamic information. 
NMR-active nuclei (1 H, 13 C, or 15 N) in a protein have distinct chemical shifts in 
the folded and unfolded states [35]. The NMR timescale of exchange [26, 28] is  
defined as follows: 

Slow exchange kex <Δ⍵ 

Intermediate exchange kex � Δ⍵ 

Fast exchange kex >Δ⍵ 

where kex is the rate of exchange, and Δ⍵ is the chemical shift difference between 
the folded and unfolded states. In partially denaturing conditions, these states of a 
protein interconvert in the slow NMR timescale. For example, the trypsin inhibitor 
HPI exchanges (kex) at 3 s

-1 between the two states at 59 °C and the Δ⍵ for protons 
is >36 s-1 (>0.1 ppm in a 360 MHz magnet) [36]. Hence, two distinct sets of peaks 
can be identified for the same nuclei in 1D or 2D NMR experiments (Fig. 1). The 
peak intensities or volumes (for 2D spectra) provide a direct measure of the relative 
populations of the two states and the equilibrium constant (KU) for unfolding. 

KU = pU=pF and pU þ pF = 1 ð1Þ 

where pU and pF are the populations of the unfolded and folded states, respectively. 
The free energy of unfolding (ΔGU) is given by
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Fig. 1 Folding-unfolding at equilibrium can be monitored by NMR spectroscopy. (a) Thermal 
denaturation of HPI, a trypsin inhibitor, is monitored by 1D NMR [37]. The methyl peak of A9 
(indicated by the arrow) corresponds to the folded state. Its intensity decreases with an increase in 
temperature as the folded population decreases. (b) The folded and unfolded populations at each 
temperature were determined from the assigned peaks of several residues, which resulted in a 
melting temperature (Tm) of 59  °C of HPI (upper plot). The dependence of Gibb’s free energy on 
temperature allowed the determination of enthalpy and heat capacity of unfolding (lower plot). (c) 
The pH-dependent unfolding of TrAvrPto, an effector protein of the plant pathogen Pseudomonas 
syringae, was monitored by 2D 15 N-1 H HSQC experiments [35]. F and U represent the folded and 
unfolded peaks of G95 residue, respectively 

ΔGU = -RT lnKU: ð2Þ 

where R is the universal gas constant, and T is the absolute temperature at which the 
measurements are done. 

An advantage of these NMR measurements is that for most nuclei, the baseline 
chemical shifts of the folded and unfolded states are independent of the parameter 
(pH, temperature, or denaturants) used to unfold the protein. Thus, the changing 
baseline values need not be extrapolated to the folding–unfolding transition zone, 
which is a major source of systematic error in other methods.
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2.1 Folding and Unfolding Studies by 1D NMR 

The power of proton 1D NMR for protein folding–unfolding studies can be illus-
trated by the elegant studies on HPI, a trypsin inhibitor derived from Helix pomatia. 
Thermal unfolding of HPI showed distinct sets of peaks for denatured and native 
states at equilibrium [36]. This corresponds to the slow exchange on the NMR 
timescale between the folded and unfolded states. 1 H NMR spectrum of HPI was 
obtained at different temperatures. The spectrum obtained at 43 °C coincided well 
with the well-resolved assigned spectrum for the native protein in the folded 
conformation [38]. The spectrum obtained at 65 °C, when the protein was 90% 
unfolded, resembled a random coil structure. The spectrum at 59 °C, which marked 
the midpoint of the thermal unfolding transition, showed an overlap between the 
spectra obtained at 43 °C and 65 °C. This conclusively showed a two-state transition 
of HPI between the folded and unfolded states with no partially folded intermediate. 
The magnetization transfer method used to measure the folding and unfolding rate of 
3 s-1 proved that the conversion rate between the two states was small compared to 
the difference in frequency of the resonances corresponding to the two states. 
Transition curves were obtained from 1 H resonances of Ala-9 CH3, Tyr-21 CαH, 
and Tyr-23 CεH of HPI and all three curves were found to be identical. Similar 
results were obtained for BPTI, which has a 50% sequence homology to HPI, and 
also with a destabilized derivative of BPTI, known as RCOM-BPTI, which showed 
minor deviation from the two-state transition seen in HPI [39]. The populations of 
molecules with folded and unfolded conformations were measured from the nor-
malized intensity of the resolved peaks in the spectrum. The thermodynamic param-
eters were determined using Eqs. (1) and (2). 

Folding–unfolding of proteins as a function of the concentration of chemical 
denaturant has also been studied by NMR spectroscopy. Refolding of unfolded 
apoplastocyanin was triggered by manual dilution of the denaturant guanidine 
hydrochloride and followed by a series of 1D NMR spectra. The folding takes 
place in several hours due to the slow trans-to-cis isomerization of two proline 
residues. Measurement of the kinetics of the folding reaction by 1H NMR identified 
a folding intermediate, which had one of the prolines in the incorrect trans config-
uration [40]. A similar 1D NMR experiment on the unfolding of ribonuclease A also 
revealed the presence of a folding intermediate. The intermediate was characterized 
as a ‘dry molten globule’ that had side chains free to rotate, but the hydrophobic core 
was still devoid of water molecules [41]. 

2.2 Folding and Unfolding Studies by 2D NMR 

Two-dimensional NMR spectroscopy provides higher spectral resolution and more 
structural information about the folded and unfolded states. 2D NMR experiments 
were used to investigate the pH-dependent folding–unfolding of AvrPto, a
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Pseudomonas syringae effector protein [35]. A set of two distinct peaks for each 
residue was observed in the 2D 15 N–1 H HSQC spectrum of TrAvrPto, in which the 
disordered N and C-terminal tails of AvrPto are removed. These two discrete 
populations of peaks correspond to the folded and unfolded states in slow exchange. 
The well-resolved peaks of the folded and unfolded states of 13 backbone amides 
distributed throughout the protein were used to show the pH dependence of the 
folded and unfolded populations [35]. The protein denatured under acidic conditions 
as the pH was lowered from 7 to 4. Determination of the sidechain pKa of all 
histidines by NMR revealed anomalously low pKa of His87. Solvent-exposed 
histidine sidechain has a pKa of 6.2 [42]; His87 in TrAvrPto has a pKa of 4.8, as it 
is buried in the core of the protein. His87 was shown to be a pH-sensitive folding 
switch that facilitates the transport of AvrPto through the narrow type III secretion 
system [35]. 

66 N. V. Saibo et al.

2.3 Measurement of Residue-Wise Stability by Hydrogen 
Exchange (HX) Experiments 

One shortcoming of the protein folding–unfolding studies at equilibrium is the 
limited range over which these studies can be performed. NMR-based hydrogen 
exchange (HX) experiments allow the estimation of unfolding equilibrium parame-
ters under conditions far removed from the folding–unfolding transition zone. 

Labile hydrogens (NH or OH) in proteins readily exchange with the bulk water. 
This exchange is catalysed by acid or base, and the exchange rate for amides is 
minimum at pH 3 [43]. The exchange rate is significantly slowed for hydrogens 
protected by hydrogen bonds or hydrogens rendered inaccessible to the bulk water 
due to the folded structure of the protein. The model for HX is given as follows: 

F Hð Þ  
kF
�
kU 

U Hð Þ  
kC 

→ 

D2O 

U Dð Þ ð3Þ 

where the folded (F) and unfolded (U ) states exchange with rates of kU and kF, and 
the protons (H ) in the unfolded state exchange with the bulk D2O with a rate kC. The 
exchange rate, kC, depends upon a variety of conditions (pH, temperature, 
neighbouring amino acid side chains, and isotope effects), which have been cali-
brated in several unfolded models [43–45]. Under steady-state conditions, the 
overall exchange rate, kEX, is given by 

kEX = kUkCð Þ= kU þ kF þ kCð Þ 4Þ 

In the case of stable structures kU ≪ kF
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kEX = kUkCð Þ= kF þ kCð Þ 5Þ 

Depending on the ratio of the refolding rate (kF) to the chemical exchange rate 
(kC), two limiting situations exist, i.e. bimolecular exchange EX2 and unimolecular 
exchange EX1. Under the EX2 limit, where folding is faster than the chemical 
exchange, i.e. kF ≫ kC 

kEX2 = ðkUkCÞ=kF =KUkC, KU = kU=kF ð6Þ 

where KU is the equilibrium constant for the rate-determining structural opening 
reaction [Eq. (3). The HX protection factor (P) is given by P = kC/kEX2 = 1/KU. The 
protection factor (P) provides residue-wise thermodynamic stability of a protein and 
insights into the local fluctuations within a protein [23, 24, 46, 47]. 

Under the EX1 limit, where the chemical exchange is faster than refolding 
(kF < kC) 

kEX1 = kU ð7Þ 

The measured exchange rate kEX1 directly gives the rate of unfolding. While EX2 
exchange provides accurate results regarding the thermodynamics of protein stabil-
ity, EX1 exchange follows the kinetics of protein unfolding and folding. Exchanges 
in the EX2 limit usually occur under native conditions, whereas exchanges in the 
EX1 limit are typically observed under unfolding conditions or at extremes of 
temperature or pH. However, small increases in temperature, pH, or mutations can 
induce a change in mechanism [48, 49]. 

2.4 Equilibrium HX Experiments 

Decades of protein folding–unfolding studies have firmly established that 
(1) exchange of the core protons in a stable protein requires major unfolding, 
comparable to the conformational changes associated with denaturation; (2) the 
structural unfolding model [Eq. (3)] provides a firm basis for the quantitation of 
free energy changes and protein stability, and (3) exchange rates measured in the 
fully unfolded protein or derived from model peptide data are good approximations 
of the actual chemical exchange rates (kC) in transiently unfolded states. 

Hydrogen exchange experiments on various trypsin inhibitors have shown that 
the exchange rates for the slowly exchanging amide protons in the core of the protein 
were correlated with thermal stability. Thus, the global folding–unfolding events are 
responsible for the exchange of these protons [50–52]. Interestingly, the roles of 
loops in protein folding have been highlighted by hydrogen exchange experiments 
[53]. In cytochrome c, an omega loop (residues 40–57) acted as a cooperative 
unfolding/refolding unit under native conditions [54].
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2.5 Relaxation Dispersion Experiments 

Proteins in their native state sample higher energy conformations, which have low 
populations according to Boltzmann distribution (pU/pF = exp.(-ΔG/RT), where pU 
and pF are the populations of the higher energy and native states, ΔG is the free 
energy difference between the two states, R is the gas constant, and T is the absolute 
temperature). This high energy conformation results in different chemical shifts 
compared to the native state for several nuclei on several residues of the protein. 
The relaxation dispersion (RD) experiment is sensitive to the rate of exchange as 
well as the chemical shift difference between these two states, i.e. the lower energy 
native state and the higher energy state [55]. This experiment can detect populations 
as low as 0.5%. RD measurements have been used to identify on-pathway folding 
intermediates, characterize the partial unfolding of protein segments, and the process 
of folding upon binding of intrinsically disordered proteins. RD experiment provides 
detailed information on the kinetics and thermodynamics of an exchange process 
and, in favourable conditions, allows the structure determination of the high energy 
conformation [56]. 

Folding of the FF domain, derived from the human protein HYPA/FBP11, was 
shown to have an on-pathway intermediate state. RD NMR studies enabled the 
structural characterization of this intermediate state and showed that in this state, 
three out of four helices were partially formed, and the fourth helix was disordered 
[57]. RD experiments have been successfully used to characterize the spontaneous 
folding and unfolding of a helix appended to the DNA-binding homeodomain of 
PBX [58]. Using RD experiments on multiple nuclei (1 HN , 13 C, and 15 N), the folding 
upon binding of the disordered domain of Sendai virus nucleoprotein (NT) was 
characterized. It folds into a helix upon binding to the C-terminal domain of the 
phosphoprotein (PX). It was shown that NT samples several helical sub-states, 
which form encounter complex with PX and finally bind a helical grove on PX, 
resulting in a stable complex [59]. 

3 Studies of Protein Folding–Unfolding Kinetics 

Detection of folding or unfolding events directly by NMR spectroscopy is difficult 
for most proteins. However, proteins with sufficiently slow folding have been 
studied by NMR. The experimental methods for direct detection vary from simple 
manual mixing to temperature-jump and stopped-flow NMR. Several devices have 
been designed to monitor protein folding in real time by NMR [60, 61]. Typically, 
50 μL of concentrated protein in denaturing buffer is injected into 450 μL  o  
refolding buffer, which is present in the NMR tube inside the magnet (Fig. 2). 
Several proteins have been studied by this method, such as α-lactalbumin [62, 63], 
RNase T1 mutant (S54G/P55N) [64], and amyloidogenic protein β2-microglobulin 
(B2M) [65].
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Fig. 2 Rapid mixing device used for the study of protein folding or unfolding by real-time NMR 
experiments. The NMR tube containing the refolding buffer is inserted into the probe of the 
spectrometer. A small air bubble separates the unfolded protein present in the transfer line. Another 
air bubble separates the protein from the injection buffer in the remainder of the transfer line. Protein 
injection into the NMR tube is triggered by a piston outside the magnet. Figure adapted from [61] 

3.1 Protein Folding Studies by Fast 2D NMR Experiments 

One-dimensional NMR (1D NMR) has been instrumental in studying slow confor-
mational changes and kinetics of protein folding and unfolding [66]. These processes 
are studied by recording the 1D NMR spectra after inducing the folding or unfolding 
reaction, often through the addition of denaturants such as urea or guanidine 
hydrochloride. Despite it being a very fast and sensitive technique, its major 
drawback is the low spectral resolution seen for biological macromolecules. The 
lack of dispersion in 1D spectra of denatured proteins results in its spectrum 
resembling that of mixtures of free amino acids making sequence-specific resonance 
assignments challenging. The limited spectral dispersion and resonance line width 
information only allow the confirmation of the unstructured or globular conforma-
tion of a protein. Multidimensional NMR (2D, 3D, or more) helps in investigating 
the local structural and dynamic processes of macromolecules. Homonuclear 2D 
experiments such as correlation spectroscopy (COSY) [67] allow for resolving the 
1D 1 H spectrum in a 2D plane and thereby help reduce the 1D signal overlap. One 
major advancement in the characterization of unfolded protein states came from the 
use of uniform isotope labelling using 13 C and 15 N. The application of 
multidimensional heteronuclear experiments allowed better discrimination of reso-
nances. Commonly used heteronuclear 2D NMR experiments include single quan-
tum correlation (HSQC) [68], multiple quantum correlation (HMQC) [69], and 
multiple bond correlation (HMBC) [70]. Despite its high potential, the use of 2D



NMR experiments has limitations and suffers from intrinsic drawbacks. A 2D 
spectrum is collected as a series of 1D spectra where the second dimension, often 
the chemical shift corresponding to the 13 C or  15 N nuclei, is recorded indirectly by 
progressively increasing the time during t1 evolution. This results in a longer 
duration of the 2D experiments, typically several minutes. Since folding–unfolding 
reactions happen in a faster timescale (milliseconds to seconds), these standard 2D 
NMR experiments are not very helpful in studying the kinetics of the process. 
However, the endpoints, i.e. the completely folded state under native conditions 
and the completely unfolded state under denaturing conditions, can be studied in 
great detail. 
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Several approaches have been developed to shorten the duration of 2D NMR 
experiments, such as reducing the interscan delay in the band-selective optimized-
flip-angle short-transient (SOFAST) spectroscopy [71], along with the similar band-
selective excitation short-transient (BEST) spectroscopy [72], acceleration by shar-
ing adjacent polarization (ASAP) [73], and small recovery times (SMART) 
[74]. Some approaches reduce experiment time by collecting sparse data, such as 
nonuniform sampling (NUS) [75], Hadamard, and projection reconstruction sam-
pling [75]. An alternative approach named ultrafast (UF) 2D NMR uses multiplexing 
instead of sequential sampling in the indirect dimension by spatial encoding [76]. 

In BEST and SOFAST experiments, only the protons of interest are excited by 
band-selective radio-frequency (RF) pulses. This results in dipolar interactions of the 
excited protons with a large number of unexcited protons and enhances the longitu-
dinal relaxation rate, thereby significantly reducing the delay time between scans of 
an NMR experiment. In SOFAST-HMQC experiments, the 1 H steady-state polari-
zation is further enhanced by Ernst-angle excitation. A SOFAST-HMQC spectrum 
can be recorded in a few seconds. Sparse nonuniform data sampling can further 
reduce this time. The ultra SOFAST technique, based on the gradient-assisted spatial 
encoding of the NMR frequencies, can record 10 spectra per second. 

3.2 Protein Folding by Real-Time NMR Spectroscopy 

The 2D experiment 1 H-15 N SOFAST-HMQC has been used to observe the real-time 
folding of α-lactalbumin from its molten globular state to its native state [77]. Under 
acidic conditions (pH ~ 2), α-lactalbumin forms a molten globular state and, at 
neutral pH, is properly folded. The folding in the NMR tube, from the molten 
globular state to the native state, was triggered by a pH jump using fast mixing 
(Fig. 2) and monitored by collecting SOFAST spectra. It followed the first-order 
kinetics with a folding rate of 10-2 s-1 [77]. A 3D experiment named BEST-HSQC-
HNCA has been used to study the real-time folding of RNase T1 mutant (S54G/ 
P55N), an 11 kDa protein [64]. Refolding was triggered by the fast mixing of 
denatured protein in 6 M guanidine hydrochloride into excess refolding buffer in 
the NMR tube. This protein has two proline residues in the cis configuration in the 
folded state. The trans-to-cis conversion is a slow process, resulting in the slow



folding of this protein. Previous studies had reported a folding intermediate state 
with one of the prolines trapped in the trans configuration [78]. The 3D BEST-
HSQC-HNCA experiment enabled the backbone assignment of the transient 
intermedia state and provided structural details of this state [64]. 
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Recently, it has been demonstrated that the two powerful methods of NMR 
spectroscopy, i.e. relaxation dispersion (which detects high energy low population 
states) and real-time NMR (which allows kinetic measurements), can be combined to 
study the conformational exchange dynamics of the short-lived excited protein states 
that are transiently formed during protein folding [65]. BEST-TROSY CPMG 
relaxation dispersion experiment was used to measure the conformational exchange 
dynamics of the major folding intermediate of the amyloidogenic protein β2-
microglobulin (B2M). This study showed that the transient intermediate also forms 
a dimer similar to the folded native state of the protein; however, the dimer has a 
higher population and is formed at a faster rate for the intermediate [65]. 

3.3 Determination of Folding Pathways by HX Labelling 
Experiments 

For relatively faster folding proteins, the stopped-flow method of labelling labile 
protons followed by NMR has been used [79–81] (Fig. 3). Initially, the protein is 
dissolved in D2O in the presence of a suitable denaturing agent (such as guanidine 
hydrochloride) and kept in a syringe (S1). The amide protons (NH) in this 
completely unfolded protein are exchanged with the solvent deuterium (ND). A 
rapid mixing apparatus is employed where the solutions are passed by applying 
stopped-flow, and the flow rate can be controlled manually [36]. Another syringe 
(S2) contains a refolding buffer. Refolding is initiated when the solutions of the two 
syringes are mixed together in a mixer (M1) and flowed at a rate for a certain amount 
of time, termed refolding time (tf). After some refolding time (tf ~ 50 ms), a proton 
pulse (tp) is applied by mixing with a high pH buffer in H2O kept in a syringe (S3). 
Solvent-exposed amides are exchanged to NH, while the amides, which are part of 
the already formed secondary structure, are protected from the exchange and remain 
deuterated (ND). Finally, the exchange is quenched by adding the protein to a 
low-pH buffer in H2O (Fig. 3). The low-pH refolding buffer not only terminates 
any further exchange of protons but also allows complete refolding of the protein. 
The native protein is studied by 1D and 2D NMR experiments. Separate spectra are 
collected by changing the refolding time (tf ~ 100, 150, 200 ms, and so on). After 
collecting several spectra, a snapshot of the refolding pattern can be obtained where 
the time sequence of various secondary structure formations can be determined. The 
amount of protected amide proton in refolded native protein can be analysed by 
measuring the intensities of resolved NH resonances from 1 H NMR or 2D NMR. 
The relative proton occupancies, P, at each site can be calculated by normalizing the 
measured signal intensities, Im, as follows:



ð
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Fig. 3 Stopped-flow analysis of protein folding. (a) The protein is unfolded in a deuterated (D2O) 
denaturing buffer. Refolding is triggered by mixing with deuterated refolding buffer for a time 
period of tf. The partially folded protein is added to a protonated buffer (H2O) to exchange the 
unprotected amide ND with the bulk solvent (H2O) to form NH. The protium-deuterium exchange 
is quenched by adding the protein to a low-pH buffer. This sample is collected and analysed by 1D 
or 2D NMR experiments. (b) A schematic diagram of the stopped-flow device is shown. Syringe S1 
contains the unfolded protein, and S2 contains the refolding buffer. They are simultaneously 
injected and mixed in the mixture M1 for a time tf. Syringe S3 contains a protonated buffer 
which is mixed with the partially folded protein to pulse label the exposed amides in the mixture 
M2. The exchange reaction is quenched by putting the protein in the low-pH solution (Q). 
Figure adapted from [36, 82] 

P= Im=I0ð Þ- f h½ �= 1- f hð Þ 8Þ 

where I0 is the signal intensity of the fully protonated group, and fh is the residual 
fraction of water present in the reaction mixture. A change in the pH or tp provides 
information about the stability of the protein when the exchange follows the EX2



mechanism [83]. It can also calculate the kU and kF when the exchange follows the 
EX1 mechanism [54, 84]. 
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4 Monitoring Protein Folding in Live Cells 

Cells have mechanisms to prevent misfolding of proteins. One such mechanism is 
through the aid of molecular chaperones along with various cofactors that assist in 
protein folding. These molecular chaperones and cofactors collaborate with the 
protein degradation machinery to maintain protein homeostasis within the cells. In 
vitro studies cannot recapitulate this aspect of in vivo protein folding [85]. Also, the 
dense cellular environment can impact protein stability and the folding process by 
changing the energy landscape of protein folding [86, 87]. Understanding protein 
folding in the cellular environment is still a challenging problem. NMR spectroscopy 
has contributed significantly to the studies of in vivo protein folding. 

The low abundance of NMR-active nuclei N15 (0.4%) and C13 (1.1%) is exploited 
for in vivo studies of protein folding. Proteins with N15 and C13 labels are routinely 
expressed and purified from bacterial systems for NMR studies [21, 23, 46]. The 
labelled protein is incorporated into target cells by microinjection [88, 89], attach-
ment of cell-penetrating peptide [90], diffusion through pore-forming toxins [91], or 
electroporation [92]. Since the naturally expressed proteins within the cells have 
mostly the NMR inactive N14 and C12 isotopes, they are not observed by NMR 
spectroscopy. Using the 15 N and 13 C labelled in vitro samples, the HSQC, HMQC, 
and CON fingerprint spectra are assigned [34]. 

Despite its advantages, in-cell NMR suffers from various drawbacks. The first is 
the line broadening of NMR resonances which is mostly observed in the soluble 
globular proteins compared to disordered proteins [93]. In comparison to protein 
folding studied in buffers, the tumbling of a protein is seen to be slower in the 
cytoplasm, more so in globular proteins, which makes them more difficult to be 
observed by in-cell NMR. The local internal motions of the disordered proteins are 
independent of their global motions and are not affected to the same extent as the 
global motions of globular proteins. The hindered rotational diffusion of globular 
proteins gives rise to low-resolution NMR spectra [94]. The second limitation arises 
due to the low sensitivity and longer experimental times of higher-dimensional 
heteronuclear NMR experiments required to derive long-range distance restraints 
considering the limited lifetimes of in-cell NMR samples. In order to counter these 
limitations, various advances have been made in NMR methods. Fast acquisition 
routines such as the fast pulsing method (SOFAST) [95] shorten the duration of each 
scan and decrease the interscan delay to allow the acquisition of more scans and 
reduce the time required for the acquisition of multidimensional NMR experiments. 
Nonuniform sampling procedures reduce the number of scans and shorten the time 
required for the data acquisition of multidimensional NMR experiments [96, 97].
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Using in-cell NMR, the folding and maturation events of a homodimeric human 
Cu,Zn-SOD1 metalloprotein were investigated [98]. This protein is involved in 
defending the cells against oxidative stress. hSOD1 attains its mature form by the 
incorporation of one Zn2+ and one Cu2+ ion per subunit. It also forms an intramo-
lecular disulphide bridge through two conserved cysteine residues. The folding and 
formation of intermediate maturation states of hSOD1 were characterized from cell 
samples in minimal media, overexpressing the protein by varying the amounts of 
metal cofactors. A monomeric unfolded apo form was also detected. Apo-hSOD1 is 
an immature form of hSOD1 with a misfolded structure. Apo-hSOD1 is implicated 
in ALS pathology. 1 H,15 N-SOFAST-HMQC spectra were recorded first on cell 
samples that overexpressed hSOD1 in a metal-free medium, following which a 
second spectrum was obtained from the cell lysates after cell lysis. Figure 4a, b 
shows the 1 H,15 N-SOFAST-HMQC spectra of apo-hSOD1 and cell lysate, respec-
tively. Both spectra show the presence of unfolded regions, with most peaks 
occurring within the 8.0–8.3 ppm 1 H region with few dispersed peaks in Fig. 4a, 
indicating some structured regions in the protein. Figure 4b also shows a few other 
dispersed peaks, and this spectrum compares well with the monomeric apo form with 
reduced cysteine E,E-hSOD1SH-SH, which is seen through the overlay of the 
spectrum from the cell lysate of hSOD1 without the addition of Zn2+ and that of 
the 1 H-15 N HSQC of an in vitro sample of E,E-hSOD1SH-SH. This indicated that 
the newly formed protein hSOD1 remained in a metal-free state in the cytoplasm in 
the absence of metal ions. To identify if the apo-protein remains completely 
unfolded in the cytoplasm, the in-cell NMR spectra were compared to the in vitro 
2D 1 H-15 N HSQC NMR spectra of E,E-hSOD1SH-SH denatured with increasing 
amounts of guanidinium chloride up to 0.5 M. With the exception of the signals 
typical of unfolded regions of hSOD1, the latter spectrum differed from the in-cell 
spectrum to some extent. This indicated that the apo-hSOD1 is not completely 
unfolded in the cellular environment. In-cell NMR also helped to identify the 
Zn-bound monomer and dimer as well as the Cu-Zn form of hSOD1. 

5 Conclusions 

Over the years, NMR spectroscopy has evolved to incorporate increasingly sophis-
ticated experiments to enhance our understanding of protein folding. Almost all 
aspects of protein folding, such as thermodynamics, kinetics, formation of interme-
diates as well as in-cell folding, have been studied by NMR spectroscopy. This 
technique also has the added advantage of providing information at an atomic 
resolution on the folding intermediates. The elegant coupling of the stopped-flow 
technique with NMR spectroscopy and the development of fast NMR methods have 
made NMR spectroscopy, a truly unique technique for studying and understanding 
protein folding.
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Fig. 4 In-cell NMR of protein folding. (a) 1 H-15 N SOFAST-HSQC spectrum is shown for hSOD1 
overexpressed in E. coli cells in a metal-free medium [98]. Peaks (red) are visible within the 8.0 to 
8.3 1 H ppm range, indicating mostly unfolded protein. The lower contour level (black) shows 
additional broad peaks. (b) 1 H-15 N SOFAST-HSQC spectrum of the lysed cells in anaerobic 
condition without the addition of Zn(II) (black) is overlaid with the spectrum of an in vitro sample 
of E,E-hSOD1SH-SH (red)
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Molecular Dynamics Simulation Methods 
to Study Structural Dynamics of Proteins 
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Abstract Molecular dynamics (MD) simulation is a computational technique for 
understanding the physical motions of atomic and molecular particles. In this 
approach, atoms and molecules interact for a defined time period, revealing infor-
mation on the dynamic evolution of the system. Newton’s equations of motion are 
used to determine the trajectories of atoms and molecules. The forces and potential 
energy between atoms and molecules are calculated using molecular mechanics 
force fields or interatomic potentials. The approach was originally created for 
applications in the field of theoretical physics; however, it is now used in other 
areas, including materials science, theoretical chemistry, computational biology, etc. 
This technique determines the time-dependent behaviour of a molecular system. MD 
simulation has been widely used to study the conformational changes of 
biomacromolecules to explore the structure and dynamics of proteins, nucleic 
acids, and their complexes. It has also been used to study the protein–ligand 
interactions, which are essential for various processes inside the cell, such as signal 
transduction, immune reaction, and gene regulation. The data help explore the 
regulatory mechanisms of various biological processes. MD studies also provide a 
theoretical background for drug design and discovery. Therefore, MD simulation has 
been extensively used by researchers in combination with biochemical and biophys-
ical methods to obtain a dynamic understanding of biomolecular behaviour. This 
chapter discusses various MD simulation methods and how they are used to study 
the structural dynamics of proteins. 
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1 Introduction 

In living beings, proteins carry out various cellular functions, including transport, 
cell signalling, and metabolic processes, such as catalysis. All of these processes rely 
heavily on the structural dynamics of the protein. The protein sequence folds in a 
specific manner to get a 3D conformation stabilized by various chemical interac-
tions, including covalent and non-covalent interactions. The general approach to 
understanding the folding process of a protein is studying its unfolding behaviour. 
Spectroscopic techniques, such as circular dichroism (CD) and fluorescence spec-
troscopy, are most commonly used for understanding the forces and interactions 
involved in protein unfolding dynamics [1]. Understanding the protein folding/ 
unfolding processes necessitates detailed atomic-level data, which could not be 
obtained using conventional wet-lab spectroscopic techniques. Recent years have 
seen the development of molecular dynamics (MD) simulation as a tool for under-
standing protein dynamics at the atomic level [2]. This method provides information 
about each atom as a function of time to characterize a molecule’s dynamic behav-
iour. MD simulation has the merit of delivering time-dependent information regard-
ing the folding and unfolding processes and inter-residue interactions [3]. 

In the late 1950s, Alder and Wainwright employed the MD method to investigate 
the interactions of hard spheres for the first time [4, 5]. Their discoveries shed light 
on the behaviour of simple liquids in various ways. Rahman made the following 
significant achievement in 1964 when he simulated liquid argon for the first time 
using a realistic potential [6]. Rahman and Stillinger’s simulation of liquid water in 
1971 was the first MD simulation study of a realistic system [7]. In 1977, the first 
protein simulation was performed [8]. MD simulation of solvated proteins, protein– 
DNA complexes, and lipids are very common in today’s published reports, dealing 
with various challenges such as ligand binding thermodynamics and protein folding 
[9]. The number of simulation methodologies has exploded, and there is now a 
plethora of techniques for specific problems, such as mixed quantum-classical 
simulations for studying enzyme activities in the context of the entire protein. MD 
simulation approaches are also extensively utilized in experimental methods such as 
X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy to 
provide dynamic information about the proteins [10]. 

The field of MD simulation is rapidly expanding. The improvement of numerous 
approaches, such as force field advancement, sampling techniques, and superior 
processing power, has enabled us to do simulations in the microsecond to millisec-
ond range with femtosecond coordinates [11]. MD simulation has the potential to 
shed light on a variety of biological problems. The use of MD simulation, on the 
other hand, necessitates the development of optimum models that closely resemble 
the cellular environment. As a result, the MD simulation will be more effective if 
more robust algorithms for modelling, docking, scoring, and energy calculations are 
developed [12]. 

In the last few decades, various approaches, including X-ray crystallography, 
NMR spectroscopy, and cryo-electron microscopy (cryo-EM), have been used to



S. no. Methods Entries S. no. Entries

produce structures of a large number of biomacromolecules. However, there is still a 
significant disparity between the number of available protein sequences and the 
available protein structures. UniProtKB/TrEMBL’s recent release comprises 
22,95,80,745 sequence entries, whereas the protein data bank (PDB) only has 
1,99,507 structures as of December 25, 2022. This shows that only a tiny part of 
all sequences have known structures. The PDB data as of December 25, 2022, are 
displayed in Table 1. As a result, protein structure prediction is critical for closing 
this huge gap. The recent development of high-end computing, such as DeepMind’s 
AlphaFold, has been used to create models for half of the understudied (dark) human 
proteins [13]. It has also determined around 200 million protein structures from 
almost 1 million species, now available to scientists in DeepMind’s database [14]. 
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Table 1 RCSB PDB statistics as of December 25, 2022 

RCSB PDB total entries (199,507) 

Types of 
molecules 

1 X-ray 171,640 1 Protein only 173,443 

2 Nuclear magnetic resonance 
(NMR) 

13,878 2 Protein -NA 11,157 

3 Electron microscopy (EM) 13,665 3 DNA only 2247 

4 Multi-method 213 4 RNA only 1681 

5 Others 111 5 Others 10,979 

Though biomolecules are highly dynamic, most of the above approaches provide 
the structural information of a biomolecule in a static manner [15], such as a protein– 
small molecule complex presented as a static pose through molecular docking. MD 
simulation can aid large-scale computing to predict dynamic behaviour [5, 16]. Pro-
tein conformational dynamics serve a variety of functions, including transport, 
signalling molecules, sensors, and mechanical effectors, as well as interacting with 
the various substrates [17, 18]. 

In MD simulation, the protein and water molecules are used to create and mimic 
in vivo environments. Protein and water atoms move in femtosecond (fs) time scale. 
The forces on each atom are calculated using a force field. The force field includes 
bonded and non-bonded potential terms in potential energy functions. Newton’s law 
of motion is used to update the velocity and coordinates of the systems, which are 
also updated in the trajectory with time. The first MD simulation of biological 
macromolecules was performed by McCammon et al. in 1977 for the bovine 
pancreatic trypsin inhibitor [8]. Later, researchers explored the role of thermal factor 
(β) in the internal movements of protein [19–21]. Aspects of mean square variations 
versus residue number were investigated in these studies. Subsequent advancements 
in MD simulation revealed a broad spectrum of nucleic acid and protein motions. 
Since the trajectories can store all the coordinates, they can provide an ensemble of 
conformations of any structure. From MD simulation data, principal component 
analysis (PCA) can also be performed [22, 23]. MD simulation provides information 
on macromolecular structural flexibility and abet in comprehending experimental



results, such as NMR parameter dynamics and the effect of solvent and temperature 
on the stability of a protein [24, 25]. For X-ray structure refinement and NMR 
structure determination, the simulated annealing method is commonly used [26]. 
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MD simulation can be used for computing the temporal evolution of atomic 
degrees of freedom by solving Newtonian equations of motion [27]. It allows 
researchers to observe atomic processes, such as chemical reactions and atomic 
diffusion, at the atomic time and length scales in large or complex systems. Analysis 
of repeated simulations, each run under various conditions, allows for the develop-
ment of a model for a dynamic process [28]. It is among the essential tools for 
understanding biomolecules theoretically. This approach determines the time-
dependent behaviour of a system. It provides precise information on the conforma-
tional and structural changes of proteins and nucleic acids [29]. Biomolecular 
processes occur over a wide range of time scales: side chain and loop motions are 
classified as local motions (0.01 to 5 Å range) that take 10-15 to 10-1 s to complete; 
rigid body motions (1 to 10 Å range) include helix, domain, and subunit motions that 
typically take 10-9 to 1 s; and helix-coil transitions and protein folding are examples 
of large-scale motions (>5 Å range) that take 10-7 to 104 s. Changes that occur in a 
short period are difficult to view using macroscopic experiments, but by simulating 
under physiological conditions computationally, the majority of the changes that 
happen in a short period of time can be visualized. MD simulation enables the 
investigation of complex biological systems, such as protein stability, protein fold-
ing, molecular recognition, ion transport, etc. It also allows researchers to investigate 
computer-aided drug design using structural information of biomolecules obtained 
through X-ray and NMR. 

2 Statistical Mechanics 

MD simulation generates microscopic data such as atomic positions and velocities. 
Using statistical mechanics, this data can be converted into macroscopic observables 
such as pressure, energy, and heat capacity [30]. Statistical mechanics is essential for 
MD simulation of biological systems. MD simulation is commonly used to investi-
gate a system’s macroscopic properties using microscopic simulations, such as the 
calculation of changes in the binding free energy of a candidate drug or to investigate 
the energetics and processes of conformational changes [31]. The mathematical 
formulae that correlate macroscopic properties with the motion of the atoms and 
molecules are provided by statistical mechanics. MD simulation, on the other hand, 
provides methods for solving particle equations of motion and evaluating these 
formulae [32]. MD simulation can also be used to investigate thermodynamic 
features as well as time-dependent (kinetic) processes. 

Statistical mechanics is a discipline of physics that looks at macroscopic systems 
from a molecular perspective to deduce macroscopic phenomena from the properties 
of the molecules that make up the system and to forecast them [33]. Time-
independent statistical averages are frequently used to connect the macroscopic



system to the microscopic system. In the following paragraphs, we will try to explain 
a few definitions of statistical mechanics to represent a physical system. 
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Fig. 1 MD simulation is 
commonly used to 
understand the macroscopic 
properties of a system using 
microscopic simulations via 
statistical mechanics 

A thermodynamic state of a system is characterized by a set of parameters, such as 
temperature, pressure, and the number of particles, N. The equations of state and 
other fundamental thermodynamic equations can be used to calculate various ther-
modynamic properties. The atomic locations, q, and momenta, p, constitute the 
mechanical or microscopic state of a system, which can alternatively be considered 
coordinates in a multi-dimensional space (phase space). This space has 6N dimen-
sions for a system of N particles. The state of the system is represented by G, a single 
point in phase space. A group of locations in a phase space that satisfies the criteria of 
a specific thermodynamic state is termed an ensemble. As a function of time, MD 
simulation generates a series of points in phase space that are part of the same 
ensemble and correspond to the various conformations and momenta of the system. 
There are descriptions of several different ensembles. An ensemble is a collection of 
all feasible systems with distinct microscopic states but the same macroscopic or 
thermodynamic state. There are several ensembles available for studying physical 
systems, such as microcanonical ensemble (NVE), canonical ensemble (NVT), 
isobaric-isothermal ensemble (NPT), and grand canonical ensemble (μVT). A 
given number of atoms, a fixed volume, and a fixed energy characterize the thermo-
dynamic state of NVE. This is similar to an isolated system. In NVT, the number of 
atoms, volume, and temperature are considered fixed. In NPT, the number of atoms, 
pressure, and temperature remains fixed. However, in μVT, volume and temperature 
are fixed for a given chemical potential. 

An experiment is frequently performed on a macroscopic sample containing a 
large number of atoms that sample a vast number of different conformations. 
Averages for experimental observables are defined using ensemble averages in 
statistical mechanics [34]. An ensemble average is a calculation that takes into 
account a large number of system copies at the same time (Fig. 1). 

The ensemble average is computed as follows:
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Að ÞEnsemble= dpN drN A pN , rN ρ pN , rN 

where A ( pN , rN ) is observable, defined as a function of the system’s momenta (p) 
and locations (r). Integration is performed on all possible variables of r and p. The 
ensemble’s probability density is given by 

ρ pN , rN = 
1 
Q 

exp -H pN , rN =kBT 

where H represents the Hamiltonian, T is the temperature, kB is Boltzmann’s 
constant, and Q is the partition function. 

Q= dpN drN exp -H pN , rN =kBT 

This integral is highly difficult to calculate since it necessitates calculating all 
possible system states [35]. Because the points in an ensemble are generated 
sequentially in time in an MD simulation, the simulations must traverse through 
all conceivable states that match the specific thermodynamic constraints to calculate 
an ensemble average. Another method, which is used in MD simulations, is to 
calculate a temporal average of A, which is written as: 

Að Þtime= lim
τ →1

1 
τ 

τ 

t = 0 

A pN tð Þ, rN tð Þ dt ≈ 1 
M 

M 

t = 1 

A pN , rN 

where t is the time of simulation, M represents time steps, and A(pN,rN) is the value 
of A at a particular instant. 

MD simulation can compute only temporal averages, while the experimental 
observables are considered ensemble averages. The ergodic hypothesis, which is 
one of the fundamental principles of statistical mechanics, states that the temporal 
average equals the ensemble average [35]. The central premise is that if a system is 
allowed to grow indefinitely, it will pass through all possible states. As a result, one 
of the goals of an MD simulation is to create enough sample conformations to satisfy 
this equality [36]. Experimentally relevant data on structural and thermodynamic 
properties can be calculated with a reasonable resource of computing power. As the 
simulations have a defined time, it is important to sample enough phase space 
[37]. The average potential energy of the system is represented as 

V = Vð Þ= 
1 
M 

M 

i= 1 

Vi



where M represents the trajectory con gurations and Vi is the potential energy of a
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fi 

particular configuration. 
The average kinetic energy is expressed with the following equation: 

K = Kð Þ= 
1 
M 

M 

j= 1 

N 

i= 1 

Mi 

2 
vi:vi j 

where M represents the number of configurations, N is the atoms number, mi and vi 
are the mass and velocity of the particle i, respectively. An MD simulation must last 
long enough to sample a large number of relevant conformations. 

3 Classical Mechanics 

Newton’s second law, F = ma (where F is the force applied on the particle, m is the 
particle’s mass, and a is the particle’s acceleration), is the sole foundation of the 
traditional MD simulation. It is possible to determine each atom’s acceleration in a 
system using the force acting on each atom [38]. A trajectory that depicts the 
locations, velocities, and accelerations of the particles over time is created after 
integrating the equations of motion [37]. This method can be used to calculate the 
average values of the particle properties. Since it is a deterministic method, the 
system’s state can be calculated at any point in time, past or future, if the positions 
and motions of each atom are known. MD simulation can be time-consuming and 
expensive; computers, on the other hand, are becoming robust and cheaper. Up to the 
nanosecond time scale, simulations of solvated proteins can be calculated; nonethe-
less, simulations of the millisecond time scale have also been recorded using high 
performance computing. Newton’s equation of motion is expressed as: 

Fi =miai 

where Fi represents the force acting on particle i, while mi and ai are the mass and 
acceleration, respectively. The force can also be described as a potential energy 
gradient. 

Fi = -∇iV 

Combining these two equations result to:

-
dV 
dri 

=mi 
d2 ri 
dt2 

where V represents the system’s potential energy. This equation can be used to relate 
the derivative of potential energy to changes in position as a function of time.



90 A. Kumar and K. K. Ojha

3.1 Newton’s Second Law of Motion 

F =m � a=m � dv 
dt 

=m � d
2 x 
dt2 

Considering the acceleration as constant 

a= 
dv 
dt 

After integration, the expression for the velocity can be written as 

v= at þ v0 

since 

v= 
dx 
dt 

after further integration 

x= v � t þ x0 

Combining the above equation with the velocity, we get the below relation that 
gives the value of x at time t as a function of the initial position (x0), the acceleration 
(a), and the initial velocity (v0). 

x= 
1 
1 
a � t2 þ v0 � t þ x0 

The acceleration is calculated using the derivative of potential energy with respect 
to the position (r). 

a= -
1 
m 

dE 
dr 

Therefore, the initial positions of the atoms, an initial velocity distribution, as well 
as the acceleration determined by the gradient of the potential energy function are all 
required to construct a trajectory [39]. The positions and velocities at time zero 
determine the positions and velocities at every other time (t), as the motion equations 
are deterministic. The initial positions can be taken from experimental structures, 
such as the protein’s X-ray crystal structure or NMR structure. The initial velocity 
distribution is commonly derived from a random distribution with magnitudes that
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conform to the requisite temperature and that are corrected to ensure that there is no 
overall momentum, which is represented by 
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p= 
N 

i= 1 

mivi = 0 

The probabilities of an atom having a velocity vx in the x direction at a temper-
ature T are determined by selecting velocities, vi, at random from a Maxwell-
Boltzmann or Gaussian distribution. 

p vixð Þ= 
mi 

2πkbT 
1 
2 
exp -

1 
2 
miv2 ix 
kbT 

The temperature can be obtained as follows: 

T = 
1 
3Nð Þ

N 

i= 1 

j pi j
2mi 

where N represents the number of atoms in the system. 

3.2 Integration Algorithms 

The potential energy is a function of all atoms in a system’s atomic locations (3N ). 
The equations of motion have no analytic solution due to the intricate nature of this 
function; they must be solved numerically [40]. Several numerical techniques have 
been devised to integrate the equations of motion, such as the Verlet algorithm, 
Leap-frog algorithm, Velocity Verlet ,and Beeman’s algorithm. While choosing an 
algorithm, one should consider that the algorithm should conserve energy and 
momentum. It should be computationally efficient and allow a long-time step for 
integration. The locations, velocities, and accelerations of all the integration tech-
niques are assumed to be approximated by a Taylor series expansion: 

r t  þ δtð Þ= r tð Þ þ v tð Þδt þ 1 
2 
a tð Þδt2 þ . . .  

r t þ δtð Þ= v tð Þ þ a tð Þδt þ 1 
2 
b tð Þδt2 þ . . .  

a t  δt = a  t b t  δt . . .  

where r represents the position, v is the velocity (the first derivative with respect 
to time), and a is the acceleration (the second derivative with respect to time), etc.
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3.2.1 Verlet Algorithm 

To derive the Verlet algorithm, one can write: 

r t þ δtð Þ= r tð Þ þ v tð Þδt þ 1 
2 
a tð Þδt2 

r t- δtð Þ= r tð Þ- v tð Þδt þ 1 
2 
a tð Þδt2 

After summing the above two equations: 

r t þ δtð Þ= 2r tð Þ- r t- δtð Þ þ 1 
2 
a tð Þδt2 

The Verlet method calculates new positions at time t + dt by combining locations 
and accelerations at time t with positions from time t-dt. There are no stated 
velocities in the Verlet algorithm. The Verlet algorithm is simple with minimal 
storage needs, but the disadvantage is that the algorithm is of moderate 
precision [41]. 

3.2.2 The Leap-Frog Algorithm 

In this method, the velocities are calculated at time t +  1/2dt. Further, these are used 
to find the positions (r) at time t + dt. In this way, the velocities leap over the 
positions, and then the positions leap over the velocities [42]. 

r t þ δtð Þ= r tð Þ þ v t þ 1 
2 
δt δt 

v t þ 1 
2 
δt = v t þ 1 

2 
δt þ a tð Þδt 

This approach has the advantage of explicitly calculating velocities; however, it 
has the disadvantage of not doing so simultaneously with the positions. The rela-
tionship can be used to approximate the velocities at time t. 

v tð Þ= 
1 
2 

v t-
1 
2 
δt þ v t þ 1 

2 
δt 

3.2.3 The Velocity Verlet Algorithm 

This algorithm returns positions, velocities, and accelerations at time t. Precision is 
not uncompromised.



Molecular Dynamics Simulation Methods to Study Structural Dynamics of Proteins 93

r t þ δtð Þ= r tð Þ þ v tð Þδt þ 1 
2 
a tð Þδt2 

r t þ δtð Þ= v tð Þ þ 1 
2 
a tð Þ þ a t þ δtð Þ½ �δt 

3.2.4 Beeman’s Algorithm 

This algorithm is very similar to the Verlet algorithm. 

r t þ δtð Þ= r tð Þ þ v tð Þδt þ 2 
3 
a tð Þδt2 - 1 

6 
a t- δtð Þδt2 

v t þ δtð Þ= v tð Þ þ v tð Þδt þ 1 
3 
a tð Þδt þ 5 

6 
a tð Þδt- 1 

6 
a t- δtð Þδt 

This algorithm has the advantage of providing a more accurate expression for 
velocities and better energy conservation [43]. The disadvantage is that more 
complex expressions increase the cost of the calculation. 

4 Principle of MD Simulation 

The Born-Oppenheimer approximation, which separates the slow atomic degrees of 
freedom from the fast motion of light electrons, is the core of MD simulation 
[43]. Binding in solids and molecules is due to the interaction of electrons with the 
atomic core, which is seen almost at rest by the electrons. This interaction also 
provides interatomic forces when the atom cores are treated as classical particles. 
While it was required to approximate these forces with appropriate interatomic 
potentials initially, the introduction of fast electronic computers and the Car– 
Parrinello method enabled the interaction to be treated on a first-principles basis, 
allowing predictive quantitative simulations [43]. 

4.1 Periodic Boundary Condition 

Periodic boundary conditions (PBCs) are a group of boundary conditions that are 
used to approximate a large (infinite) system with a small component called a unit 
cell. Simulations and mathematical modelling frequently employ PBCs. PBCs are 
used in MD simulation to eliminate finite-size boundary effects and to make the 
system similar to an infinite one at the expense of potential periodicity effects 
[43]. The existence of PBC ensures that every atom that exits a simulation box via 
the right-hand face must re-enter via the left-hand face. If we look at the face of the



s

simulation box opposite the one from where the protein is protruding in the case of a 
large protein, we will notice a hole in the solvent. The molecule(s) shift from where 
they were initially situated within the box since they are free to diffuse around in 
most simulations [44]. During the simulation, the box is not centred on anything. 
Molecules are not automatically made complete. Using PBCs to solve the surface-
effects problem is an alternate and preferred method. PBCs can be approached in 
various ways, but we will stick to the minimum-image convention. We must first 
understand the concept of a unit cell before discussing PBCs. A unit cell is the 
simplest representation of a system. If we are imitating a crystal, we might pick a tiny 
cell with a few hundred atoms that match the desired crystal form. When simulating 
a gas, our unit cell could be a small volume containing several hundred gas 
molecules. We can start with a tiny unit cell volume, even if the purpose of the 
simulation is to obtain insight into bulk crystal or gas properties (easily >1010 

molecules). Then we can make neighbouring copies (images) of the unit cell that 
duplicate the contents of the unit cell in adjacent volumes. The images are a duplicate 
of the original simulation region and are used to lessen or eliminate border effects by 
providing an equivalent surrounding environment of atoms to every atom in the unit 
cell, independent of position in the unit cell. We can update the original unit cell’s 
positions, forces, and velocity. Mirror replicas of the unit cell will be updated in the 
surrounding image cells. As a result, the atoms in the image cells have no physical 
significance on their own and are only constructs for PBCs. 

94 A. Kumar and K. K. Ojha

The seeming “never-ending” aspect of the unit cell, that is, when an atom exits 
through a wall in the unit cell, it subsequently re-enters on the opposite side of the 
unit cell with the same velocity, is one of the simple and attractive effects of PBCs 
[45]. The layout of the image cells supports this continuity because as an atom 
departs the unit cell, the same atom’s image may be seen entering the unit cell from 
an image. 

4.2 Ewald Summation 

Ewald summation is a technique for calculating long-range interactions in periodic 
systems, such as electrostatic interactions [46]. The total electrostatic energy of NN 
particles and their periodic images can be calculated using the following: 

V = 
f 
2 nx ny n�z 

N 

i 

N 

j 

qiqj 
rij,n 

The box index vector is (nx,ny,nz) = n, and the asterisk mark designates that terms 
with i = j should be omitted in case (nx,ny,nz) = (0,0,0). The distance rij,n,  a  
opposed to the minimum image, represents the actual distance between the charges. 
Although incredibly slow, this sum is conditionally convergent. Ewald summation 
was initially developed to determine the long-range interactions of the periodic



images in crystals. The goal is to split the single, slowly convergent sum into two 
components that swiftly converge and a constant term. 
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4.3 Particle Mesh Ewald (PME) Method 

The Particle Mesh Ewald (PME) method is given by Tom Darden to enhance the 
reciprocal sum performance. The charges are interpolated to a grid instead of just 
adding wave vectors. Cardinal B-spline interpolation or smooth PME (SPME), is 
used in GROMACS [47]. Using a 3D FFT technique, the grid is then Fourier 
transformed, and the reciprocal energy term is calculated by summing the grid in 
k-space. The inverse transformation is used to calculate the potential at grid points, 
and interpolation factors are used to determine the forces working on each atom. In a 
medium to large systems, the PME technique is noticeably faster than standard 
Ewald summation. Ewald may still be preferable on relatively small systems to 
save time setting up grids and transforms. The PME direct space potential is moved 
by a constant in the Verlet cut-off scheme so that the potential is zero at the cut-off. 
In contrast to the Lennard-Jones potential, where all shifts add up, this shift is minor, 
and because the net system charge is almost zero, the total shift is also minimal. We 
nonetheless apply the shift to make the potential precisely equal to the integral of the 
force. 

4.4 Thermostat in MD 

By altering the system’s temperature in some way, thermostats are intended to assist 
a simulation sample from the appropriate ensemble (i.e. NVT or NPT). We must first 
define what is meant by temperature. The “instantaneous (kinetic) temperature” in 
simulations is typically calculated from the system’s kinetic energy using the 
equipartition theorem. In other words, the system’s total kinetic energy is used to 
calculate the temperature [48]. The purpose of a thermostat is not to maintain a 
constant temperature because doing so would mean fixing the total kinetic energy, 
which is wrong and not what NVT or NPT are intended to do. Instead, it guarantees 
that a system’s average temperature is correct. 

Consider a glass of water placed in a space to understand this case. Consider 
estimating the kinetic energy of a few molecules in a small area of the glass by 
looking at them extremely closely [49]. Because there are so few particles, you 
would not anticipate the kinetic energy to be perfectly constant; instead, you would 
anticipate fluctuations in the kinetic energy. The fluctuations in the average decrease 
as you average across more and more particles, and when you ultimately consider the 
entire glass, you can conclude that it has a “constant temperature”. Compared to a 
glass of water, MD simulations are quite small, which causes larger fluctuations 
[50]. Therefore, it would be fair to consider the role of the thermostat in this situation



to ensure that we have the proper average temperature and fluctuations of the 
correct size. 
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4.5 Solvent Models 

A solvent model is a computer technique used in computational chemistry to predict 
the behaviour of solvated condensed phases. Simulations and thermodynamic cal-
culations for reactions and processes that occur in solutions are made possible by 
solvent models [51]. Environmental, chemical, and biological processes are among 
them. Such computations can result in new predictions about the physical processes 
due to greater understanding. Generally, there are two groups of models: explicit and 
implicit models, each of which has advantages and disadvantages of its own 
[52]. Implicit models often have good computing efficiency and can provide a 
good description of the behaviour of the solvent, but they are unable to consider 
the local variations in solvent density near a solute molecule. When water is used as a 
solvent, the density fluctuation behaviour caused by solvent ordering around a solute 
is more common. Explicit models can provide a physical, spatially detailed descrip-
tion of the solvent but are frequently inefficient in terms of computational efficiency 
[53]. Although many of these explicit models may fail to replicate specific experi-
mental results, this is often due to differences in fitting methods and 
parameterization. 

4.6 Energy Minimization 

Energy minimization is the process of arranging a group of atoms in space in such a 
way so that the net interatomic force acting on each atom is as close to zero as 
possible while it is stationary on the potential energy surface (PES) [53]. The atoms 
could combine to form a single molecule, an ion, a condensed phase, a transition 
state, or a combination of these. 

5 Current Tools for Molecular Dynamics 

Various tools are available for performing MD simulations both in proprietary and 
open-source domains. Some of them are discussed below:
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5.1 Gromacs 

Gromacs is an MD simulation software package designed primarily for simulating 
proteins, nucleic acids, and lipids. It was created in the University of Groningen’s 
Biophysical Chemistry department, and it is now maintained by various contributors 
from research institutions all over the world. It is one of the widely used software 
available that can run on a computer with basic configuration as well as on high-end 
workstations. It is a freely available open-source software distributed under the 
General Public License (GNU) [54, 55]. 

5.2 Amber 

A set of bimolecular simulation tools are included in Amber. It was started in the late 
1970s, and a vibrant development community continues to maintain it. Two objects 
are being referred to by the term “Amber”. First, it is a collection of molecular 
mechanical force fields for simulating biomolecules available in the public domain. 
Second, it is a collection of molecular simulation programs that also includes 
demonstrations. AmberTools21 and Amber20 are the two components of Amber. 
AmberTools21 can be used without Amber20, but not the other way around [56]. 

5.3 CHARMM 

CHARMM is a molecular simulation tool with extensive applicability to many-
particle systems that supports multi-scale methods, including quantum mechanics/ 
molecular mechanics (QM/MM), molecular mechanics/coarse-grained (MM/CG), a 
variety of implicit solvent models, and a large collection of energy functions. It 
targets biomolecules such as proteins, small molecules, nucleic acids, lipids, and 
carbohydrates found in solution, crystals, and membrane environments. CHARMM 
also have a wide range of applications for inorganic materials. CHARMM includes a 
comprehensive set of tools for analysis and model construction. It performs well on a 
variety of systems, such as GPUs and parallel clusters [57]. 

5.4 NAMD 

NAMD is a parallel MD programme designed for the high-performance modelling 
of large biomolecular systems. It won the Gordon Bell Award in 2002, the Sidney 
Fernbach Award in 2012, and the Gordon Bell Prize in 2020. As NAMD is based on 
Charm++ parallel objects, it can scale from hundreds to over half a million cores for



larger simulations. NAMD uses the well-known molecular graphics application 
VMD to set up the simulation and analyse the trajectory, in addition to being file-
compatible with AMBER, CHARMM, and X-PLOR. The source code for NAMD is 
freely available. NAMD is available as a self-built project or as downloadable 
binaries for many different platforms [58]. 
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5.5 HyperChem 

HyperChem is a powerful molecular modelling system with a reputation for excel-
lence, adaptability, and user-friendliness. HyperChem provides access to several 
molecular modelling tools more than any other programme by fusing 3D visualiza-
tion and animation with different computational approaches. It incorporates several 
computational techniques, including density functional theory, semi-empirical and 
ab-initio molecular orbital methods, MD, and MM. HyperChem includes 
HyperChem Data and HyperNMR. Among the frequently added features are 
CHARMM protein simulations, molecules in magnetic fields, compatibility with 
third-party applications, etc. Both large and small molecules can be used with 
HyperChem. It also supports scripting [59]. 

6 GUI-Based Software for MD Trajectories Analysis 

The MD simulation output trajectories can be visualized using GUI-based software. 
The following are some of the most popular software: 

6.1 Visual Molecular Dynamics (VMD) 

A research group of theoretical biophysics at the University of Illinois created visual 
molecular dynamics (VMD) [60–62]. It is a highly effective tool for observing and 
investigating various biological systems, including nucleic acids, proteins, lipids, 
and carbohydrates. It supports a wide range of formats, such as PDB and GROMOS 
for biomolecules. It can handle a massive amount of data processing to display 
changes in a trajectory [63]. The molecules can be seen as animated, and the input 
trajectory can also be used to make a movie. It works with any operating system that 
has a basic computer configuration. It is included with NAMD as well. The addi-
tional features of VMDs include [64]: 

1. It can be used to visualize macromolecules. 
2. An amino acid and atoms can be chosen. 
3. Structure alignment can be performed.
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4. Support for user activity logs is present. 
5. Support for the Raster3D format is available. 
6. Ramachandran plots can be generated. 
7. It supports various molecular image types. 
8. It supports command lines. 
9. It utilizes vectors and arrays. 

10. It has JavaScript support. 

6.2 PyMOL 

Structural biologists extensively use the PyMOL software [65]. PyMOL can accept 
various file formats, including SDF, Mol2, PDB, etc. The trajectory can be imported, 
and the simulation results can be analysed on PyMOL. A surface view model can be 
generated. To further study the MD simulation results, several additional plug-ins 
are available. The user can use this tool to create high-quality figures as well as 
animated movies. 

6.3 Chimera 

UCSF Chimera is a sophisticated tool for molecular modelling systems that is free 
for academic usage [66]. Advanced UCSF ChimeraX is also freely available for 
academic use. The Gromacs and Amber trajectory formats are supported by Chimera 
1.13.1 and later versions. Following the import of these trajectories, the user can 
create a movie with a time frame and produce attractive images. Aligning two or 
more structures is possible. The surface cavity analysis during the trajectory run can 
also be generated. It supports the command line option and has a variety of functions. 

7 Other Advanced MD Simulation Methods 

7.1 Metadynamics 

An improved sampling technique known as metadynamics uses a set of collective 
variables (CVs) that specify transitions along a reaction coordinate to explain the 
system. The system’s position in this CV space is established during the simulation, 
and then positive biasing Gaussian functions are added, modifying the system’s 
Hamiltonian [67].
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H = T þ V þ VGAUSSH = T þ V þþ VGAUSSH 

As a result of the accumulation of these Gaussian functions in properly sampled 
regions of the CV space, the system can more easily navigate through regions of CV 
space that correspond to free energy maxima while simulating the unmodified 
Hamiltonian. The simulation can now examine the entire energy landscape. Know-
ing the sampling of the modified Hamiltonian and the deposited Gaussian functions 
allows one to retrieve the free energy surface of the unmodified Hamiltonian. 

7.2 Umbrella Sampling 

The purpose of any MD simulation is to sample all possible states in which a 
molecule may exist. Based on this method, the probability (free energy) for the 
molecule to be in any state can be determined. Often, some protein states are 
separated from others by very high energy barriers. Sometimes, it would take 
years of conventional MD simulation to go through all molecular states. Umbrella 
sampling allows us to accelerate the sampling by flattening those hills and ridges, 
which prevents MD simulation from accessing certain states. In umbrella sampling, 
the energy landscape is flattened by adding artificial umbrella potentials that are 
supposed to mirror and thus annihilate the real barriers. However, making an 
umbrella potential account for all degrees of freedom in the system would be 
difficult. Hence, the umbrella potential involves only a few (one to three) degrees 
of freedom, often called CVs or reaction coordinates. The sampling of a system is 
considered complete when it has visited all values of CVs for an accurate and 
unbiased calculation of state probabilities [68]. 

8 Structural Parameters to Analyse MD Simulation Data 

8.1 Root Mean Square Deviation (RMSD) 

The root mean square deviation (RMSD) is the Euclidean distance between the 
structure and a reference structure that measures the relaxation between the struc-
tures [69]. It is a common way to quantify the distance of structural coordinates. It 
determines how far apart, on average, a group of atoms, such as the protein’s 
backbone atoms, are from one another [70]. Calculating the RMSD between two 
sets of atomic coordinates, such as two points in time from the trajectory, measures 
how much the protein structure has changed. It is possible to compute the RMSD for 
each residue, the backbone, the side chains, and C-alpha. It is calculated with 
reference to the simulation time [71]. A lower RMSD value indicates a very stable 
structure over the course of a simulation.
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8.2 Root Mean Square Fluctuation (RMSF) 

The average variation of a particle over time from a reference position is measured 
by the root mean square fluctuation (RMSF) [69]. As a result, RMSF examines the 
structural elements that deviate the most from their mean structure. The variability 
around each atom’s average position is captured by the RMSF. This reveals infor-
mation on the flexibility of the protein’s various regions and relates to the crystal-
lographic B-factors. It can be used to check whether the simulation findings are 
consistent with the crystal structure because one would typically anticipate similar 
profiles for the RMSF and the B-factors. Atoms in bends and coils fluctuate more 
than in helices and sheets; hence they have lower RMSF values, whereas bends and 
coils have higher RMSF values. 

8.3 Radius of Gyration (Rg) 

The measurement of the radius of gyration (Rg) indicates the shape and compactness 
of a molecule at a particular time. The gyrating radius is compared to the hydrody-
namic radius that can be measured empirically [69]. Additionally, this provides the 
individual components that are equivalent to the eigenvalues of the inertia matrix. 
This means that the first component corresponds to the molecule’s longest axis and 
the last to its shortest. The three axes effectively provide a global indication of the 
shape of the molecule [72]. 

8.4 Solvent Accessible Surface Area (SASA) 

The area of the protein that is accessible to solvent is known as solvent accessible 
surface area (SASA), which can be further divided into a hydrophilic and hydro-
phobic SASA [73, 74]. The SASA of the expanded form of the protein is higher than 
that of the folded globular protein. It is known that when a temperature of a system 
rises, proteins begin to unfold and expose their hydrophobic interiors to the solvent. 
SASA consequently increases upon unfolding. Additionally, the SASA can be used 
to estimate the free energy of solvation together with a few empirical 
parameters [75]. 

8.5 Hydrogen Bonds 

The number of internal hydrogen bonds with a protein or external hydrogen bonds 
between a protein and its surrounding solvent is another characteristic that can be



informative [76, 77]. The distance between a donor-H acceptor pair and the donor-H 
acceptor angle can be used to determine the presence or absence of a hydrogen bond. 
Hydrogen bonds are vital for maintaining protein secondary structures; therefore, 
simulations of protein folding must adequately represent the hydrogen bond inter-
actions. Hydrogen bonding is treated as a non-bonded interaction in modern classical 
force fields where electrostatic interactions are predominant. Atomic charges, on the 
other hand, are fixed and are established in a mean-field fashion in the frequently 
utilized non-polarizable force fields. The native structure cannot be appropriately 
populated when the non-polarizable AMBER force field is used in the folding 
simulations of small peptides. When the polarization effect is added to the simulation 
using either the on-the-fly charge fitting or the polarizable hydrogen bond model, the 
native structure becomes more prominent in the free energy landscape. These results 
emphasize how crucial the electrostatic polarization effect is for simulating 
proteins [78]. 

102 A. Kumar and K. K. Ojha

9 Summary 

MD simulation has been a popular method for understanding the dynamic represen-
tation of any biological system for the last few decades [79–81]. In recent years, 
GPU-based high computational capability systems have significantly reduced the 
time required in the MD simulation of biological macromolecules. It is a handy 
technique for understanding molecular interactions such as protein–protein and 
protein–ligand interactions, as well as protein folding. It creates the cell-like envi-
ronment around the macromolecules by considering pH and the surrounding mole-
cules such as water, lipids, ions, as well as co-enzymes. It provides atomic-level 
interaction details that offer insights into how molecules function. Tools such as 
MM-PBSA can be used to predict the free energy of binding, various energy 
constituents, and contribution to binding with a small molecule at the residue 
level. The implementation of the QM and MM method in the MD simulation has 
improved the accuracy of these predictions. MD simulation can thus be used to 
investigate the dynamics of a biological system by selecting an appropriate model 
and physical conditions. 
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Abstract The field of molecular dynamics (MD) simulations has become indis-
pensable today to studying the conformational flexibility and dynamics of proteins 
as well as protein–ligand complexes. The technique helps to replicate real-time 
biological events like macromolecular dynamics on a computational platform and 
allows us to understand the fold and conformational changes in the protein–ligand 
complex. In addition, MD simulations enable us to estimate the thermodynamics and 
kinetics associated with protein–ligand binding. In this chapter, we introduce the 
basics of MD simulations and the theoretical aspects of the simulations. Further, we 
describe the sequential steps in the process of MD simulation and the background 
information of the steps. The chapter also discusses ligand binding and conforma-
tional changes with the help of case studies. Though the field has advanced by leaps 
and bounds, there is still a necessity for better force fields and methods to accurately 
predict the free energy of binding. In summary, research focusing on force fields 
supported by advancements in computational power will help researchers have better 
insights into protein–ligand interactions and their conformations. 
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Keywords Protein · Molecular dynamic simulations · Ligand · Dynamics · 
Conformational flexibility 

1 Introduction 

Research in biomolecular dynamics has evolved over the last few decades. Among 
the macromolecules of interest, proteins are essential for the growth and structural 
integrity of any organism. Their three-dimensional (3D) structure and interactions 
with other macromolecules or ligands help them function properly. In addition, other 
molecules interact with proteins either in their active site or allosteric site, which may 
change the conformations of the protein. The study of these dynamics in detail helps 
us understand the underlying principles of protein function and interactions 
[1]. Moreover, advances in bioinformatics and computational power have led 
researchers to study the structural dynamics of proteins using various simulation 
algorithms. 

Molecular dynamics (MD) simulation is a theoretical method that can analyze the 
protein structure, folding, and stability by visualizing it in a motion picture. MD 
simulations have been widely used for studying the complexity of protein folding 
and the interaction of proteins with ligands. This theoretical study has become an 
integral part of analyzing the interaction of the ligand with the protein and how the 
binding of the ligand influences the protein structure, dynamics, and conformation 
[2, 3]. Besides, it also helps in studying the interactions and changes in terms of 
energy and geometry over the evolved time period. Today, this method is a boon for 
protein fold analysis and drug discovery [4]. 

In principle, MD simulations consider the potential energy function of each of the 
atoms (force field) and determine the lowest energy state. This means that the state of 
the most stable conformation, which can be seen over the time period of the 
simulation run, is determined. Over the past few years, various refinements have 
been made in the forcefields used for MD simulations. Among the various 
forcefields used, AMBER, CHARMM, and GROMOS are the most widely used 
forcefields for studying the structural dynamics of proteins at different pH and 
temperature conditions [5–7]. These forcefields can be employed in various software 
like GROMACS, AMBER, and NAMD, and significant information can be obtained 
from the trajectory analysis [8–10]. 

To study the effect of the ligand on the protein conformation, one can utilize 
various techniques like principal component analysis (PCA), coarse-grained simu-
lation, and umbrella sampling. Coarse-grained simulation helps overcome the time-
scale and length-scale difference in the ligand–protein interaction by considering the 
atoms at a macroscopic scale. It does so by reducing the degrees of freedom of the 
atoms of the protein–ligand complex, providing reduced computational stress, 
thereby running smoothly. The umbrella sampling depends upon the biasing poten-
tial obtained from the mean force potential. It fixes or restrains the ligand toward an 
increasing center of mass distance via the umbrella sampling. This eventually helps 
in studying the ligand interaction with the atoms around it over a period of time.



Other than the specific protein–ligand interaction, any perturbation in the protein 
conformations may result in diseased conditions such as Alzheimer’s disease and 
cancers. Thus, understanding how a protein folds and its dynamics change when 
interacting with other small molecules and macromolecules is of paramount 
importance. 
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2 Background of MD Simulation 

We discussed that the MD simulation is a powerful computational method for the 
theoretical study of biomolecules through fluctuation and conformational changes at 
the atomic level. The technique uses Newton’s second law of motion to calculate the 
time evolution of the molecular system. The results are obtained in the form of 
trajectories that are analyzed using different tools for the position and velocity of 
each atom in the system. In recent times, MD simulation is also being used to 
understand the thermodynamic properties of biological events like conformational 
transitions. The technique helps us understand that a protein is flexible and can thus 
undergo a variety of slow and fast structural rearrangements (also known as transi-
tions), ligand binding, enzymatic regulations, and ion transport in biological 
systems. 

For a protein to function, structural fluctuations and flexibility are very crucial. 
According to the Levinthal paradox [11, 12], the average time taken would be of the 
order of 1010 years if the process of protein folding was to occur randomly, 
considering all accessible configurations (around 1030 configurations) and a time 
of 10-12 s to search each configuration [4]. The fact that the protein folding process 
occurs in an immensely shorter time (between picoseconds and milliseconds) proves 
that the event of protein folding is not a result of a random search toward the correct 
functional form among the vast configurational space. To explore such configura-
tional spaces, techniques like umbrella sampling have been developed [13]. 

Before performing MD simulations, it is essential to choose an initial configura-
tion of the proposed system that does not have high potential energy. A velocity must 
be assigned to the system. To rule out instabilities during simulation, energy 
minimization is required. Further, a potential energy function (forcefield), which 
describes the forces that act between the atoms as a function of their positions, is 
assigned to the system. This gives an initial distribution of the velocities of the atoms 
and the values of the starting coordinates for the atoms in the system. During the 
course of the simulation, the trajectories are obtained at different time points and are 
analyzed. This equilibrium distribution of velocities throughout the system is done 
via the Maxwell–Boltzmann distribution.
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2.1 Theory Behind MD Simulation 

It is well known that the MD algorithms calculate the classical time evolution of the 
system using Newton’s second law of motion, i.e., 

Fi =miai 

Fi 

mi 
= 

vi 
t 

Fi 

mi 
= 

d2 xi 
dt2 

where Fi = force exerted on molecule “i,” mi = mass of the particle, and 
ai = acceleration of molecule “i.” 

The potential energy of the system can be explained as the sum of the individual 
contribution of both bonded and non-bonded interactions in the system, i.e., 

V rð Þ=Vbonded þ Vnonbonded: 

Bonded interactions are the sum of four simple harmonic species that describes 
bond stretching and angle bending. It includes all the parameters responsible for 
bond stretch and angular bending, including rotational torsion and improper 
torsion [14]. 

Vbonded =Vbond þ Vangle þ V torsion þ V improper: 

Vbond represents the energy involved in stretching the bond length in an interac-
tion and can be explained with the help of Morse potential, a robust interatomic 
interaction model used for the potential energy calculation of a diatomic molecule. 
Morse potential is computationally expensive and requires three parameters per bond 
evaluation. Mathematically it can be represented as 

Vmorse Ið Þ=De 1- e - a I- I0ð Þð �2 

a=ω 
μ 

2De 

ω= 
k 
μ 

where k = stretching constant, De = depth of potential minimum, l = bond 
length, l0 = equilibrium value of bond length, μ = reduced mass, and ω = frequency 
of bond vibration in small displacement from l to l0.
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However, to overcome the problem of extensive mathematical calculations, a 
harmonic potential (Hooke’s law) was proposed with an approximation that was 
adequate for explaining bond stretch energy. According to this method 

Vbond Ið Þ= 
k 
2 

I- I0ð Þ2 

Vangle θð Þ= 
k 
2 

θ- θ0ð Þ2 

where Vangle= energy due to the deviation of angles from their equilibrium values 
and θ = angle formed between two and three atoms. 

Vtorsion is the torsion angle term in the force field model. It represents the effective 
barriers for the rotation around chemical bonds. The barriers are due to the steric 
interactions between the atoms and a group of atoms that are separated by three 
covalent bonds [15]. 

V torsion φð Þ=Kφ 1- cos nφ-φ0ð Þð

where Kφ = barrier height, φ = torsional angle, φ0 = angular position of the first 
minimum in the potential, and n = number of minima. 

Vimproper is the improper torsion that arises to maintain chirality. 

V improper ωð Þ=Kφ ω-ω0ð Þ2 

where ω = improper dihedral angle and ω0 = improper dihedral angle at 
equilibrium positions. 

The non-bonded interaction is composed of two components, i.e., the van der 
Waals interaction energy and the electrostatic interaction energy. Energy determi-
nation is considered the most time-consuming part of the simulation as they have 
long-range interactions of the atoms in the system to be considered. 

V non- bondedð Þ =Vvdw þ V ele 

Vvdw arises from a balance between repulsive (short-range and arises due to 
electron–electron interactions) and attractive forces (long-range force and arises 
due to electron fluctuations which generate dipole in an atom). It can be demon-
strated using Lennard-Jones potential, i.e., 

V rð Þ = 4 2 σ 
r 

12
-

σ 
r 

6 

where σ = collision diameter and E = well depth. 
Vele act at longer ranges compared to van der Waals interactions. It can be 

represented as



q q
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Vele = 
i j 

i j 

4π 2 rij 

where qi, qj = partial atomic charge, E = dielectric constant, and rij = relative 
distance. 

Therefore, the potential energy can be represented as 

V rð Þ = Vbond þ Vangle þ V torsion þ Vvdw þ V ele 

Though the mathematical calculations per atom are higher for a simulation 
system, the molecular mechanic forcefields provide a reasonable compromise 
between accuracy and efficiency. 

3 Steps in MD Simulation 

3.1 Initialization 

MD simulations for a biomolecular structure require an initial structure that can be 
used as a starting point. This structure can be obtained from the X-ray crystallo-
graphic or cryo-electron microscopic (cryo-EM) structures available in the protein 
databank (PDB). Structures from nuclear magnetic resonance (NMR) and homology 
models can also be used. The selection of the initial structure is critical to obtain 
better-quality results. Before proceeding toward simulation, energy minimization of 
the structure is required to eliminate structural distortions that arise due to strong van 
der Waals interactions and result in unstable simulation. Once the structure is 
obtained, the next step is to set up the periodic boundary conditions. 

3.2 Periodic Boundary Conditions 

Defining the periodic boundary is an important step in MD simulation. The step 
allows one to simulate a small part of a large system specifically. Here, all the atoms 
present in the computational cell or box (MD cell) are replicated to create an infinite 
lattice throughout the space. Each particle in the MD cell interacts not only with 
other particles within the computational box but also with their mirror images in the 
nearby boxes. Most MD simulations are done in a cubic or octahedral computational 
cell. The Ewald method is the most common method used for calculating the 
electrostatic energy of a system on the lattice with periodic boundary conditions. 
Total electrostatic energy from image cells can be calculated as a summation of real 
space (Vr), reciprocal space (Vk), correction due to excluding pairs (Ue), and a self-
term (Us)  [15].
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In MD simulation, constant temperature is essential that can be maintained 
through coupling to a Berendsen thermal bath. Velocities are scaled by a factor at 
every step. 

X = 1þ δt 
τ 

T 
T0

- 1 

where T = the time constant and T0 is the reference temperature that tells the 
strength of the coupling between the thermal bath and the system. 

3.3 Energy Minimization 

Minimization algorithms are employed to identify the geometry of the system that 
corresponds to the minima of the potential energy surface. The minima values can be 
very large when a biomolecular system comprises thousands of atoms, and a large 
number of degrees of freedom is taken. The algorithms used for minimization are 
important in MD because it is essential to start a simulation from a well-minimized 
structure that helps avoid any high-energy interactions that might hinder the system. 

∂f 
∂Xi 

= 0 

∂2 f 
∂X2 

i 

> 0 

where I = [1, . . ., N], given function f, which depends upon the variable x1, 
x2,. . .. . .xn. 

The minimum of f is the point at which the first derivative of the function 
corresponding to each variable is zero, and the second derivatives of the function 
are all positive. The energy minimization method can be divided into first and second 
derivative techniques. 

3.3.1 First-Derivative Techniques 

The first-derivative techniques include the steepest descent and conjugate gradient 
[16, 17]. The first derivative of energy shows where the local minima lie, and the 
magnitude gradient indicates the steepness of the local slope. While the second 
derivative indicates the function’s curvature and the information that can be utilized 
to determine where the function will change with direction. The first-order minimi-
zation algorithm is the steepest descent, and in this, the coordinates of the atoms are 
changed gradually until the system moves close to the minimum energy point. A line 
search algorithm is used iteratively to locate the minimum point. Even when the



starting initial structure is far away from the minimum, the steepest method can 
achieve the minimum through iterative steps. Because of this advantage, it is 
recommended to start with the steepest descent algorithm for energy minimization. 
The conjugate gradient is another first-order minimization algorithm that accumu-
lates information about the function from one iteration to the next [15]. 
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3.3.2 Second-Derivative Techniques 

The Newton-Raphson method is a second-order derivative method used to invert the 
Hessian matrix for energy minimization [18]. The technique provides the curvature 
of the function that tells about the change in the direction of the function. For large 
systems, the technique requires higher computational effort and large storage 
requirements. In most cases, the steepest descent and the Newton-Raphson method 
are used in combination. However, in the steepest descent method, the structure can 
be brought to the minimum closely, while in the Newton-Raphson method, a few 
steps are required to reach the minimum. 

3.4 Thermostats and Barostats 

Thermostats and barostats are used for equilibrium. The objective of the equilibrium 
phase is to perform the simulation until the properties like structure, pressure, 
temperature, and energy are stable with respect to time and to bring the system to 
equilibrium from the initial configuration. During this phase, each atom of the 
system is assigned an initial velocity selected from the Maxwell–Boltzmann distri-
bution at a low temperature. Slowly, new velocities are assigned with a gradient 
increase in the temperature. This process is repeated until the desired temperature is 
obtained. The equilibration is usually conducted using a Berendsen thermostat and a 
Parrinello-Rahman barostat [19, 20]. 

3.5 Production Stage 

After the successful completion of the equilibration of the system, the desired MS 
simulation time length is assigned between picoseconds (ps) and milliseconds (ms). 
During the production run, no velocity scaling is performed, and hence the temper-
ature becomes a calculated property. Various properties are computed during the 
production run and are stored for further analysis. During the production run, 
millions of non-bonded interactions are generated. Thus, it is necessary to evaluate 
the non-bonded interactions during simulation. One of the easy ways to do so is by 
extending the time step, which improves the simulation performance. However, we 
do not consider the bond vibrations during simulation because errors are generated



immediately after the production run starts in bond vibration. These errors can be 
excluded entirely by adding bond constraints using SHAKE algorithms [21]. 
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3.6 Analysis of the MD Data 

Simulation information generated after the production run can be analyzed in 
different ways. One of the most important jobs during the analysis of the ligand– 
protein complex is to determine whether the apoprotein is stable and close to the 
experimentally retrieved structure or not. The basic method to check the stability and 
change in conformation is by calculating the root mean square deviation (RMSD), 
root mean square fluctuation (RMSF), radius of gyration (Rg) and hydrogen bond 
(H-bond), and principal component analysis (PCA) from the simulation data. 

The RMSD is used to measure the structural stability of the protein–ligand 
complex. It provides information about the deviation produced by the complex 
during the MD simulation compared to the initial reference structure by calculating 
the Cα values of the protein backbone. Mathematically, it can be represented as 

rα i - rβ i 
1=2 

= 
1 
N 

i 

rα i - rβ i 
2 

The RMSF is used to measure the local changes that are present along the chain of 
the protein. It is the measure of the displacement of a particular atom or a group of 
atoms relative to the initial structure used for the simulation and is averaged over the 
number of atoms in the structure. The calculation involves a rigid alignment of 
structure in each frame of the simulation run with respect to the reference frame. It is 
mathematically represented as 

RMSF= 
1 
Nf f 

rf i - ravg i 

2 

The Rg determines the distribution of the atoms present in a protein around the 
axis of the protein. Rg is given by the length that measures the distance between the 
point where the atom is rotating and the point where the energy transfers with 
maximum effect. It is mathematically represented as 

Rg= 
1 
N i i 

ri - rcmð Þ2 

Hydrogen bonds are known to play a vital role in ligand binding. They are 
important for the effective ligand binding and conformational change in the protein’s 
active site. Mathematically, it is calculated as
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UHB rð Þ= 
A 
r12

-
C 
r10 

The PCA is a machine learning tool that converts a set of correlated observations 
to a set of linearly independent components. This transformation to the new coordi-
nate system represents the first coordinate with the highest variance, the second 
coordinate with the second highest variance, and so on. PCA is used to analyze the 
motion of flexible regions in the protein. Furthermore, it can also be used to analyze 
the poorly equilibrated regions in a protein. The calculation of PCA involves the 
following basic steps 

1. Creation of coordinate covariance matrix—It is a 3×3 matrix that consists of the 
coordinates x, y, and z of the sample at different times. 

2. Calculation of principal components and coordinate projections—It gives us the 
eigenvectors of the matrix. 

3. Visualization of the principal components. 

The molecular mechanics (MM) energies combined with the Poisson–Boltzmann 
or generalized Born and surface area continuum solvation (MM/PBSA and 
MM/GBSA, respectively) methods are used to estimate the ligand binding affinities 
in the simulation run system. They help in deciding the strength of binding of the 
ligand to its receptor and studying the stability of the complex. The sample is first 
simulated over a given period of time. Further, snapshots are taken at regular 
intervals in time from the simulation to calculate the free energy of the sample. 
For explicit solvation in water, the free energy is mathematically determined as 

G=Eint þ Eele þ Evdw þ Gpol þ Gnp - TS 

where Eint = molecular mechanics internal energy, Eele = electrostatic internal 
energy, Evdw = van del Walls energy, Gpol = polar solvation free energy, and 
Gnp = nonpolar solvation free energy. 

Moreover, the binding free energy between the protein and the ligand is mathe-
matically represented as 

ΔG= G  PLð Þ-G Pð Þ-G Lð Þh iPL 
where PL, P, and L are protein–ligand complexes, protein, and ligand, respec-

tively, whose free energies are calculated using the equation above. Brackets 
indicate the average over the snapshot taken. Depending on the protein being 
analyzed, the r2 value obtained from the correlation coefficients ranges from 0.0 
to 0.9.
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4 Ligand Binding and Fold Transitions 

The first-ever simulation of a protein was conducted as early as 1944 using a small 
protein bovine pancreatic trypsin inhibitor [22]. From the simulation, McCammon 
and his team revealed the fluidic characteristics of a protein interior for the first time. 
The simulation lasted for 9.2 ps and opened up a new realm in molecular biology and 
drug discovery. Today, the advancements in computational power allow one to 
perform even microsecond (μs) simulations at the atomistic level. 

To start with any ligand binding, the primary requisite is the availability of the 
target protein structure. This may be a limitation as the number of experimentally 
determined structures is still less than the number of proteins existing in nature. The 
problem can partially be solved by its homologous proteins and by predicting the 
structure using homology modeling [23]. For proteins that do not exhibit any 
homology, their structures can be predicted de novo using Robetta, I-TASSER, or 
AlphaFold [24–26]. Once the structure is solved, the ligands can be docked into the 
rigid or semirigid target structures. The drawback, however, is that the docking 
process does not consider the flexibility of the target protein, and any critical fold 
change that occurs cannot be analyzed. To overcome this, all-atom MD simulations 
can be employed to obtain conformation ensembles of the target protein, which can 
be used later for ensemble docking. If there is a computational limitation, coarse 
grain simulation [27, 28] can be done, and representative conformations can be 
obtained. The atomistic models can then be converted using tools such as backward. 
py [29]. Once the structure is confirmed, the next step is to perform ensemble 
docking, where the ligand is docked against each structure of the conformational 
ensemble. Performing global docking against a conformational ensemble of the 
target protein with a large dataset of ligands requires computational power. How-
ever, the ligand-binding site can be identified using tools such as fpocket [30] and 
ConCavity [31]. Once the ligand-binding site is predicted based on the geometry of 
the ligand and the target protein, one can perform the docking more efficiently. 

There are several ways to understand the protein–ligand interactions and fold 
changes with respect to the binding. The most accurate way is to perform all-atom 
simulations for the ligand–protein complex. However, there are other docking 
algorithms supported with CHARMM forcefield that employ multiple strategies to 
obtain better protein–ligand interactions, such as CDOCKER [32], EADock [33], 
etc. Even though the methods use forcefields, they fail to account for the entropy 
changes, and therefore the accuracy of the final results in the docking is 
compromised [34]. Long timescale MD simulations are an easy and effective way 
to sample the protein–ligand interactions. Long timescale simulations allow deter-
mining not only the interactions but also the fold changes that occur in the target 
protein due to ligand binding. These simulation results enable direct comparison to 
the experimental results and serve as a benchmark for ligand-binding studies. 
However, as discussed earlier, they are expensive, and most research groups cannot 
access them. However, coarse-grained model simulation can work around this 
problem. The method maps several heavy atoms into one site, reducing the total



number of particles, thereby, the computational power. One can refer to Souza et al. 
[35] for a better understanding of the concept. The coarse grain simulations fail to 
provide the desired accuracy in the ligand binding, even if the back mapping is 
performed. Therefore, to achieve high accuracy and better binding free energy 
results, it is recommended to run a long timescale simulation of the ligand–protein 
complex. 
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Some simulations require the sampling of the conformational space to obtain 
statistically reliable results. Though this is not reliant on the resolution of the model, 
it is critical since there are systems with two states with high-energy crossover. To 
overcome this issue, there are various enhanced sampling methods such as Ligand 
Gaussian accelerated molecular dynamics simulations [36], metadynamics [37], 
Markov state models [38, 39], and replica-exchange molecular dynamics [40]. 

5 Case Studies 

In this section, we will discuss the docking and simulation of ligand–protein, how 
the pipeline works, and the analysis of the simulation results. For this, we will use a 
study by Sasidharan et al. where natural compounds were virtually screened against 
the tyrosine aminotransferase (TAT) from Leishmania donovani [41]. The initial part 
of the study concentrated on the virtual screening of 1,83,659 compounds from the 
ZINC15 database with the protein. The top 10 compounds were then docked 
independently against TAT using Autodock v4.2. For the docking, authors framed 
the grid around the active site of the TAT enzyme housing the K286 residue, and 
500 LGA docks were conducted to obtain the best-docked conformation. The top 
5 compounds with the highest binding affinity and interactions (Fig. 1) with the 
active site cavities were chosen and carried forward for simulations. 

The simulations were carried out using GROMACS v5.1.4. The complexes were 
energy minimized by steeped descent method and were temperature and pressure 
equilibrated using a modified Berendsen thermostat and Parrinello–Rahman 
barostat, respectively. The electrostatic interactions were computed with the help 
of particle mesh Ewald. The trajectory analysis showed that all complexes with the 
protein were stable throughout the simulation period. The RMSD of the Cα back-
bone (Fig. 2a) showed the stability of the complexes, while the Rg (Fig. 2c), along 
with solvent accessible surface area (Fig. 2d), corroborated the stability of the 
complexes. The RMSF analysis showed higher fluctuations in the N-terminal 
(Fig. 2b), and the reason for the same was deciphered by the authors in another 
study [42]. The study then concentrated on the binding of the ligands to the TAT. An 
average of 1–3 hydrogen bonds formed between the compounds and the protein 
(Fig. 3a). The authors eliminated the compound TI 2 from further studies owing to 
the presence of several metastable states (Fig. 3b). The simulation data showed that 
the compounds TI 1, TI 3, TI 4, and TI 5 could bind to TAT with high affinity. The 
authors proved the inhibitory activity of the compounds by in vitro inhibition 
kinetics.
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Fig. 2 Trajectory analysis of compounds TI 1–5 complexes with the TAT enzyme. (a) RMSD, (b) 
RMSF, (c) Rg, (d) SAS. The analysis of all four trajectories shows the stability of the TI complexes. 
(Figure adapted with permission from Sasidharan and Saudagar [41]) 

To understand the concept of PCA and MMPBSA, we use a study by Shweta 
et al. [43]. Here, the authors followed a similar protocol and simulated the top two 
protein–compound complexes. Besides RMSD, Rg, SASA, and RMSF, the authors 
also conducted the PCA (Fig. 4), which showed that the ligand-bound forms are 
more rigid than the apo-form. The changes in the large motions were limited upon 
binding to the ligands chrysin and genistein. Furthermore, MMPBSA calculations 
showed binding energies of -78 kJ/mol and -76 kJ/mol for genistein and chrysin, 
respectively, which were higher than the control ATP (-54 kJ/mol). The breakdown 
of the binding energy is given in Table 1. The binding energy contributed by each 
residue in the target protein using the MMPBSA tool can also be studied [44]. Sev-
eral such studies can be referred to understand the protein–ligand binding analysis 
using MD simulations [45–50]. 

The studies of protein–ligand interactions and transitions are not limited to small 
compounds but also protein–macromolecule interactions. Gosu et al. studied the 
effect of mutations on the MDA5 protein responsible for Aicardi-Goutières syn-
drome and Singleton-Merten syndrome [51]. The effect of mutation of residues like 
L372F, A45T, R779H, and R822Q was studied, and the interactions of the mutated 
proteins with RNA were analyzed. The authors represented the PCA of the simulated



Molecular Dynamics Simulation to Study Protein Conformation and. . . 121

Fig. 3 Hydrogen bond analysis between TI 1–5 compounds and TAT enzyme. (a) H-bond analysis 
of TI 1–3 with TAT. (b) H-bond analysis of TI 4 and 5 with TAT. (Figure adapted with permission 
from Sasidharan and Saudagar [41])



Component

complexes in porcupine plots (Fig. 5) that revealed the effect of mutations on the 
large-scale motions of the whole protein as well as the fold changes occurring over 
the simulation period due to mutations. Hence, MD simulations can be used to study 
both protein–ligand and protein–macromolecule interactions for both drug discovery 
and mutation effects [52–57].
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Fig. 4 Principal component analysis of large motions in the simulated structures. Apo-LdMPK4, 
ATP complex, GEN complex, and CHY complex with LdMPK4 are shown in black, red, green, and 
blue, respectively. (Figure adapted with permission from Shweta et al. [43]) 

Table 1 Binding free energy 
of MAPK4 with ligands ATP, 
GEN, and CHY 

Ligand 

ATP GEN CHY 

EvdW (kJ/Mol) -103.47 -104.923 -105.592 

Eelec (kJ/Mol) -3.588 -10.134 -11.382 

Gpolar (kJ/Mol) 60.086 46.500 49.818 

Gnon-polar (kJ/Mol) -7.973 -9.653 -9.007 

ΔGbind (kJ/Mol) -54.946 -78.211 -76.164
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6 Conclusions 

Currently, the field of simulation is making an enormous impact in understanding the 
atomistic details of macromolecules. MD simulations now help researchers to drive 
the wet-lab experiments based on the simulation data. A detailed conformational 
understanding of a macromolecule explains the dynamics of the ligand binding as 
well as the fold transitions that accompany the ligand binding. The accuracy and free 
energy calculations are more accurate than the docking scores and, therefore, can be 
relied upon. Though the dynamics of proteins happen at msec timescale in real time, 
it is not possible, at least at the moment, to simulate all the proteins to that extent. 
Meanwhile, it is challenging to understand the dynamics using wet-lab experiments. 
Therefore, researchers must balance these techniques and consider the trade-off to 
achieve the best possible results. This research area is advancing day by day, with 
improvements in algorithms and forcefields. With increased computational power 
and refined algorithms, scientists hope to make simulations widely available at lower 
costs. 
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Monte Carlo Approaches to Study Protein 
Conformation Ensembles 

Nidhi Awasthi, Rohit Shukla, Devesh Kumar, Arvind Kumar Tiwari, 
and Timir Tripathi 

Abstract The molecular dynamics (MD) simulation method is widely used to 
determine the protein folding sampling by applying various force fields. The results 
obtained by these methods give sufficiently good accuracy but are time consuming. 
The Monte Carlo (MC) algorithm is an efficient method to provide the protein 
sampling results within a short time period, as it calculates the average of ensembles. 
This chapter discusses the MC simulations as a promising approach for revealing 
protein folding dynamics and conformations. These methods offer reliable results as 
it employs statistical approaches. Using these methods, the thermodynamic proper-
ties can be investigated by averaging the ensembles of a protein. Further, to 
understand the reliability of results obtained by MC simulations, a case study of 
the properties of Trp-cage protein is also discussed. One MC integration step of 
Trp-cage protein was found to reveal the excellent sampling of MC. The simplicity 
and efficiency of the MC method enable studying involving larger systems of 
proteins and polypeptides. 

Keywords Protein folding · Conformation · Dynamics · Monte Carlo simulations · 
Molecular dynamics · Statistical approaches 

1 Introduction 

The mechanism of conformational changes plays an essential role in the function and 
regulation of proteins [1–3]. To analyse protein function, it is necessary to under-
stand the stability of the whole protein as well as its individual conformational
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sub-ensembles. Experimentally, it is challenging to directly observe the conforma-
tional changes at the single molecule level due to its dynamic nature at the micro-
scopic level [4, 5]. However, computational methods have emerged as more 
convenient tools for these studies by involving timescale steps [6–9]. Generally, 
simulation methods are used for understanding the mechanism of protein folding, 
which provides detailed information on folding like-intermediate complexes, barrier 
heights, etc.
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In the last two decades, a large number of studies have been performed that 
focused on understanding the mechanistic properties of folding of small peptides and 
proteins using certain force fields in simulation methods [10–16]. Various well-
known simulation methods exist, but the molecular dynamics (MD) method has 
been the most explored. This method has been limited by some admissible timesteps 
to track the atomistic changes, which are very small [17], while natural processes 
have larger inherent timescales. These timescales range from microseconds to 
seconds [18]. Hence, for capturing even a single folding step of a protein, it is 
essential to perform large numbers of MD simulation steps, which require high 
computational costs or supercomputers [19]. A specialized supercomputer can easily 
observe many fold transitions of small or large fast-folding proteins [20, 21] by using 
biophysical force fields like AMBER and CHARMM in certain solvent models 
[22, 23]. If supercomputers are not available, then multiple strategies can be used 
to perform the calculations using various force fields to improve the simulation 
protocol [24–26]. Amongst the possible simulating methods, MD simulations with 
solvent model enable to perform faster conformational sampling of proteins 
[27]. Although MD simulations have some limitations, they can provide accurate 
results for approximately 100 protein residues [28–30]. The numbers of residues 
depend on the complexity of the protein and the quality of the solvent [31, 32]. Apart 
from these methods, other techniques, like enhanced sampling methods, give more 
accurate results even at longer timescales [33]. Unfortunately, none of these methods 
can provide a straightforward analysis of the protein folding mechanism at larger 
timescales as it occurs in nature [34]. 

There is an alternate method known as Monte Carlo (MC) simulation, which 
essentially extends to explore the simulation approach as it has no inherent time-
scale. MC simulation provides all thermodynamic data, which can be reconstructed 
and provides kinetic information at a large timescale [35]. These thermodynamic 
data are usually extracted directly from the MD simulations [36]. MC simulation is 
based on some special moves (conformational changes), which can be designed not 
to follow the local force field so that in each step, the conformational change per 
energy evaluation may be larger for simulation. Hence the simulation focuses on a 
few specialized degrees of freedom of protein, such as the dihedral angle of proteins. 
These advanced features of the MC simulation methods are able to accelerate the 
molecular simulations of proteins and peptides by providing a suitable forcefield to 
the system. Generally, the calculation of multiparticle moves for a large number of 
molecules becomes complex and expensive, so the MC algorithm calculates only a 
small part of the protein and peptide system in a single move. Hence, implicit solvent 
models are more suited than explicit solvent models for MC simulations



[37, 38]. MC simulation calculations with an implicit solvent model can increase the 
simulation speed and give more accurate results in a short time. However, it has 
some limitations, such as hydrogen-bond representation, over-stabilized salt bridges, 
incorrect distribution of ions, temperature independency of free energy, etc. [39, 40]. 
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Since the 1990s, various program packages have been developed to understand 
the folding and unfolding behaviour of proteins and peptides by applying MC 
folding algorithms. The most popular model is the Rosetta model, which uses an 
all-atom as well as coarse-grained representation of proteins [41, 42]. This model 
implements a knowledge-guided MC sampling approach using various energy 
functions. Its result heavily relies on the data of experimental structures. So, for 
users, it is not compatible with other biochemical data obtained from large and 
complex protein structures. Usually, it is tough to define the topology of a structure 
that has never or rarely been observed in the protein data bank (PDB) [43], 
MC-based C++ code, and SMMP [44], a FORTRAN, which are known for simula-
tions of proteins. These are computationally very fast methods and have an excellent 
ability to capture the structural and thermodynamic properties of a set of sequences. 
Similarly, coarse-grained models like CABS (C-alpha, beta and side-chain) [45] for 
protein folding [46, 47] have been successfully applied to study the binding studies 
of intrinsically disordered proteins (IDPs) [48]. Due to large-scale dynamics, these 
models provide significant structural transitions and good conformational results 
with sufficiently good accuracy [42]. All known multiscale modelling techniques, 
like all-atom/coarse-grained, are used for the conformation and folding of proteins 
and peptides [49, 50]. MC methods are also used to predict missing protein chains or 
fragments [51]. However, MC simulations have some limitations as it is limited to 
employing specifically designed force fields and algorithms. These methods may 
impact their common usage. 

2 Monte Carlo Simulations 

In MC simulations, many conformations of ensembles are generated for solving the 
complex macromolecular system under a specific thermodynamics condition 
[52]. These configurations can be generated by applying some perturbations. 
These applied perturbations are extensively large, feasible and have a sufficiently 
high probability. MC simulation provides an ensemble of representative conforma-
tional changes rather than information on time evolution. MC simulation also plays a 
vital role in designing new algorithms of MD simulations for complex and hybrid 
protein structures [53]. 

The following sub-sections are dedicated to the underlying principles of MC 
simulation algorithms. In Sect. 2.1, we review some important notions about 
Lagrangian and Hamiltonian dynamics, which are common for both MC and MD 
simulations. In Sect. 2.2, we introduce the partition function and the probability 
density function, as well as the calculation of thermodynamics observables associ-
ated with a macromolecule, such as the hemagglutinin or the neuraminidase. The



partition function is instrumental in computing such observables. In Sect. 2.3, we  
explain how to efficiently sample the representative space. For this, we discuss the 
approaches of emission probability, transition probability, acceptance probability, 
and detailed balance theory. Sampling is useful only when performed in realistic 
experimental conditions. Hence, we explain how to sample in a canonical ensemble 
(with a constant number of particles, volume, and temperature) and in an isothermal-
isobaric ensemble (with a constant number of particles, pressure, and volume) in 
Sects. 2.4 and 2.5, respectively. Finally, in Sect. 2.6, we address the sampling 
problem in the presence of numerous minima. This is a significant problem, partic-
ularly when studying Haemophilus influenzae proteins, such as hemagglutinin and 
neuraminidase. 
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2.1 Lagrangian and Hamiltonian Dynamics (or How 
to Formulate the Problem) 

Lagrangian and Hamiltonian dynamics are applicable to both MD and MC simula-
tions. These dynamics are functions of some generalized coordinates, which provide 
a simple framework for understanding complex proteins or peptides [54]. The 
Lagrangian of any system gives the difference between kinetic energy and potential 
energy of that system, as shown in Eq. (1), while Hamiltonian define the sum of 
potential energy and kinetic energy of the system, as shown in Eq. (2). 

L q, _qÞ=K _qð Þ-U qð Þ ð1Þ

H q, _qÞ=K _qð Þ þ U qð Þ ð2Þ

where K _qð Þ is the kinetic energy and U(q) is the potential energy of the atomic 
system. The _qð Þ and (q) are generalized velocities and generalized coordinates. The 
generalized momentum is denoted by Eq. (3): 

p= 
∂L 
∂ _q

ð3Þ

The momentum ( p) is the function of Hamiltonian, which is obtained by the 
Legendre transformation of the Lagrangian, defined in Eq. (4): 

H q, pð Þ= 
3N 

n= 1 

pn qn - L q3N , _q3N ð4Þ

The Hamiltonian is given by Hamilton’s equations, as shown in Eq. (5):



ð
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∂H 
∂t 

= 0, 

_qn = 
∂H 
∂pn 

, 

_pn = -
∂H 
∂qn 

ð5Þ

where qn, p
n are generalized position and generalized momentum. 

2.2 Partition Functions, Probability Density Functions, 
and Expectation (or How to Compute Observables) 

The partition function of a system is used to determine the microstates associated 
with a macrostate and other thermodynamical properties such as free energies, 
enthalpy, ensemble average, and probability of occurrence of specific conformation. 
Hence, from the partition function, one can determine many other thermodynamical 
parameters. Due to these properties, partition functions are widely used in all MC 
simulations. The number of microstates is given by Eq. (6): 

Ω N,V ,Eð Þ=E0C Nf g dpN drN δ H rN , rP -E ð6Þ

where 

C Nf g = 
1 

h3N NA!NB! . . .ð Þ ð7Þ

where C{N} is a well-defined quantum factor, which accounts for the indiscernibility 
of the various atoms A, B, and so on, ℎ is the Planck constant, and δ(x) is the Dirac 
delta function. The number of states of constant energy E of any atomic system is 
counted by the functionΩ(N, V, E), which is directly related to the entropy as defined 
in Eq. (8): 

S N,Eð Þ= kB lnΩ N,V ,Eð Þ 8Þ

where kB is the Boltzmann constant. The partition function is defined in Eq. (9): 

Z N,V , Tð Þ= dpN drN exp - βH rN , pN ð9Þ

where



ð

ð

ð
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β = 
1 

kBT
ð10Þ

The canonical partition function is a function determined by the Hamiltonian of 
the corresponding macromolecular system. The probability of having the macromo-
lecular system in any state is given by Eq. (11): 

P rN , pN dpN drN = 
exp - βH rN , pNð Þ½ �dpN drN 

Z N,V ,Eð Þ : ð11Þ

Therefore, the average of any observable O is obtained by 

Oh i= dpN drN O rN , pN P rN , pN ð12Þ

So, the standard deviation associated with the observable is given by 

σ Oð Þ= O2 - Oh i2 ð13Þ

But, due to large number of degrees of freedom, it is impossible to integrate the 
partition function easily. It would be integrated into a multidimensional space. 

2.3 How to Sample Efficiently Thermodynamical Quantities 

The Monte Carlo integration method is the most popular method to solve 
multidimensional integration of partition function and probability function, using 
the equation: 

P ið ÞT i→ fð ÞA i→ fð Þ=P fð ÞT f  → ið ÞA f  → ið Þ 14Þ

where P(i) is the emission probability that the system is in the initial state, T(i → f ) is  
the transition probability from the state i → f, and A(i → f ) is the acceptance 
probability of such a transition state 

T i→ fð Þ= T f  → ið Þ 15Þ

The detailed balance equation then reduces to 

A i→ fð Þ
A f  → ið Þ = 

P fð Þ
P ið Þ = exp- β u fð Þ- u ið Þð Þ½ � 16Þ

A possible solution to this equation is



g

ð
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A i→ fð Þ= min 1, exp- β u fð Þ- u ið Þð Þ½ �f ð17Þ

2.4 Canonical Ensemble (NVT) Sampling (or How to Sample 
in Realistic Experimental Conditions) 

The configurational canonical partition function associated with such an ensemble is 
obtained by 

Z N,V , Tð Þ= drN exp - βu rN ð18Þ

The above equation can also be given as: 

Q N,V , Tð Þ=M Nf g Z N,V , Tð Þ 19Þ

where M{N} is constant, as: 

M Nf g = 
1 

h2 β=2πmA NA! h2 β=2πmB NB! ∙ ∙  ∙  
: ð20Þ

This constant takes into account the indiscernibility of the constituent atoms. For 
example, in the case of microcanonical ensembles, the probability is given as: 

PrNVT r
N drN = 

exp - βu rNð Þ½ �drN 
Z N,V ,T ,ð Þ ð21Þ

Hence the average value of the observable is given by 

Oh i= 
1 

Z N,V ,Tð Þ drN exp - βu rN o rN ð22Þ

For the canonical partition function, the acceptance probability associated with 
the MC method is given as follows: 

ANVT r
N → rN

0
= min 1, exp - β u rN - u rN0 ð23Þ

From the above canonical partition function, various thermodynamical quantities 
can be obtained, such as Helmholtz free energy, using the Eq. (24):



ð

ð

ð

ð
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F N,V ,Tð Þ= - kBT ln Q N,V ,Tð Þ 24Þ

But there are many quantities which are obtained at constant temperature and 
pressure. 

2.5 Isobaric-Isothermal Ensemble (NPT) Sampling (or How 
to Sample in Even More Realistic Experimental 
Conditions) 

Many experimental conditions are represented by isobaric-isothermal ensembles. 
For these ensembles, microcanonical partition function is 

Z N,P, Tð Þ= dV exp- βPV½ � drN exp - βu rN : ð25Þ

In case of indiscernibility of atoms, the partition function becomes 

Q N,P,Tð Þ= 
M Nf g
V0 

Z N,P, Tð Þ 26Þ

In the above partition function, the isotropic macromolecular structures are 
assumed deformed to maintain the pressure constant. In the case of anisotropic 
deformations, the partition function is modified as follows: 

Z N,P, Tð Þ= dHZ 0 N,P, T ,Hð Þδ detH-Vð Þ 27Þ

where H is the tensor associated with an elementary parallelepiped volume. The 
probability that a macromolecular system is in a state rN is given by 

PrNPT r
N drN = 

exp - βPV½ � exp - βu rNð Þ½ �drN 
Z N,P, Tð Þ ð28Þ

The Gibbs free energy can also be obtained by partition function, using the 
equation: 

G N,P,Tð Þ= - kBT ln Q N,P, Tð Þ 29Þ

The isobaric-isothermal acceptance probability associated with the MC method is



Þ
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ANPT r
N ,V → r0N ,V 0

= min 1, exp - β u r0N ,V 0 - u rN ,V � exp - βP V 0 -Vð Þ þ N ln 
V 0

V 

ð30Þ

Here the Metropolis algorithm is impaired by local minima [55]. The acceptance 
probability is observed by the local minimum of the potential energy, which is 
performed by sampling the macromolecular states [56]. 

2.6 Sampling and Local Minima (or When Temperature May 
Help to Escape Local Minima) 

In nature, there are various biomolecular processes in which a high energy barrier 
exists between the initial and final states [57]. For efficient macromolecular sam-
pling, overcoming this type of barrier height is essential. To overcome barrier height, 
a computationally expensive simulation method is used for sampling called Replica 
exchange [58]. Replica exchange (or parallel tempering) involves a certain number 
of non-interacting simulations called replicas. Each simulation is parallelly 
performed at its own temperature. Low-temperature simulation tends to local min-
ima, while high-temperature simulation tends to overcome barrier height and move 
between local minima. 

To better explore the sampling of macromolecular states, the replicas are period-
ically exchanged according to the following acceptance probability: 

AR i→ fð Þ= min 1, exp - βf - βi � u fð ÞjTf - u ið ÞjTið ð31Þ

After completing one exchange, the simulations resume normal r unless another 
exchange is performed. Generally, symmetrical functions are used for sampling, but 
instead of restricting, one can consider a nonsymmetrical sampling function. In the 
case of nonsymmetrical functions, the final conformation is given as: 

T i→ fð Þ= π u fð Þð Þ ð32Þ

Then the acceptance probability becomes 

A i→ fð Þ= min 1, 
π u ið Þð Þ
π u fð Þð Þ exp- β u fð Þ- u ið Þð Þ½ � ð33Þ

The above sampling is known as the bias sampling algorithm [58]. This consid-
eration increases the efficiency of large macromolecular chains.
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3 Advantages and Limitations of MC Simulations 

3.1 Advantages 

The MD simulation method is based on classical mechanics, where Newton’s 
equations of motion are used. In contrast, MC simulations are free from these 
restrictions. This helps to generate the new conformation of the ensemble of choice. 
MC method is based on statistical mechanics, where moves are nontrivial, and they 
can sample a large number of individual steps up to 1010 or more in equilibrium. 
Some specific MC moves can provide great flexibility to solve some specific 
problem by combining several simulations. Additionally, MC methods can be 
performed parallelly by using multiple CPU clusters. These advantages make MC 
simulations more convenient and useful than other simulation methods. 

3.2 Limitations 

Since MC simulations do not use Newton’s equation of motion, they cannot observe 
information on dynamics. The main disadvantage of MC simulation of proteins is 
the explicit solvent effect. The explicit solvent effect induces difficulties in large-
scale movement. Various moves of simulations of proteins that change the internal 
coordinates without moving the solvent particles help form a large overlap of atoms. 
It results in the rejection of trial configurations. However, the simulations with 
implicit solvent models do not show these drawbacks; hence these models are the 
most popular method for MC simulations of proteins. Another disadvantage of MS 
simulations is that there is no general, reasonable, and freely available program for 
protein simulations. This is because the choice of simulation moves and attempting 
rates vary for a specific problem. Nowadays, the MC module has been added to 
CHARMM software [59]. In the following section, we present a case study 
discussing methods and properties of MC simulations for Trp-cage proteins. 

4 Case Study of the MC Simulations of a Trp-Cage Protein 

The Trp-cage protein (PDB ID: 1L2Y) is a mini-protein of 20 amino acid residues. It 
has the property to fold rapidly and spontaneously and has been of high interest to 
both experimentalists and theoreticians [60]. Trp-cage plays a vital role in under-
standing the enhancement of protein stability and improving drug binding efficiency 
via mutations of different proteins [61, 62]. Additionally, for the last two decades, 
this protein has been used as a benchmark of force fields and modelling techniques to 
provide detailed structural and thermodynamic data [63]. We discuss a case study 
where authors performed the MC simulations of Trp-cage at 200 million MC steps



on the AMD EPYC 7551P node using 15 to 30 cores of 181 and 108 h of CPU time 
at 330 and 410 K temperatures. The structure of Trp-cage consists of α-helix (2–9 
residues), a single turn of 310 helix (11–14 residues,) and a hydrophobic core made 
of proline residues (Pro12, Pro18, Pro19) and Tyr3, Trp6 (Fig. 1a). 

Monte Carlo Approaches to Study Protein Conformation Ensembles 139

Fig. 1 Conformational landscape sampling of the Trp-cage protein (PDB ID: 1L2Y). (a) Super-
imposition of the native structure of Trp-cage protein (in blue) with the refolded structure (red) 
obtained from the MC simulation at 370 K (Full trajectory is shown in Fig. 2). (b) Free energy 
profiles as a function of the reaction coordinate Q (fraction of native contacts) at different 
temperatures calculated from the MC simulations. The refolded and intermediate ensembles were 
observed at Q ~ 0.73 and 0.45, respectively. The figure is adapted with permission from [59] 

Conformational folding is modulated via interactions between polar groups of the 
protein and water molecules. Hence, to understand the correct mechanism of folding, 
it is also essential to properly treat the solvation environment [64]. There are various 
solvent models used in simulations to correctly refold the structure of the Trp-cage 
protein. Here, the authors used a generalized Born-based implicit solvent model with 
the AMBERff99SB-ILDN force field. Figure 1a depicts the overlay of the native



(blue), refolded (red), and completely unfolded structures of the Trp-cage protein 
(green). The MC simulation run was performed from the unfolded Trp-cage with the 
fraction of native contacts (Q) of 0.07 (Fig. 2). The refolded structures matched well 
with the native Trp-cage as the Cα RMSD of the refolded protein was 0.86 Å at 
370 K with only minor deviations around the turn of the helix (Fig. 1a, red). This 
indicated the high quality of the force field as well as the sampling efficiency of the 
MC method with an accumulated acceptance ratio of 60%. 
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The free energy profile was estimated using the potential of mean force (PMF) 
projected on the fraction of native contacts (Q) to determine the folding temperature 
of the protein. This process is widely used in reaction coordinates for the folding 
process (Fig. 1b) [54]. It indicates how similar the native and predicted structures of 
a protein are, with Q ~ 0.9–1.0 being the closest to the native structure obtained in 
NMR. While the two primary states of the conformational ensemble describing its 
folded (Q ~ 0.73) and unfolded states were observed, a partially unfolded state 
(Q ~ 0.45) with an energy barrier of 1.20 and 0.80 kcal.mol-1 at 370 and 390 K, 
respectively, was also observed. The folded protein structure minimum (Q ~ 0.73) 
was broad, resulting from its weak stabilization due to implicit solvation. To resolve 
this issue, MD simulations with an explicit water solvent were used, where a Q of 
~0.9–1.0 for the folded Trp-cage was reported [64]. 

A broad range of folding temperatures of the protein was observed starting from 
370 K. At 330 K, only a single energy minimum was observed before a free energy 
surface with two minima appeared at about 350 K. The estimated folding tempera-
ture, i.e. the temperature when both minima are equally probable, is significantly 
higher than was experimentally observed, i.e. 315–317 K [62], or calculated using 
all-atom force fields with explicit solvation, i.e. 321–326 K [65], but it is consistent 
with the folding temperatures obtained using implicit solvent models (375–400 K). 
This is due to the lack of temperature dependence of the implicit solvent model. The 
generalized Born solvent-accessible surface area (GBSA)-type implicit solvation 
models used here are known to over-stabilize the folded states of proteins, especially 
those stabilized with solvent-exposed hydrogen-bond salt bridges [66, 67]. The 
breaking or formation of such hydrogen-bond salt bridges is the primary regulator 
of Trp-cage folding and refolding, inducing the observed increase in the folding 
temperature. 

This work on the refolded Trp-cage indicates the accuracy of the force field and 
MC method. A few refolded structures are shown in Figs. 3 and 4. The Cα RMSD of 
the refolded protein was 0.97 Å. The secondary structures α-helix and proline were 
present correctly in the refolded protein (Fig. 3) with Cα RMSD of 0.73 and 0.47 Å, 
respectively. Arg16 is among the most flexible residues in the refolded protein and 
cannot form the salt bridge in the refolded structure (while in the native structure, it 
forms a salt bridge) (Figs. 3 and 4). This is because the H⋯O distance between Asp9 
and Arg16 is far more than in the native structure. This outcome most likely results 
from the limitations of the implicit solvation model. Although the salt bridge was 
unstable in the MC simulations, the refolded Trp-cage structure conserves the two 
main secondary elements, with the most noticeable difference being an N–H⋯O 
hydrogen bond between Trp6 (H-bond donor) and Arg16 (H-bond acceptor) present
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Fig. 2 MC simulations of Trp-cage starting from the unfolded structure. MC trajectories at the 
transition temperature of 370 K reveal the change in the Q. Multiple folding and unfolding events 
were observed. The MC simulation started from the unfolded structure with Q ~ 0.07 (Fig. 1, green 
colour) (a) and Q ~ 0.12 (b, c). The figure is adapted with permission from [59]
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Fig. 3 Local minima representing the refolded conformers of the Trp-cage. The MC simulation 
started from the unfolded protein structure (see Fig. 2). The native and refolded structures are shown 
in blue and red, respectively. Asp9 and Arg16 form a hydrogen-bonded salt bridge (distance in the 
native state ~1.79 Å), and Trp6 forms a hydrogen bond with Arg16 (distance in the native state 
~2.03 Å), shown in yellow. The figure is adapted with permission from [59] 

Fig. 4 (a) Overlay of the different refolded conformers of Trp-cage, obtained from the MC 
simulations at the folding temperature. Asn1, Lys8, Arg16, and Ser20 are the most flexible residues 
and are marked. Trp6, Asp9, and Arg16 in the native structure are shown in green sticks, while 
those residues in the refolded state are shown in yellow sticks. (b) Heatmap of a particular residue 
RMSD changes in the different refolded conformers as a fluctuation from its position in the native 
form. The changes close to the native-like structure are shown in blue, while residues with high 
RMSD are in brown and chestnut brown. The figure is adapted with permission from [59]



at a distance of 2.03 Å (Fig. 2), which is stable in the refolded Trp-cage. This 
hydrogen bond, along with the salt bridge between Asp9 and Arg16, regulates the 
fast folding of the Trp-cage protein.
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5 Conclusions 

The MC simulation is a widely used method in the ab initio protein structure 
prediction. In this chapter, we discussed the advantages of MC simulations for 
revealing the conformations of protein folding and its structural dynamics. As MC 
simulations are based on statistical physics, they can provide thermodynamic prop-
erties of protein complexes by calculating the average of ensembles. It is also not 
limited by the force field parameters like the conventional MD simulation methods. 
In the MC simulation method, the partition function can also be obtained by the 
average of ensembles and provide information on various free energies of the 
complex. The MC method is used to explore the folding mechanism of the 
Trp-cage protein, where it performs well with less computational power. It will be 
interesting to apply the efficient MC algorithm with concerted rotations to larger 
systems and investigate its performance when replica exchange moves are included. 
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Abstract Proteins are essential units of life that govern several functions. Under-
standing their behavior is closely related to their conformations, native folds, and 
change in conformations. Thus, the dynamic information of protein becomes essen-
tial to understand its properties at the molecular level. The molecular dynamics 
(MD) simulation approach provides atomistic-level dynamic information about pro-
teins. However, more extended or complex MD simulations of protein are challeng-
ing to analyze and to gather meaningful confirmation from several snapshots of the 
dynamic system. To achieve it, i.e., analyzing MD simulation data, Markov State 
Model (MSM) is a powerful tool that has a statistical background. It represents the 
MD simulation system as a combination of finite memoryless states, i.e., states that 
are not dependent on prior states and transition probability among such states. MSM 
applications have grown from peptides to membrane protein simulations. The 
present book chapter sheds light on MD simulation’s role in protein dynamics and 
why MSM is required. The brief theoretical aspects of MSM techniques are dem-
onstrated. Lastly, the chapter discusses the application of MSM in different protein 
folding and dynamics. 
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1 Introduction 

Protein dynamics and folding have been challenging phenomena essential for the 
molecular-level understanding of protein function. Molecular dynamics 
(MD) simulation is a valuable tool that comprehends macromolecular structural 
and functional insights. Data assembled after the MD simulation study can confer 
good knowledge about the macromolecular structure and provide detailed informa-
tional insights [1]. 

1.1 Importance of Molecular Dynamics 

Proteins and nucleic acids are dynamic entities, and their dynamics play a significant 
role in their functions. Crystal structures stored at the PDB provide a halfway and 
limited perspective on three-dimensional (3D) construction. Especially protein mol-
ecules undergo crucial conformational changes during a particular function 
[2, 3]. One such change is the structural rearrangement in the protein molecule 
upon binding a substrate or inhibitor [4, 5]. This can be effectively verified by 
comparing apo and ligand-bound 3D protein structures. The conformational changes 
are usual parameters of enzymes’ catalytic mechanisms [6]. One of the common 
instances is loop movement or domain rearrangements that change the local com-
position of the active site’s chemical environment to perform a function. Sometimes, 
these alterations activate the catalytic process by bringing protein subunits together. 
Moreover, one can correlate protein function only when dynamic properties are 
considered [7–9]. 

There are several ways to deal with the conformation correlated with the relevant 
macromolecular function. One of the conventional ways is to gather experimentally 
determined structures covering the conformational space using X-ray crystallogra-
phy, nuclear magnetic resonance (NMR) spectroscopy, or cryo-electron microscopy 
(cryo-EM) methods. These methods can be used to study structures of macromole-
cules in different environments or bound with other substrates or ligands. However, 
these experimental studies are time taking and need specific high-end instruments. 

On the other hand, theoretical strategies are the most helpful method for getting 
an image of the macromolecular dynamic properties of a protein. Protein folding 
occurs in a timescale of a few microseconds, allosteric transitions in microseconds to 
milliseconds, relative motions of protein domains in nanoseconds to seconds, and 
dynamics of side chains in picoseconds to nanoseconds (Fig. 1)  [10]. Additionally, it 
is observed that longer timescale motions can influence shorter timescale dynamics 
and vice versa. Hence, long timescale simulations have always been a well-chosen 
option [11, 12]. Long-time simulations provide an opportunity to understand the 
flexibility of proteins and their related ensemble of alternative structural states, 
which are crucial for understanding the folding and dynamics of proteins [13, 14].
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Fig. 1 The figure represents the protein motion concerning the time axis. The MD simulations must 
be performed at femtosecond time steps to capture the bond stretching motion and similarly for 
other represented motions that are more time-scaled atomistic. Hence, more computational power is 
required 

Protein-conformational changes play a vital role in its functioning [15, 16]. Hence 
it is not enough to study just one PDB conformer. Modern-day advances in simu-
lation algorithms and calculations have promoted the idea of “conformational 
ensembles” as an option in contrast to examining a single structure from PDB. 
These ensembles or conformers can be examined to determine thermodynamic 
properties, entropy, free energy, conformational changes, or protein folding phe-
nomenon [16–18]. There are two significant difficulties in analyzing MD simulations 
of biomolecules: adequate conformational sampling and exact physical force fields. 
Despite remarkable improvements in modern computing capacity, conventional MD 
(cMD) simulations are still essentially constrained to shorter timescales than those 
demonstrated by various biomolecular movements and functions [19–22]. Hence, to 
gather multiple conformations, a specified tool is required. 

Furthermore, protein folding remains one of biology’s fundamental and least 
understood phenomena. This fascinating phenomenon of conversion of the primary 
sequence of a protein to the native 3D structure remains less understood. Small 
molecular weight proteins with ~10–100 amino acid residues fold in the microsec-
ond to sub-millisecond timescales, known as “fast-folding” proteins. They are 
magnificent model systems to study and analyze protein folding through long 
timescale cMD simulations in explicit water [23]. Protein folding needs a broad 
measure of conformational examination and computational ability to describe the 
free energy landscape appropriately. Advancement in computation with more 
extended simulations is insufficient to expand the conformational sampling in the 
molecular framework. The complicated state of the free energy landscape makes the 
majority of the simulations investigate only a small region around the energy least 
near to the initial conformation. With the accessibility of the current advanced HPC 
systems, a conspicuous methodology is to play out a series of parallel simulations



with several initial energy-minimized conformations. Although this could be profi-
cient, it requires detailed information on the framework to simulate and cannot be 
applied as an overall strategy. 
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Nevertheless, protein folding has been analyzed using cMD and utilizing pro-
ductive examining methods such as replica-exchange MD [24], Markov State 
Models (MSM), biasing MD simulations such as bias-exchange metadynamics 
[25], and transition path sampling [26]. This chapter sheds light on how MSM 
helps tackle protein dynamics and folding problems. 

1.2 Motivation Behind Using MSM Technique 

At times, protein folding and dynamics require long timescale simulations, or the 
system becomes highly complex or enormous (such as in the case of membrane 
protein simulation). The first microsecond-length all-atom MD simulation of a small 
protein was carried out by Duan and Kollman [27]. Further advancements in 
computer power open up possibilities of MD simulations of thousands of protein 
atoms, long time-scaled simulation of proteins, etc. Biomacromolecules frequently 
perform their functions through dynamic transitions between conformational states. 
For instance, the AdeB efflux pump undergoes carbapenem resistance through 
conformational modifications [28]. By performing long timescale dynamics based 
on several short MD simulations, MSM has emerged as a prominent method for 
bridging this timescale gap [2, 29]. 

Representing physical, chemical, or biological systems using stochastic processes 
is standard practice. The objective is to analyze the stochastic model and roughly 
compute the exciting properties of the system. Direct sampling and building a 
coarse-grained model of the system are two methods for carrying out such analysis. 
In a direct sampling strategy, one attempt to produce a statistically significant 
number of occurrences representing the system property in question. Here, making 
sufficient statistics for accurate estimates requires much computation. Estimation 
through direct numerical simulation is impossible, especially if the state space is 
continuous and has a high dimension [30]. In the coarse-grained model, 
discretization of the systems state space is used. This is achievable using MSM. 
The advantage is that it uses discrete finite space. Due to this, the vast systems 
became finite discrete models that can be solved numerically to find their properties. 
It uses transition path theory (TPT) to analyze systems’ discrete states. In summary, 
the analysis of the ensemble of reactive trajectories, or trajectories that originate from 
a specific set of states A and go to B. Hence using such a technique provides a more 
comprehensive analysis of biological protein simulations.
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2 Markov State Model 

A theoretical model, often known as the Markov State Model (MSM), is frequently 
used to study the dynamic nature of biological systems. The basic idea of MSM is 
making the square matrix known as the transition probability matrix (TPM). In the 
case of protein dynamics, MSM can be used after obtaining initial data from MD 
simulation trajectories. 

2.1 Building of MSM 

To develop MSM, an adaptive sampling algorithm is frequently used. Adaptive 
sampling is a statistical approach for solving protein dynamics on large timescales 
(100 μs to the ms) to sample conformational transitions. The adaptive sampling 
algorithm is based on iterations, which are used until the desired sampling criteria are 
reached [19]. The adaptive sampling process is divided into three steps: (i) to run an 
MD simulation and get many short trajectories, (ii) build an MSM using trajectories, 
and (iii) run a simulation trajectory based on obtained results from the MSM. MSM 
uses a matrix, so it needs microstates that can be prepared in two ways: one is based 
on geometric distributions (distance metric), and the other is based on a free energy 
map (kinetic-based metric). The preferred one is to choose free energy minima, i.e., 
kinetic distribution, instead of the geometric distribution. The pathway of MSM is 
illustrated in Fig. 2. 

2.2 Microstates and Macrostates Generation 

Microstates are required to construct MSM. They are the nonoverlapping discrete 
configurational space. Every transition among these microstates is not dependent on 
the previous state. This phenomenon is known as memoryless transition. In this 
regard, one needs microstates where shifts can happen smoothly and rapidly. For 
this, there is a requirement to group configurations, often known as clustering. Since 
many clustering techniques are available, one must choose them wisely. One of the 
clustering techniques is choosing a distance metric. The k-centers, k-medoids, and

Fig. 2 The schematic pathway of the Markov State Model (MSM)



hybrid k-centers/k-medoids clustering are some of the essential clustering algo-
rithms. To determine states, one needs to go through the MD simulations first and 
then find the suitable conformations based on either the root mean square deviation 
(RMSD) chosen appropriately 2 to 3 Å or based on the energy barriers. Most of the 
time, it is assumed that as the degree of structural similarity is higher, the 
corresponding kinetic similarity is also higher. It is known as the kinetic clustering 
of microstates into larger macrostates [31].
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In Markovian microstate formation, there is a timeframe difference at which the 
states occur, often known as lag time or Markovian lag (τ). Hence, after lag time τ, 
the state will not be dependent on the previous state. MSM building requires a 
transition probability among these microstates, which depends on the number of 
microstates and lag time. Markovian lag should be large enough but not too large so 
that it does not alter significantly from other trajectories, which are often considered 
microstates. Markovian lag is just a method of selecting steps for trajectories that 
must be chosen carefully. 

Additionally, in the case of tens of thousands of microstates or huge system sizes 
(such as membrane protein simulation), kinetic-based clustering can be performed 
that are supersets of microstates and are named macrostates. These macrostates are 
obtained using coarse-graining the model. This method collects microstates that are 
quickly clumping together and are collected to form macrostates. Available lumping 
procedures from microstates to macrostates are perron cluster cluster analysis 
(PCCA), their improved version (PCCAC), Bayesian agglomerative clustering 
engine (BACE), and super level set hierarchical clustering (SHC). 

2.3 MSM Model and Validation 

After obtaining the microstates, the next step is constructing the transition count 
matrix (TCM). It is a matrix that describes the transition from one state to another. 
The transition count matrix in general form is shown below: 

M = 
a11 a12......... a1n 
a21 a22......... a2n 
⋮ 
an1 

⋱ ⋯  ⋯  
an2 ⋱ ⋯  ann 

where aij denotes the transition from ith state to jth state. For example, if the states 
chosen from trajectories named A, B, and the trajectory are given as: 

Trajectory : AABBBABABAABB: 

Also, if the trajectory is chosen one step, then the number of transitions from A to 
A is 2 (NAA = 2), from A to B is 4 (NAB = 4), from B to A is 3 (NBA = 3), and from 
B to B is 3 (NBB = 3). Then the TCM can be written as mentioned in Table 1.



s

A B

2 4

3 3

A B

2 3

4 3
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Table 1 Transition count 
matrix representing the transi-
tion between states A and B 

From\To 

A 

B 

Table 2 Transpose of the 
transition count matrix 

From\To 

A 

B 

The transition count matrix is usually not symmetric, so it is necessary to make a 
symmetric matrix and any symmetric matrix. One must follow the symmetry 
property of the matrix, which is defined as any (square) matrix. It is written as the 
sum of a symmetric matrix and an antisymmetric matrix [32]. 

M = 
M þMT½ �

2 
þ M-MT½ �

2 

where MT is the transpose of M, [M + MT ] is symmetric, and [M - MT ] i  
antisymmetric. 

This matrix should be symmetric because the transition between states depends 
not only on the forward direction but also on the reverse direction and is transpos-
able. The transpose matrix describes moving from one state to another in either a 
forward or reverse direction. The transpose of TCM is shown below: 

MT = 
a11 a21......... an1 
a12 a22......... an2 
⋮ 
a1n 

⋱ ⋯  ⋯  
a2n ⋱ ⋯ ann 

For the transpose matrix, the row (horizontal elements) is changed into a column 
(vertical components) and vice versa, as shown in Table 2. 

Averaging the transition matrix counts by adding a transition matrix, and their 
transpose matrix gives symmetry. 

Msymm = 
M þMT 

2 

The symmetry matrix is shown below: 

Msymm 
ij = 

1 
2 

a11þa11 a12þa21......... a1nþan1 
a21þa12 a22þa22......... a2nþan2 

⋮ 
an1þa1n 

⋱ ⋯  ⋯  
an2þa2n ⋱ ⋯  annþann 

For the present example, the symmetric matrix is shown in Table 3. 
After this, reversible TPM will be calculated for each element of the matrix. There 

are two requirements for the TPM that must be rigorously followed. First, the total



A B

A B

probability in each row is equal to unity, and second, elements should be nonneg-
ative. There is no negative value meaning because probability only contains values 
between zero and one. Another essential point about transition probability is that it 
depends only on the time difference, i.e., the transition should be homogeneous [33]. 
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Table 3 Symmetry matrix 
for present trajectory 

From\To 

A 2 3.5 

B 3.5 3 

Table 4 The transition prob-
ability matrix for a given 
trajectory 

From\To 

A 0.222 0.778 

B 0.636 0.364 

Pij = 
Msymm 

ij 

j 
i M

symm 
ij 

The transition probability matrix is shown below: 

Mprob = 
P11 P12......... P1n 

P21 P22......... P2n 
⋮ 
Pn1 

⋱ ⋯  ⋯  
Pn2 ⋱ ⋯  Pnn 

For the present example, the transition probability matrix will be shown in 
Table 4. 

Auxiliary equation : M- λIj j= 0; 

where I is an identity matrix, and λ is for eigenvalues. 
After solving the auxiliary equation for the TPM, one can get the eigenvectors 

and corresponding eigenvalues. The total sum of eigenvalues is to be zero. From 
eigenvalues data, one can analyze that the most positive value gives the most 
fluctuation from the equilibrium states, and the least negative value is in the most 
equilibrium states. There are several methods and tests to validate the models, such 
as Chapman–Kolmogorov equation model-based test, correlation function test, 
Bayesian Model selection, Swope–Pitera eigenvalue test, etc. 

3 MSM to Understand Protein Folding and Dynamics 

The initial studies of using MSM were started by studying peptide folding [34–36] 
and other small systems [37]. Further, it was applied in protein folding, protein– 
ligand binding, nucleic acids, and other biological problems (Fig. 3). It is used to



analyze small-timescale and large-timescale simulations to gather relevant informa-
tion. We now discuss how MSM is used to understand protein folding and dynamics, 
focusing on ensemble sampling and conformational fluctuations. 
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3.1 Peptide Modeling 

Researchers have tried to address the issues related to understanding the mechanism 
of protein folding and finding the nature of folds. MD simulations have been 
regularly used along with experimental studies. In 2004, Swope et al. developed 
an algorithm to study the kinetics of protein folding. They applied it to a small 
peptide, a C-terminal alpha-hairpin motif from protein G. They used a Boltzmann-
weighted ensemble to formulate the transition function from MD simulation 
[35]. They found the pattern and number of hydrogen bonds in a peptide. The 
Markov model depends on finding the finite number of metastable states; thus, 
identifying them is a critical and essential step. Hence, the clustering algorithm

Fig. 3 Applications of MSM in protein folding and protein dynamics



was applied to get kinetics-based states that were long-lived in dynamic systems. 
This kinetics-based clustering was used by Noe et al., who tested ALA8 and ALA12 

peptides [36]. This study, by Noé et al., brought a new direction to form metastable 
states, which consider dynamic behavior and not geometric proximity. Following 
this method, the automated algorithm was proposed, which detects the kinetically 
metastable states and was tested on three peptides [38]. After this, the master 
equation was developed by Buchete & Hummer for studying MD simulation of 
peptide folding at an atomistic level [39]. ALA5 peptide was used for the study, 
which was intended to form a small helix. In recent studies, this technique has been 
used to study peptides like amyloid-β peptide (Aβ), which is responsible for 
Alzheimer’s disease [40].
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3.2 Protein Folding 

Protein folding prediction through an in silico approach has been a mystery since the 
inception of protein simulation. Protein folds have numerous possibilities, as stated 
by the Leventhal paradox [41]. However, protein folds within a few microseconds in 
natural states and retains its native fold to function [42]. At the same time, predicting 
protein folding, understanding different folding conformations, and the folding rates 
also matter [43]. Several mechanisms have been proposed to explain the protein 
folding process, from a simple two-state model [44] to more complex models 
[45]. Also, it has been observed that some proteins do not fold and exist in an 
intrinsically disordered state [46]. 

Additionally, the misfolding of protein also occurs and has been observed in 
neurodegenerative disorders [47]. Thus, gathering the information on the folded and 
unfolded states is not enough, but the intermediate, misfolded, and disordered should 
also be analyzed. MSM uses the MD simulation data to find transition probability 
between different finite states. Initially, the model is constructed using geometric 
conformation similarity [48, 49]. The obvious choice is to use RMSD between the 
conformations by limiting it to a smaller cut-off value [50]. However, the RMSD is 
based on a protein backbone and is used to generate distance metrics. Hence, side 
chain and dihedral angle flip may hinder the results. The assumption is that the 
conformations with smaller deflections may have similar kinetic stability. However, 
finding more kinetically relevant metastable states should be carried out. Different 
clustering algorithms have been used [51], such as k-centers clustering, k-medoids 
clustering, and a hybrid of both k-clustering methods. The k-center clustering 
algorithm aims to find clusters with approximately the same radius and map different 
conformations to the nearest center of the cluster so that the distance from a distance 
is minimum. Li et al. & Voelz et al. used this clustering algorithm to improve the 
microstate generation efficiently [29, 52]. In the case of k-medoid clustering, the 
optimization is performed for the average distance between the center and other 
cluster points. In protein folding, this algorithm creates many clusters in the folded



scenario and very few in the unfolded system [53]. The hybrid approach of both the 
k-clustering techniques was used to build MSMBuilder2 [54]. 
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3.3 Protein–Ligand Binding 

Analyzing the interaction of a protein with its substrate/inhibitor can provide critical 
information about the protein’s function [5, 55]. The binding of small molecules to 
proteins or detecting new binding sites could be performed using MSM methods. 
Earlier, binding kinetics has been studied by constructing MSM to find long-lived 
intermediates of trypsin inhibitors [56]. The induced fit model (conformation 
changes due to ligand binding) and conformation selection model (ligand bind to 
protein without changing in protein’s conformation) are used to detect protein– 
ligand recognition [57–59]. But later, it was observed that both are found in real-
life scenarios [60–62]. In an earlier study to find the contribution of both methods, an 
analytical model based on a three-pronged approach of MD simulation, flux, and 
MSM was developed [63]. The choline-binding protein (ChoX) was used as a case 
study, and MD and MSM methods were used to find parameters for flux 
analysis [61]. 

3.4 Analyzing Intrinsically Disordered Proteins 

Intrinsically Disordered Proteins (IDPs) are proteins that do not have a stable 3D 
structure. They bind to nucleic acids or other proteins for their functions. IDPs are 
dynamic ensembles that continuously change their internal conformation with high 
structural heterogeneity [64, 65]. However, IDPs are responsible for several cellular 
functions and are involved in many diseases like diabetes, cancer, neurodegenerative 
diseases, and cardiovascular diseases [66–69]. While interacting with partners, IDPs 
are coupled binding and folding reactions, which is essential for their function. 
Similar to ligand binding, induced fit, conformational selection, and a combination 
of both models are used to study IDPs. However, the kinetics of the binding-folding 
reaction, specifically binding to a partner or conformation without a partner, requires 
detailed investigation [70, 71]. Here, MD simulation can provide a contemporary 
way to analyze IDP folding at the atomistic level. To achieve this, MD simulations of 
IDPs should be performed so that the whole binding-folding pathways can be 
analyzed. Such simulation trajectories are complex to study; however, MSM tech-
niques can help to identify metastable states in the pathway and the transition 
probability [72, 73].
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3.5 Native State Conformation Changes 

Generally, the rational structure-based drug design does not take into account 
protein-conformational changes. Approximately 15% of proteins have deep active 
sites related to their activity [74]. Hence, conformational heterogeneity is essential to 
understand protein behavior. This could provide information on the novel active 
sites or transient catalytic sites, which are allosteric or can block protein–protein 
interaction [75–78]. Since MD simulation can provide the system’s dynamical 
behavior, if coupled with MSM, it can provide a set of ensembles where the 
metastable state is in an equilibrium state. Also, the advancement in MSM to capture 
kinetic and thermodynamic properties makes it a more viable option to identify the 
transient active site. There are several examples where similar approaches have been 
used to find cryptic pockets and allosteric sites. Among such studies, the TEM-1 
beta-lactamase was used and observed that several such allosteric sites were present 
[79]. Such studies could also be performed with novel proteins to find active or 
allosteric sites. 

4 Summary 

Advancements in computational power, such as parallel programming and GPUs, 
have made the MD simulation more achievable. However, analyzing the simulation 
data is challenging. MSM is based on finite ensembles and uses clustering methods 
to create ensembles. Before MSM, geometric clustering was used, but MSM pro-
vides enhanced metastable states, which means it is the kinetic energy-based state. It 
is a coarse-graining of a system’s dynamics, which depicts the underlying free 
energy landscape that governs the system’s structure and dynamics. Identifying 
states in a kinetically relevant scheme and effectively using state decomposition to 
construct a transition matrix are the two main issues for creating an MSM. To build 
the MSM model, the traditional geometric clustering method is used to develop 
microstates. These microstates are further used to build a transition matrix. This step 
takes care of finding kinetically related microstates. This information is used to build 
MSM. However, adaptive sampling is used to improve the MSM model. Further, 
validations can be done by Bayesian Model selection, Swope–Pitera eigenvalue test, 
and other such tests (Fig. 4). 

Protein folding and the dynamics of the native 3D structure are critical biological 
phenomena [80]. MD simulation can provide a way to understand these processes in 
millisecond simulations [81–83]; however, analyzing such data requires sophisti-
cated protocols and methods [84, 85]. MSM provides a convenient and interpretable 
solution [86]. With the current advancement in computational power and algorithm, 
the use of MSM has increased and will continue to grow. This technique can also 
analyze and comprehend complicated systems such as membrane proteins, peptide
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folding, IDPs, and other biological systems; hence, it is emerging as a critical in 
silico approach.
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Enhanced Sampling and Free Energy 
Methods to Study Protein Folding 
and Dynamics 

Muthuraja Arun Pravin and Sanjeev Kumar Singh 

Abstract A virtual study of the physical and chemical behaviour of particles in the 
energy space is referred to as computer simulation. The interaction of biomolecules 
and atoms during conformational changes is studied through molecular dynamics 
(MD) simulation. MD simulation complements the experimental results by provid-
ing a theoretical perspective of the real-time environment. However, the sampling of 
configuration is limited to a definite timescale due to free energy barriers. This free 
energy barrier arises due to the energy gap between initial and closing entropy in 
biomolecular structural transition. To deal with this biophysical problem, various 
enhanced sampling methods have been developed that are classified into collective 
variable-based and collective variable-free approaches based on the algorithm of the 
sampling method. This chapter discusses the numerical aspects of sampling 
methods, followed by a review of some of the most commonly used techniques in 
MD simulation and enhanced sampling. Lastly, a combined enhanced sampling 
method has been discussed. 

Keywords Molecular dynamics · Collective variables · Free energy calculation · 
Accelerated molecular dynamics · Metadynamics · Umbrella sampling 

1 Introduction 

Proteins are a major component of all living organisms and play pivotal roles in 
biological processes such as enzymatic reaction, replication of nucleic acids, cellular 
organization, stimuli, and carrying molecules within and outside the cell. The 
structure of the protein is made up of a linear sequence of amino acids. This 
amino acid sequence gives protein the native conformation and folding in the 
cellular environment [1, 2]. The arrangement of the tertiary structure of proteins 
determines their location in the cell and overall function. Although proteins are
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visualized and represented in a static form, their actual functions are dictated by their 
dynamic nature. To study the dynamic nature of proteins, computer-based simula-
tion methods were developed to study the movements of atoms and molecules [3]. 
Since the first simulation of biomolecules, both power and methodology have been 
improved tremendously, which helped researchers to solve complex problems such 
as diseases related to protein misfolding and structural changes due to mutations [4].
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A molecular dynamics (MD) simulation involves the movement of atoms in a 
biological system for a particular period of time to study real-time dynamics. By 
comparing MD trajectories with experimental results such as neutron scattering and 
nuclear magnetic resonance (NMR), one can get information on the dynamic 
properties of biomolecules [4, 5]. In normal-sized systems, MD simulations take a 
few microseconds, and in larger systems, they are even shorter. Simulations using 
MD are only reliable if they last long enough to cover all relevant components 
[6]. Due to unexplored regions in configurational space, most MD trajectories are not 
ergodic. In MD, timescales often differ from biological processes at the cellular level 
[7]. As a result, we get inadequate sampling and convergent simulations of biomo-
lecular systems, which also leads to unreliable calculations of free energies. Since 
the mid-1980s, numerous enhanced sampling methods have been tested to resolve 
the problem of insufficient sampling and conformational studies [8]. Biomolecular 
conformational changes have historically been studied using molecular simulations 
as a method of sampling [9]. However, biomolecules exhibit rough energy land-
scapes with high energy barriers [10], which can lead to a nonfunctional state 
affecting conventional simulation. Protein activity that depends on large conforma-
tional changes, such as catalysis, is characterized by a large amplitude [5]. When 
transporting through a membrane, transporters undergo large conformational 
changes as they gate substrates [11]. The conventional MD simulation method 
cannot be used for long-scale simulation. An enhanced sampling approach has 
been developed to resolve free energy barriers in protein dynamics [12]. Conven-
tional simulation methods have been unreliable with energy calculations [13]. There-
fore, advanced sampling methods have been developed to study the flexibility of 
protein at its true biological level [14]. This chapter describes the theoretical 
understanding of enhanced sampling methods and their application in biomolecular 
simulations [15, 16]. Sampling methods are categorized into two broad classes: one 
that adds bias potentials to predefined collective variables (CVs) (CV-based) and one 
that does not involve CVs (CV-free). Further, a brief overview of algorithms used in 
various sampling methods is discussed. 

2 Protein Folding and Dynamics 

Protein folding is a biological process which determines the protein structure and 
subsequent function [17]. Protein folding is a unimolecular reaction that occurs 
between microseconds to hours at room temperature [18]. Thus, understanding the 
physicochemical process involved in protein folding and dynamics is essential



[19]. The major physiochemical process which underlines protein folding are sec-
ondary structure formation and kinetics of the protein folding [20]. The kinetics and 
free energy are studied through the protein energy landscape funnel, which illustrates 
the enthalpy and entropy of the folding process [15]. A complete understanding of 
protein folding requires governing all the factors, including conformational states of 
protein in the presence of water at varying temperatures [21]. Protein and water 
molecules form hydrogen bonds, which correlates with the hydrophobic effect. The 
hydrophobicity of a protein depends on surface charges, as shown in Fig. 1. The 
folding of protein involves an ensemble of structures with a small number of 
uniquely defined structural intermediates [22]. These ensemble structures are very 
crucial in understanding the process of protein folding [21]. However, due to 
limitations in computer simulations, major structural intermediates are not sampled 
well [23]. Therefore, methods for calculating free energy using enhanced sampling 
were discovered to assist in solving the problem of studying protein folding and 
dynamics [24]. Enhanced sampling techniques generally increase sampling effi-
ciency. In order to modify the effective temperature, bias potentials are introduced, 
and the potential energy is modified [25]. This chapter briefly discusses sampling 
and free energy calculations using enhanced sampling. It also examines methods 
based on collective variables, such as metadynamics and steered enhanced sampling 
[26, 27]. We provide not only the hypothetical perspective but also their numerical 
implementation and projection for advancement in enhanced sampling methods. 
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Fig. 1 Cartoon and 
electrostatic surface 
representation of the 
monomeric and dimeric 
forms of a protein
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3 Free Energy and Sampling Methods 

Molecular dynamics is an efficient technique to sample the conformational space of a 
system with ergodic behaviour where all the important configurations can be 
accessed. While sampling the phase space of a quasi-non-ergodic system, one 
needs to analyse the nature of the initial and closing state of simulation in order to 
compute the change in free energy of intermediate states. In thermodynamics, the 
free energy of a system is called Helmholtz energy or Gibb’s free energy of the 
system. The free energy calculation consists of the following elements: 

1. A Hamiltonian distribution model. 
2. An enhanced sampling method. 
3. A method to estimate the thermodynamics of a system. 

The Gibbs energy of a system in a constant volume and temperature (NVT) 
ensemble is given by 

G= 
1 
β 
lnQ ð1Þ

β= 
1 
kβ 
T ð2Þ

where Q is the partition function of the system. 
The partition function provides the number of states that are accessible to a 

particular temperature. A protein may have N number of dynamic states and energy 
at different conformations. The probability of finding the system in the state K is 
given by the Boltzmann distribution 

PK = e

- βEK 

k e- βEK ð3Þ
Q= 

k 
e- βEK ð4Þ

For a macroscopic system in thermodynamic equilibrium (no energy flow along 
the system) 

Q= 
1 
h3n 

N! e- βH p,qð Þ dpdr ð5Þ

where h is the Planck constant, N is the number of particles, and H is the 
Hamiltonian describing the total energy of the system.
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H p, qð Þ= 
i= 0ð ÞNP2 

i 

2m 
þ v qð Þ ð6Þ

where V is the potential, which is given by a force field in classical MD. 
For complex systems, an analytical expression for Q (Eq. 5) cannot be derived 

due to the high free energy barrier in the intermediate state. Thus, enhanced sampling 
techniques are used to study the intermediate states of a protein. The enhanced 
sampling has been categorized into CV-based sampling and CV-free sampling. 

3.1 Collective Variables and Free Energy 

MD simulations are used for the in silico studies of the dynamic nature of biological 
molecules using atomic coordinates. Since atomic coordinates are associated with a 
dimensional problem, collective variables (CVs) are introduced to quantify the 
particular property of a simulated system. CVs are atomic coordinate functions 
used to describe certain motions or transitions. For example, the study of the atomic 
distance is given by CV, which can represent the bond formation and arrangement 
[28]. For different properties of a system, CV can be used to describe the system 
more efficiently. 

The collective variable of a system at a given point is given by si and is equal to 
the configuration of q mapping to si. 

P sið Þ= δ s qð Þ- s½ �h i ð7Þ

The delta function takes si considering all possibilities s(q), and the bracket hi
represents the all-canonical ensemble. The probability of obtaining free energy is 
given by 

G Sið Þ= kBT ln δ s qð Þ- s½ �h i ð8Þ

where KB represents the Boltzmann constant and T denotes temperature. 
Based on the Gibbs free energy G(s), the transition state is calculated by moving 

from one CV region to the adjacent one, which is represented in Fig. 2. The figure 
illustrates the energy landscape and the state of transition from A to B, with  C as the 
intermediate state. The overall transition rate depends on the level of the free energy 
barrier compared to the thermal energy KBT, according to the Arrhenius equation. 

VA→B = v0 exp
-ΔG{ 

KBT
ð9Þ

where V0 is a prefactor and ΔG{ is the free energy difference between state A and 
the transition state.
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Fig. 2 A folding funnel representing the thermodynamics of protein folding during translation 

ΔG{ =GC -GA = -KBT ln 
δ s qð Þ- sC½ �h i
δ s qð Þ- sA½ �h i ð10Þ

A complete configuration of CV space is possible in a perfectly ergodic system. 
The reaction coordinate suggests that there is enough transition which results in the 
crossing of A and B. The free energy can be calculated in the histogram into a 
probability P(si) via Eqs. (8) and (9). The histograms are used to estimate the 
differences in free energy between discrete states. It is possible to calculate thermo-
dynamic components of energies using these histograms [29]. Therefore, CV-based 
methods are essential for enhanced sampling in an MD environment. To study the 
enthalpy and entropy of the system with varying energies, the sampling technique is 
used along with MD simulation (Fig. 3). 

4 Collective Variable-Based Sampling 

This method involves the addition of bias to the numerical function. It is used to 
calculate the potential energy of unaccessed regions in the energy landscape 
[30]. The bias selection is much more important than the overall prediction, as the 
bias determines the efficiency of sampling [31]. There are two widely used 
CV-based methods discussed in this segment.
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4.1 Umbrella Sampling 

Umbrella sampling is a widely used MD technique in computational physics and 
chemistry. It is used to enhance the sampling of different systems where dynamic 
equilibrium is hindered by the free energy landscape [32, 33]. To calculate accurate 
thermodynamics data with a sufficient range of configurational changes, the 
umbrella sampling method has been adopted to overcome the potential barrier in 
free energy landscape study during protein folding dynamics. It was first proposed 
by Torrie and Valleau [34]. The thermodynamics of a system that involves low and 
high energy barriers is poorly sampled by conventional Monte Carlo methods, which 
can leave crucial confirmation unsampled in a dynamic simulation [35]. Umbrella 
sampling helps bridge the gap between low and high energy barriers in a simulation 
study [36, 37]. This method involves introducing a biased potential in the existing 
Hamiltonian sampling distribution. In order to calculate the system’s Hamiltonian, a 
simple harmonic potential ΔVi (q), which is determined by the force constant k, is 
added to each window. 

ΔV i qð Þ= 
K 
2� s qð Þ- sið Þ2 ð11Þ

With its fast convergence and ability to run simulations independently of each 
other, umbrella sampling has emerged as one of the most successful tools for 
improving convergence [38]. A reasonable overlapping position between each 
window alongside the CVs is obtained by tuning the harmonic potentials manually 
for each window so that the harmonic potentials for all the windows are tuned 
[39]. Computationally it is time-consuming and challenging to determine increased 
CVs or complexity of the system of interest [40, 41]. To further improve sampling 
efficiency, the sampling methods can be combined to obtain the desired result. 

4.2 Metadynamics 

To accelerate the rare event sampling, Parrinello developed Metadynamics (MetaD). 
In MetaD simulation, a system is subjected to an external CV-dependent bias 
potential [42]. The Gaussians, along with the CV space, are added to help the system 
visit configurations that have not been tested [43]. Bias potentials of Gaussian types 
are defined as (s(q), t), where τ is the rate of Gaussian deposition, σi and W(kτ)  is  
referred to as the width and height of the Gaussian and time kτ of simulation. An 
increased positive bias potential encourages to explore configurations that are not 
explored in the CVs space, resulting in a system escaping the local minimum of the 
CVs space. Eventually, CVs predict a bias potential convergent to negative free 
energy. In addition to the added bias potential, the high sampling efficiency allows 
us to easily traverse the energy barriers that separate different local minima



[44]. During a standard MetaD simulation, the bias potential of Gaussian remains 
constant. Consequently, using the bias potential, the landscape of free energy is 
analysed. In addition, the system may be driven into physically irrelevant phases of 
phase space if it oscillates around the real values. 

Enhanced Sampling and Free Energy Methods to Study Protein Folding. . . 173

Vλ q, tð Þ= 
K tð Þ

2 s q, tð Þ- λ tð Þð Þ2 = 
k tð Þð Þ2 

2 s q, tð Þ- s0 - vtð Þ2 ð12Þ

where K(t), V denotes harmonic potential and pulling speed, s(q) is used to define 
the CVs of pulling direction, and for the correlation of s(q), λ is used as a parameter. 
The free energy calculation in SMD simulation between two states, i and j, can be 
calculated by work Wi → j. Using the Jarzynski equation, the work done by the 
system is calculated as 

ΔG= - β- 1 ln exp - βW i- j 0 ð13Þ

Later on, Crooks proposed a new version 

ΔG= - β- 1 ln 
ʃ W i→ j I 

ʃ W i→ j j
ð14Þ

where ʃ(Wi → j) defines the finite function of work. The proposed Crooks equation 
is utilized for deriving the bars equation. Apart from metaD, steered molecular 
dynamics (SMD) is extensively used for protein conformation and ligand binding 
study. SMD can be used for sampling CV space and involves shorter simulation time 
[45]. Therefore, it is used along with other sampling methods, such as umbrella 
sampling and MetaD simulations. 

5 Collective Variable-Free Sampling 

Enhanced sampling algorithms based on CVs can dramatically broaden the time-
scale of MD simulations. Though CVs are necessary for these algorithms to accu-
rately represent biological events, there are certain limitations in calculating hidden 
layers of energies [46]. In MD simulations, determining the optimal CVs is not 
trivial when processes are complex, especially when the transition processes are 
complex [47]. Thus, CV-free sampling can be used to solve hidden barriers issues in 
the CV-based biased sampling method. Some methods, such as accelerated MD and 
replica exchange molecular dynamics (REMD), are often used to resolve CV-related 
problems [48]. In this section, an overview of CV-free enhanced sampling methods 
has been discussed.
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5.1 Replica Exchange Molecular Dynamics 

To study the conformational of various states of protein, replica exchange molecular 
dynamics (REMD) was developed [49]. It is also called parallel tempering (PT) and 
involves independent replicas of the system of interest. These replicas are parallel 
simulated at different temperatures. REMD consists of the exchange of replicas at 
regular intervals of time. The exchange of replicas occurs when the condition is 
satisfied according to the Metropolis criterion. 

P qi $ qj = min 1, exp 
1 
KB 

T j -
1 
KB 

T i H qið Þ-H qið Þ½ � ð15Þ

where H(qi) and H(qi) represent potential energies of replica i, j and Ti, Tj 
represents the temperature of i and j. 

For the calculation of free energy landscapes, configurations are replicated at low 
temperatures. As the number of replicas increases, the simulation becomes larger, 
and temperature REMD (T-REMD) requires higher computational power. In 
T-REMD, the MD simulation has a temperature difference. There are certain 
parameters, such as the Hamiltonian system of different replicas changes with 
temperature, which is then expressed as 

P qi $ qj = min 1, exp 
Hi qið Þ-Hi qj 

KBT i 
þ
Hj qj -Hj qið Þ

KBT j 
ð16Þ

Various methods have been proposed to modify the Hamiltonian equation. In the 
T-REMD method altering solute gives good exchange probabilities, which only 
require a relatively small number of replicas. A sufficient overlap in energy contri-
butions is needed for replicas to exchange successfully. REST2 had Ra much greater 
sampling efficiency than T-REMD [50]. Later, Bussi designed a new REST2 
variation with improved scaling and additional flexibility in terms of which elements 
of the system the scaling is applied to the existing system [51]. An example of other 
computational approaches would be constant pH replica exchange which is fre-
quently used with replica exchange. 

5.2 Accelerated Molecular Dynamics 

Accelerated molecular dynamics (aMD) is a sampling method developed by the 
McCammon group in 2004 to promote the bridging of energy barriers between 
various conformational states [52]. In this method, an enhanced potential is enforced 
to the existing potential function V(r) to examine the potential energy of the system 
[53]. The boost potential V* (r) activates when the system’s potential energy



decreases below a threshold energy E [54]. The change in the potential function has 
helped eliminate the sampling barriers observed in traditional sampling techniques. 
Here the existing potential function is replaced with a negative function, which 
allows calculating the potential when a system has low threshold energy E. This 
method is excellent in identifying key regions of protein folding in a large-scale 
simulation. Overall sampling depends on the superiority of the true potential, which 
needs to be varied when the threshold energy reaches below a certain level. The 
aMD involves modifying potential V�(r) = V(r) +  ΔV(r). This method lowers the 
energy barrier while preserving key information about the potential energy land-
scape [55, 56]. Thus, the efficacy of aMD is in improving the biomolecular sampling 
of systems, which has been demonstrated in a wide range of applications involving 
interactions between proteins and peptides, small molecule and protein binding 
behaviour, and protein conformational changes. The simulation of systems includes 
dipeptides, membrane proteins, and globular proteins [57, 58]. To find the potential 
binding poses of protein–ligand docking, aMD was used [59]. In the previous 
section, we have described a few popular enhanced sampling approaches and 
conformational space sampling, which can be further optimized by combining 
methods from CV-based and CV-free approaches since these approaches differ in 
methodology. 
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6 Conclusion and Outlook 

Numerous strategies have been developed in the past 20 years to increase the 
sampling methods in MD simulation and the calculation of energies [60–63]. They 
enhance the convergence of free energy calculations in addition to probing the 
conformational space of biomolecular systems. The theories, most recent advance-
ments, and examples of three CV-based and two CV-free enhanced sampling 
approaches are covered in this chapter. While simulations can follow specified routes 
using a CV-based technique (such as US, MetaD, or SMD), they are not necessary 
with a CV-free method (such as REMD or aMD). These techniques can be used to 
execute an improved sampling biomolecular simulation without needing to adhere to 
a strict procedure. It is generally advisable to describe biological events of interest 
using US/MetaD. REMD (or HREX) or aMD is used whenever there is minimal 
knowledge about the process that needs to be mimicked (such as protein folding or 
investigating a dynamically disordered protein). In computational enzymology, the 
QM/MM (quantum mechanics/molecular mechanics) technique can also be used in 
conjunction with improved sampling and free energy calculations. In general, a large 
system with millions of atoms will need longer timescales and more computing 
power, and modelling them using REMD (including HREX) will further raise the 
computation cost for improved sampling and free energy calculations for macromo-
lecular simulations. The complex CVs of large systems may prevent CV-based 
simulation techniques from being effective compared to how they perform in smaller 
systems. The timesteps are larger for all-atom simulation; the fastest degrees of



freedom can be eliminated by employing virtual hydrogen sites or hydrogen mass 
repartition. Machine learning has gained a lot of popularity recently. More intelligent 
sampling strategies have emerged due to new, potent unsupervised and reinforced 
deep learning algorithms. We hope to see additional advancements made in this area 
and more bimolecular simulations using machine learning-related techniques. 
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Investigating Protein Unfolding 
and Stability Using Chaotropic Agents 
and Molecular Dynamics Simulation 

Rohit Shukla and Timir Tripathi 

Abstract Protein folding and unfolding processes follow a thermodynamically 
favourable transitional path. The folding process occurs on a timescale in the order 
of milliseconds; therefore, observing the correct transitional pathway is challenging. 
However, with the advancement of computer science, it is now possible to decipher 
the structural level changes in the folding pathway of the protein using the molecular 
dynamics (MD) simulation. The MD simulation can provide detailed information 
about various energetic terms, structural parameters, etc. One can calculate the 
secondary structure changes with respect to time using MD simulation and correlate 
them with the CD spectra results. It can also generate thousands of snapshots that can 
be used to determine accurate unfolding pathways through structure visualization. In 
this chapter, we describe how chaotropic agents and MD simulation can be used in 
combination to study the stability and unfolding process of a protein. We also 
discuss the software used in the MD simulation with a detailed methodology of 
the GROMACS tool. Lastly, we take two case studies to show the process of urea 
and GdnHCl-induced denaturation of proteins analysed through MD simulation. 
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1 Introduction 

The protein unfolding studies often involves the use of chaotropic agents such as 
urea and guanidinium hydrochloride (GdnHCl), which reduce the stability of the 
native protein by destabilizing the hydrophobic interactions between various amino 
acids [1]. They are widely used for protein unfolding analysis, but the exact 
mechanism of action is still a mystery. It is well established that protein stability 
depends on the hydrogen bonding network of the protein with the solvent and 
intramolecular hydrogen bond interactions [2]. A proper hydrogen bond network 
is required for a protein to function correctly. Several studies have shown that 
chaotropic agents can directly bind to the protein or bind with the solvent and alter 
the properties of the solvent [3–9]. In other cases, the presence of chaotropic 
molecules also breaks the hydrogen bond network between water molecules, 
which induces the weakening of the hydrophobic effects. The effect of hydrogen 
bond disruption due to chaotropic agents is similar to the temperature and pressure-
induced hydrogen bond network disruption for the denaturation of the protein 
[10, 11]. Additionally, the direct binding of the chaotropic molecules with the 
proteins may weaken the hydrophobic interactions between the non-polar amino 
acids responsible for stabilizing native proteins. 

The folding energy difference between the well-folded and unfolded proteins is 
typically between 5 and 10 kcal/mol. The unfolded protein is 5–10 kcal/mol less 
stable than the corresponding native protein. During folding, multiple forces weaken 
simultaneously with several conformations between native to unfolding transitional 
states [12], indicating the level of complexity in understanding the protein unfolding 
and folding process. It also suggests that multiple factors are involved in unfolding/ 
folding processes that should be carefully examined [13, 14]. There are a lot of 
limitations in experimental methods for studying the protein folding mechanism. 
They cannot provide detailed visual information about the transitional intermediates 
during protein unfolding from the nanosecond to the microsecond time scale 
[15]. They are also expensive in terms of money and labour. The currently available 
computational approaches can simulate the protein at a microsecond time scale in the 
presence of denaturants or temperature and can determine the exact unfolding steps 
in the form of complete trajectories saved at different snapshots. During simulation, 
several energy parameters can be analysed as well as the detailed insight molecular 
mechanism of unfolding can be investigated. These trajectories can be analysed 
using several software, and a lot of meaningful information can be extracted. With 
the support of graphical processing units (GPUs), currently, supercomputers can 
perform microsecond time simulation within a day and store petabytes of data. The 
simulation of a single virus is also possible [16]. However, the addition of solvent 
and other molecules in the simulation can increase the computational cost and 
complexity of the simulation result analysis [17–19].
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2 Basic Concept of Protein Folding 

Anfinsen’s hypothesis shifted the concept of protein folding from the disulphide 
bridge protein folding theory towards the complete protein folding analysis through 
the eyes of computer scientists or polymer physicists in 1973 [20]. One had to cease 
thinking in terms of atomic coordinates to demonstrate the uniqueness (stability) of 
the native structure. It was stated that the necessary pieces of knowledge for folding 
must be present in the sequence, which was established as the Anfinsen thermody-
namic hypothesis [21]. It essentially assumes that the sequence controls the interac-
tions present in the native structure. This is the central idea behind the fascinating 
intersection of two major lines of research into the prediction of protein structure and 
the study of protein folding kinetics [22, 23]. Protein folding occurs through an 
enormous number of possible conformations that cannot be calculated through 
conventional chemical methods. Levinthal’s paradox describes the astronomical 
number of local minima in the conformational space and the resulting inability to 
completely explore all conformational spaces. It has been established that even a 
straightforward explanation of protein folding based on the hydrophobic/hydrophilic 
model on a cubic lattice is nondeterministic polynomial (NP)-complete in this regard 
[24]. Overall, the link between sequence and structure and the elucidation of folding 
processes are challenging issues that are listed among the most significant scientific 
questions of the twenty-first century [25]. By virtue of their fundamental character-
istics, Levinthal’s paradox and Anfinsen’s hypothesis appear at odds. To assure 
convergence towards the native state within a definite time, the folding process must 
first be constrained along a particular path (kinetic control). Conversely, the interim 
path (thermodynamic control) is comparatively irrelevant because it relies on the 
function, which is biased towards the final confirmation of the protein. Within the 
framework of the landscape theory of protein folding, in which both types of 
regulation are acknowledged, these contradictory criteria become consistent 
[26, 27]. According to the present theory, parallelization makes more sense early 
in the folding process and becomes more sequential in the latter stages [28, 29]. 

3 Chaotropic Agents and Their Mechanism of Action 

The chaotropic agents (chaotropes) are chemical entities that disrupt the structure of 
biological macromolecules, such as nucleic acids and proteins, via the denaturation 
process. These molecules disrupt the non-covalent interactions such as van der 
Waals forces, hydrogen bonds, electrostatic interactions, and hydrophobic effects 
and increase the entropy of the system. The tertiary structure of well-folded bio-
molecules depends on these non-covalent forces; hence, increasing the concentration 
of chaotropes in the solution leads to the destabilization of protein followed by 
denaturation and reduced enzyme activity. The proper folding of a protein is 
depended on the hydrophobic interactions between the amino acids. Due to the



disordered water molecules, the chaotropic solutes reduce the net hydrophobic 
effects of the hydrophobic regions. This leads to the solubilization of the protein’s 
hydrophobic regions via denaturation. This is also implicated in the case of hydro-
phobic regions of the lipid bilayers, where a high chaotropic concentration leads to 
cell lysis by disrupting membrane integrity [30]. 
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Fig. 1 Chemical structures of a few chaotropic agents. (a) lithium acetate, (b) ethanol, (c) lithium 
perchlorate, (d) magnesium chloride, (e) n-butanol, (f) thiourea, (g) guanidinium chloride, (h) 
sodium dodecyl sulphate, (i) 2-propanol, (j) phenol and (k) Urea 

The dissociation of chaotropes in solution results in different chaotropic effects. 
While the chaotropic solvents such as ethanol affect the non-covalent intramolecular 
forces, the chaotropic salts affect the charged interactions such as salt bridge, etc. A 
strong hydrogen bond network in proteins is observed in the non-polar medium; 
therefore, chaotropic salts that can increase the chemical polarity can affect the 
hydrogen bond network. This happens due to the smaller number of water molecules 
that can effectively solvate the ions. It leads to the ion–dipole interactions between 
the hydrogen bonding species and salts which are stronger and more favourable than 
normal hydrogen bonding [31, 32]. The common chaotropic agents are urea, 
guanidinium chloride (GdnHCl), thiourea, and sodium dodecyl sulphate (SDS). 
The chemical structure of a few chaotropic agents is shown in Fig. 1.
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4 Molecular Dynamics (MD) Simulation 

The molecular dynamics (MD) simulation method was introduced in the 1970s 
[33, 34]. Currently, with the improvement of computational power, it can be used 
to simulate from thousands of atoms to the complete virus, proteins, nucleic acids, 
nucleosomes [35, 36] or ribosomes [37, 38], etc., using the explicit water models. 
Today, simulations of �50,000–100,000 atom size systems are in routine practice, 
and even simulations of more than 1,000,000 atoms are also possible when good 
computational facilities are available. This was made possible due to the improve-
ment in the MD algorithms and new computing capabilities from the past few 
decades. 

The input structure of any biomacromolecule can be obtained using computa-
tional modelling tools or experimental methods [39]. The simulated systems can be 
represented at different levels of time scale. The atomistic representation model is 
the best for the reproduction of actual systems. Although, in the case of long 
simulations or large biological systems, the coarse-grained representation is leading 
popularity [40]. There are many representation approaches, but the explicit solvent 
model is the simplest, most popular, and most effective [41–46]. However, increas-
ing the system size in this model increases the size of simulated systems. This 
solvent model can achieve the solvation effects that happen in a real solvent, 
including those of entropic origin, like the hydrophobic effect. After building the 
complete system, using the deriving equations, the forces that act on each atom can 
be obtained using the force field. In the force field, the potential energy is inferred 
from the molecular structure [47–52]. The complex equations represent the force 
field terms which are easy to calculate. There are several simple molecular features 
that characterize the force field terms, such as bond angles and length, which are 
represented by springs, bonds rotations, and Lennard-Jones potential represented by 
periodic functions, electrostatic and van der Walls interaction calculation by Cou-
lomb’s law. These terms guarantee that force and energy calculations be very fast for 
large biological systems. Currently, the parameterization of the force field differs in 
various atomistic molecular simulations. There are several parameters in the force 
field which cannot be interchanged, and also, not all force fields allow to represent 
the all-molecule types though the simulation trajectories and analysis for all the force 
fields are similar [53, 54]. When the acting forces on each atom are calculated, 
Newton’s classical law of motion is utilized for the acceleration and velocities 
calculation, including the update of the position of each atom. The MD system 
movement integration is done using numerical methods; therefore, to avoid insta-
bility, a time step shorter than the fastest movement in the molecules is used. This 
short-time integrator usually lies between 1 and 2 fs for the atomistic simulation and 
plays a crucial role in the overall simulation. 

The long microsecond simulations hardly scratch the time scales for the biolog-
ical systems and require iterating over the calculation cycle 109 times. The coarse-
grained simulations are generally better with these limitations. They use a more 
simplified MD system and represent larger time steps for integration; hence, they can



run the large-scale simulation of large biomacromolecules with good accuracy. The 
long simulations can run with several advantages that include fine-tuning several 
energetic parameters and parallelization of the simulation by using graphical 
processing units (GPUs) that can increase accuracy and improve the simulation 
speed. The current generation of computers can parallelize the process, which 
leads to faster MD simulation. 
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Several MD simulation software are available, and the most widely used are 
CHARMM [55], GROMACS [56], AMBER [57] and NAMD [58]. These software 
are well compatible with the messaging passing interface (MPI). Due to a large 
number of cores in the computers, the MPI can significantly increase the computa-
tion power and reduce the computational time. The MD simulation process can be 
divided into multiple CPU cores that can reduce computational time; this technique 
is known as spatial decomposition. The part of the complete system is used for the 
simulation in each processor. This division of MD simulation systems is based on the 
particle’s position in space and not on the list of particles. The region of the space is 
dealt by each processor instead of the particles present in the MD simulation system. 
The processor communication is also reduced because only the neighbouring regions 
of the simulation share information among them [59]. Nowadays, GPUs are becom-
ing the breakthrough in the case of MD simulation due to their ability to accelerate 
the simulation speed. The currently available MD simulation tools are compatible 
with GPUs, and even some MD simulation programs, such as ACEMD [60], are 
written to run on GPU systems. The combination of CPUs and GPUs is the default 
strategy in the case of atomistic simulations. Currently, high-performance computing 
(HPC) is the most popular among computational scientists, while GPU development 
is leading to the greater use of personal computers for atomistic simulations 
than HPC. 

5 Application of MD Simulation in Investigating Protein 
Unfolding 

As described earlier, MD simulation can mimic the in vivo conditions and can 
provide information on the real dynamics of the system, including effects of muta-
tion in a protein [61–63], protein–ligand interactions [64–67] and protein unfolding 
[68–70]. The stepwise methodology of the MD simulation process is briefly 
described below [71, 72]. 

1. The biological macromolecules should be prepared. The structure may be 
modelled if an experimental structure is unavailable in the PDB (https://www. 
rcsb.org). All the hydrogen atoms should be added to the PDB structure. 

2. The PDB file should be placed in a box, which can be cubic, dodecahedron, etc. 
3. The explicit water molecules should be filled into the box. 
4. The concentration of chaotropes should be calculated in the number and added 

to the simulation box by replacing the water molecules.

https://www.rcsb.org
https://www.rcsb.org


Investigating Protein Unfolding and Stability Using Chaotropic Agents. . . 187

5. The MD systems should be neutralized by adding ions. 
6. Energy minimization should be performed to remove the steric clashes of the 

systems caused by the addition of water and chaotropic agents. 
7. The number of volumes and temperature (NVT) and the number of pressure and 

temperature (NPT) simulations should be run to fix the volume, pressure and 
temperature of the system. After this simulation, the quality of the system can be 
assessed by plotting all the graphs (pressure, volume, temperature, etc.). 

8. Finally, the MD simulation should be run, and values should be saved at 1 to 2 fs 
time intervals. 

9. Lastly, the obtained trajectories should be pre-processed by removing the 
periodic boundary condition (PBC) artifacts. Several results can be obtained in 
the form of various graphs, such as root mean square deviation (RMSD), root 
mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible 
surface area (SASA), principal component analysis (PCA), and secondary 
structure analysis. 

10. The trajectories can also be visualized, and the unfolding of the 
biomacromolecules can be recorded in the form of a trajectory. These graphical 
and visual analyses can give a glimpse of the complete unfolding process of 
proteins. 

These steps are generally used in all the MD simulation protocols to perform the 
unfolding analysis of a protein. The graphical user interface (GUI) simulation 
software such as Desmond and YASARA can be used for this process in a few 
steps, while the command lines tools such as AMBER and GROMACS complete it 
in many steps. The general methodology and concept are the same for all the 
software. Now we discuss two case studies of protein unfolding using urea and 
GdnHCl. 

6 Case Studies 

6.1 Urea-Induced Unfolding 

We have reported the urea-induced unfolding of the Acinetobacter baumannii UDP-
N-acetylglucosamine enolpyruvyl transferase (AbMurA) [69]. The structural and 
unfolding features of AbMurA were analysed using multiple spectroscopic methods, 
including circular dichroism and fluorescence spectroscopy [73]. The data showed 
the protein unfolds in a three-state manner with the presence of an unfolding 
intermediate at 3.5 M urea. The spectroscopic data was complemented using data 
from multiple 100 ns MD simulations [69]. To study the unfolding behaviour of the 
AbMurA enzyme, we created six systems where we placed the AbMurA in water, 
3.5 M, and 8.0 M urea, and simulated at 300 and 400 K temperatures. In total, we 
created six systems (AbMurAH2O, AbMurA3.5 and AbMurA8.0 at 300 and 400 K) 
and generated trajectories at 100 ns. The results were analysed in terms of RMSD,



RMSF, Rg, SASA, PCA, structural analysis, and secondary structure analysis. We 
briefly discuss the results; for a detailed analysis, readers can refer to the original 
article [69]. 
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Fig. 2 (a) RMSD, (b) RMSF. The black, blue, red, green, cyan and magenta represent 
AbMurAH2O (300 K), AbMurAH2O (400 K), AbMurA3.5 (300 K), AbMurA3.5 (400 K), AbMurA8.0 

(300 K) and AbMurA8.0 (400 K), respectively 

We first calculated the RMSD to study the detailed dynamics of the system. At 
300 K, the average RMSD value for the AbMurAH2O, AbMurA3.5 and AbMurA8.0 at 
300 K were 0.41, 0.71, and 1.30 nm, respectively (Fig. 2a). Figure 2a shows that 
AbMurAH2O quickly achieved the equilibration state and showed a stable trajectory 
till 100 ns. The AbMurA3.5 showed an increase in the RMSD value initially, while 
after 40 ns, it achieved the equilibration state. In the case of AbMurA8.0, an abrupt 
pattern was observed till 65 ns and then attained the equilibration state. The average 
RMSD values represent that urea addition in the systems induces instability in the 
AbMurA enzyme. We then calculated the RMSD values of AbMurAH2O, 
AbMurA3.5 and AbMurA8.0 at 400 K (Fig. 2a). 400 K temperature can immediately 
unfold the protein and provide information on the proper unfolding pathway in the 
presence of urea. In 400 K, AbMurAH2O attained the equilibration state after 20 ns, 
while the other two systems, AbMurA3.5 and AbMurA8.0, achieved the equilibration 
state after 40 ns and remained stable till 100 ns. The average RMSD values were 
0.93, 1.36, and 2.18 nm for AbMurAH2O, AbMurA3.5 and AbMurA8.0. The RMSD 
result analysis represents that all the systems got the equilibration state and can be 
further used. It also showed that at 3.5 M concentration of urea, the AbMurA formed 
an intermediate state, while at 8.0 M of urea, it was completely unfolded. 

The RMSF values for the systems were also calculated at 300 and 400 K 
(Fig. 2b). At 300 K, the RMSF values for the AbMurAH2O were stable, though a 
higher peak was observed between 115 and 125 residues (with RMSF value between 
0.23 and 0.78 nm). When 3.5 M urea was added to the system, RMSF values of 
>0.5 nm were observed for all the systems. In the case of AbMurA8.0, high RMSF 
values were observed, indicating that the addition of urea induces changes in the 
structural conformations followed by protein unfolding. At 400 K, an average



fluctuation between 0.2 to 0.5 nm was observed for AbMurAH2O. High RMSF 
values of >0.5 nm were observed for residues 35–49, 66–70, 323–352 and 
411–148. AbMurA3.5 showed RMSF values between 0.5 and 1.0 nm for all the 
systems. AbMurA8.0 showed higher RMSF values for all the residues representing 
complete structure loss at 8.0 M urea. The overall RMSF analysis indicates that the 
addition of urea disrupts the original conformation of AbMurA. 
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Fig. 3 (a) Radius of gyration. (b) Number of hydrogen bonds. (c) Solvent accessible surface area. 
(d) Solvent accessible surface area versus residues. The black, blue, red, green, cyan and magenta 
represent AbMurAH2O (300 K), AbMurAH2O (400 K), AbMurA3.5 (300 K), AbMurA3.5 (400 K), 
AbMurA8.0 (300 K) and AbMurA8.0 (400 K), respectively 

We also calculated the Rg values for all the systems using the last 60 ns 
equilibrated trajectories. Compared to other systems, higher Rg values were 
observed for 8.0 M urea at 300 and 400 K. For other systems, the Rg values for 
AbMurA3.5 were more than AbMurAH2O (Fig. 3a). The number of hydrogen bonds 
for all the systems was also calculated (Fig. 3b), which was in the order of 
AbMurAH20 > AbMurA3.5 > AbMurA8.0. This suggests that the addition of urea 
leads to the loss of hydrogen bonds. The average number of hydrogen bonds was 
270, 264, and 258 for AbMurAH20, AbMurA3.5, and AbMurA8.0, respectively, at 
400 K. The SASA values were also analysed (Fig. 3c), which closely agreed with the 
Rg data. Higher SASA values were observed for the AbMurA3.5 and AbMurA8.0



than AbMurAH20, representing the unfolding of the protein. For residual SASA, we 
analysed the SASA value of tryptophan residue, which indicates that the addition of 
urea increases the exposure of tryptophan towards the solvent followed by unfolding 
(Fig. 3d). Collectively, all results suggest that the addition of the urea induces the 
unfolding of the AbMurA protein. 
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Fig. 4 (a) Eigenvalue versus eigenvector. (b) 2D project plot. (c) eigRMSF values. The black, 
blue, red, green, cyan and magenta represent AbMurAH2O (300 K), AbMurAH2O (400 K), 
AbMurA3.5 (300 K), AbMurA3.5 (400 K), AbMurA8.0 (300 K) and AbMurA8.0 (400 K), 
respectively 

The PCA was carried out to analyse the correlated motions induced by the 
addition of urea (Fig. 4). Since the first few eigenvectors represent the overall 
dynamics of the system, hence first five eigenvectors were considered (Fig. 4a). 
AbMurAH20 showed less correlated motions, while AbMurA3.5 and AbMurA8.0 

showed higher correlated motions. The pattern was the same for both 300 and 
400 K temperatures. PCA data also showed a partial unfolding of the protein at 
3.5 M urea and complete unfolding at 8.0 M urea. The first two eigenvectors were 
then taken and plotted (Fig. 4b). The data showed a stable cluster for the AbMurAH20 

and dispersed clusters for AbMurA3.5 and AbMurA8.0. Lastly, the eigRMSF values 
(Fig. 4c) were analysed, which showed a similar pattern to the RMSF values. Higher



residue fluctuations were observed in AbMurA3.5 and AbMurA8.0 systems, while 
lower fluctuations were observed for AbMurAH20. The overall PCA results con-
cluded that at 3.5 M of urea, the AbMurA formed an intermediate folding state, while 
complete unfolding was observed at 8.0 M urea. 
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Fig. 5 Time-dependent secondary structural changes. Structural features obtained from the snap-
shots generated at 20 ns time intervals at (a) 300 K and (b) 400 K for AbMurA 

The MD simulation can produce trajectories that can be visually analysed using 
any visualization software. We analysed the trajectories at 20 ns intervals to obtain a 
visual representation of the urea-induced unfolding at 300 and 400 K temperatures 
(Fig. 5). Firstly, we analysed the structural snapshots at 300 K for AbMurAH2O, 
AbMurA3.5 and AbMurA8.0. It is evident from Fig. 5a that AbMurAH2O did not 
unfold till 100 ns while there were minor structural changes in the AbMurA3.5 

intermediate state. The AbMurA8.0 started unfolding after 40 ns. It showed the 
disappearance of the stable secondary structures, such as alpha helices and beta 
sheets, and an increase in turns and loops. The data showed that 8.0 M urea induces 
the structural unfolding in the protein. We then analysed the structural changes at 
400 K for AbMurAH2O, AbMurA3.5 and AbMurA8.0. The structural snapshots at 
20 ns time intervals are shown in Fig. 5b. The data shows that the presence of urea at 
400 K temperature induces large structural changes in the protein. At 400 K, the 
intermediate state at 3.5 M urea also showed structural disruption, while major



changes were observed in the presence of 8.0 M urea. AbMurA8.0 showed total 
disruption of the structure after 40 ns. The data showed the presence of an interme-
diate state at 3.5 M urea while a complete structure disruption at 8.0 M urea. 
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The secondary structure analysis was carried out to analyse the secondary struc-
ture level changes with respect to time (Fig. 6). The coils, turns and bends were 
found to be increased at higher concentrations of urea while beta sheets and alpha 
helices disappeared. First, the secondary structural changes at 300 K were analysed 
(Fig. 6a). The AbMurA in water showed a stable secondary structure and no major 
changes throughout the simulation, while at 3.5 M urea, the AbMurA showed a few 
changes, such as an increase in coils, bends and turns but no major losses in the 
stable secondary structures. The AbMurA at 8.0 M urea showed much higher turns, 
coils and bends and loss of helices and sheets. From residues 1–130, we observed the 
loss of rigid structures and increased bends, turns and coils. The overall analysis 
showed that at 3.5 M of urea, AbMurA showed minor changes in the secondary 
structures, while at 8.0 M of urea, major structural changes occurred. The secondary 
structural changes were also analysed at 400 K for AbMurAH2O, AbMurA3.5 and 
AbMurA8.0 (Fig. 6b). Here also, it was observed that AbMurAH2O showed stable 
structures with a few temperature-induced changes. The AbMurA3.5 showed an 
increase in the coils, bends and turns and minor changes in helices and sheets. The 
AbMurA8.0 system showed a much higher number of bends, turns and coils and the 
disappearance of sheets and helices. Only a few beta sheets were observed, while the 
alpha helices completely disappeared. The data indicated that in 8.0 M urea, the 
AbMurA completely lost secondary structures. 

The combined spectroscopic and MD simulation data showed the structural 
characteristics of AbMurA in native (AbMurAH2O), intermediate (AbMurA3.5) and 
unfolded (AbMurA8.0) states [69]. The data obtained from the MD simulation 
revealed the atomistic and structural basis of the unfolding of AbMurA, which 
was not possible using only spectroscopic methods. 

6.2 GdnHCl-Induced Unfolding 

GdnHCl is another chaotropic agent widely used for denaturation studies of proteins. 
It can also be added to the MD simulation box, and the structural changes can be 
captured at different time scales. We discuss a case study from the work of Syed et al. 
[74]. Firstly, they carried out the unfolding analysis using the series of in vitro 
experiments and then, for analysing the atomic level structural changes, they carried 
out the detailed MD simulation analysis. The authors described the folding pattern of 
the 196–443 residues of human integrin linked kinase (ILK) with 100 ns MD 
simulation in water, 2.0, 4.0, 6.0, and 8.0 M GdnHCl concentrations. We will discuss 
key findings from this study related to the MD simulation. They created a total of five 
MD systems and analysed parameters such as RMSD, RMSF, Rg, SASA, the 
number of hydrogen bonds, etc.
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Firstly, they calculated the potential energy of the system, where they found that 
ILKH2O, ILK2.0, ILK4.0, ILK6.0 and ILK8.0 showed -2.92196, -358,821, -
411,597, -439,100, -1,044,520 kJ/mol energy, respectively. The potential energy 
of the systems represented that ILKH2O is more stable than GdnHCl systems. 

To find the deviation from the initial structure, the authors calculated the RMSD 
value for all the systems. The average RMSD for ILKH2O, ILK2.0, ILK4.0, ILK6.0 and 
ILK8.0 were 0.33, 0.40, 0.34, 0.27 and 0.36 nm, respectively (Fig. 7a). The figure 
indicated that the ILK2.0, ILK4.0 and ILK8.0 showed more deviation than ILKH2O. 
The authors observed less RMSD value for ILK6.0. They observed higher changes at 
2.0 M GdnHCl concentration throughout the simulation. The ILK4.0 and ILK8.0 

systems showed a little higher RMSD value than ILK in water, representing that at 
this GdnHCl concentration, partial conformational changes are occurring in the ILK 
protein. The RMSD analysis showed that all the systems were stable and generated 
trajectories that can be further utilized for other studies. 

After RMSD analysis, the authors calculated the Rg and analysed it in detail. Rg 
is an important parameter to describe the unfolding pattern of a protein. The average 
Rg values for the ILKH2O, ILK2.0, ILK4.0, ILK6.0 and ILK8.0 were 1.72, 1.72, 1.71, 
1.76 and 1.76 nm, respectively. The Rg values were plotted with respect to the time 
(Fig. 7b) that showed that ILK is getting unfolded at 6.0 and 8.0 M concentrations of 
GdnHCl while conformation changes occur in the ILK at 4.0 M. The ILK2.0 showed 
a similar Rg value as ILK in water. It indicates that ILK6.0 and ILK8.0 lost compact-
ness and got unfolded. 

To determine the GdnHCl-induced residue level changes, RMSF analysis was 
performed (Fig. 7c). It was seen that the addition of GdnHCl to the systems alters the 
original conformation of the protein and induces structural changes. Higher residual 
changes occurred between residues 221–230, 257–263, and 280–293, including the 
N- and C-terminals. It represents that GdnHCl disrupts the charge–charge interac-
tions in the protein and induces global changes that lead to the unfolding of the ILK. 

The SASA analysis was carried out to analyse the solvent accessible surface area 
changes induced by the GdnHCl. The average SASA values for ILKH2O, ILK2.0, 
ILK4.0, ILK6.0 and ILK8.0 were 132.31, 132.51, 131.40, 133.04 and 134.09 nm

2 , 
respectively (Fig. 7d). It was observed that ILK6.0 and ILK8.0 showed higher SASA 
values, indicating the unfolding of ILK. The ILK2.0 and ILK4.0 systems showed 
similar SASA values as the ILK in water. From the overall SASA analysis, it was 
observed that 6.0 and 8.0 M GdnHCl induces the unfolding in the ILK protein. 

The folding of the protein strongly depends on the formation of hydrogen bonds. 
More number of hydrogen bonds in a protein represents a compact and well-folded 
structure, while a lesser number of hydrogen bonds represents a less compact and 
elongated structure. The authors plotted the number of hydrogen bonds with respect 
to time (Fig. 8). The average number of hydrogen bonds between ILK and water 
molecules were 420, 389, 346, 328 and 361 for ILKH2O,  ILK2.0, ILK4.0, ILK6.0 and 
ILK8.0, respectively (Fig. 8a). The hydrogen bonds between ILK and GdnHCl were 
also calculated (Fig. 8b). The average number of hydrogen bonds between ILK and 
GdnHCl was 18, 26, 41 and 30, respectively, for ILKH2O, ILK2.0,  ILK4.0, ILK6.0 and 
ILK8.0, respectively. The result indicates that adding GdnHCl decreases the ILK
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interaction with water while increasing the interaction with GdnHCl itself. A proper 
hydration state is required for the solubility of the protein; therefore, it represents that 
the addition of GdnHCl is disrupting the original conformation of the ILK and 
inducing the folding in the protein.

196 R. Shukla and T. Tripathi

600 

500 

a 

b 

400 

300 

200 
0  10 20 30 40 50  

Time (ns) 
60 70 80 90 100 

0 
0 

10 

20 

30 

40 

50 

60 

10 

N
um

be
r

N
um

be
r 

20 30 40 50 
Time (ns) 

60 70 80 90 100 

Fig. 8 Number of hydrogen bonds. (a) Intramolecular hydrogen bonds of ILK. (b) Hydrogen 
bonds between ILK and GdnHCl. The ILKH2O, ILK2.0, ILK4.0, ILK6.0 and ILK8.0 are represented by 
black, red, green, blue and yellow colours 

From the overall result, the authors concluded that ILK showed higher unfolding 
at 6.0 and 8.0 M GdnHCl concentrations, representing that the addition of chaotropic 
agents leads to the unfolding of ILK.
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7 Conclusions 

Chaotropic agents belong to several chemical families and can induce the denatur-
ation of biomolecules. They follow different mechanisms to alter the structures and 
denature proteins. Several in vitro spectroscopic methods are available to analyse the 
effect of the chaotropic agents on proteins, but they cannot provide information on 
the atomic level changes in the protein structure with respect to time. MD simulation 
is emerging as an essential tool to track the structural changes and generate thou-
sands of the conformations of a protein. It can also be used to visualize trajectories to 
analyse the detailed structural level changes. We discussed two case studies using 
urea and GdnHCl in MD simulation to study the unfolding of proteins in detail. The 
data showed that the MD simulation result agreed well with the spectroscopic 
findings and provided several additional atomistic information. Further improve-
ments in the force field and algorithms may help gather precise conformational 
changes induced by chaotropic agents against the biological macromolecules. 
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pH-Based Molecular Dynamics Simulation 
for Analysing Protein Structure and Folding 

Santanu Sasidharan, Rohit Shukla, Timir Tripathi, and Prakash Saudagar 

Abstract The structure and function of a protein are influenced by environmental 
factors like pH, temperature, salt concentrations, etc. The intrinsic dynamics of a 
protein in such environments involve temporal and spatial changes at the atomic 
level. These changes can be understood with the help of molecular dynamics 
(MD) simulations. This chapter concentrates on the MD simulation of proteins at 
constant pH, allowing researchers to bridge the gap. The constant pH approach 
accounts for the protonation states of the amino acid residues in a protein while 
receiving little or no inputs from the forcefields employed for the simulation. Once 
completed, the simulations provide valuable data on the folding process of a protein 
and the free energy of binding between the protein and other interacting molecules 
(another protein, ligand, DNA, etc.). The chapter introduces the concept of constant 
pH simulation and the effect of pH on each amino acid. The effect of the pH 
environment on the spatiotemporal arrangement of the proteins and the presence 
of intermediate states have been discussed. We then provide insights into the 
practical aspects of the all-atom simulation of the constant pH approach and the 
analysis of the trajectories using the MD simulation data. Case studies are provided
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to help understand the nuances of different MD simulation systems and how they 
vary. In the end, we discuss the future directions to further research in this area and 
achieve MD simulation results with higher accuracy and reliability.
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Keywords Constant pH simulations · Molecular dynamic simulations · Protein 
structure · Unfolding 

1 Introduction 

Protein folding is an important cellular event that governs several biological func-
tions and regulations [1, 2]. Any protein must fold to its native state once it emerges 
from the ribosomes, and throughout its lifetime, it undergoes a series of folding and 
unfolding in the form of conformational fluctuations. The process of folding is 
intensely studied because of its importance and association with several diseases 
and disorders. The field of protein folding has passed over five decades, but we have 
not reached a general agreement on the folding pathways of proteins, and several 
questions remain unanswered. The folding of the proteins was assumed to be a 
straightforward biophysical event, which was later deferred, and scientists discov-
ered that the event happens through a series of distinct intermediate states. Anfinsen 
later demonstrated that the proteins fold without external help [3]. At the same time, 
Levinthal ascertained that the undirected folding process follows a predetermined 
route to reach the native state and that the event cannot be a random process 
[4, 5]. The realisation that the folding event is not random and the randomness 
might lead to an ensemble of partially folded proteins led scientists to infer folding as 
a unique process through multiple unpredictable routes with several intermediate 
conformations. The thermodynamic hypothesis of Anfinsen further extended our 
understanding using the protein-funnel shape energy landscape, where the proteins 
are predicted to fold energetically downhill [3]. The protein energy funnel does not 
provide any realistic constraints for the real-time scenario, but it has been widely 
accepted that the protein energy decreases as the conformation reaches the native 
state and that there are several independent pathways leading to it [6]. 

Several factors influence the folding of a protein, such as temperature, pH, salts, 
macromolecular crowding, etc. Among these, pH has been of interest since cellular 
pH is highly susceptible to changes. Solution pH is often the most critical factor for 
the proper functioning of a protein and also catalysis. Both structure and function are 
strongly influenced by the solution pH due to the changes brought about by the 
protonation states of the side chains of the amino acid residues that make up the 
protein. The protonation states of the side-chain group are determined by the pH of 
the solution and the relative acidity of the group (measured by pKa). The pKa of any 
side-chain titratable group is influenced by the electrostatic environment, which in 
turn is determined by the conformation of the protein and the protonation states of 
titratable groups of the other side-chain amino acids. When there is a charge 
difference between the protonation states, the net result is a change in protein 
conformations. It is well established that there is a tight connection between protein



conformations and the protein protonation state, which is decided by the solution 
pH. The use of molecular dynamics (MD) simulations to study this effect is of 
increasing interest among computational biologists [7, 8]. In this chapter, we discuss 
the importance of protein folding, the impact of pH on protein folding, and simu-
lating proteins at varying pH conditions. 
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2 Protein Folding and the Intermediate States 

The proteins have the ability to fold spontaneously, and the correct fold is necessary 
for functional activity. Several studies have determined that the information for the 
folding of a protein is specified in the linear amino acid sequence. While we know 
that each amino acid has a discrete set of backbone states, this does not limit the 
astronomical possibilities of folding a protein. One relief comes from the under-
standing that the entire conformational space of the folding states of a protein is not 
flat but a funnel hole, where the near-native conformations are present toward the 
bottom of the funnel. The downhill direction is obtained when the energy of the 
intermediate structures is lower than the previous structures, and finally, the structure 
with the lowest energy is deemed native. The force that drives the folding of the 
globular proteins is assumed to be the result of the burial of hydrophobic amino 
acids, i.e. to keep the hydrophobic side chains away from the water with minimal 
contact [9–11]. There is a loss of conformational entropy, thereby causing the 
collapse of the protein into the predefined three-dimensional (3D) structure. The 
tight packing of the non-polar amino acids results in increased van der Waals 
interactions and also reduces the unfavourable cavities. The intra-hydrogen bonds 
and the salt bridges formed in the protein largely compensate for the loss of 
interactions with water molecules surrounding the protein. Apart from these inter-
actions, the polar amino acids also contribute to the stability of the protein by 
interacting with the solvent molecules and defining the specificities of the 
protein [12]. 

As discussed earlier, the folding of a protein is not a straightforward process. The 
polypeptide chain overcomes the Levinthal paradox to reach the required fold, and 
several models have been proposed to understand the phenomenon [13]. The 
unfolding and refolding of a protein under equilibrium conditions have been under-
stood to be a two-way process where the significant population is either the native or 
unfolded state. The intermediate states that are observed are usually unstable and 
poorly populated when the conditions are at equilibrium. The two-state folding of a 
protein is favourable for small proteins, and in this case, the free energy of denatur-
ation can also be determined [14]. The existence of intermediates has been shown 
through kinetic studies, even if small proteins have been described to have two-state 
folding. The intermediate states differ from protein to protein and even during 
folding and unfolding. It has been shown that protein may exhibit monophasic 
(two-state) unfolding but multiphasic refolding. Therefore, there are several ways 
a protein might unfold and refold, and to characterise the route, it is essential to



obtain the structural conformations of the intermediates [15, 16]. The kinetic studies 
of folding/unfolding might reveal several intermediates, but their structural charac-
terisation is complex because of their low population, transient accumulation, rapid 
process, and high cooperativity. The effect of external factors like pH and temper-
ature causes the unfolding and refolding of the proteins, but as seen earlier, it is 
difficult to determine their structure [17]. It is at this point that in silico simulation 
tools come in handy. These methodological tools allow us to simulate the protein 
under various conditions and understand the folding/refolding process and the 
intermediate states [18]. 
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3 Effect of pH on Amino Acids 

The effect of pH on the amino acids in a protein sequence has been long studied. It is 
an important parameter since the intramolecular interactions and the fold of a protein 
are based on how the protein interacts with its environment. The pKa of the amino 
acids is calculated at different pHs; accordingly, the titratable groups in the amino 
acids are protonated and deprotonated. The parts of the amino acids that can accept 
or release a proton are called the titratable groups. For example, aspartic acid has one 
side-chain carboxyl group, and therefore, it has one titratable side-chain group. In 
contrast, N-terminal lysine has two titratable groups, i.e. the N-terminal amino group 
and the side-chain amino group. On this basis, amino acids are classified into two 
categories: acids and bases. Amino acids, such as Asp and Glu, are acids, while His, 
Lys, and Arg are bases. The acidic amino acids are neutral in their protonated states, 
while basic amino acids are positively charged in their protonated state. 

The pKa value is the -log(Ka), and if we know the pKa value of the titratable 
groups in a protein, we can predict the charge on the side chain of the amino acids 
present in the group. The pKa values of the titratable groups in water have been 
estimated and are given in Table 1. The Henderson Hasselback equation is usually 
used to determine the titration curves using the rearranged equation: 

Table 1 The pKa values of 
amino acid residues in a poly-
peptide [19] 

Titratable group Estimated pKa 

N-terminal 8.0 

C-terminal 3.0 

Asp 4.0 

Glu 4.3 

Cys 8.7 

Tyr 9.8 

Ser 14.2 

Thr 15 

Arg 13 

Lys 10.5
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Fig. 1 Titration curve of glycine. The titration curve of 0.1 M glycine at 25 °C is shown. The 
different ionic species that are the key points in the titration curve are shown at the top. The teal 
boxes show the pK1 and pK2 of glycine and indicate the region with the highest buffering capacity 

f HA = 
1 

10pH- pKa þ 1 

The titration curve can be obtained by plotting fHA (where HA is the acid) versus 
pH. The titration curve of amino acid glycine is shown in Fig. 1. 

As discussed earlier, the side chain of amino acid residues in a protein may have 
titratable groups. We limit our calculations and predictions, therefore, to the pKa 

values of the side chains of the acidic and basic amino acids. The pKa values of 
titratable groups are usually measured as a difference in the free energy of the neutral 
and the charged state of the titratable groups. Calculating the free energy difference 
between the states is possible, which involves three steps. 

1. The desolvation energy associated with moving the charged and the neutral form 
of the titratable groups from the water to the interior position in the protein.
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2. The interaction of the neutral and the charged titratable groups with the perma-
nent dipole of the protein. 

3. The pair-wise interaction between the titratable groups. 

The pKa calculations are important because the 3D structure of a protein is 
dependent on the pKa values of the amino acid side chains. However, the 3D 
structures obtained through the X-ray crystallography are perturbed by the environ-
ment of the crystal, and therefore, the pKa values are less accurate for the residues 
involved in the crystal contacts. 

4 Simulating Proteins at Multiple pHs 

To prepare the protein for pH-based simulations, approaches such as the titration of 
only acidic or basic amino acids or setting the pH of the system with the explicit 
solvent, etc. can be applied. The constant pH molecular dynamics (MD) simulation 
is a common method widely used. The addition of the ions (H+ and OH-) for 
determining the pH of the solvent in the simulation box, which can hinder the pKa 

of the amino acids, is a complicated process and leads to various artefacts in the 
trajectory or simulation results. Therefore, it is an excellent way to consider only the 
titratable groups of the protein. The combination of different titratable groups at a 
particular pH can show the different pKa values compared to its experimental value. 
To tackle this problem, several strategies have been used to generate an ensemble of 
structures at different pH [20, 21]. These structures have a fixed protonation state 
according to the hypothetical pH assumed for the study [22–25]. However, there are 
limitations to this method since the side-chain pKa values of the positively and 
negatively charged residues shifts based on the surrounding electrostatic environ-
ment of the protein. Even if the pKa of all the side chains at a particular pH is known, 
the conformational sample with all combinations needs to be explored. Also, the 
fixed protonation of the protein sometimes does not allow us to understand the 
pH-induced changes, such as the binding site catalysis mechanism and unfolding 
mechanism of the protein, because simultaneously, several titratable groups partic-
ipate in the structural changes. 

Another approach that can be applied to the simulation is the continuous proton-
ation state along the continuous titration coordinate λ [26, 27]. In this approach, the 
protonation state can be changed at a given periodic interval based on the Monte 
Carlo Metropolis criterion [28–32]. The titratable groups and the titratable protons 
are defined explicitly, and the state list is defined for each residue. The simulation is 
then run with fixed protonation states for a definite time period, and the protonation 
states can change based on the Metropolis criterion again over time. 

In this chapter, we will discuss the first approach, where the titratable groups have 
a fixed pKa value depending upon the assumed pH in the starting structure. The 
structure of the protein can either be obtained from protein structure databases or can 
be modelled [33]. The structure can be used in a web-based server such as H++



(http://newbiophysics.cs.vt.edu/H++/) to set the pH. Various standalone tools, such 
as YASARA, GROMACS, and Desmond, can also set the protonation states. The 
YASARA and Desmond are GUI-based MD simulation software where the user can 
define the pH of the system, so it will automatically protonate the target structure 
based on that pH and then run the simulation. The GROMACS is the command line 
Linux-based widely used tool for molecular simulations, where also the user can set 
the pH. In the GROMACS, the user can assign the titratable residues for the 
protonation using the gmx pdb2gmx tool using the -ter option. 
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5 Case Study of Leishmania donovani Tyrosine 
Aminotransferase (LdTAT) Enzyme 

We now describe, in detail, a case study by using the example of Leishmania 
donovani tyrosine aminotransferase (LdTAT) enzyme simulated at three different 
pH 2, 7, and 12 using GROMACS v5.1.4 [34–37]. The enzyme LdTAT was initially 
uploaded to the H++ server as described in the earlier section [38] to set the 
protonation state at a given pH [39, 40]. The authors used three different pH 
conditions for the input generation for the MD simulation. At pH 2, the side chains 
of the protein amino acids were highly protonated, while at pH 12, they were highly 
deprotonated. At pH 7, all amino acids remained neutral except for His, which was 
charged. The protein structure was then simulated using the Amber 99 forcefield 
[35]. A simulation box was constructed and filled with explicit water (n = 24,692) 
using the TIP4P water model. The system was then neutralised by adding Na+ and 
Cl- ions, followed by energy minimisation. Then 1 ns NVT (number of constant 
volume and temperature) simulation was run to set the volume and temperature of 
the simulation box. After this, the 1 ns NPT (number of constant pressure and 
temperature) was performed to fix the pressure of the system. Finally, all the 
equilibrated systems were utilised for the 100 ns detailed MD simulation. The 
authors calculated the root mean square deviation (RMSD), root mean square 
fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area 
(SASA), number of hydrogen bonds, and energy by using various GROMACS 
inbuilt utilities such as gmx rms, gmx rmsf, gmx gyration, gmx sasa, gmx 
h-bonds, and gmx energy, respectively. The principal component analysis (PCA) 
was carried out using the gmx covar tool, and then the 2D PCA analysis was carried 
out using the gmx anaeig tool. 

The analysis of the MD simulation results from various angles was carried out to 
explore the pH-induced changes. The data analysis can provide detailed atomistic 
level alterations induced by pH. Therefore, it is crucial to analyse the simulation 
trajectory carefully. In the simulation of LdTAT at different pH, the first and 
foremost part was to evaluate the primary and secondary structures of the protein. 
LdTAT possesses an N-terminal and C-terminal domain which comprises 
14 α-helixes and 9 β-sheets. It represents a proper folded and globular structure.

http://newbiophysics.cs.vt.edu/H++/


The N-terminal contains 9 positively and negatively charged residues, while the 
C-terminal contains 5 and 6 positively and negatively charged residues, respectively. 
The active site of the protein has Lys286, which is essential for co-factor binding. 
The detailed analysis showed that LdTAT has 52 negatively charged residues and 
44 positively charged residues [41]. The authors calculated various structural param-
eters such as stability analysis (RMSD, RMSF, Rg), unfolding analysis (SASA), 
correlated motions analysis (PCA), and structural changes by using the time-
dependent secondary structure calculation. They also calculated hydrogen bonds 
and different energetic terms and correlated them with the LdTAT stability. 

210 S. Sasidharan et al.

5.1 Root Mean Square Deviation 

The RMSD was calculated to predict the stability of the MD simulation as well as to 
evaluate the structure stability at different pHs. The RMSD was calculated by 
superposing the first frame to the corresponding time frame snapshot for the com-
plete trajectory, as shown in Fig. 2a. At pH 2 and 12, the LdTAT enzyme attained 
stability after 20 ns, while at pH 7, the structure stabilised after 10 ns. The results 
showed that the enzyme remained stable throughout the simulation period, even at 
pH 2 and 12, and no unfolding was observed (Fig. 2a). At pH 2 and 7, the RMSD 
value was observed in a similar manner. The trajectory analysis revealed that the 
enzyme is stable at extreme pH conditions; therefore, no unfolding was observed. It 
should be noted that if the pH induces the unfolding in a protein structure, there 
would be large fluctuations in RMSD which would reflect in the other trajectory 
results. 

5.2 Radius of Gyration 

The Rg represents a protein’s compactness or folding status, and perturbations in the 
Rg values refer to unfolding events in the structure. The higher and lower Rg values 
represent properly folded and unfolded structures. The Rg plot analysis of LdTAT 
did not show major changes between all three conditions. At all three pHs, the 
protein was compactly folded until 60 ns, and after 60 ns, a slight fold change was 
observed. The change in Rg after 60 ns might result from charged residues in the N 
and C terminals hindering the intramolecular interactions (Fig. 2b). The differences 
observed in Fig. 2b were insufficient for proposing the unfolding mechanism of the 
LdTAT at these pHs. Any large unfolding event would reflect in the Rg analysis with 
a steep increase in the plot curve with time. The Rg result also well agreed with the 
RMSD analysis and indicates that the protein is stable at both low and high pHs.
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5.3 Solvent Accessible Surface Area 

The SASA refers to the surface area of LdTAT that is exposed to the solvent during 
the simulation period. When a protein is folded in a particular conformation, the 
SASA values remain constant and do not vary. In contrast, the unfolding of a protein 
leads to larger surface areas being exposed to the solvent. The higher and lower 
SASA represents the folded and unfolded LdTAT structure. LdTAT enzyme at three 
different pH did not exhibit any large fluctuations in the SASA values, but at pH 7, 
the LdTAT folded more compactly than at pH 2 and 12 (Fig. 2c). The reason 
provided is that the LdTAT enzyme attains a properly folded structure at pH 7, 
while at pH 2 and 12, there might be minor changes in the intramolecular interactions 
resulting in higher SASA values. The result is in good agreement with the RMSD 
and Rg analysis, where the authors did not observe any major changes. 

5.4 Root Mean Square Fluctuation 

The RMSF represents the residue level deviation in the protein throughout the 
simulation time scale. This allows us to observe the structural changes in specific 
regions of the protein during the simulation period. It can also provide the atomic 
level changes if one analyses the single atom movement at different conditions. The 
RMSF is usually calculated by comparing the flexibility of the backbone chain per 
residue and the flexibility of the initial structure. LdTAT showed higher fluctuations 
in the N-terminal region at pH 2 and 7, while lower RMSF values were observed at 
pH 12. In the overall simulation, a lower RMSF value for the LdTAT at pH 12 while 
a higher RMSF value for pH 7 was observed (Fig. 2d). The RMSF analysis indicates 
that the LdTAT enzyme has a flexible N-terminal region that might have a potential 
functional consequence in the enzymatic activity. It was observed from the RMSF 
analysis that residues have different flexibility patterns for proper folding at different 
pHs. However, other analyses, such as RMSD, Rg, and SASA, did not show any 
major changes at different pH conditions. 

5.5 Secondary Structure Analysis 

One of the most critical analyses of the constant pH MD simulations is the secondary 
structure analysis that reveals the unfolding mechanism of the protein. The second-
ary structure calculation was carried out using the do_dssp tool with respect to time. 
The tool extracts the secondary structure of the protein at a particular time interval 
and provides a percentage of the overall secondary structure. LdTAT enzyme 
simulation at three different pHs showed a similar α-helix and β-sheet content of 
26% and 12% at pH 2 and 12. While at neutral pH, the α-helix and β-sheet content



pH

was higher at 29% and 14%, respectively. The pH-induced changes are shown in 
Table 2. It indicates that the molecular interactions are breaking at low and high pH, 
which leads to the loss of stable secondary structures. However, these changes were 
not enough to explore the unfolding mechanism of the LdTET enzyme. 
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Table 2 Prediction of secondary structures 

Coils 
(%) 

β-sheets 
(%) 

β-bridges 
(%) 

Bends 
(%) 

Turns 
(%) 

α-helices 
(%) 

5-helices 
(%) 

3-helices 
(%) 

2 24 12 1 11 16 26 0 9 

7 24 14 1 12 14 29 0 6 

12 25 12 1 11 16 26 0 8 

The percentage of α-helix, β-sheet, coil, turns, 5-helix, 3-helix, and other secondary structures 
predicted at pH of 2, 7, and 12 for a 100 ns MD run are given. The variations in α-helix, β-sheet, 
coil, and turn can be observed in the table 

5.6 Intramolecular Hydrogen Bonding and Internal Energy 
Analysis 

Intramolecular hydrogen bonding is a vital parameter that determines the intactness 
and compactness of the protein. The number of intramolecular H bonds was calcu-
lated with respect to time for exploring the compactness of the LdTAT at different 
pH. In LdTAT, the intramolecular hydrogen bonding pattern was almost similar at 
all three pHs, which represents the stability of the enzyme. The authors predicted the 
average number of hydrogen bonds as 319± 9, 317± 11, and 315 ± 9 at pH 3, 7, and  
12, respectively. The result corroborated the earlier results of Rg, RMSD, and 
SASA, where large fluctuations in the structure were not observed. 

The authors then calculated the intramolecular energy to analyse the internal 
interaction changes in the protein at different pH conditions. This analysis can also 
reveal the interaction patterns and folding patterns of the enzyme at different pHs. 
They calculated two energetic terms: Columbic (electrostatic) and Lennard-Jones. 
They observed the Lennard-Jones interaction energies of 1.74 × 105 ± 21 kJ/mol, 
3.0 × 105 ± 11 kJ/mol, and 1.74 × 105 ± 12 kJ/mol at pH 2, 7, and 12, respectively. 
The result analysis showed that Lennard-Jones interaction energies were low at pH 2 
and 12, which indicates the loss of intramolecular interactions in the LdTET enzyme. 
The authors observed a similar pattern in the case of secondary structure analysis, 
where they saw a loss in secondary structures at pH 2 and 12. The Coulombic energy 
was also calculated at pH 2, 7, and 12, which was -1.37 × 106 ± 27 kJ/mol, -
2.14 × 106 ± 40 kJ/mol, and-1.37 × 106 ± 39 kJ/mol, respectively. The Coulombic 
energy change at pH 2 and 12 indicates the loss of salt bridge interactions. The 
overall result of the energy showed that at pH 2 and 12, LDTET is losing intramo-
lecular interactions while these interactions are stable at neutral pH.
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5.7 Principal Component Analysis 

The principal component analysis gives the large-scale motions that are essential for 
protein dynamics. The first two principal components (PCs) were selected for the 
analysis and plotted in phase space, as shown in Fig. 3. Here the large and dispersed 
cluster represents the less folded protein, while the compact cluster represents the 
well-folded and compact protein. The 2D PCA of LdTAT at pH 2 showed a stable 
cluster compared to pH 7. The LdTAT showed a similar cluster at pH 7 and 12. The 
dispersed cluster at pH 2 might result from the large-scale motions observed in the 
N-terminal and the C-terminal in the RMSF trajectory results. 

Few other in-depth analyses, like the distance between two titratable groups, salt 
bridge analysis, and intermolecular hydrogen bonds, can also be carried out in the 
case of protein–ligand interactions [42, 43]. However, the most critical analyses 
required for constant pH MD simulations are covered in this chapter through the 
above-described case study of the LdTAT enzyme. 

Fig. 3 Principal component analysis. The PC analysis of LdTAT at pH 2 (black dots), pH 7 (red), 
and pH 12 (blue) is shown. All pH exhibited similar clustering, and the area covered by the vectors 
was also the same, signifying that the structure remains relatively stable at all three pHs. The large-
scale motions were observed only at pH 2, while the structures were relatively rigid at pH 7 and 12
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6 Other Case Studies 

Though we discussed the constant pH simulation of the LdTAT enzyme at three 
different pHs, several other studies are available for reference. Waseem et al. 
simulated irisin, a therapeutic protein involved in several diseases, at pH 2, 4, 6, 
7.5, 10, and 12 [24]. They observed that apart from the stability of the protein at the 
isoelectric point, the protein exhibited higher stability at pH 4 and 6. Leone and 
Picone demonstrated the design of a pH-stable mutant of a sweet protein called 
MNEI [44]. Recently, a multi-spectroscopic approach by Yousuf et al. showed that 
the protein cyclin-dependent kinase 6 (CDK6) is stable between pH 7 and 8, and the 
tertiary structure remained intact over the complete alkaline range [25]. Another 
combined spectroscopic and MD simulation study revealed that the calcium/cal-
modulin-dependent protein kinase IV is stable over the pH range of 5–11.5 and the 
secondary and tertiary structures were also stable. While at pH 2 to 4.5, the study 
found a significant aggregation of the protein [23]. Hofer et al. studied the 
pH-induced unfolding of PhIp 6 pollen allergen protein from constant pH MD 
simulations. The study used extensive simulation data using the Markov state 
models and retrieved detailed thermodynamic and kinetic information at different 
pHs [45]. Another interesting study on constant pH simulations was conducted on 
the T7 RNA polymerase enzyme. The study concluded that the structural interaction 
of T7 RNA polymerase changes with pH, while the C-terminal end plays a vital role, 
and its inefficiency was recorded at lower pH [46]. Zhou et al. studied the 
pH-induced misfolding of prion protein and derived the unfolding mechanism 
using microsecond MD simulation analysis. The study used accelerated MD simu-
lations clubbed with the Markov state model [47]. Khan et al. performed constant pH 
simulations of chitinase II isolated from Thermomyces lanuginosus. They observed 
the strong conformational dependence of chitinase II on the pH alteration 
[48]. Another interesting pH-induced conformational transition of prion protein 
was studied, and the effect of the protonation of the His residues was studied in 
detail [49]. The authors found that the protonation of His155 and His187 is crucial 
for the conformational rearrangement of the structure [49]. Apart from these constant 
pH simulation methods, several other methods of pH-based simulations for pKa 

calculations have also been introduced [50–53]. 

7 Conclusions and Future Perspectives 

Current approaches for constant pH MD simulation are powerful for addressing the 
proteins that have variable protonation states. The advances over the years have 
made the available theoretical data and the implementation of simulation techniques 
much easier for routine applications. However, several challenges remain in the 
accuracy and reliability of conformational sampling. Constant efforts are being made 
to solve these issues, and with time, we will be able to perform constant pH



simulations with more accuracy and reliability and obtain better information from 
the simulation trajectories. Another vital advancement getting attention is the com-
putation of titration curves from the simulation output [52]. It will provide in-depth 
insights for tracking the behaviour of individual residues in a protein as well as the 
sites that are involved in the functioning of the protein. The data obtained will help 
us understand the protein structure and function at different protonation states and 
solve the intrinsic dynamics of the biochemistry of proteins [18]. 
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Another major problem that affects the constant pH simulation is the availability 
of the specific forcefields. The constant pH simulations currently model the interac-
tions between the titratable residues with the help of physics-based potential, and 
there are no alternatives to the empirical and ad hoc descriptions. However, there are 
well-established equations, such as the Hill equation, that can be utilised considering 
the wide use of such approximations and the ease of employment of the equation. 
One can always use direct computational correlations, but the approach requires 
user-specific insights into the model being considered. Continuous efforts are being 
made to adapt additional forcefields in the perspective of constant pH MD simula-
tions. These are straightforward and substantial, with the only barriers being in the 
initial topology and parameters. The future direction in this field should also be 
towards special sampling techniques and the incorporation of specific forcefields. 
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technologies have made it feasible to heat proteins using femtosecond laser technol-
ogy and nanoparticle-targeting methods locally. It is crucial to comprehend how 
quickly proteins can unfold or lose their function at high temperatures. Protein 
folding and unfolding have been widely modelled using molecular dynamics 
(MD) simulations. MD simulations provide information about protein folding that 
is otherwise impractical through experimental approaches. Techniques like targeted 
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1 Introduction 

The main principle of structural biology is that the protein structure regulates its 
function [1, 2]. During thermal denaturation, a protein unfolds from its native 
structure upon heating [3]. The energy threshold must be crossed for a protein to 
reach the point at which its secondary and/or tertiary structures disassemble, leading 
to an unfolded state [4]. A range of external stimuli, such as strong acids or bases, 
organic solvents, and heat, can trigger protein denaturation [5, 6]. There are many 
experimental and theoretical research available to understand the mechanisms 
governing protein folding and unfolding [7–10]. The thermodynamic properties of 
unfolding, folding, and conformational changes have been studied using various 
experimental techniques [11]. However, conventional experimental and theoretical 
approaches face difficulties elucidating the specifics of the protein folding mecha-
nism at the atomic level [12]. 

Over the past 20 years, the development of molecular dynamics (MD) simulations 
has provided deeper insights into the folding/unfolding process [13–15]. Theoretical 
scientists have worked with experimentalists to use computer modelling approaches 
to gather atomic-level data regarding the folding/unfolding mechanism [16]. The 
theoretical conclusions have a good agreement with the experimental data. To unfold 
a protein, simulations are performed at varying temperatures [17]. MD simulations 
are frequently used to analyse protein folding features that would be difficult to 
obtain experimentally [17–21]. Given the difficulties of studying protein stability 
and folding experimentally, one may opt to use computer simulations [22, 23]. For 
instance, an investigation of the physical and kinetic changes that occur throughout 
the simulation is possible because MD simulation integrates comprehensive infor-
mation at the atomic level with high resolution with time [24]. Since the structure of 
the unfolded state is unknown, one can start with the native fold and track the feature 
that allows simulation software to understand protein folding [25–29]. The under-
lying presumption is that unfolding will mimic protein folding in its latter stages. 
Applying starting configurations for refolding research can also be done via 
unfolding simulations. 

As computational power increases, we can expand the timescale that can be 
simulated, enabling simulations of protein denaturation to occur at much more 
realistic temperatures [30]. Replica-exchange molecular dynamics (REMD), a 
more sophisticated method, has improved protein folding sampling [31, 32]. It is 
believed that the free energy landscapes of protein folding in water are at least 
partially rough [33]. During routine MD simulations, protein systems can become 
caught in the local energy minima at room temperature. In REMD, several separate 
simulations are run at various temperatures, and attempts at exchanges are made 
following the Metropolis criterion, allowing for random travels in the temperature 
space and elements from existing energy traps [34]. REMD has been effectively used 
to study the folding of microproteins, helical peptides, three-strand beta-sheets, and 
hairpin structures [35].
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MD simulations have emerged as a crucial tool for studying molecular-level 
chemical and biological processes [18, 19, 21, 36, 37]. They have been used to 
examine how proteins and peptides behave in specific environments using Newto-
nian mechanics and empirical obtained forcefield. This chapter provide a 
detailed overview to the available computational platforms and methods for studying 
thermal-induced protein unfolding. In addition, the contribution of MD simulations 
in illustrating the mechanism of unfolding kinetics is discussed. 

2 Effect of Temperature on Protein Structure 

Proteins are polymers, more precisely polypeptides created from amino acid 
sequences, which fold to form a functional three-dimensional (3D) structure. 
Amino acids undergo condensation processes, losing one water molecule at a time 
to form peptide bonds with one another to produce a linear chain of a protein. A 
protein’s biological activity is attained by folding into one specific spatial confor-
mation, which is mediated by various non-covalent interactions, including hydrogen 
bonds, van der Waals forces, ionic interactions, and hydrophobic packing (Fig. 1a). 
Determining the 3D structure of proteins is essential to comprehend their molecular 
functions [39–41]. 

The relationship between organisms and temperature has historically been one of 
the most active areas of comparative and environmental physiology research 
[42]. Most of the early studies on temperature–protein interactions concentrated on 
the influence of temperature on the catalytic rates, i.e. how enzymatic activity adjusts 
to temperature fluctuations and interspecific differences in the protein thermal

Fig. 1 (a) Forces involved in maintaining the 3D structure of a protein. (b) Different spectroscopic 
methods can monitor the thermal denaturation of proteins. The midpoint of this transition is the Tm, 
referred to as the melting point. The figure is adapted with permission from [38]  (https://www. 
chegg.com/learn/chemistry/introduction-to-chemistry/tertiary-structure-of-protein)

https://www.chegg.com/learn/chemistry/introduction-to-chemistry/tertiary-structure-of-protein
https://www.chegg.com/learn/chemistry/introduction-to-chemistry/tertiary-structure-of-protein


stability [43]. These concepts have increasingly concentrated on two phenomena: 
adaptive changes in structural and kinetic properties across protein homologues and 
temperature impacts on protein expression, which may be the key factors in deter-
mining an organism’s thermal optimum and distribution patterns. There is a require-
ment for a deeper understanding of the fundamental thermodynamic rules governing 
protein folding and assembly. Recent theoretical advances enabled the evaluation of 
the predicted impact of specific amino acid changes on thermal stability using 
genetically engineered proteins (Fig. 1a).

224 M. I. Hassan et al.

The free energy difference between the folded and unfolded forms of a protein is 
represented by the thermodynamic stability of the protein [44]. Since temperature is 
highly sensitive to the free energy difference, heating may cause unfolding or 
denaturation. With increasing temperature, molecular vibration increases, breaking 
the weak interactions and causing proteins to denature. Protein denaturation may 
cause a loss of natural state and function (Fig. 1b). Typically, soluble globular 
proteins have a free energy of stabilization of around 10 kJ/mol. When the large num-
ber of hydrogen bonds necessary for secondary structure stabilization and the 
stabilization of the inner core through hydrophobic interactions are considered, the 
free energy of stabilization appears as a minor difference between very high 
values [45]. 

A properly folded protein has a balance between a large number of weak intra-
molecular interactions (hydrophobic, van der Waals interactions, and electrostatic) 
and the interactions between the protein and solvent. Hence, the folding process 
depends on the solution in which the protein resides. These environmental condi-
tions include temperature, salinity, pressure, solvent, etc. [46]. Hence, exposure to 
extreme conditions (such as heat or radiation, high salt concentrations, strong acids 
and bases, etc.) can induce a loss in protein structure, leading to denaturation. 
Although secondary and tertiary structures of a protein are changed during denatur-
ation, the peptide bonds that hold the amino acids together in the core structure are 
unaffected. The structural levels of a protein determine its function. Therefore, once 
denatured, the protein can no longer perform its function. However, intrinsically 
disordered proteins are functionally active despite unfolding in their original state 
and tend to fold when they bind to a biological target [47]. 

3 Temperature-Induced Protein Unfolding 

Temperature is a crucial and flexible parameter for proteins, as each protein behaves 
differently under high and low temperatures. Some proteins have high thermal 
stability, while others can denature or unfold at low-temperature conditions 
[48]. Many factors like temperature, pH, chemical denaturants, or mechanical stress 
negatively affect protein stability and can induce conformational changes with an 
adverse effect on its biological function [49]. 

It has been observed that proteins unfold at temperatures higher than the basal 
temperature of the organism it has evolved [50]. The tertiary structure of a protein,



essential to its physiological functions, is kept stable by thermodynamic principles. 
Obtaining the thermodynamic characteristics of protein denaturation as a function of 
temperature is crucial for understanding the mechanics of protein folding and 
stability. Temperature also plays a critical role in the kinetics of proteins 
[51]. Performing MD simulations at different temperatures may help us understand 
the protein structure and functions to temperature. MD simulation has emerged as an 
important method for understanding the thermal denaturation of proteins [52]. 
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4 MD Simulation to Understand Protein Denaturation 

In 1977, a new era of protein biochemistry started with the MD simulation [53]. The 
precision and effectiveness of the application of MD simulation to proteins have 
been continuously improving, and the usage of MD simulation has broadened 
through the fields of chemistry, biochemistry, molecular biology, physics, and 
mathematics [54]. MD simulations are tremendously powerful for many reasons. 
In MD simulation, the motion of every atom at each point in time is captured, which 
is very difficult with any experimental techniques. The simulation conditions can 
also be chosen as required for the study, and one can compare the simulation results 
under different conditions to understand the effects of various molecular perturba-
tions. The force fields significantly impact the outcomes of the MD simulation 
[55]. The quantitative and qualitative improvements in the force fields, like electro-
statics potentials and dihedrals, have also improved the results of the MD simulation 
[55]. Many high-temperature simulation studies have been done to explore protein 
unfolding pathways, and comprehensive reviews exist on MD simulation protocols 
[56–59]. For example, MD simulations at 373 and 498 K of the engrailed 
homeodomain (En-HD), a three-helix bundle 61-residue protein, have been used 
to analyse a folding intermediate at the atomic level [60, 61]. 

4.1 Force Field in MD Simulations 

The total potential energy of a system containing molecules being simulated in a 
solvent is usually depicted as a sum of intramolecular potentials (one for each 
molecule in the system) and intermolecular potentials. The intramolecular potentials 
usually involve a sum of covalent interactions describing how the energy varies with 
bond stretching, bond bending, and dihedral angle distortion. In contrast, the 
intermolecular potentials involve non-covalent interactions. Denaturation by tem-
perature is a step in molecular simulation significantly impacted by the force field 
since it defines the energy of the bonds and angles that require denaturation. 

A typical force field consists of covalent interactions (bond stretching, angle 
bending, torsional rotation) and non-covalent interactions (van der Waals forces, 
electrostatic forces, and hydrogen bonding).
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Utotal =Estretching þ Ebending þ Etorsion þ Evdw þ Ees þ Ehb 

where 
Estretching = 1 2 kB b- b0ð Þ2 [where b is the new bond length and b0 is the ideal 

bond length value, and kB is the stretching force constant]. 
Ebending = kA(θ - θ0)

2 [where θ is the new bond angle and θ0 is the ideal bond 
angle value, and kA is the bending force constant]. 

Etorsion = Vn 
2 1 þ cos nωþ γð Þ½ � [where Vn is the proportionality constant, ω is the 

angle, n is the time period, and γ is the cycle]. 

Evdw = 4ε σij 
rij 

12
- 2 σij 

rij 

6 
[where the equation models the Lennard-Jones 

potential with equilibrium distance σij]. 
Ees = 1 

4πε 
qi qj 
rij 

[Where the equation models the electrostatic potential between two 

charges particles qi and qj]. 
Ehb is the hydrogen bond energy obtained. 
Thermodynamics studies suggest that in a system that contains a certain amount 

of energy and is in equilibrium, the energy is distributed in a simple manner. This 
distribution is calculated using the Maxwell–Boltzmann distribution. This implies 
that the probability of having the same velocity for every particle is minuscule in a 
complete system of particles. The velocities, on the contrary, follow a distribution 
assigned and proportional to their mass and the system’s temperature. The speed 
distribution obeys the following relationship: 

f vð Þ= 4πv2
m 

2πkBT 

3 
2 

e
- mv2 

2kBT 

where m is the molecule’s mass, kB is the Boltzmann constant, v is the speed, and 
T is the absolute temperature. The temperature control methods can be divided into 
several categories: 

4.2 Strong Coupling Methods 

4.2.1 Velocity Rescaling 

In such an experiment, the intention is to change the velocity at each step (or after a 
set number of steps) to obtain a particular desired temperature. 

4.2.2 Velocity Reassignment 

Randomized velocities are employed for all the velocities of the system, and 
reassigning occurs periodically to set the entire system to a particular desired



temperature, as opposed to setting a particular velocity at a time (which in turn saves 
resources and time). Both velocity rescaling and reassignment do not generate an 
accurate canonical ensemble. The inconsistency arrives in the process since the 
kinetic energy does not fluctuate with the rescaling. For equilibrium dynamic 
studies, the methods mentioned above are not recommended; however, they are 
useful for system heating and cooling dynamic studies. Temperature reassignment is 
the better method because it avoids the undesired increment of already varied 
temperature spots. Although, both have their respective advantages and 
disadvantages. 
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4.3 Weak Coupling Methods 

4.3.1 Berendsen Thermostat 

At every simulation step, the Berendsen thermostat rescales the velocities of all 
particles to remove a predefined fraction of the difference from the predefined 
temperature [62]. The velocities are scaled at each step, such that the rate of change 
of temperature is proportional to the difference in temperature: 

dT tð Þ
dt 

= 
1 
τ 

T0- T tð Þð Þ

where τ is the coupling parameter that determines how tightly the bath and the 
system are coupled together, and T is the temperature. 

Theoretically, the Berendsen method works similarly to how a simulation with a 
heat bath kept at a constant temperature might work. Since the strength of the 
coupling defines the rate of temperature equilibration with this thermostat, the 
Berendsen thermostat is a powerful algorithm. It allows the system to relax and 
obtain better results. For instance, this algorithm produces relatively good results 
when initiating a simulation study after energy minimization. 

However, a disadvantage of the Berendsen method is that it cannot be mapped 
onto a specific thermodynamic ensemble. Statistical analysis suggests that the 
Berendsen thermostat produces a lower variance of energy distribution when com-
pared to a true canonical ensemble. This is because it samples kinetic energies 
disproportionally and closer to T0 than would be observed in the true Maxwell– 
Boltzmann distribution [63, 64]. Hence, this method is usually avoided for simula-
tions that involve subsequent production. The weak coupling of this method can be 
comprehended as heat flows between the simulated systems. With the time constant 
τT, larger values suggest slower equilibration and weak coupling, while smaller 
values of τT mean tight coupling and relatively faster equilibration. The time 
constant for heat bath coupling for the system is measured in picoseconds (Table 1).
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Table 1 Various temperature coupling functions in different software 

Thermostat/MD 
package 

Functions 

GROMACS NAMD AMBER 

1 Velocity rescaling reascaleFreq 
(steps) 

2 Velocity reassignment reassignFreq 
(steps) 

3 Andersen tcoupl = andersen 
4 Massive-Andersen tcoupl = andersen-massive Ntt = 2 
5 Lowe-Andersen loweAndersen on 

6 Berendsen tcoupl = berendsen tCouple on Ntt = 1 
7 Langevin Langevin on Ntt = 3 
8 Bussi tcoupl = V-rescale stochRescale on 

9 Nosé–Hoover tcoupl = nose-hoover 
10 Nosé–Hoover-chains nh-chain-length (default 

10) 

4.4 Stochastic Methods 

Stochastic methods generally hint at the usage of randomly assigned parameters. 
Here, random velocity assignment takes place for a subset of atoms based on 
Maxwell–Boltzmann distributions for the target temperature. This stochasticity 
slows down the system’s kinetics through the interference of motion. 

4.4.1 Andersen Thermostat 

As a typical stochastic method, the Andersen method controls the temperature of a 
system by assigning a subset of atoms with new velocities generated from the 
Maxwell–Boltzmann distribution for the target temperature randomly. The proba-
bility for a given particle to have its velocity reassigned at each step can be calculated 
as a fraction of time step Δt and time constant, τT, Δt τT 

. This implies that, on average, 

every atom experiences a random collision with a virtual particle every time step Δt 
[65]. A method derived from the Andersen thermostat algorithm, termed “massive 
Andersen thermostat”, randomizes the velocity of every atom at every Δt, increasing 
the computation time and cost [63]. 

The Andersen method has been observed to sample canonical ensemble correctly; 
however, momentum is not conserved with this method. This is a feature of the 
Lowe-Andersen thermostat. Because of velocity randomization, some correlated 
motions are impaired, which slows down the system’s kinetics. Hence, this method 
is not recommended while studying a system’s kinetics or diffusion properties. This 
further applies to all stochastic methods. It should be noted that the steps involved in 
the randomization of velocities to distribution are important parameters to compre-
hend the speed of the collision and the rate at which the particles collide. An



abnormal increase in collision rate, which means shorter steps in randomization, 
usually slows down the speed at which the molecules can confer to a better 
configuration, while an abnormal decrease in collision rate, which implies longer 
steps between randomization, means the canonical distribution of energies will be 
sampled slowly. 
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4.4.2 Lowe-Andersen Thermostat 

A variant of the Andersen thermostat that conserves momentum is the Lowe-
Andersen thermostat. This algorithm usually does not agitate the system dynamics 
more than the original Andersen method but enables the alleviation of the suppressed 
diffusion in the system [66]. 

4.4.3 Bussi’s Stochastic Velocity Rescaling Thermostat 

Bussi’s stochastic velocity rescaling is an extension of the Berendsen thermostat 
method. This has been corrected for sampling the canonical distribution. A certain 
chosen random factor is used to rescale the respective velocities. While retaining the 
advantages of the Berendsen method, it produces a correct velocity distribution for 
the canonical ensemble. The ability to avoid oscillations that are observed in similar 
thermostats is done by converging the temperature deviations from the target via a 
first-order exponential decay. For most temperature-controlled MD simulations, this 
thermostat is an excellent choice [67]. 

4.4.4 Langevin Thermostat 

Langevin equation is an equation of motion for a system experiencing a fluctuating 
force. The typical system where this equation can be implemented is a particle 
experiencing Brownian motion. The Langevin equation for a Brownian particle in 
a one-dimensional (1D) fluid bath is 

mv˙ tð Þ þ ζv tð Þ= f tð Þ

where m is the mass of the Brownian particle, v(t) = x ˙ (t) is the velocity of the 
Brownian particle, ζ is a coefficient describing friction between the particle and the 
bath, and f(t) is a random force. Though it is random, we can make a couple of useful 
assumptions about the force, f(t):
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1. The probability of randomness in the force being calculated for the system is 
equally likely to cancel out since it can be equally likely to push in one direction 
as it is in the other, which implies: 

f tð Þh if = 0 

2. The random force of the system has no direct correlation with time but is 
associated with a strength factor g, which in turn does not change with time: 

f t1ð Þf t2ð Þh if = gδ t1- t2ð Þ

It should be noted that the damping coefficient governs the friction in the system. 
A sudden increase in the coefficient value can result in the atoms experiencing an 
increased unnatural resistance and friction. On the contrary, if the coefficient value is 
decreased, the system has a high probability of fluctuating, and the desired temper-
ature might not be achieved. 

4.5 Extended System Dynamics 

4.5.1 Nosé–Hoover Thermostat 

The extended system method was introduced initially by Nose and subsequently 
developed by Hoover [59]. In this method, the heat bath is regarded as an integral 
part of the system, and a variable is introduced to the equations of motion, which are 
associated with the heat bath mass. The most prominent feature of this algorithm is 
that it enables the control of temperature without using stochastic functions that 
assign random numbers. Therefore, the correlated motions are not impaired, and this 
method better describes kinetics and diffusion properties. Adding the heat bath mass 
variable leads to heat dissipation since a second-order equation describes a time 
evolution. The exchange of heat in the system occurs in an oscillatory fashion, which 
implies that “heat bath mass” can be thought of as directly proportional to the 
frequency of temperature fluctuations that will occur because of the oscillations 
[68, 69]. The most prominent disadvantage of this algorithm is that it significantly 
affects the system’s distribution. The time constant parameter in this thermostat 
controls the period of temperature fluctuations at equilibrium. 

4.5.2 Nosé–Hoover-Chains 

This method is a modification of the Nosé–Hoover thermostat. It includes a chain of 
variables rather than using a single thermostat variable. [70]. Stochasticity is varied 
in the main method of the Nosé–Hoover thermostat, but for small or stiff systems,



the algorithm cannot guarantee complete ergodicity. In contrast, chaining variables 
behave better for small or stiff cases, leading to comprehensive ergodicity and 
ensuring the entire system space is used. However, an infinite chain is required to 
adequately correct these issues, which increases the computational cost. 
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4.6 Analysis of MD Simulation Trajectories 

Two essential questions that need to be asked before running any simulation are, 
first, what simulation process does one wants to use? And second, what result does 
one wants to obtain from that simulation? One should always have ideas about what 
type of data one wants to collect in their system. The first step towards data analysis 
or interpretation is gmx trjconv, a pre-processing tool to eliminate coordinates, 
adjust for any periodicity, or manually change the trajectory (time, unit, frame 
frequency, etc.). The protein might defuse through the unit cell and appear broken 
or jump across the other side of the box. Thus, this pre-processing tool is used to 
clear the periodic boundary condition (PBC), and the protein is placed centrally in 
the solvent box. After this process, the corrected trajectory is used to perform all 
analyses. 

The trajectory file used for the analysis is generated in the MD run along with the . 
tpr file, which has all starting structure information, molecular topology, and the 
simulation parameters of the protein or compound. A .xvg file is generated, which is 
used to display the results (such as RMSD, RMSF, etc.) in graphical forms through 
the GRACE program in Linux/UNIX or GNUplot in Windows. The .xvg files are 
plain text files containing tabular data separated by tabulators and two types of 
comments with data labels. The MD simulation outcomes can be illustrated in 
several ways to provide insights into the structural changes that occurred by increas-
ing temperatures or denaturing agents over a certain period. After simulation, 
trajectories are analysed to establish the role of temperature/denaturant to get 
atomistic insights. 

4.7 Root Mean Square Deviation 

Root mean square deviation (RMSD) is a standard measure of structural distance 
between atom coordinates. It is an average square root of all the C-alpha atom’s 
distances. It is a numerical representation of the distance between two structures. It is 
used to study how a structure or a part of a structure behaves over time from the 
initial structure under certain conditions [71–75]. The variation of RMSD values 
over a period provides information on the structural changes in a protein [76]. The 
spatially equivalent structure shows a slight difference between the structures where 
the deviation is minimal, and greater RMSD values are shown by the more distantly 
related structures [77].
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Fig. 2 RMSD of C-alpha atoms of (a) TRX II and (b) DTX at different temperatures as a function 
of time. The figure is adapted with permission from [78] 

The RMSD analysis under high temperatures can reflect the protein backbone’s 
average movement throughout the entire protein structure, as shown in Fig. 2. When 
the temperature of the system is low, i.e. below 300 K, there is little to no increment 
in the RMSD values. Still, as the temperature increases from 300 to 343 to 373 K, a 
significant rise in RMSD is observed [79], representing structural changes in the 
protein. Although depending upon the types of protein, this variation in RMSD value 
can also be different as thermophilic proteins are stable under much higher temper-
atures than mesophilic temperatures. The graph obtained by calculating RMSD from 
the MD simulation trajectories can help understand the changes between two 
structures, typically plotted versus time [80]. The flat curve indicates that the



structure has equilibrated. Figure 2 shows the sensitivity of Trichoderma reesei 
xylanase II (TRX II), a mesophilic protein, and Dictyoglomus thermophilum 
xylanase (DTX), a thermophilic protein, under various temperatures. Initially, dena-
turation was not visible at lower temperatures (300 and 400 K), although there were 
slight structural changes in both proteins. As the temperature was increased to 500 K, 
the unfolding of mesophilic protein was evident compared to thermophilic. As the 
temperature reached 600 K, complete protein denaturation was observed, particu-
larly in the mesophilic protein [78]. 
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The RMSD of protein structure throughout the simulation, both on its ligand and 
unbound form, can also be calculated. The equation given below is used to calculate 
the RMSD value: 

RMSD= 
1 
N 

n 

i= 1 

xi - x0ð Þ2 þ yi - y0ð Þ2 þ zi - z0ð Þ2 

where N is the number of atoms where (xi, yi, zi) is the coordinate of the structure 
whose RMSD is calculated and (x0, y0, z0) is the coordinate of reference structure. 

4.8 Root Mean Square Fluctuation 

The root mean square fluctuation (RMSF) measures a particle’s average change or 
deviation from its initial position over time under a specific condition [81]. It 
analyses the part of a structure which is deviating or fluctuating from its mean 
structure (Fig. 3). The RMSD measures the average change in the structure, while 
RMSF measures the average change in the particular residue or how much a 
particular residue has changed over time during the MD simulation [83]. It calculates 
the fluctuation of C-alpha atoms in an amino acid residue in the protein compared to 
the average structure throughout the simulation. An increased residual RMSF value 
indicates instability in the protein backbone or flexibility [84]. 

Unlike RMSD, RMSF is typically plotted against residue number and can help 
understand which amino acid residues are in dynamic motions [76]. The plot

Fig. 3 Variation in the 
RMSF of M-protein of 
SARS-Cov 2 at different 
temperatures. The figure is 
adapted with permission 
from [82]



normally represents the residue that has gone through changes throughout the 
simulation cycle. It also helps to find the instability of the proteins under various 
conditions, including change in temperature, pH, etc., and assist in identifying local 
changes in the protein chain [85].
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Figure 3 represents the effect of temperature on the RMSF of the M protein of 
SARS-Cov 2. Even though the overall structure appears stable, distinct peaks can be 
seen for residues 9–47 at 40 °C and  50  °C, the C-terminal loop around residues 
180–190 and residues 203–220, which show higher flexibility between 20 °C and 
40 °C [82]. This change in the flexibility of amino acid residues can cause protein 
instability and reduce or change the protein’s function. The change in flexibility can 
also be used to study the inhibitor binding to the target. The RMSF values can be 
calculated using the equation: 

RMSF= 
1 
t 

t 

i= 1 

xi -�xð Þ2 

Here t is the trajectory frame number, and �x is the time-averaged position. 

4.9 Hydrogen Bonding Analysis 

Hydrogen bonding is a type of dipole–dipole interaction that forms between a 
hydrogen atom covalently bonded to an electronegative atom [86]. Hydrogen 
bonds in protein help stabilize its structure; for example, H-bond between the 
amide nitrogen and main chain stabilizes the secondary structure and is also linked 
to the compactness of the protein structure [87]. Hydrogen bonds are crucial in 
protein in maintaining the functional 3D conformation and proper binding with the 
substrate or ligand. The variation in the length of a particular intermolecular H-bond 
within a protein structure or intermolecular H-bond between two interacting proteins 
or H-bond involved in protein–ligand interaction. H-bonds can be measured 
throughout the MD simulation run for a specific time scale and temperature [88]. 

Hydrogen bonds are critical for the biological system as they stabilise the protein 
structure [89]. The trajectories from the MD simulation can be used to study the 
effects of temperature on the structure as temperature destabilizes and denatures the 
protein by disrupting hydrogen bonds [90–95]. Along with the number of H-bonds, 
the bond length also helps determine the overall strength of H-bonds [96]. The 
temperature increase not only disrupts the H-bonds but also increases the distance 
between the molecular chains, which in the process, does not allow the formation of 
new H-bonds. 

Figure 4a indicates the impact of temperature on the H-bonds. As the temperature 
increases from 280 K, the number of H-bonds decreases in all systems. Fig. 4b 
shows the probability of the number of H-bonds at three different temperatures



10

(267, 283, and 300 K) of a short alpha-helix 2I9M [98]. There is a probability of 
forming more than four H-bonds at 267 K, while less than four H-bonds as the 
temperature increases from 283 and 300 K. 
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Fig. 4 (a) Number of H-bonds in different cross-linked systems under different temperatures 
ranging from 280 to 500 K. The figure was taken from [96]. (b) Distribution of H-bonds at 
267, 283, and 300 K trajectories of short alpha-helix 2I9M peptides. The figure is adapted with 
permission from [97]
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4.10 Dihedral Angle Analysis 

Determining dihedral angles (phi & psi angles) for all residues in a protein is 
important to analyse the mechanical importance of a particular residue in 
maintaining local conformations. Using the MD simulation trajectory of a protein, 
variation in the residual dihedral angle can be measured throughout the entire MD 
run or a specific time scale. The protein chain undergoes helix-coil transition with 
increasing temperature and through different transition states. During temperature-
induced transition, there is a synchronous change in the dihedral angles along the 
helical chain, leading to the simultaneous breaking of helices [99]. 

4.11 Radius of Gyration 

The radius of gyration (Rg) is used to measure the stability and structural flexibility 
of the protein in a biological environment [100]. It is one of the fundamental 
indicators of the overall size of a protein. It helps evaluate and verify protein 
structure compaction during the MD simulation [101]. A small Rg value indicates 
a rigid structure. The glass transition temperature is defined by the temperature at 
which the amorphous structure of the polymer changes from hard to soft. As the 
temperature increases, the stability of the structure decreases and the Rg value 
increases, implying the increase in flexibility of the structure [102]. Figure 5 
shows plots of Rg versus temperature, showing that the increase in the Rg occurs 
with the temperature increase in all plots. Even though they all have different glass 
transition temperatures, their flexibility keeps increasing as the temperature 
increases [103]. 

The Rg is calculated using the following formula: 

Rg = 
1 
M 

n 

i= 1 

mi ri -Rð Þ2 

where M is the total mass of the protein and R is the centre of mass of the protein. 

4.12 Protein Solvent Accessible Surface Area 

Protein solvent accessible surface area (SASA) is considered one of the fundamental 
elements in the stability and folding of proteins [104, 105]. Various interactions 
between molecules and solvents depend on the secondary structural changes, and 
changes in the secondary structure can cause changes in functional properties. SASA 
specifies the area on the surface of biomolecules that can be used for interaction with
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Þ

solvents and other molecules. A study of changes in SASA can help us understand 
the folding and unfolding of complexes [101]. Lower SASA means a more compact 
structure [106]. When exposed to thermal stress, protein tends to undergo structural 
changes, and this conformational change exposes the hydrophobic residues of water 
and solvents [107]. The SASA can be calculated using the following:
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SASA=A= 
R 

R2
p

- Z2 
i 

×D × L 

where A is surface area, R is the atom’s radius, and L is the length of an arc drawn 
on a given section of i from the centre of the sphere [108]. 

4.13 Principal Component Analysis 

Principal component analysis (PCA) provides information about the essential pro-
tein backbone motions in a complex system along the MD simulation trajectory 
[109] and helps understand the protein folding, loop movement, etc. It also helps us 
understand different conformations of a protein that is generated during the MD 
simulation. Interpreting these trajectories helps understand how a protein undergoes 
dynamics and performs a specific function in the biological environment [110]. Pro-
tein motion is mostly described by the eigenvalues, eigenvectors, and covariance 
matrix [111]. The covariance matrix can be calculated using the following: 

C= <  qi- < qi >ð Þ qj- < qj > > i, j= 1, 2, . . . . . ., 3Nð

where i and j signify the position of the C-alpha atom and N signifies the number 
of C-alpha atoms. 

Figure 6a shows the SASA plot of urea-induced denaturation studies performed 
and analysed to derive thermodynamic parameters associated with the stability of 
SphK1. Similarly, SASA can be studied at different temperatures; however, since 
there is an increase in temperature, there is a constant increase in the surface area of 
the protein, so the chances of interaction with other molecules also increase. 

Sets of correlated observations (such as the movement of all atoms of a protein) 
are converted by PCA into linearly independent or correlated principal components. 
Mathematically, a new coordinate system is generated by transforming the data, in 
which each coordinate represents a different degree of variance. Figure 6b shows the 
dynamics of SphK1 that were computed from the backbone using the gmx cover 
module. The essential dynamics recognize significant average atomic motions of a 
protein molecule, showing the structures underlying the atomic fluctuations.
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Fig. 6 (a) SASA of SphK1 at different urea concentrations. (b) The 2D projections of trajectories 
on eigenvectors showed different projections of SphK1 at different urea concentrations. The figure 
is adapted with permission from [26] 

4.14 Free Energy Landscape Analysis 

The free energy landscape (FEL) represents the dynamic and equilibrium properties 
of a protein. Understanding protein unfolding and folding can also be made using 
FEL [112]. FEL can be plotted in both 2D and 3D and represent the stability and 
conformational changes of a protein (ligand-bound/unbound) in terms of Gibbs free 
energy. Two data present protein stability and conformational changes: RMSD and 
Rg analysis from the trajectory of MD simulation of the protein system. They are 
correlated with the Gibbs free energy since the change in temperature affects the 
RMSD and Rg values. An increase in temperature causes an increase in RMSD and 
Rg values, which signifies a decrease in structural stability and a reduction in 
compactness and rigidity of the protein structure, thus implying that an increase in 
temperature will cause variation in the free energy landscape. 

4.15 Dynamic Cross-Correlation Matrix 

A correlation matrix represents the correlation motion of all the C-alpha atoms in a 
protein structure. The physical motion of atoms is studied using a dynamic cross-
correlation matrix (DCCM). The simulation trajectories help investigate the dynamic 
changes of the system over time. By analysing them, one can study the degree to 
which the atoms move together. This is known as the dynamic correlation between 
all the atoms of the molecule [113]. DCCM can be calculated using the following:
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Cij = 
Δri ∙Δrj 

Δr2 i Δr2 j 
1 
2 

Here Δr represents the average point movement of the atom. 

4.16 Loss of Secondary Structures in High Temperatures 

H-bonding majorly governs a protein’s secondary structure; thus, it is responsible for 
its structural stability and is an essential indicator of the folding/unfolding of a 
protein. A rise in temperature causes loss in the native secondary structures. With 
the initial increase in temperature, proteins tend to retain their secondary structures 
due to increased flexibility and, thus, an increase in H-bond formation. However, as 
the temperature rises further, significant structural alterations occur, and the struc-
tural integrity is lost [114]. 

Figure 7 shows the secondary structure evolution at different temperatures for the 
enzyme Barnase. The data indicate that alpha-helices, beta-sheets, and loops are 
stable throughout the trajectories; however, as the temperature increases to 500 and 
550 K, fluctuations are more pronounced, and the protein unfolds rapidly [115]. 

Figure 8 shows the snapshots of the thermal unfolding of Barnase at various 
temperatures and different simulation times. An immediate state is observed during 
unfolding at 600 K. The destruction of native secondary structures occurs instantly. 
Highly coiled protein can be seen in the early stages of simulation, and only a few 
secondary structures can be observed at the end of 1 ns. 

4.17 Analysing the Unfolding of Human Prion Protein Under 
Low pH and High-Temperature Conditions 

MD simulation studies have illustrated the unfolding kinetics of the human prion 
protein (HuPrP). Prion diseases are fatal neurodegenerative disorders caused by 
pathogenic prions in cattle and humans. The human prion protein domain MD 
simulations were performed for 10 ns at high temperatures (298 and 350 K) and 
low pH. The data suggested that heat and pH-induced unfolding of HuPrP follow 
different pathways. At neutral pH, the native structure was observed to be stable, 
while under acidic (weakly acidic and strongly acidic) environments, the structure 
started to unfold where only the core of the prion protein remained intact, which 
harboured disulphide bonds. The loss of helices and secondary structure changes 
were observed in both low-pH and high-temperature conditions [116].
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Fig. 7 Evolution of secondary structure in the unfolding trajectories at different temperatures for 
Barnase (a) 300 K, (b) 400 K, (c) 500 K, (d) 550 K. The figure is adapted with permission from 
[115] 

5 Applications of MD Simulation in Understanding 
Biological Problems 

Protein folding/unfolding has been investigated by both experiments and simula-
tions [117]. However, advancements in computational techniques have made it 
easier to study the overall dynamics of proteins [118]. Due to the availability of 
high-end computer hardware, software, and algorithms, studying the processes 
involved in protein folding/unfolding has become feasible using MD simulation 
[119]. Let us understand with an example. Imagine an alien lands on Earth, hears 
about something called a “bicycle”, and wants to know how it works, how to ride it, 
and how to fix it when it breaks; figuring this out would be challenging, given just a 
bicycle picture. Watching a movie about someone riding a bicycle would help.



Similarly, studying how a protein unfolds at high temperatures would be helpful 
when we capture the complete picture of events involved in protein unfolding. 
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Fig. 8 Snapshots of the thermal unfolding of Barnase. The thermal unfolding of Barnase at various 
temperatures and different simulation times is shown. The figure is adapted with permission from 
[115] 

There are many limitations with the experimental approaches to analysing protein 
folding events. They cannot provide an enhanced high-resolution description of the 
temporal process and the conformational changes with minute details. To overcome 
such limitations, researchers opt for computational techniques. The role of MD



simulation has extended dramatically in structural biology in recent years 
[120]. All-atom simulation provides an insight into the atomic resolution of protein 
dynamic behaviour and non-equilibrium phenomenon like protein folding and 
unfolding. When these events are studied along with the wet-lab experiment, it is 
observed that simulation could provide intensified data on the system under study 
[121, 122]. Computational methods enable us to simulate the protein as a function of 
temperature or any other denaturant and generate massive data, allowing us to 
investigate and visualize the process of folding/unfolding from nanosecond to 
microsecond time scale [122]. MD simulation can also provide desirable information 
regarding the kinetics and thermodynamics of proteins [123]. 
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6 Conclusion and Future Prospects 

MD simulations are frequently used to obtain the atomic-level understanding of the 
protein folding process, which is otherwise challenging to get experimentally. 
However, to simulate the unfolding of a protein in an acceptable period of computer 
time, a substantial perturbation is necessary, which in turn adds inefficiencies to the 
data that cannot be avoided. More research into protein unfolding will be done as 
computing power increases. According to studies, simulations are significantly 
influenced by the kind and scale of perturbation employed to drive unfolding. A 
gap persists to be filled for a profound evaluation between simulations and experi-
ments. The forthcoming investigational study of protein unfolding near the boiling 
point would bring critical insights into the validity of predicted unfolding rates. 
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Abstract The complex mechanism of protein folding in cells has intrigued the 
scientific community for decades. The physical and chemical forces that drive 
protein folding have been deciphered by intense experimental, theoretical, and 
computational methods. Although folding kinetics has been pursued for many pro-
teins in vitro, the crowded cellular environment and the complex solution properties 
might differentially impact the folding process in vivo. Sampling the native confor-
mation from thousands of folding intermediate states occurs within a timescale of 
milliseconds to seconds in cells, and replicating this dynamic and highly complex 
phenomenon under cell-free conditions is an extremely challenging task. The 
absence of critical regulatory parameters leads to protein misfolding and aggrega-
tion. Biophysical approaches like in-cell NMR spectroscopy, in-cell FRET, and 
FlAsH have facilitated studies focused on analysing protein folding in cells. In this 
chapter, we discuss the roles of various cellular factors in the protein folding process 
inside cells, methods to study the folding process in a dynamic cellular environment, 
and elaborate on the emerging applications of this knowledge to engineer proteins 
with native-like folds but novel properties of interest. 
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1 Introduction 

Proteins are highly sophisticated macromolecules that regulate all the major activ-
ities in a cell. The structural hierarchy observed in their native forms underscores the 
diversity and complexity of their functions. They exist either as monomers or 
multimers, which assemble with precision and integrity to define the characteristics 
of a living system. The intricate folding pathway traversed by every protein molecule 
to acquire the biologically active three-dimensional (3D) structure is tightly regu-
lated to avoid misfolded moieties from being synthesized in the cells. Unravelling 
this mechanism has been one of the greatest challenges faced by scientists for the last 
60 years. It was considered that along with the structural properties of the unique 
sequence, many other cellular components might also be critical in assisting the 
folding process in an extremely crowded cellular environment. Some of the early 
insights into the protein folding problem came from the pioneering work of Linus 
Pauling and his contemporaries in the early twentieth century. Pauling used the ideas 
of structural chemistry to unravel the chemical bonds that stabilize complex bio-
polymers like proteins. His research on haemoglobin hypothesized that its distinct 
structural features are the prerequisites of its native conformation for oxygen-binding 
functions. Pauling and his colleague, Alfred Mirsky, introduced the concept of 
hydrogen bonds and demonstrated it to be the most crucial form of interaction in 
proteins besides the peptide bonds between the amino acids. Further, Pauling and his 
colleagues modelled the first known structure of alpha keratin in which they detailed 
the interactions between the amino acids in its polypeptide chain as well as the 
distances between the repeating units to form helical conformation [1, 2]. The 
pioneering work of crystallographers like Astbury on globular and fibrous protein 
structures and contributions of Nobel laureates like Dorothy Hodgkin for insulin 
structure and Max Perutz for the atomic structure of haemoglobin have presented 
several fundamental concepts of protein structures to the scientific community. 

While many studies performed until the early 1980s clarified that small intramo-
lecular interaction within a unique primary sequence encodes secondary structures 
that adopt a defined 3D conformation, the prominent role of hydrophobic interac-
tions distributed both locally and non-locally conveyed the essential role of side 
chains in protein folding. It is seen that if the distribution of hydrophobic and polar 
residues is conserved in a protein, but its primary sequence is altered, it still folds 
into its native structure [3]. Hence, two proteins with different hydrophobic contents 
tend to acquire different native structures. However, since the energetic barrier 
between the folded and denatured states is very low (1–5 kcal/mol), it is pertinent 
to think that all the intermolecular forces play a critical role in protein folding. Later 
in 1961, the classical experiment of Anfinsen projected the thermodynamic basis of 
protein to fold correctly. Following the refolding kinetics of a 124-amino acid 
enzyme ribonuclease A, the experiment demonstrated that folding into a biologically 
active protein is independent of any cellular factors that might affect kinetic param-
eters till a thermodynamically stable protein is obtained under a particular physio-
logical condition [4]. This finding won him the Nobel Prize in 1972 and introduced



the idea of in vitro protein folding. Although it appeared that the folding code for a 
protein was embedded in the underlying amino acid sequence and the cellular 
environment had little influence on the folding properties of a protein, it was 
imperative to decode the cellular properties that influence the stabilization of sec-
ondary and tertiary conformations [4]. 

Principles, Methods, and Applications of Protein Folding Inside Cells 253

A landmark finding stemmed from the observations of Cyrus Levinthal in 1969, 
who first noted that proteins could convert quickly to their native states in just a few 
microseconds, strongly contradicting that proteins perform a random search for all 
possible configurations. He suggested that there must be energy-driven or kinetically 
favoured folding pathways, and elucidating the physical mechanism behind protein 
folding could lead to fast algorithmic predictions of native structures from amino 
acid sequences. This concept of protein folding intrigued a large number of scientific 
studies, and many researchers began exploring the ‘folding intermediates’ and 
postulated many protein folding models to support their theories predicting folding 
pathways. The nucleation growth model [5], diffusion–collision–adhesion model 
[6], framework model [7], hydrophobic collapse model [8], jigsaw puzzle model [9], 
and nucleation-condensation model [10, 11] are major examples of protein folding 
models that well supported and took forward the idea of Levinthal by interpreting 
different routes of protein folding mechanism [5–12]. 

Recognizing the concept that an unfolded protein can explore ensembles of states 
through alternate folding pathways to achieve its biologically relevant configuration, 
the ‘new view,’ also known as the ‘energy landscape view’, was described in the 
1990s. The view indicates protein folding as a funnel diagram, where the width of 
the funnel indicates all the possible conformations for a polypeptide chain, while the 
decreasing free energy function is represented by its depth. The native structures are 
presented at the lowest level (global minimum), with the denatured state for each 
protein shown at the wider top region. Hence, the top of the folding funnel represents 
the non-native states with high conformational entropy, and as the funnel gets 
narrower, conformational entropy decreases with the compact near-native states at 
the bottom. This concept of protein folding also helped to understand several other 
protein folding complexities. It denied the assumption that the energy landscape of a 
real protein is a perfect funnel and supported a somewhat rugged and bumpy shape 
of the funnel due to slow folding steps and kinetically distinguishable conforma-
tions. Being a form of microscopic view, the funnel indicates that each molecule 
follows a different route to its native folded structure, facing different obstacles on 
the energy landscape. It is possible that while one molecule starting from uphill may 
reach the bottom unhindered, another molecule may get kinetically trapped in a 
non-native conformation due to entropic barriers [13–15]. 

Computational analysis has accelerated the structural prediction of proteins from 
their amino acid sequences, with secondary structure prediction algorithms among 
the earliest [16]. It was also suggested that the protein folding rate depends on the 
topological characteristics of its native structure [17, 18]. The folding rate was higher 
in ⍺-helices and turns than in β-sheets [18]. Other topological parameters like chain 
length, secondary structure content, contact distance of residues from the sequence, 
and overall contact distance also regulate the protein folding speed [19–22]. Besides



the primary protein structure, other factors like solution properties, intermolecular 
interactions, protein modifications, and environmental perturbations can also disturb 
protein folding and unfolding equilibria. Interactions with chaperones assist the 
proteins in unfolding and refolding until their stable globular conformation is 
obtained, without which they are targeted for degradation. Failures of these regulated 
checkpoints yield misfolded proteins that can be physiologically fatal. Deeper 
insights into the fundamental principles of protein folding have not only helped to 
understand disease pathologies but have also been instrumental in the de novo 
design of proteins with novel functions. These avenues offer practical applications 
of our fundamental knowledge of protein folding to developing therapeutics and 
medical diagnostics. In this chapter, we discuss various techniques to study protein 
folding in cells with an emphasis on the cellular factors that affect the folding 
potentials of a protein. We further highlight the applications and methods to study 
protein folding in vivo. 
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2 Protein Folding in Cells 

Protein folding is initiated at the N-terminus of a newly synthesized protein. The 
co-translational folding couples with the synthesis and vectorial folding of nascent 
polypeptides as they emerge from the ribosome exit tunnel. The small sections of the 
protein chain that are being synthesized constantly fold and unfold to enable correct 
intermolecular interactions until the full-length protein is released from the ribo-
some. The compactly folded intermediate often comprises native-like secondary 
structures called the ‘molten-globule’ state, which can rapidly transition to the 
unfolded form. With rapid equilibrium kinetics, the co-translationally folded pro-
teins span a much smaller conformational space characterized by nested free energy 
landscapes [23]. Interestingly, the conformational entropy of full-length protein is 
closely related to the length of the emerging polypeptide chain. Hence, the rate of 
translation and rate of folding together dictate the number of unfolded states that can 
be sampled by a full-length polypeptide chain, with faster-translated chains having a 
higher risk of encountering misfolded intermediates [24]. While this may largely be 
true for most cellular proteins, O’Brien et al. demonstrate that protein segments that 
are prone to be misfolded tend to fold correctly if they have higher rates of codon 
translation [25], suggesting that a much more sophisticated orchestration of mech-
anisms underlie co-translational folding of proteins. The co-translational protein 
folding occurs in eukaryotes due to a slower translation rate, larger amino acid 
composition, and complexity of polypeptides. About one-third of the total proteins 
present in E. coli have been found to fold co-translationally. In E. coli, the average 
rate of protein synthesis is ~20 amino acids/s, whereas, in the case of eukaryotes, it is 
~6 amino acids/s. While cytosolic proteins fold and function in the cytosol, secretory 
proteins need compartmentalization for modification and maturation. Ribosomes act 
as the site of the co-translational folding of proteins into 3D structures. Before 
emerging into the cytosol, the nascent polypeptide chain interacts with a number



of ribosome-associated protein factors inside the ribosome exit tunnel. The dimen-
sions of the ribosome exit tunnel and the slowly diffusing and semi-structured 
properties of water inside it facilitate the nascent polypeptide to fold into a compact 
structure. Based on the rRNAs and r-proteins, the tunnel comprises three regions, 
the upper region made by U2585 and A2062 from domain V of the 23 s rRNA, the 
central part includes uL4 and uL22 protein loops, and the lower region has the 
nucleotides of I and III domains of 23 s rRNA [26, 27]. These tunnel proteins 
provide electrostatic potential, which is essential for proper stability and conforma-
tion of the polypeptide. 
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Fluorescence resonance energy transfer (FRET) and biochemical assays based on 
site-specific cysteine tagging (PEGylation) of the nascent polypeptide chains 
revealed that the transmembrane segments could form secondary structures at the 
distal end of the tunnel. Cryo-electron microscopy (cryo-EM) of the ADRla zinc 
finger domain of ADR1 protein demonstrated its folding a few angstroms deep 
inside the peptide exit tunnel [28]. Another study showed that the folding of the 
N-terminal domain of Hem-K, a small five-helix protein domain, occurs ~33 Å away 
from the exit tunnel. The native full-length protein forms immediately after the 
domain emerges from the exit tunnel [29]. The volume confinement effect inside 
the deeper region of the tunnel has a compelling effect on folding and stabilizing the 
protein. Although tertiary structure formation is limited within the tunnel, the wide 
vestibule region located ~80 Å from the peptidyl transfer centre at the end of the 
tunnel supports the formation of tertiary structure. According to the force profile 
assay, small protein domains of molecular weight of 10 kDa containing alpha-helix 
or beta-sheet structures fold within the first 80 Å of the peptide exit tunnel. The space 
available for the polypeptide expands suddenly when adequate amino acids emerge 
from the exit vestibule, ultimately allowing the formation of the tertiary structure 
[26]. Many experimental studies using cysteine mapping PEGylation, FRET, and 
cryo-EM support the fact that the ribosome entropically stabilizes helix formation. 
The domains with beta-strand conformation and the proteins possessing repeat 
motifs can fold on the ribosomes sequentially [26, 30]. 

Soon after emerging from the ribosome exit tunnel, the secretory proteins are 
translocated across or inserted into the membrane of the endoplasmic reticulum 
(ER) with the help of a hydrophobic stretch of amino acids at their N-terminus 
recognized by the signal recognition protein (SRP), a cytosolic ribonucleoprotein, 
which then subsequently attaches to the ER membrane for translocating the nascent 
polypeptide into the ER. While the C-terminal segment of the nascent polypeptide 
chain is present in the tunnel of the 60 s ribosome, the N-terminal region is located in 
the protein conducting channel, which is a part of the translocon complex. Sec61α, β, 
γ, and TRAM are the four transmembrane proteins of the translocon complex that 
form an aqueous channel. The translocon is an excellent example of complex 
functional coordination to regulate protein folding in cells. Its association with the 
ribosome closes its cytosolic end and, at the same time, opens it at the ER lumen side 
to allow passage of the polypeptide traversing it. The lateral opening of the 
translocon also aids the translocation of membrane proteins and the insertion of 
their hydrophobic transmembrane domains into the lipid bilayer. The cytosolic



regions of single-spanning membrane proteins are folded after the complete synthe-
sis of the polypeptide, while for the multi-spanning membrane proteins, the cytosolic 
regions are folded co-translationally. The signal sequence of a protein defines its 
efficiency in translocating across the ER membrane [31, 32]. These proteins are 
further assisted by a host of ER-resident chaperones like BiP and Grp170 to acquire 
native conformations. 
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Interaction with SRP is not an essential requirement for proteins that are 
translocated across the ER membrane only after complete synthesis by the ribosome. 
Supported by a host of cytosolic chaperones, their co-chaperones, and the 
chaperonin complex, which assist the proteins to be unfolded or loosely folded, 
these intermediates are recognized by Sec63, a specific membrane receptor that 
further presents them to the translocon complex. Following the integration of the 
unfolded polypeptide chain into the translocon, the three covalent modifications, 
including signal peptide cleavage, N-terminal glycosylation, and disulphide bond 
formation, are critical for the folding of the protein in the ER lumen. While emerging 
from the exit tunnel, the nascent polypeptide chains interact with several ribosome-
associated proteins such as peptide deformylase, methionine aminopeptidase, SRPs, 
and trigger factors, as well as with some molecular chaperones that aid the 
co-translational protein folding and their translocation to membrane compartments 
[27]. As evident from the earlier studies, co-translational protein folding can also be 
affected due to the presence of cofactors or ligands. The binding of ATP facilitates 
the folding of the N-terminal subdomain of human CFTR protein, which ultimately 
promotes the co-translational folding of other domains [23]. However, the proteins 
that cannot be properly folded to their native conformation are eventually degraded 
by the cytosolic 26S proteasome via the ER-associated degradation process 
[32]. This multistep process of protein folding progresses efficiently with the help 
of many cellular factors. The following section highlights their impact on the folding 
properties of proteins in cells. 

3 Cellular Factors That Facilitate Protein Folding in Cells 

3.1 Macromolecular Crowding and Compartmentalization 

The cellular environment is over-occupied with diverse macromolecules such as 
proteins, carbohydrates, nucleic acids, ribosomes, etc. These biological molecules 
occupy 25–40% of most cellular compartments suggesting that these solution 
properties should be mimicked in the in vitro protein folding studies to accurately 
estimate the contribution of neighbouring solutes to the free energy of folding. 
Macromolecular crowding imposes excluded volume effects (hard interaction) and 
chemical interactions (soft interactions), which cause alteration in molecular diffu-
sion, molecular collisions, protein folding, protein stability, protein–protein interac-
tion, and enzyme kinetics. The hard interactions are entropic in nature, whereas soft 
interactions are mostly weak and enthalpic [33]. According to the statistical



thermodynamic model of Zhou and Hall, high concentrations of larger solutes 
stabilize proteins, while high concentrations of smaller solutes facilitate destabiliza-
tion of the same. On the contrary, medium-sized solutes with low concentrations 
stabilize proteins, whereas those with high concentrations destabilize them. Another 
model by Minton demonstrated that the excluded volume exerted due to stable inert 
macro solutes stabilizes the globular native folded protein [34]. 
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A study on the effect of macromolecular crowding on the refolding of hen 
lysozyme shows that crowding positively affects the rate of formation of initial 
disulphide bonds. It increases the intrinsic properties of folding polypeptide chains 
and chaperone substrate interaction [35]. Supporting evidence exhibits that polyeth-
ylene glycol and ficoll act as crowding agents in vitro, which facilitate the refolding 
of denatured RNase A without forming any aggregate. Polyethylene glycol or ficoll 
of different molecular weights was added to the simple cell-free system, and the 
folding, compaction, and activity of the protein were observed using various bio-
physical approaches. CD and NMR spectra analysis revealed that the crowding 
agents, when present in the same volume as the intracellular milieu, enhanced the 
refolding of RNase A [36]. A large-scale analysis of E. coli cytoplasmic proteins was 
conducted under a cell-free translation condition to study the effect of crowders on 
protein folding and aggregation properties of these proteins. The study demonstrated 
variable effects of the crowding agents. While dextran inhibited the aggregation of 
positively charged proteins, it decreased the solubility of proteins, with aggregation-
prone to the tertiary folds [37]. A combined in vitro and in silico analysis of 
apoflavodoxin was performed in the presence of macromolecular crowding agents. 
Far-UV CD data revealed that the addition of ficoll 70 enhances the formation of 
secondary structure as well as overall protein stability in a concentration-dependent 
manner [38]. 15 N relaxation dispersion technique was used to observe the difference in 
the protein folding and unfolding kinetics in the presence and absence of crowders. 
The unfolded proteins were found to be more compact in the presence of crowding 
agents. The 1 H-15 N correlation spectrum obtained shows that the folding rate of 
protein was increased by 80% at 20 °C in the presence of crowding agents, while at 
30 °C, the rate of protein folding was increased by only 33%. This result indicates that 
higher temperature adversely affects protein folding [39]. Furthermore, analysing the 
impact of macromolecular crowding on reversed proteolysis unveiled that the 
crowding agents enhance the proteosynthesis of polypeptide products with the protein 
assembly into a coiled-coil structure [40]. On the other hand, studies on cytochrome c 
demonstrate that crowding agents did not affect the structural stability of the protein; 
instead, they enhanced its thermal stability. Moreover, the net effect of excluded 
volume on protein depends on several factors such as protein stability, conformation, 
crowders to protein size ratio, and geometry of crowding agents [41]. 

3.2 Inter- and Intramolecular Interactions in Proteins 

Several noncovalent interactions, including hydrogen bond (H-bond), hydrophobic, 
coulombic, and van der Waals interactions, allow cooperative interactions in the



amino acid residues along a polypeptide chain to form the native structure. Other 
interactions, such as C–H–O hydrogen bonding, C5 hydrogen bonding, chalcone 
bonding, and interactions involving aromatic rings, also contribute to the overall 
protein folding mechanism [42]. The H-bonds are formed between the hydrogen 
atoms and an electronegative donor atom to stabilize the α-helices and β-sheets. 
These bonds further provide directionality and rigidity to interactions. Proteins form 
approximately 1.1 H-bonds per residue during folding [43]. Interestingly, the acti-
vation energy of a hydrogen bond in proteins present in an aqueous solution is about 
0.5–1.5 kcal/mol, which is much lower than its energy (~5–6 kcal/mol) in isolated 
form, suggesting that the water environment dramatically lowers the entropy of 
proteins which reduces the energetics of this bond within soluble proteins. Studies 
on 151 H-bond variants (Tyr-Phe, Thr-Val, and Ser-Ala variants) of polar side 
chains from 15 proteins revealed that H-bonds from peptide bonds make 65% of 
the H-bonds in a folded protein and contribute more towards protein folding and 
stability than the H-bonds made by -OH groups of Ser, Tyr, and Thr [44]. Interest-
ingly, a nonpolar environment with a lower dielectric constant increases the strength 
of H-bonds by 1 kcal/mol [45]. For an aggregating peptide, H-bonding increases 
cooperatively when it coalesces with other aggregating species [46]. 
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Apart from conventional H-bond, non-canonical H-bonds (C–H–O) involving 
carbon as hydrogen donors are also vital for protein stability, where C–H protons of 
the main chain serve as the most common C–H–O donors. C5 H-bonds found in 
β-sheets are formed when amide protons of β-sheets donate an intra-residue H-bond 
to its own carbonyl oxygen, and disturbance in this bonding changes the stability of 
β-sheets. The weak interaction occurs between adjacent carbonyl groups in the 
backbone due to the donation of lone pair (n) electron density from carbonyl oxygen 
into the π* orbital of another carbonyl group is involved in stabilizing α-helix, 310 
helix, and polyproline II geometries. Cation-π, X–H–π, π–π, anion–π, sulphur–arene 
interaction and chalcogen bonding are some of the secondary interactions involving 
sidechain atoms that contribute to the overall energy of protein folding [42]. 

As a protein contains both hydrophobic and hydrophilic regions, understanding 
the exact mechanism of the hydrophobic effect in protein folding is critical. Ther-
modynamic analysis and comparison between cold and hot denaturation provide a 
better insight into the molecular determinants of the hydrophobic effect. Results 
have shown that yeast frataxin protein sampled different folding intermediates at low 
and high temperatures due to changes in the number of inter and intra-H-bonds 
between water and the protein surface. A thermally denatured state shows only 
compact secondary structures with reduced H-bonds between the water and protein 
surface [47]. Hydrophobicity indicates the reduced unfavourable interactions 
between the hydrophobic residues and water molecules, which converts the mole-
cule into a more condensed structure [48]. A model proposed to depict the role of 
hydrophobicity in the initiation and propagation of protein folding illustrated that the 
nonpolar residues come in contact with each other due to the negative free energy of 
hydrophobic interactions and form hydrophobic pockets at the initiation site of 
protein folding [49].
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Van der Waals and electrostatic interactions also contribute to the folding and 
structural stability of a protein. Geometric parameters such as distance between 
sidechain groups help speculate the van der Waals interactions [50]. Electrostatic 
interactions regulate the thermodynamics and kinetic properties, such as the binding 
and folding of proteins, as they are affected by the non-homogenous medium 
surrounding the protein charges [51]. Like hydrophobic interactions between non-
polar residues, electrostatic interactions between polar charged residues also support 
protein folding stability. Electrostatic interactions are temperature-dependent, and an 
increase in temperature favours the contribution of electrostatic interactions to 
protein folding [51]. A study on the electrostatic effect using mutations in the 
residues of three proteins showed a decrease in repulsive electrostatic interaction 
due to the reduction in enthalpy. While electrostatic interactions in the unfolded 
proteins are more prone to ion shielding, in the folded state, this interaction is less 
dependent on the concentration of ions [52]. 

3.3 Post-Translational Modifications 

Post-translational modifications (PTMs) following protein biosynthesis refer to the 
chemical changes occurring in a protein due to proteolytic cleavage and covalent 
attachment of small chemical moieties to specific amino acid residues. PTMs have a 
vital role in innumerable biological processes, such as modulation of protein struc-
ture and dynamics, protein folding, protein–protein interactions, protein solubility, 
protein localization, enzyme conformation, and activity. The most common PTMs 
include attachment or removal of various modifying groups, disulphide bond for-
mation, and defined cleavage of precursor proteins. Even though all amino acid 
residues of a polypeptide chain can undergo PTMs, the side chains containing strong 
or weak nucleophiles are the most commonly affected sites. As documented in 
previous studies, around 300–400 PTMs have been identified as of date. Phosphor-
ylation, acetylation, methylation, ubiquitination, glycosylation, nitration, 
SUMOylation, sulfation, palmitoylation, and myristoylation are characterized as 
the major PTMs. More than 140 chemical moieties are involved in different PTMs 
[53, 54]. The functional maturation of amyloid precursor protein (APP) demon-
strates the various post-translational modifications that APP undergoes during its 
movement through the secretory pathway. The signal peptide that directs it into the 
ER is cleaved before it enters the ER, where N-glycosylation of Asn residues further 
matures it to reach the Golgi complex. In ER, it again undergoes O-glycosylation 
and sulfation of Try residues. Aberrant glycosylation of APP reduces its solubility, 
while the addition of sialic acid to its oligosaccharide chain makes APP more 
soluble [55]. 

Most of the secretory and type I membrane proteins contain cleavable signal 
peptides near the N-terminal hydrophobic domain that is recognized by the SRP for 
targeting into ER. The cleavable signal peptides consist of a basic N-terminal 
domain, a middle hydrophobic H-domain in the core of the lipid bilayer, and a



polar C-terminal domain that contains the signal peptide recognized by the signal 
peptidase. The cleavage of signal peptide mostly occurs co-translationally, while for 
some other proteins, such as HIV envelope glycoprotein, this event is considered late 
post-translational. The peptide cleavage for hemagglutinin, preprolactin, and tyros-
inase occurs after the synthesis of 120 amino acids of the polypeptide chains. 
Mutations in the signal peptide sequence have been found to inhibit its binding 
with SRP, translocation, or cleavage, which eventually is responsible for a number of 
diseases such as Ehlers-Danlos syndrome, autosomal dominant familial isolated 
hypoparathyroidism, factor X syndrome, etc. [31, 56]. 
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N-linked glycosylation is considered the most complex and ubiquitous modifica-
tion process required for proper folding and the quality control of proteins in the 
ER. While in the case of prokaryotes, glycans are attached after protein folding, 
N-linked glycosylation occurs before folding in eukaryotes for generating diverse 
proteins. Glycans are bulky hydrophilic polymers that play a significant role in 
increasing the solubility and stability of protein against proteolysis. This process 
refers to the transfer of the oligosaccharide portion of lipid-linked oligosaccharide by 
oligosaccharyltransferase onto the Asn residue of the Asn-X-Thr/Ser consensus 
sequence residing in a polypeptide chain. The oligosaccharyltransferase catalyses 
the transfer of the lipid-linked oligosaccharide, which is composed of three glucose, 
nine mannose, and two N-acetyl glucosamine, to the Asn residue. The covalent 
binding of glycans to proteins improves the kinetics and thermodynamics of protein 
folding, stability of protein, and immune recognition [31, 56, 57]. However, 
according to a recent study, N-linked glycosylation does not have a significant effect 
on modulating protein conformation, although it enhances protein stability [58]. 

Disulphide bond formation also stabilizes folding intermediates or native states of 
secretory or membrane-bound proteins. Oxidizing reagents or enzymes induce 
disulphide linkage between two cysteines. The thiol-disulphide oxidoreductase of 
the protein disulphide isomerase (PDI) catalyses disulphide bond formation, reduc-
tion, and isomerization [59]. PDI acts as a chaperone to recognize folded or unfolded 
protein conformations, though it possesses a higher affinity for misfolded proteins 
via hydrophobic interaction. It positively regulates the degradation of misfolded 
protein via the ER-associated degradation pathway [60, 61]. 

3.4 Chaperones 

Molecular chaperones are conserved multidomain proteins that play a fundamental 
role in proteostasis (Fig. 1 and Table 1). Most of the chaperones involved in protein 
quality control use the ATP cycle for the folding or unfolding of non-native poly-
peptides. Chaperones like Hsp70 sequentially interact with nascent polypeptide 
chains on the ribosome and assist their proper folding. This process restricts the 
premature folding or misfolding of the growing polypeptide until all the amino acids 
are synthesized, and the protein is folded into a stable, compact structure. While



Hsp70 acts at the early stages of protein folding, Hsp90 stabilizes the metastable 
conformation of over 200 cellular clients until they are appropriately localized with 
their ligands. Chaperones like Hsp110 and Hsp70 disaggregate misfolded con-
formers; further, they can also target them for degradation [66, 67]. 
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Fig. 1 Schematic representation of the role of chaperones and chaperonins in the protein 
folding pathway in cells. As the mRNA template translates into a nascent polypeptide, it pro-
gresses to acquire the native conformation. On emerging from the ribosome exit tunnel, it is 
recognized by the trigger factor (in prokaryotes) and the ribosome-associated complex (RAC) or 
nascent polypeptide-associated complex (NAC) (in eukaryotes). The nascent polypeptide either 
binds co-translationally to Hsp40 and Hsp70, which assist it in acquiring the native fold, or this 
complex is further associated with Hsp90 and its cochaperone-like HOP. Protein folding in bacteria 
is assisted by DnaK and DnaJ (bacterial homologs of Hsc70 and Hsp40), which channel the nascent 
polypeptide into GroEL/ES chaperonins. Tric is the chaperonin of eukaryotes with a cage-like 
structure to capture the unfolded forms of cellular proteins
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3.4.1 Hsp70 Chaperone 

Hsp70, a 70 kDa protein, is considered the most abundant chaperone present in all 
cellular compartments. The dynamic interactions between its N-terminal ATPase 
domain and C-terminal substrate-binding domain, assistance by its co-chaperones 
and nucleotide exchange factors, together regulate the activity of this chaperone. 
While in the ATP-bound state, the peptide interaction with Hsp70 is dynamic; stable 
interactions between Hsp70 and unfolded proteins occur in the ADP-bound and apo 
state of the chaperone. The hydrophobic binding motifs within the core of the folding 
intermediate bind the chaperone, which assists it in achieving a native-like fold 
[68]. Hsp70 disassembles clathrin-coated vesicles after clathrin-mediated endocyto-
sis and helps Hsp100 ATPase in disaggregating large aggregates to inhibit cellular 
toxicity [67]. Interestingly, the activity of many eukaryotic regulatory proteins is 
governed by their transient interactions with Hsp70 [69]. 

The co-chaperones of the J-domain family and the substrate proteins enhance the 
ATPase activity of Hsp70. There are two alternative mechanisms via which Hsp70 
supports the substrate proteins to obtain their native folded form. Firstly, its iterative 
association and dissociation from the substrate protein in a cyclic manner help to 
maintain a low concentration of free unfolded proteins, allowing them to fold 
properly and avoid aggregation. Secondly, this cyclic function enables the unfolding 
of misfolded proteins such as misfolded β-sheets and facilitates their folding into a 
proper conformation [69]. In the ATP-bound state, the α-helical lid of the substrate-
binding domain opens, leading to rapid binding and unbinding of substrate proteins. 
In contrast, in the ADP-bound state, the lid closes, and stable interactions occur 
between the chaperone and substrate proteins and direct them for folding [70]. A 
direct interaction between Hsp70 and its substrates is demonstrated by Lu et al., 
using molecular simulation to remodel the energy landscape of the Hsp70-mediated 
protein folding. The interaction of Hsp70 with an unfolded protein reduces the 
probability of the protein to sample numerous folding intermediates and persists 
till that protein reaches its near-native conformation [71]. 

3.4.2 Chaperonins 

Chaperonins are a class of molecular chaperones that are involved in the folding of 
proteins of molecular weight up to 60 kDa by enclosing them inside their double-
ringed cavity (Table 1). Their structural differences and dependence on 
co-chaperones help them capture the substrate proteins in the hydrophobic interior 
of their cavity [70, 72]. 

A well-studied example of chaperonins is provided by the GroEL/GroES com-
plex found in the bacterial cytosol. The cylindrical cavity of GroEL is capped by its 
cofactor GroES and captures the unfolded protein within itself. The partially folded 
or unfolded protein is protected in the interior cavity of this chaperonin until it 
acquires favourable folds and is subsequently released into the cytosol by removing 
the GroES cap by ATP hydrolysis. Interestingly the folding cage of this protein



complex not only modifies the unfolded substrate but is also seen to undergo 
stoichiometric changes from asymmetric to symmetric conformations in the pres-
ence of foldable substrate proteins [73]. Following this complex folding mechanism, 
several models have been proposed to unravel the protein folding mechanism inside 
the chaperonin cavity. The passive cage model, or Anfinsen’s model, states that 
protein folding is a slow but spontaneous process. The GRoEL/GRoES chaperonin 
system provides an infinite dilution environment for proper folding [72, 74]. The 
confinement model explains that the confined space inside the GroEL cage aids 
protein folding. According to the iterative annealing model, the repetitive binding 
of unfolded denatured protein to GroES and release from GroEL coupled with ATP 
hydrolysis leads to their folding conformation. The incompletely folded proteins 
follow further iterations until they reach their proper folding state. The tethering 
model demonstrates that the encapsulated unfolded proteins interact with the hydro-
phobic residues of the chaperonin cavity and form tether intermediates. This weak 
hydrophobic interaction allows substrate proteins to undergo conformational 
changes that ultimately accelerate folding. However, it has been recently found 
that the denatured protein is not completely enclosed by the chaperonin cavity; 
instead, it interacts with the hydrophobic residues present at the interface of 
GroEL [72]. 
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Another ATP-dependent chaperonin contains tailless complex polypeptide 
1 (CCT), also known as tailless complex polypeptide 1 ring complex (TRiC), 
which is also an important regulator of protein homeostasis in cells. This Group II 
chaperonin and an archaebacterial thermosome are both made up of eight subunits. 
These subunits have a specific orientation within the ring structure to recognize 
unfolded proteins. The apical domains of these chaperonins contain finger-like 
protrusions that act as the lid of the cavity. The opening and closing of this lid in 
an ATP-dependent manner are similar to that of the GroEL-GroES system. As the 
ATP reaction cycle, in this case, is much slower than the group I chaperonins, it 
provides a longer duration for protein folding. TRIC binds to approximately 10% of 
the cytosolic proteins, including cyclin, tubulin, and other cell cycle regulatory 
proteins, and assists in their folding [70, 75]. 

3.4.3 Hsp90 Chaperone 

Hsp90, a 90 kDa protein, imparts stability to diverse proteins under cell stress 
conditions and is aptly recognized as a master regulator in cells. While some proteins 
like Ste11 bind to Hsp90 to acquire its native conformation, others like src-kinase 
require the support of Hsp90 while it is transported to the cell membrane, suggesting 
that functions of Hsp90 in the cell are unique for each client. Its ability to activate 
and stabilize a subset of clients that cause neurodegeneration or cancer makes Hsp90 
a therapeutic target for many diseases. It is a homodimeric protein that assists in 
protein folding by hydrolysing ATP and binding to over 20 co-chaperones. Asym-
metric binding to ATP and co-chaperones by the monomers is implicated in allowing 
the association of Hsp90 simultaneously to many cellular proteins [76, 77].
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Contrary to chaperonins or Hsp70, Hsp90 does not possess a defined substrate-
binding region. Large-scale mutagenesis studies have successfully demonstrated 
specific substrate-binding sites that might be available only during conformational 
rearrangements tightly regulated by ATP or specific co-chaperone binding 
[78, 79]. Hsp90 acts downstream of Hsp70 in the protein folding pathway. It pro-
vides a larger and more extended surface for substrate binding. The continuous 
switch between the apo state and ATP-bound structure of Hsp90 is extremely 
important for its substrate maturation functions. Further, each monomer of Hsp90 
comprises an intrinsically disordered stretch of amino acids at its C-terminus. 
Following the analysis of evolutionarily conserved regions of Hsp90, it has been 
demonstrated that the charge properties of this disordered structure not only enhance 
the solubility of Hsp90 independently but also of the complex of Hsp90 with its 
aggregation-prone clients [80]. Some co-chaperones like Sti1/Hop form a bridge 
between Hsp70 and Hsp90 by simultaneously binding the C-terminal end of both 
proteins. However, Hsp90, unlike Hsp70, does not block protein folding. The 
substrate reaches its folded conformation while still bound to Hsp90 [81]. Interest-
ingly, PTMs like phosphorylation, methylation, acetylation, SUMOylation, O-
GlcNAcylation, and ubiquitination influence the functions of Hsp90. One of the 
early reports showed that hyperphosphorylation of this chaperone by casein kinase 
2 prevents the maturation of pp60v-src [82], and since then, binding of many 
substrates and even co-chaperones have been reported to be impacted by structural 
modifications of Hsp90 [83]. 

3.5 Solution Properties 

Solution properties like physiological ion concentrations, temperature, or the pres-
ence of small molecules affect the folding of proteins inside cells. Protein folding 
occurs in different cellular compartments with different pHs, where cytosol and ER 
have neutral pH while Golgi is basic with a pH of 5. These pH values are maintained 
by passive or active proton efflux systems, and the isoelectric points of proteins 
might have even evolved to utilize these cellular conditions for function with pro-
teases exemplifying proteins that are functional only at the acidic pH of lysosomes. 
Notably, the averaged pI of proteins in any subcellular compartment is largely 
different from the pH of that compartment, but the pKa of histidine residues 
positively correlates with subcellular pH suggesting their critical role in protein 
stability [84]. The pH of subcellular compartments is tightly coupled to the stability 
and function of proteins, and even small changes in pH can have drastic physiolog-
ical consequences [85]. The variation of pH and stability is shown by a bell-shaped 
curve with maximum stability observed at its pH optima. Studies have shown that 
proteins are thermodynamically more stable either near-neutral pH or near their 
isoelectric points. Changes in the protonation status of ionizable groups of some 
amino acid side chains cause conformational changes. While acidic pH protonates 
the amino acids, basic pH deprotonates them, thereby altering the interactions



between positively and negatively charged groups. As the pH changes, these amino 
acid side chains either get protonated or deprotonated, changing their ability to form 
hydrogen bonds. Lower pH results in protonation of the amino acid side chains 
implicating that the pKa values of these ionizable groups are important in the folding 
kinetics and can be changed by local changes in the protein’s microenvironment. 
The carboxyl and the phenolic groups remain uncharged when protonated, whereas 
the nitrogen groups become charged upon protonation. Hence, the alteration in the 
electrostatic interactions indicates the relation between pH and protein stability. 
Although the solubility of proteins is a multi-dimensional property, changes in pH 
play a major role in regulating the stability of their folded conformations. Interest-
ingly, for PrP, conformational transitions from misfolded to folded forms are 
reversible with changing pH [86]. Considering the complexity of the folding path-
way, it seems challenging to probe pH-dependent adaptation in sequence and 
function of proteins by computational modelling, and more sophisticated techniques 
should be devised to study the same. 
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The temperature has also been a prominent factor affecting the folding properties 
of proteins both in vitro and in vivo. Organisms that dwell at higher temperatures 
have proteins with higher melting temperatures compared to their homologs in 
mesophilic organisms. This further implies that proteins that are more stable at 
higher temperatures have more stable folding intermediates with stronger intramo-
lecular bonds. The process of protein folding is affected at both high and low 
temperatures. In both cases, the protein unfolds as the hydrogen bonds, disulphide 
bonds, hydrophobic interactions, and the van der Waals forces are disrupted, 
whereas the primary structure of the protein remains intact. The hydrophobic 
bonds primarily affect the stability of the proteins both towards the entropy and 
enthalpy of the folded conformers; hence temperature alterations will change these 
parameters, and subsequently, the Gibbs free energy (ΔG =ΔH- TΔS) of folded or 
unfolded forms. Interestingly, osmotic balancing agents like glycerol have been 
shown to reduce the thermal denaturation of many cellular proteins [87]. Besides 
cellular chaperones, these chemical chaperones also assist in protein folding by 
providing a suitable microenvironment. 

Osmolytes are small-sized low molecular weight substances that naturally occur 
inside the cells. Molecules such as sorbitol, arginine, urea, sucrose, trimethylamine-
N-oxide (TMAO), and trehalose are organic osmolytes, whereas ions such as K+ and 
Na+ are inorganic osmolytes. They play a vital role in either inducing protein 
aggregation or inhibiting the process of protein aggregation. The same osmolyte 
shows distinctive effects on the aggregation of different proteins, which is entirely 
dependent on the structural properties of the proteins [88]. In vitro analysis has 
shown that at higher concentrations, polyols tend to be removed from the vicinity of 
proteins causing them to form a more compact structure with enhanced stability 
towards denaturation [89]. Different osmolytes act differently on proteins. Arginine 
has been the most extensively studied osmolyte. It acts both as a stabilizing and 
destabilizing agent. Arginine suppresses protein aggregation by keeping the charge 
constant for the guanidino group at both neutral and alkaline pH [90]. Trehalose is a 
non-reducing sugar of glucose. It differentially suppresses the aggregation of both



Aβ40 and Aβ42 peptides in Alzheimer’s disease, being less efficient in preventing 
the aggregation of Aβ42 [91]. This is probably because Aβ42 is more hydrophobic 
than Aβ40 peptide and, consequently, has higher entropy gain during the association 
of molecules and the aggregation process. Trehalose is unable to compensate for the 
free energy change in aggregating Aβ42. Taurine, a free amino acid found abun-
dantly in mammalian cells, also serves as an osmolyte and forms favourable inter-
actions with the denatured or unfolded states, further stabilizing them. It is seen to 
delay the fibrillation of glucagon but promote the aggregation of β-amyloids [88]. 
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4 Protein Misfolding Diseases 

Protein misfolding and deposition are a hallmark of an extended series of heteroge-
neous diseases mentioned in Table 2. Many types of aggregates are characterized by 
an increased content of β-sheet structures that finally accumulate in cells as fibrillar 
species. These toxic conformations get deposited in the tissues as well as propagate 
to neighbouring sites, resulting in several serious diseases. Protein aggregates either 
accumulate at the site of protein production, leading to a set of localized amyloidosis 
like Alzheimer’s disease (AD, in CNS) and Type 2 diabetes (Pancreas), or they can 
be transmitted to multiple tissues and organs, yielding systemic amyloidoses like 
prion diseases (comprising Creutzfeldt-Jakob disease and Fatal Familial Insomnia) 
[93]. Elevated levels of serum amyloid A or unstable light chain and the presence of 
genetic mutants of the transthyretin (TTR) protein are a few folding-associated 
aberrations associated with non-neuropathic amyloidosis. Changes in folding prop-
erties of amyloid-β or tau protein in AD and ⍺-synuclein aggregates forming Lewy 
bodies in Parkinson’s disease (PD) cause neuropathic amyloidosis [92]. Expansion 
of the CAG triplet repeat in a gene results in a misfolded, pathogenic protein causing 
a neurodegenerative condition linked to polyglutamine diseases, including 
Huntington’s disease and various spinocerebellar ataxias and atrophies [95]. In a 
few cases, mutations in a specific lysosomal enzyme cause its misfolding in the ER 
rather than affecting the functionality of the enzyme. Thus, the inability of the 
mutant enzyme to follow its native conformation results in its inappropriate traffick-
ing to the lysosomes, as seen in lysosomal storage disorders, including Fabry’s 
disease, Gaucher’s disease, and Niemann Pick’s disease [97]. Other diseases, 
including certain types of cancers, sickle cell anaemia, cystic fibrosis, phenylketon-
uria, and atherosclerosis, are also included in the extensive set of protein misfolding 
diseases, emphasizing the need to understand the complex roles of protein quality 
control systems in different organelles as they are of valuable significance in 
comprehending the fate of a protein.



Group of diseases Misfolded protein(s) References
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Table 2 Protein misfolding diseases 

Sl. 
No. 

Name of the 
disease 

1. Neuropathic 
amyloidoses 

Alzheimer’s 
disease 

Amyloid β, tau [92, 93] 

2. Parkinson’s 
disease 

α-Synuclein 

3. Amyotrophic lat-
eral sclerosis 

SOD1, FUS, TDP-43 

4. Non-neuropathic 
amyloidoses 

Localized AL 
amyloidosis 

Locally secreted monoclonal 
immunoglobulin light chain 

5. Systematic AL 
amyloidosis 

Circulating monoclonal immuno-
globulin light chain 

6. AA amyloidosis Serum amyloid A 

7. ATTR 
amyloidosis 

Transthyretin 

8. Type 2 diabetes Islet amyloid polypeptide 

9. Prion diseases Creutzfeldt-Jakob 
disease 

PrP (prion protein) [94] 

10. Familial insomnia PrP (prion protein) 

11. Polyglutamine 
diseases 

Spinocerebellar 
ataxia 

Ataxin [95, 96] 

12. Huntington’s 
disease 

Huntingtin 

13. Spinobulbar mus-
cular atrophy 

Androgen receptor 

14. Lysosomal stor-
age disorders 

Fabry’s disease Alpha-galactosidase [97] 

15. Gaucher’s disease Beta-glucosidase 

16. Niemann-Pick 
type C disease 

NPC1 

17. Other diseases Cystic fibrosis Cystic fibrosis transmembrane 
regulator 

[98] 

18. Phenylketonuria Phenylalanine hydroxylase [99] 

19. Sickle cell 
anaemia 

Haemoglobin S [100] 

20. Nephrogenic dia-
betes insipidus 

Aquaporin-2/vasopressin [101] 

21. Desminopathy Desmin and beta-crystalline [102] 

22. Cancer P53, non-receptor tyrosine kinase [103, 104] 

23. Marfan’s 
syndrome 

Fibrillin [105] 

24. Scurvy Collagen [106] 

25. Atherosclerosis Modified LDL [107] 

26. Retinitis 
pigmentosa 

Rhodopsin [108] 

27. α-1-antitrypsin 
deficiency 

α1 antitrypsin [109] 

28. Emphysema, 
COPD 

α1 antitrypsin [110]
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5 Biophysical Methods to Study Protein Folding in Cells 

As our knowledge about the effects of the cellular environment on protein folding 
expands, developing methods that can allow us to analyse the folding process in 
living cells can enable us to exploit this information for engineering proteins with 
desirable features. Early studies employing mass spectrometry or FRET analysis of 
target proteins in denaturant-resistant bacterial cells helped to estimate equilibrium 
constants and differences in the stability of protein of interest (POI) both in situ and 
in dilute solutions used for in vitro studies [111, 112]. Recent advances involving 
isotopic labelling or microscopic analysis of fluorescently tagged POI have achieved 
appreciable success in investigating the in-cell folding processes. 

5.1 In-Cell NMR Spectroscopy 

In-cell NMR spectroscopy is a tool for characterizing protein conformers under 
physiological conditions inside living cells [113]. It provides atomic-level resolution 
of structural changes associated with the change in solution properties or protein– 
protein interactions for a target protein. It uses multi-dimensional NMR in conjunc-
tion with isotope-labelled proteins, where the chemical shift is used to study protein 
folding dynamics, intrinsically disordered proteins, and post-translational modifica-
tion of proteins inside the cells [114]. 

The prokaryotic POI can be overexpressed in bacteria, while eukaryotic proteins 
are induced in yeast or insect cells and labelled with NMR-active isotopes to detect 
chemical shifts. Inducing the target protein reduces the background noise and 
improves the signal intensities, although overexpression might shift the equilibrium 
of monomeric proteins and favour their aggregation/oligomerization. Further, this 
technique does not involve the purification of target proteins which is essentially 
required in the conventional solution-NMR. However, it has been shown that some 
eukaryotic proteins can be purified from bacteria and subsequently either 
microinjected in Xenopus oocytes or covalently linked to cell-penetrating peptides 
[115], which enables the proteins to enter the cells directly. While high molecular 
weight proteins can also be targeted using in-cell NMR, proteins with a large number 
of intermolecular interactions have lower tumbling and lower rotational correlation 
times, which impedes the spectral output (Fig. 2). The NMR-active isotopes such as 
15 N, 13 C, and 19 F are widely used for labelling target proteins inside cells. However, 
there are a few challenges associated with these isotopes. For instance, the 19 F 
labelling necessitates the addition of an unnatural amino acid, and this addition 
impairs the biological functions of the proteins [116] while labelling a protein with 
13 C gives a low signal-to-noise ratio in its spectra due to the high abundance of 
carbon within the cell [117]. To overcome these drawbacks, selective labelling of 
methyl groups of alanine and methionine is effective. 15 N labelling also proved 
effective because nitrogen is present in very small amounts among the other cellular
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components. To date, most in-cell NMR experiments have been carried out by 
labelling proteins with 15 N.
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The intrinsically disordered proteins (IDPs) such as α-synuclein and tau have 
been widely studied using in-cell NMR. 2D 1 H-15 N correlation NMR spectra were 
used to compare the conformation of α-synuclein across different cell lines, like 
neuronal B65 cells, SK-N-SH cells, and RCSN-3 cells. The study revealed that the 
monomeric disordered conformation of α-synuclein was consistent in varied intra-
cellular conditions. The study also showed that the N-terminus of α-synuclein is 
acetylated in cells and its N and C-terminus transiently engage with cytoplasmic 
components and/or membranes, but they do not interact stably with cellular mem-
branes [118]. The effect of oxidative stress on α-synuclein was identified by 
injecting 15 N-labelled, N-terminally acetylated, and methionine (Met1, Met5, 
Met116, and Met127) oxidized α-synuclein into non-neuronal and neuronal cells. 
Time-resolved in-cell NMR revealed that C-terminal methionine oxidation prefer-
entially inhibited Tyr125 phosphorylation, implying that changes in the cellular 
environment can affect post-translational modifications of α-synuclein, and this, in 
turn, controls its conformational landscape [119]. In-cell NMR was done on 
isotope-enriched tau in HEK-293T cells, which showed the interaction of tau with 
microtubules (MT) primarily at its MT-binding repeats. Interestingly, when phos-
phorylated tau was introduced into HEK-293T cells, disease-associated phosphory-
lation of tau was promptly removed, revealing a possible cellular protective 
mechanism under stressful conditions [120]. In-cell NMR has also shown the folding 
pathway of wild-type and mutant superoxide dismutase (SOD1) proteins 
[121]. Wild-type SOD1 can bind zinc on its own to stabilize the native structure of 
the monomer, but it requires the copper chaperone for SOD1 (Ccs) for copper 
insertion in its active site and the formation of disulphide bonds. Some fALS-
linked mutations impede zinc binding and cause SOD1 to unfold irreversibly, 
creating cytotoxic aggregates. Ccs’s SOD-like domain works as a molecular chap-
erone, stabilizing mutant SOD1 and permitting zinc binding and protein maturation 
[122]. In-cell NMR has characterized the mutants as unstructured species of SOD1, 
and their abundance can be prevented by Ccs. 

5.2 In-Cell FRET 

The Förster (or fluorescence) resonance energy transfer (FRET) has been success-
fully used to investigate the protein dynamics, folding kinetics, and structural 
changes in living cells. It can either be based on the energy transfer between two 
fluorophores where the energy is transmitted non-radiatively from the excited donor 
to the acceptor via a long-range intermolecular dipole-dipole coupling or on a split-
reporters where the binding of two parts of a reporter protein is coupled to the folding 
of POI (Fig. 2)  [123, 124]. FRET signals are obtained when the fluorescent donor 
and acceptor are situated within the Förster radius (around 3–6 nm). In this method, 
either the POI is genetically tagged with a fluorescent probe at both N- and



C-terminus or can be fluorescently labelled with exogenous fluorescent probes. The 
exogenous probes like organic fluorophores can modify proteins expressed with 
unnatural amino acids, which can easily react with organic probes in-cell or in vitro, 
and then the modified protein be delivered into living cells [125] by microinjecting it 
into living cells [126]. A single-molecule FRET (smFRET) analysis of conforma-
tional changes in Raf kinase was carried out using the fluorescent fusion protein 
GFP-Raf-YFP expressed in HeLa cells. In live cells, alternative laser excitation 
(ALEX) was utilized to evaluate the native state of Raf while it was experiencing 
native interactions with other intrinsic proteins and the reaction network of the signal 
transduction pathway. For cytosolic Raf, three conformational states, including the 
inactive, closed-form, the active open form, and the inactive fully-open form, were 
seen, which underwent spontaneous changes between conformational states when 
the epidermal growth factor (EGF) was stimulated. Interestingly, the S621A muta-
tion in Raf causes the conformational state distribution to shift to an inactive fully 
open state [125]. This study suggests that smFRET can be used to detect conforma-
tional changes in other cytosolic proteins in living cells as a result of intracellular 
interactions. 
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5.3 Fast Relaxation Imaging (FREI) 

FREI is used to study the fast macromolecular dynamics inside the cells under 
temperature fluctuation. A modest temperature up or down jump is applied to a 
cell, and then a FRET-labelled protein is tracked while screening the response of the 
whole cell with the help of an epifluorescent microscope. Using FREI, one can study 
protein folding kinetics and protein–protein interactions inside the cells. With a 
diffraction-limited spatial resolution, FREI can be utilized to analyse protein folding 
in a variety of cells [127]. The POI should be labelled with two fluorescent probes to 
monitor FRET changes where the AcGFP acts as a donor and the mCherry probe is 
commonly used as an acceptor (Fig. 2). While selecting a FRET pair, it is essential to 
consider that they retain their fluorescent properties between temperatures ranging 
from 20 °C  to  50  °C. Dhar et al. investigated the thermodynamics and kinetics of 
various cellular compartments. Each cellular compartment is a unique microenvi-
ronment that affects the stability and function of interacting macromolecules by 
modulating the energy landscape. FRET-PGK (FRET-phosphoglycerate kinase) was 
introduced into the cell nucleus and ER using localization markers. After analysis, it 
was found that PGK-FRET was more stable in the nucleus than in the ER 
[128]. Effects of temperature fluctuations on stability have also been explored 
using FREI for proteins stabilized on hydrogels that are extensively used in drug 
delivery. The microenvironment experienced by proteins in hydrogels enables many 
interactions crucial for function [129].
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5.4 FlAsH as an In-Cell Protein Folding Probe 

For proteins in which large tags might interfere with folding kinetics, protein 
stability in-cell is investigated by employing a dye system of 4′,5′-bis(1,3,2-
dithioarsolan-2-yl) fluorescein (FlAsH), a fluorescein analogue containing two 
arsen oxides. To study the stability of the mammalian cellular retinoic acid-binding 
protein 1 (CRABP1) in vivo, the Cys-Cys-X-X-Cys-Cys motif of the wild-type and 
mutant protein was labelled with FlAsH. The treatment of the protein with urea 
allows it to unfold, and the denatured protein was found to have a higher fluores-
cence intensity signal than the folded form (Fig. 2). The time course of FlAsH 
fluorescence demonstrated that the mutant CRABP1 has a relatively higher signal 
intensity than the wild-type CRABP 1 [112]. The same group of scientists then 
successfully made fusion proteins by attaching the Htt exon1 with varying lengths of 
poly Q tracts and the tetra Cys-CRABP1. The result obtained from this study 
corroborated the time-dependent increase in fluorescence intensity with an increase 
in poly Q length [130]. 

6 Applications of Protein Folding in Cells 

The principles of protein architecture and interactions have paved the way for de 
novo protein design and protein engineering with unlimited applications in biomed-
icine. Initiated by optimal backbone structure and sequence for targeted functions, 
novel proteins have revolutionized synthetic biology research. These novel proteins 
or peptides can serve diverse pharmacological benefits and can be inhibitors of 
pathogenic infections, immune modulators, or self-assembling biomaterials, to 
name a few. 

6.1 De Novo Protein Design 

Engineering proteins with desirable changes in function or de novo protein design 
are scientific accolades achievable only by advancements in understanding in vivo 
protein folding. Some recombinant proteins like insulin and growth hormones are 
pharmacologically valuable but tend to aggregate during their overexpression in host 
cells. Modifying these proteins, based on our knowledge of the contributions of each 
amino acid to native-like folding, to retain their function with enhanced stability has 
facilitated their utility vastly [131]. Besides focussed modulation of features, 
directed evolution utilizing large-scale mutant libraries and extensive screening of 
variants with desired properties has generated proteins with improved enzymatic 
activities and stabilities [132]. The systematic approach of assessing the impact of 
each amino acid on protein properties has helped broaden the substrate specificities 
and acquire novel functions.
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De novo protein design aims to create proteins with functions that are not found in 
naturally occurring proteins. It is facilitated by understanding the physicochemical 
basis of protein folding and sample sequence space which has been avoided by 
evolutionary forces shaping the structure and function of known proteins. Since de 
novo design is conducted computationally, assessing the free energy of the system 
where it can be expressed is challenging. Nonetheless, it reduces the cost of 
manufacturing and experimentally testing each computationally designed variant. 
The concepts of protein folding that underlie this technique include ensuring the 
burial of hydrophobic residues in the core of the protein, which is packed with polar 
groups that form intra-chain hydrogen bonds so that the free energy barrier of this 
conformation cannot be overcome by the unfolding of this protein for polar residues 
to interact with water. Apart from the parameters of the core, the interaction of side 
chains of backbone amino acids with their neighbouring atoms and their torsional 
effects impacts the free energy values of folding. Converging upon energy functions 
derived from hydrogen bonds, van der Waal forces, steric interactions, electrostatic 
interactions, and torsional energies of the main chain and side chain, multiple rounds 
of optimization are required. Generally observed scaffolds of cellular proteins like 
alpha-beta folds, repeat units as in symmetrical TIM barrel proteins, and parallel 
helical bundles have been designed successfully and demonstrate high stability 
experimentally [133]. Proteins can be selected by a local conception approach in 
which a protein with known structure and functional properties is selected as a 
scaffold or a global conception approach that entails designing a structure by 
analogy with one of the protein data bank’s classic folds. To locate those that fold 
into a certain three-dimensional form, genetic approaches can be used to screen a 
large number of randomized sequences [131]. Many folds found in naturally occur-
ring proteins have also been repurposed for different functions, including the 
reduction of viral infections, which is a highly sought-after proposition [134]. Pep-
tides (18–47 aa) with enhanced stability to thermal and chemical denaturation, 
including both D and L amino acids, have also been designed [135]. An interesting 
study by Lisa et al. tested de novo designed inhibitors with scaffolds of ACE2 helix 
to bind to the receptor-binding domain of SARS-CoV-2 and found them to have 
binding affinities in the picomolar range [136]. 

Helices, helix bundles, ß-hairpins, and ß-sheets are among the secondary and 
supersecondary structures that have been synthesized and structurally characterized. 
They have made significant contributions to our understanding of protein secondary 
structures. A substantial variety of parallel or antiparallel helix bundles have also 
been constructed. Some exhibited molten globule-like qualities, resulting in the 
desired fold but little stability. These motifs can be used to design proteins 
[131]. In the fields of catalysis, metal ion, and heme-binding, the designed poly-
peptides showed complete functionality. Recently eight-stranded transmembrane 
β-barrel proteins have been designed using geometric models and Rosetta protein 
structure simulations. These transmembrane proteins show little homology with the 
existing transmembrane proteins, which can fold and assemble into both detergent 
micelles and lipid bilayers [137]. In silico simulation methods for structure predic-
tion, such as trRosetta and AlphaFold, have been employed to generate 2000 new



proteins using random amino acid sequences. These newly formed proteins have 
been found to be quite different from the naturally occurring proteins of the same 
length in the context of overall sequence and structure [138]. 
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6.2 Drug Design 

Proteins and peptides serve a plethora of useful functions in biotechnology as 
biocatalysts, biosensors, signalling molecules, and high-affinity effectors like anti-
bodies. Emerging research on the sequence-structure-function relation of protein and 
its interaction patterns has led to the development of computational methods that 
have been used to create novel proteins and peptides for therapeutic targets against 
various diseases, as listed below [139]. 

6.2.1 For Cancer 

Inhibitions of signal transduction pathways and angiogenesis, along with induction 
of apoptosis in tumours, are required in therapeutic peptides and proteins used for 
cancer treatment. Overcoming the challenges associated with peptide cell penetra-
tion and stability, Aftabizadeh et al. designed anti-tumour peptides against acetylated 
signal transducer and activator of transcription 3 (STAT3), which functions by 
disrupting STAT3 dimerization and activation [140]. Induction of apoptosis in 
various cancer cell lines was also achieved by VDAC1-based peptides, which 
inhibited tumour development by competing with VDAC1 interacting proteins 
such as Bcl-2, Bcl-xL, and HK [141]. Hao et al. employed a combination of phage 
display technology and computational methods to identify peptides with a strong 
binding affinity towards cysteine-rich intestinal protein 1 (CRIP1), a breast cancer 
biomarker, facilitating early detection of cancer [142]. Similarly, to modulate protein 
interactions, Istivan et al. used the resonant recognition model (RRM) to design a 
short bioactive peptide with antitumour/cytotoxic activity against the myxoma virus. 
This model uses electromagnetic radiation of a defined frequency to identify amino 
acids essential for protein’s activity or stability based on the distribution of electron-
free energy along with the amino acids. The computationally designed peptide from 
this study proved to be an effective candidate for cancer therapy [143]. 

6.2.2 For Human Immunodeficiency Virus 

The advantages associated with peptide therapeutics, including high potency, spe-
cific and efficient binding affinity towards target domains, and low drug resistance 
with minimal side effects, have contributed to the development of peptide therapeu-
tics for human immunodeficiency virus (HIV) treatment [144]. These peptides are 
targeted against viral or host proteins or interacting partners, which are essential for



virus replication. In order to increase immunogenic response and achieve confor-
mational stability against conserved HIV epitope, 4E10, Correia et al. devised a 
computational method for transplanting 4E10 into scaffold proteins by side-chain 
grafting and Rosetta [145]. This procedure generated epitopes that bind to a mono-
clonal antibody (mAb) 4E10 more strongly than 4E10 alone and were observed to 
block HIV neutralization by HIV-positive sera. Another approach to computational 
design includes using the de novo design framework tools such as WISDOM [146], 
which provides a design template for the generation of novel peptides with target 
protein affinity in a user-friendly way. The structure of the C14-linked peptide in 
association with the hydrophobic core of gp41 (transmembrane subunit of HIV-1 
envelope protein complex) was used as a template to build HIV-1 cell-cell fusion 
inhibitors by Bellows and colleagues [147]. Recently, structure-based studies led to 
the design of E1P47-derivative peptides with the ability to inhibit HIV infection in 
colorectal tissue explants [148]. To overcome the limitations of low anti-HIV 
activity and a genetic barrier to induce drug resistance associated with peptide 
drug enfuvirtide (T-20), T-20-based lipopeptide (LP-40) and LP-80 were designed 
with high potency in vitro and with promising therapeutic efficacy [149]. 
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6.2.3 For Alzheimer’s Disease 

Contributing to developing effective AD therapies, peptide-based drugs offer greater 
specificity and efficacy along with the potential of bio-inspired peptides [150] 
instead of alternate amyloid reduction therapies [151]. Sievers et al. used computa-
tionally driven design to anticipate and experimentally validate peptide inhibitors of 
fibril formation by the tau protein linked to Alzheimer’s disease, as well as amyloid 
that promotes HIV transmission. Briefly, they designed a tight interface between the 
peptide and the end of the steric-zipper motif present in the amyloid-forming pro-
teins [152], which resulted in the inhibition of fibril elongation. Screening through 
commercially available non-natural peptides, which maximizes hydrogen bonding 
and hydrophobic interactions, led to the design of candidate peptide inhibitors for 
amyloid formation [153]. Targeting the propensity of wild-type Aβ peptides to form 
oligomers and fibrils, Rajadas et al. designed a mutant Aβ peptide with two-point 
mutations known to promote β–strand character. Incubation of the two peptides in 
solution led to stabilization of the wild-type Aβ peptide, suggesting inhibition of Aβ 
aggregation [154]. In a recent study, peptide binders of two key amyloid segments 
(KLVFFA and GGVVIA) of Aβ42 were designed using RosettaDesign, which 
exhibited inhibition of Aβ fibril formation. Modification of the peptide to 
β-conformation and its targeted binding to the C-terminus of the protein provided 
a significant increase in selective inhibition of Aβ42 aggregate [155]. The assembly 
of Aβ monomers into fibrils was obstructed by a peptide comprising only D-amino 
acids to recognize the core hydrophobic region of amyloid [156]. Further, an in vivo 
study conducted with DesBP, a rationally designed bicyclic peptide, in the 
C. elegans model of Aβ42 showed modulations in morphology and inhibition of 
the Aβ-associated toxicity upon binding to Aβ peptide [157].
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7 Conclusions 

Pathways of protein folding, unfolding, misfolding, and aggregation are dynamically 
balanced in a cellular environment. Advances in experimental methods and compu-
tational analysis have helped explore the complex interplay of cellular factors that 
regulate protein folding. Molecular chaperones have been identified as major regu-
lators of protein folding under physiological conditions, and effective strategies to 
upregulate chaperone behaviour can help combat the rising debilitating diseases. 
Techniques such as chemical exchange saturation transfer-magnetic resonance 
imaging (CEST-MRI) and smFRET have made it possible to estimate the global 
status of in vivo protein folding but hold paucity in precision studies of individual 
proteins and detection of membrane proteins, respectively. The insights into the 
folding mechanism of membrane proteins inside the cell have been made accessible 
by recently developed membrane mimics like nanodiscs and cell-unroofing tech-
niques like non-canonical amino acid energy transfer in combination with Anap-
cyclen Cu2+ resonance energy transfer (ACCuRET). Both ACCuRET and in-cell 
NMR approaches provide information on the conformational dynamics of cytosolic 
and membrane proteins. Computational platforms are continuously being modified 
to obtain accurate energy functions for both native and folding intermediates. The 
robust protein designs hence derived might form the basis for protein folding 
experiments in the near future. Efforts in the direction of investigating protein 
folding properties at atomic levels and employing these principles in the de novo 
design of therapeutic proteins can be immensely effective in mitigating non-curable 
diseases. 

Acknowledgements This work is supported by SERB (ECR/2017/003431), MoE-STARS/ 
STARS-1/PID (STARS1/634), and, IoE (UoH-IoE-RC5-22-011) grants to P.M. Authors acknowl-
edge funding support from DBT-SAHAJ/BUILDER (BT/INF/22/SP41176/2020) grant. P.M. duly 
acknowledges the support of the Ramalingaswami Fellowship, Department of Biotechnology, 
GOI. A.A.P is a recipient of the PMRF, GOI. 

References 

1. L. Pauling, R.B. Corey, H.R. Branson, The structure of proteins; two hydrogen-bonded helical 
configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U S A 37(4), 205–211 (1951) 

2. L. Pauling, R.B. Corey, Atomic coordinates and structure factors for two helical configurations 
of polypeptide chains. Proc. Natl. Acad. Sci. U S A 37(5), 235–240 (1951) 

3. M.H. Cordes, A.R. Davidson, R.T. Sauer, Sequence space, folding and protein design. Curr. 
Opin. Struct. Biol. 6(1), 3–10 (1996) 

4. C.B. Anfinsen, E. Haber, M. Sela, F.H. White Jr., The kinetics of formation of native 
ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. U S 
A 47(9), 1309–1314 (1961) 

5. D.B. Wetlaufer, Nucleation, rapid folding, and globular intrachain regions in proteins. Proc. 
Natl. Acad. Sci. U S A 70(3), 697–701 (1973) 

6. M. Karplus, D.L. Weaver, Protein-folding dynamics. Nature 260(5550), 404–406 (1976)



278 S. Sahoo et al.

7. R.L. Baldwin, How does protein folding get started? Trends Biochem. Sci. 14(7), 291–294 
(1989) 

8. K.A. Dill, Theory for the folding and stability of globular proteins. Biochemistry 24, 
1501–1509 (1985) 

9. S.C. Harrison, R. Durbin, Is there a single pathway for the folding of a polypeptide chain? 
Proc. Natl. Acad. Sci. U S A 82, 4028–4030 (1985) 

10. A.R. Fersht, V. Daggett, Protein folding and unfolding at atomic resolution. Cell 108, 573–582 
(2002) 

11. A.R. Fersht, Optimization of rates of protein folding: the nucleation-condensation mechanism 
and its implications. Proc. Natl. Acad. Sci. U S A 92, 10869–10873 (1995) 

12. A.R. Fersht, Nucleation mechanisms in protein folding. Curr. Opin. Struct. Biol. 7, 3–9 (1997) 
13. K.A. Dill, H.S. Chan, From levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10–19 (1997) 
14. K.A. Dill, Polymer principles and protein folding. Protein Sci. 8, 1166–1180 (1999) 
15. D. Hamada, S. Segawa, Y. Goto, Non-native a-helical intermediate in the refolding of 

b-lactoglobulin, a predominantly b-sheet protein. Nat. Struct. Biol. 3, 868–873 (1996) 
16. B. Rost, V.A. Eyrich, EVA: large-scale analysis of secondary structure prediction. Proteins 

Suppl 5, 192–199 (2001) 
17. V. Grantcharova, E.J. Alm, D. Baker, A.L. Horwich, Mechanisms of protein folding. Curr. 

Opin. Struct. Biol. 11(1), 70–82 (2001) 
18. K.W. Plaxco, K.T. Simons, D. Baker, Contact order, transition state placement and the 

refolding rates of single domain proteins. J. Mol. Biol. 277(4), 985–994 (1998) 
19. M.M. Gromiha, S. Selvaraj, Comparison between long-range interactions and contact order in 

determining the folding rate of two-state proteins: application of long-range order to folding 
rate prediction. J. Mol. Biol. 310(1), 27–32 (2001) 

20. J.T. Huang, J.P. Cheng, H. Chen, Secondary structure length as a determinant of folding rate of 
proteins with two- and three-state kinetics. Proteins 67(1), 12–17 (2007) 

21. D.N. Ivankov, A.V. Finkelstein, Prediction of protein folding rates from the amino acid 
sequence-predicted secondary structure. Proc. Natl. Acad. Sci. U S A 101(24), 8942–8944 
(2004) 

22. H. Zhou, Y. Zhou, Folding rate prediction using total contact distance. Biophys. J. 82(1 Pt 1), 
458–463 (2002) 

23. C.A. Waudby, C.M. Dobson, J. Christodoulou, Nature and regulation of protein folding on the 
ribosome. Trends Biochem. Sci. 44(11), 914–926 (2019) 

24. A. Borgia, K.R. Kemplen, M.B. Borgia, A. Soranno, S. Shammas, B. Wunderlich, D. Nettels, 
R.B. Best, J. Clarke, B. Schuler, Transient misfolding dominates multidomain protein folding. 
Nat. Commun. 6, 8861 (2015) 

25. E.P. O’Brien, M. Vendruscolo, C.M. Dobson, Kinetic modelling indicates that fast-translating 
codons can coordinate cotranslational protein folding by avoiding misfolded intermediates. 
Nat. Commun. 5, 2988 (2014) 

26. A.M.E. Cassaignau, L.D. Cabrita, J. Christodoulou, How does the ribosome fold the prote-
ome? Annu. Rev. Biochem. 89, 389–415 (2020) 

27. A. Javed, J. Christodoulou, L.D. Cabrita, E.V. Orlova, The ribosome and its role in protein 
folding: looking through a magnifying glass. Acta Crystallogr. D Struct. Biol. 73(Pt 6), 
509–521 (2017) 

28. O.B. Nilsson, R. Hedman, J. Marino, S. Wickles, L. Bischoff, M. Johansson, A. Müller-Lucks, 
F. Trovato, J.D. Puglisi, E.P. O’Brien, R. Beckmann, G. von Heijne, Cotranslational protein 
folding inside the ribosome exit tunnel. Cell Rep. 12(10), 1533–1540 (2015) 

29. W. Holtkamp, G. Kokic, M. Jäger, J. Mittelstaet, A.A. Komar, M.V. Rodnina, Cotranslational 
protein folding on the ribosome monitored in real time. Science 350(6264), 1104–1107 (2015) 

30. M. Liutkute, E. Samatova, M.V. Rodnina, Cotranslational folding of proteins on the ribosome. 
Biomol. Ther. 10(1), 97 (2020) 

31. I. Braakman, D.N. Hebert, Protein folding in the endoplasmic reticulum. Cold Spring Harb. 
Perspect. Biol. 5(5), a013201 (2013)



Principles, Methods, and Applications of Protein Folding Inside Cells 279

32. E. Swanton, N.J. Bulleid, Protein folding and translocation across the endoplasmic reticulum 
membrane. Mol. Membr. Biol. 20(2), 99–104 (2003) 

33. M. Sarkar, C. Li, G.J. Pielak, Soft interactions and crowding. Biophys. Rev. 5(2), 187–194 
(2013) 

34. A.P. Minton, Effect of a concentrated “inert” macromolecular cosolute on the stability of a 
globular protein with respect to denaturation by heat and by chaotropes: a statistical-
thermodynamic model. Biophys. J. 78(1), 101–109 (2000) 

35. B. Van den Berg, R. Wain, C.M. Dobson, R.J. Ellis, Macromolecular crowding perturbs 
protein refolding kinetics: implications for folding inside the cell. EMBO J. 19(15), 
3870–3875 (2000) 

36. N. Tokuriki, M. Kinjo, S. Negi, M. Hoshino, Y. Goto, I. Urabe, T. Yomo, Protein folding by 
the effects of macromolecular crowding. Protein Sci. 13(1), 125–133 (2004) 

37. T. Niwa, R. Sugimoto, L. Watanabe, S. Nakamura, T. Ueda, H. Taguchi, Large-scale analysis 
of macromolecular crowding effects on protein aggregation using a reconstituted cell-free 
translation system. Front. Microbiol. 6, 1113 (2015) 

38. L. Stagg, S.Q. Zhang, M.S. Cheung, P. Wittung-Stafshede, Molecular crowding enhances 
native structure and stability of alpha/beta protein flavodoxin. Proc. Natl. Acad. Sci. U S A 
104(48), 18976–18981 (2007) 

39. X. Ai, Z. Zhou, Y. Bai, W.Y. Choy, 15N NMR spin relaxation dispersion study of the 
molecular crowding effects on protein folding under native conditions. J. Am. Chem. Soc. 
128(12), 3916–3917 (2006) 

40. B.R. Somalinga, R.P. Roy, Volume exclusion effect as a driving force for reverse proteolysis. 
Implications for polypeptide assemblage in a macromolecular crowded milieu. J. Biol. Chem. 
277(45), 43253–43261 (2002) 

41. A. Christiansen, Q. Wang, A. Samiotakis, M.S. Cheung, P. Wittung-Stafshede, Factors 
defining effects of macromolecular crowding on protein stability: an in vitro/in silico case 
study using cytochrome c. Biochemistry 49(31), 6519–6530 (2010) 

42. R.W. Newberry, R.T. Raines, Secondary forces in protein folding. ACS Chem. Biol. 14(8), 
1677–1686 (2019) 

43. J.K. Myers, C.N. Pace, Hydrogen bonding stabilizes globular proteins. Biophys. J. 71(4), 
2033–2039 (1996) 

44. C. Nick Pace, J.M. Scholtz, G.R. Grimsley, Forces stabilizing proteins. FEBS Lett. 588(14), 
2177–2184 (2014) 

45. C.N. Pace, Energetics of protein hydrogen bonds. Nat. Struct. Mol. Biol. 16(7), 681–682 
(2009) 

46. K. Tsemekhman, L. Goldschmidt, D. Eisenberg, D. Baker, Cooperative hydrogen bonding in 
amyloid formation. Protein Sci. 16(4), 761–764 (2007) 

47. C. Camilloni, D. Bonetti, A. Morrone, R. Giri, C.M. Dobson, M. Brunori, S. Gianni, 
M. Vendruscolo, Towards a structural biology of the hydrophobic effect in protein folding. 
Sci. Rep. 6, 28285 (2016) 

48. L. Lins, R. Brasseur, The hydrophobic effect in protein folding. FASEB J. 9(7), 535–540 
(1995) 

49. H.J. Dyson, P.E. Wright, H.A. Scheraga, The role of hydrophobic interactions in initiation and 
propagation of protein folding. Proc. Natl. Acad. Sci. U S A 103(35), 13057–13061 (2006) 

50. J. Li, Y. Wang, L. An, J. Chen, L. Yao, Direct observation of CH/CH van der Waals 
interactions in proteins by NMR. J. Am. Chem. Soc. 140(9), 3194–3197 (2018) 

51. H.X. Zhou, X. Pang, Electrostatic interactions in protein structure, folding, binding, and 
condensation. Chem. Rev. 118(4), 1691–1741 (2018) 

52. A. Azia, Y. Levy, Nonnative electrostatic interactions can modulate protein folding: molecular 
dynamics with a grain of salt. J. Mol. Biol. 393(2), 527–542 (2009) 

53. A.L. Darling, V.N. Uversky, Intrinsic disorder and posttranslational modifications: the darker 
side of the biological dark matter. Front. Genet. 9, 158 (2018)



280 S. Sahoo et al.

54. S. Ramazi, J. Zahiri, Posttranslational modifications in proteins: resources, tools and prediction 
methods. Database (Oxford) 2021, baab012 (2021) 

55. N. Georgopoulou, M. McLaughlin, I. McFarlane, K.C. Breen, The role of post-translational 
modification in beta-amyloid precursor protein processing. Biochem. Soc. Symp. 67, 23–36 
(2001) 

56. L. Ellgaard, N. McCaul, A. Chatsisvili, I. Braakman, Co- and post-translational protein folding 
in the ER. Traffic 17(6), 615–638 (2016) 

57. J. Breitling, M. Aebi, N-linked protein glycosylation in the endoplasmic reticulum. Cold 
Spring Harb. Perspect. Biol. 5(8), a013359 (2013) 

58. H.S. Lee, Y. Qi, W. Im, Effects of N-glycosylation on protein conformation and dynamics: 
protein data bank analysis and molecular dynamics simulation study. Sci. Rep. 5, 8926 (2015) 

59. P.J. Robinson, N.J. Bulleid, Mechanisms of disulfide bond formation in nascent polypeptides 
entering the secretory pathway. Cell 9(9), 1994 (2020) 

60. R.B. Freedman, P. Klappa, L.W. Ruddock, Protein disulfide isomerases exploit synergy 
between catalytic and specific binding domains. EMBO Rep. 3(2), 136–140 (2002) 

61. S. Parakh, J.D. Atkin, Novel roles for protein disulphide isomerase in disease states: a double 
edged sword? Front. Cell Dev. Biol. 3, 30 (2015) 

62. E.A. Craig, Hsp70 at the membrane: driving protein translocation. BMC Biol 16(1), 11 (2018) 
63. R. Rosenzweig, N.B. Nillegoda, M.P. Mayer, B. Bukau, The Hsp70 chaperone network. Nat 

Rev Mol Cell Biol 20(11), 665–680 (2019) 
64. A. Hoter, M.E. El-Sabban, H.Y. Naim, The HSP90 family: structure, regulation, function, and 

implications in health and disease. Int J Mol Sci 19(9), 2560 (2018) 
65. C.M.S. Kumar, S.C. Mande, G. Mahajan, Multiple chaperonins in bacteria—novel functions 

and noncanonical behaviors. Cell Stress Chaperones 20(4), 555–574 (2015) 
66. J.P. Hendrick, F.U. Hartl, The role of molecular chaperones in protein folding. FASEB J. 9 

(15), 1559–1569 (1995) 
67. H. Saibil, Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. 

Mol. Cell Biol. 14(10), 630–642 (2013) 
68. S. Polier, Z. Dragovic, F.U. Hartl, A. Bracher, Structural basis for the cooperation of Hsp70 

and Hsp110 chaperones in protein folding. Cell 133(6), 1068–1079 (2008) 
69. M.P. Mayer, B. Bukau, Hsp70 chaperones: cellular functions and molecular mechanism. Cell. 

Mol. Life Sci. 62(6), 670–684 (2005) 
70. F.U. Hartl, A. Bracher, M. Hayer-Hartl, Molecular chaperones in protein folding and 

proteostasis. Nature 475(7356), 324–332 (2011) 
71. J. Lu, X. Zhang, Y. Wu, Y. Sheng, W. Li, W. Wang, Energy landscape remodeling mechanism 

of Hsp70-chaperone-accelerated protein folding. Biophys. J. 120(10), 1971–1983 (2021) 
72. F. Motojima, How do chaperonins fold protein? Biophysics (Nagoya-shi) 11, 93–102 (2015) 
73. S. Haldar, A.J. Gupta, X. Yan, G. Miličić, F.U. Hartl, M. Hayer-Hartl, Chaperonin-assisted 

protein folding: relative population of asymmetric and symmetric GroEL:GroES complexes. J. 
Mol. Biol. 427(12), 2244–2255 (2015) 

74. A.J. Gupta, S. Haldar, G. Miličić, F.U. Hartl, M. Hayer-Hartl, Active cage mechanism of 
chaperonin-assisted protein folding demonstrated at single-molecule level. J. Mol. Biol. 426 
(15), 2739–2754 (2014) 

75. T. Lopez, K. Dalton, J. Frydman, The mechanism and function of group II chaperonins. J. 
Mol. Biol. 427(18), 2919–2930 (2015) 

76. J.M. Flynn, P. Mishra, D.N. Bolon, Mechanistic asymmetry in Hsp90 dimers. J. Mol. Biol. 
427(18), 2904–2911 (2015) 

77. P. Mishra, D.N. Bolon, Designed Hsp90 heterodimers reveal an asymmetric ATPase-driven 
mechanism in vivo. Mol. Cell 53(2), 344–350 (2014) 

78. L. Jiang, P. Mishra, R.T. Hietpas, K.B. Zeldovich, D.N. Bolon, Latent effects of Hsp90 
mutants revealed at reduced expression levels. PLoS Genet. 9(6), e1003600 (2013) 

79. P. Mishra, J.M. Flynn, T.N. Starr, D.N.A. Bolon, Systematic mutant analyses elucidate general 
and client-specific aspects of Hsp90 function. Cell Rep. 15(3), 588–598 (2016)



Principles, Methods, and Applications of Protein Folding Inside Cells 281

80. N.W. Pursell, P. Mishra, D.N. Bolon, Solubility-promoting function of Hsp90 contributes to 
client maturation and robust cell growth. Eukaryot. Cell 11(8), 1033–1041 (2012) 

81. T. Morán Luengo, M.P. Mayer, S.G.D. Rüdiger, The Hsp70-Hsp90 chaperone cascade in 
protein folding. Trends Cell Biol. 29(2), 164–177 (2019) 

82. E.G. Mimnaugh, P.J. Worland, L. Whitesell, L.M. Neckers, Possible role for serine/threonine 
phosphorylation in the regulation of the heteroprotein complex between the hsp90 stress 
protein and the pp60v-src tyrosine kinase. J. Biol. Chem. 270(48), 28654–28659 (1995) 

83. S.J. Backe, R.A. Sager, M.R. Woodford, A.M. Makedon, M. Mollapour, Post-translational 
modifications of Hsp90 and translating the chaperone code. J. Biol. Chem. 295(32), 11099– 
11117 (2020) 

84. P. Chan, J. Warwicker, Evidence for the adaptation of protein pH-dependence to subcellular 
pH. BMC Biol. 7, 69 (2009) 

85. K. Talley, E. Alexov, On the pH-optimum of activity and stability of proteins. Proteins 78(12), 
2699–2706 (2010) 

86. T.C. Bjorndahl, G.P. Zhou, X. Liu, R. Perez-Pineiro, V. Semenchenko, F. Saleem, S. Acharya, 
A. Bujold, C.A. Sobsey, D.S. Wishart, Detailed biophysical characterization of the acid-
induced PrP(c) to PrP(β) conversion process. Biochemistry 50(7), 1162–1173 (2011) 

87. C.R. Brown, L.Q. Hong-Brown, W.J. Welch, Correcting temperature-sensitive protein folding 
defects. J. Clin. Invest. 99(6), 1432–1444 (1997) 

88. F. Macchi, M. Eisenkolb, H. Kiefer, D.E. Otzen, The effect of osmolytes on protein fibrilla-
tion. Int. J. Mol. Sci. 13(3), 3801–3819 (2012) 

89. M.M. Santoro, Y. Liu, S.M. Khan, L.X. Hou, D.W. Bolen, Increased thermal stability of 
proteins in the presence of naturally occurring osmolytes. Biochemistry 31(23), 5278–5283 
(1992) 

90. T. Arakawa, D. Ejima, K. Tsumoto, N. Obeyama, Y. Tanaka, Y. Kita, S.N. Timasheff, 
Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. 
Biophys. Chem. 127(1–2), 1–8 (2007) 

91. R. Liu, H. Barkhordarian, S. Emadi, B.P. Chan, M.R. Sierks, Trehalose differentially inhibits 
aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol. Dis. 20(1), 74–81 (2005) 

92. A.L. Clos, R. Kayed, C.A. Lasagna-Reeves, Association of skin with the pathogenesis and 
treatment of neurodegenerative amyloidosis. Front. Neurol. 3, 5 (2012) 

93. A. Nevone, G. Merlini, M. Nuvolone, Treating protein misfolding diseases: therapeutic 
successes against systemic amyloidoses. Front. Pharmacol. 11, 1024 (2020) 

94. M.D. Geschwind, Prion diseases. Continuum (Minneap. Minn.) 21(6 Neuroinfectious Dis-
ease), 1612–1638 (2015) 

95. E.N. Minakawa, Y. Nagai, Protein aggregation inhibitors as disease-modifying therapies for 
polyglutamine diseases. Front. Neurosci. 15, 621996 (2021) 

96. Shao J, Diamond MI. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. 
Hum. Mol. Genet. 16(Spec No. 2), R115–R123 (2007) 

97. A. Sun, Lysosomal storage disease overview. Ann. Transl. Med. 6(24), 476 (2018) 
98. S. Naehrig, C.M. Chao, L. Naehrlich, Cystic fibrosis. Dtsch. Arztebl. Int. 114(33–34), 564– 

574 (2017) 
99. R.A. Williams, C.D. Mamotte, J.R. Burnett, Phenylketonuria: an inborn error of phenylalanine 

metabolism. Clin. Biochem. Rev. 29(1), 31–41 (2008) 
100. R.V. Gardner, Sickle cell disease: advances in treatment. Ochsner J. 18(4), 377–389 (2018 

Winter) 
101. D. Bockenhauer, D.G. Bichet, Pathophysiology, diagnosis and management of nephrogenic 

diabetes insipidus. Nat. Rev. Nephrol. 11(10), 576–588 (2015) 
102. L.G. Goldfarb, M. Olivé, P. Vicart, H.H. Goebel, Intermediate filament diseases: 

desminopathy. Adv. Exp. Med. Biol. 642, 131–164 (2008) 
103. N. Rivlin, R. Brosh, M. Oren, V. Rotter, Mutations in the p53 tumor suppressor gene: 

important milestones at the various steps of tumorigenesis. Genes Cancer 2(4), 466–474 
(2011)



282 S. Sahoo et al.

104. R. Butti, S. Das, V.P. Gunasekaran, A.S. Yadav, D. Kumar, G.C. Kundu, Receptor tyrosine 
kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol. 
Cancer 17(1), 34 (2018) 

105. G. Pepe, B. Giusti, E. Sticchi, R. Abbate, G.F. Gensini, S. Nistri, Marfan syndrome: current 
perspectives. Appl. Clin. Genet. 9, 55–65 (2016) 

106. K. Wang, H. Jiang, W. Li, M. Qiang, T. Dong, H. Li, Role of vitamin C in skin diseases. Front. 
Physiol. 9, 819 (2018) 

107. S.C. Bergheanu, M.C. Bodde, J.W. Jukema, Pathophysiology and treatment of atherosclerosis: 
current view and future perspective on lipoprotein modification treatment. Neth. Heart J. 25(4), 
231–242 (2017) 

108. W.A. Baumgartner, Etiology, pathogenesis, and experimental treatment of retinitis 
pigmentosa. Med. Hypotheses 54(5), 814–824 (2000) 

109. M. Torres-Durán, J.L. Lopez-Campos, M. Barrecheguren, M. Miravitlles, B. Martinez-
Delgado, S. Castillo, A. Escribano, A. Baloira, M.M. Navarro-Garcia, D. Pellicer, L. Bañuls, 
M. Magallón, F. Casas, F. Dasí, Alpha-1 antitrypsin deficiency: outstanding questions and 
future directions. Orphanet J. Rare Dis. 13(1), 114 (2018) 

110. M. Goldklang, R. Stockley, Pathophysiology of emphysema and implications. Chronic Obstr. 
Pulm. Dis. 3(1), 454–458 (2016) 

111. S. Ghaemmaghami, T.G. Oas, Quantitative protein stability measurement in vivo. Nat. Struct. 
Biol. 8(10), 879–882 (2001) 

112. Z. Ignatova, L.M. Gierasch, Monitoring protein stability and aggregation in vivo by real-time 
fluorescent labeling. Proc. Natl. Acad. Sci. U S A 101(2), 523–528 (2004) 

113. E. Luchinat, L. Banci, In-cell NMR: a topical review. IUCrJ 4(Pt 2), 108–118 (2017) 
114. L. Barbieri, E. Luchinat, L. Banci, Characterization of proteins by in-cell NMR spectroscopy 

in cultured mammalian cells. Nat. Protoc. 11(6), 1101–1111 (2016) 
115. K. Inomata, A. Ohno, H. Tochio, S. Isogai, T. Tenno, I. Nakase, T. Takeuchi, S. Futaki, Y. Ito, 

H. Hiroaki, M. Shirakawa, High-resolution multi-dimensional NMR spectroscopy of proteins 
in human cells. Nature 458(7234), 106–109 (2009) 

116. C. Li, G.F. Wang, Y. Wang, R. Creager-Allen, E.A. Lutz, H. Scronce, K.M. Slade, R.A. Ruf, 
R.A. Mehl, G.J. Pielak, Protein (19)F NMR in Escherichia coli. J. Am. Chem. Soc. 132(1), 
321–327 (2010) 

117. Z. Serber, W. Straub, L. Corsini, A.M. Nomura, N. Shimba, C.S. Craik, P. Ortiz de 
Montellano, V. Dötsch, Methyl groups as probes for proteins and complexes in in-cell NMR 
experiments. J. Am. Chem. Soc. 126(22), 7119–7125 (2004) 

118. F.X. Theillet, A. Binolfi, B. Bekei, A. Martorana, H.M. Rose, M. Stuiver, S. Verzini, D. 
Lorenz, M. van Rossum, D. Goldfarb, P. Selenko, Structural disorder of monomeric α-
synuclein persists in mammalian cells. Nature 530(7588), 45–50 (2016) 

119. A. Binolfi, A. Limatola, S. Verzini, J. Kosten, F.X. Theillet, H.M. Rose, B. Bekei, M. Stuiver, 
M. van Rossum, P. Selenko, Intracellular repair of oxidation-damaged α-synuclein fails to 
target C-terminal modification sites. Nat. Commun. 7, 10251 (2016) 

120. S. Zhang, C. Wang, J. Lu, X. Ma, Z. Liu, D. Li, Z. Liu, C. Liu, In-cell NMR study of tau and 
MARK2 phosphorylated tau. Int. J. Mol. Sci. 20(1), 90 (2018) 

121. D.R. Rosen, T. Siddique, D. Patterson, D.A. Figlewicz, P. Sapp, A. Hentati, D. Donaldson, J. 
Goto, J.P. O’Regan, H.X. Deng, et al., Mutations in Cu/Zn superoxide dismutase gene are 
associated with familial amyotrophic lateral sclerosis. Nature 362(6415), 59–62 (1993) Erra-
tum in: Nature. 1993;364(6435):362 

122. E. Luchinat, L. Banci, In-cell NMR in human cells: direct protein expression allows structural 
studies of protein folding and maturation. Acc. Chem. Res. 51(6), 1550–1557 (2018) 

123. S. Cabantous, Y. Rogers, T.C. Terwilliger, G.S. Waldo, New molecular reporters for rapid 
protein folding assays. PLoS One 3(6), e2387 (2008). Erratum in: PLoS One. 2008;3(6). 

124. L. Foit, G.J. Morgan, M.J. Kern, L.R. Steimer, A.A. von Hacht, J. Titchmarsh, S.L. Warriner, 
S.E. Radford, J.C. Bardwell, Optimizing protein stability in vivo. Mol. Cell 36(5), 861–871 
(2009)



Principles, Methods, and Applications of Protein Folding Inside Cells 283

125. K. Okamoto, K. Hibino, Y. Sako, In-cell single-molecule FRET measurements reveal three 
conformational state changes in RAF protein. Biochim. Biophys. Acta Gen. Subj. 1864(2), 
129358 (2020) 

126. M. Sustarsic, A.N. Kapanidis, Taking the ruler to the jungle: single-molecule FRET for 
understanding biomolecular structure and dynamics in live cells. Curr. Opin. Struct. Biol. 
34, 52–59 (2015) 

127. I. Guzman, M. Gruebele, Protein folding dynamics in the cell. J. Phys. Chem. B 118(29), 
8459–8470 (2014) 

128. A. Dhar, K. Girdhar, D. Singh, H. Gelman, S. Ebbinghaus, M. Gruebele, Protein stability and 
folding kinetics in the nucleus and endoplasmic reticulum of eukaryotic cells. Biophys. J. 101 
(2), 421–430 (2011) 

129. L. Kisley, K.A. Miller, D. Guin, X. Kong, M. Gruebele, D.E. Leckband, Direct imaging of 
protein stability and folding kinetics in hydrogels. ACS Appl. Mater. Interfaces 9(26), 21606– 
21617 (2017) 

130. Z. Ignatova, L.M. Gierasch, Extended polyglutamine tracts cause aggregation and structural 
perturbation of an adjacent beta barrel protein. J. Biol. Chem. 281(18), 12959–12967 (2006) 

131. J.M. Yon, Protein folding: a perspective for biology, medicine and biotechnology. Braz. J. 
Med. Biol. Res. 34(4), 419–435 (2001) 

132. C. Li, R. Zhang, J. Wang, L.M. Wilson, Y. Yan, Protein engineering for improving and 
diversifying natural product biosynthesis. Trends Biotechnol. 38(7), 729–744 (2020) 

133. P.S. Huang, S.E. Boyken, D. Baker, The coming of age of de novo protein design. Nature 537 
(7620), 320–327 (2016) 

134. M.T. Koday, J. Nelson, A. Chevalier, M. Koday, H. Kalinoski, L. Stewart, L. Carter, T. 
Nieusma, P.S. Lee, A.B. Ward, I.A. Wilson, A. Dagley, D.F. Smee, D. Baker, D.H. Fuller, A 
computationally designed Hemagglutinin stem-binding protein provides in vivo protection 
from influenza independent of a host immune response. PLoS Pathog. 12(2), e1005409 (2016) 

135. G. Bhardwaj, V.K. Mulligan, C.D. Bahl, J.M. Gilmore, P.J. Harvey, O. Cheneval, G.W. 
Buchko, S.V. Pulavarti, Q. Kaas, A. Eletsky, P.S. Huang, W.A. Johnsen, P.J. Greisen, G.J. 
Rocklin, Y. Song, T.W. Linsky, A. Watkins, S.A. Rettie, X. Xu, L.P. Carter, R. Bonneau, J.M. 
Olson, E. Coutsias, C.E. Correnti, T. Szyperski, D.J. Craik, D. Baker, Accurate de novo design 
of hyperstable constrained peptides. Nature 538(7625), 329–335 (2016) 

136. L. Cao, I. Goreshnik, B. Coventry, J.B. Case, L. Miller, L. Kozodoy, R.E. Chen, L. Carter, A. 
C. Walls, Y.J. Park, E.M. Strauch, L. Stewart, M.S. Diamond, D. Veesler, D. Baker, De novo 
design of picomolar SARS-CoV-2 miniprotein inhibitors. Science 370(6515), 426–431 (2020) 

137. A.A. Vorobieva, P. White, B. Liang, J.E. Horne, A.K. Bera, C.M. Chow, S. Gerben, S. Marx, 
A. Kang, A.Q. Stiving, S.R. Harvey, D.C. Marx, G.N. Khan, K.G. Fleming, V.H. Wysocki, D. 
J. Brockwell, L.K. Tamm, S.E. Radford, D. Baker, De novo design of transmembrane β 
barrels. Science 371(6531), eabc8182 (2021) 

138. I. Anishchenko, S.J. Pellock, T.M. Chidyausiku, T.A. Ramelot, S. Ovchinnikov, J. Hao, K. 
Bafna, C. Norn, A. Kang, A.K. Bera, F. DiMaio, L. Carter, C.M. Chow, G.T. Montelione, D. 
Baker, De novo protein design by deep network hallucination. Nature 600(7889), 547–552 
(2021) 

139. G.A. Khoury, J. Smadbeck, C.A. Kieslich, C.A. Floudas, Protein folding and de novo protein 
design for biotechnological applications. Trends Biotechnol. 32(2), 99–109 (2014) 

140. M. Aftabizadeh, Y.J. Li, Q. Zhao, C. Zhang, N. Ambaye, J. Song, T. Nagao, C. Lahtz, M. 
Fakih, D.K. Ann, H. Yu, A. Herrmann, Potent antitumor effects of cell-penetrating peptides 
targeting STAT3 axis. JCI Insight 6(2), e136176 (2021) 

141. A. Shteinfer-Kuzmine, Z. Amsalem, T. Arif, A. Zooravlov, V. Shoshan-Barmatz, Selective 
induction of cancer cell death by VDAC1-based peptides and their potential use in cancer 
therapy. Mol. Oncol. 12(7), 1077–1103 (2018) 

142. J. Hao, A.W. Serohijos, G. Newton, G. Tassone, Z. Wang, D.C. Sgroi, N.V. Dokholyan, J.P. 
Basilion, Identification and rational redesign of peptide ligands to CRIP1, a novel biomarker 
for cancers. PLoS Comput. Biol. 4(8), e1000138 (2008)



284 S. Sahoo et al.

143. T.S. Istivan, E. Pirogova, E. Gan, N.M. Almansour, P.J. Coloe, I. Cosic, Biological effects of a 
de novo designed myxoma virus peptide analogue: evaluation of cytotoxicity on tumor cells. 
PLoS One 6(9), e24809 (2011) 

144. K. Fosgerau, T. Hoffmann, Peptide therapeutics: current status and future directions. Drug 
Discov. Today 20(1), 122–128 (2015) 

145. B.E. Correia, Y.E. Ban, M.A. Holmes, H. Xu, K. Ellingson, Z. Kraft, C. Carrico, E. Boni, D.N. 
Sather, C. Zenobia, K.Y. Burke, T. Bradley-Hewitt, J.F. Bruhn-Johannsen, O. Kalyuzhniy, D. 
Baker, R.K. Strong, L. Stamatatos, W.R. Schief, Computational design of epitope-scaffolds 
allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. 
Structure 18(9), 1116–1126 (2010) 

146. J. Smadbeck, M.B. Peterson, G.A. Khoury, M.S. Taylor, C.A. Floudas, Protein WISDOM: a 
workbench for in silico de novo design of biomolecules. J. Vis. Exp. 77, 50476 (2013) 

147. M.L. Bellows, M.S. Taylor, P.A. Cole, L. Shen, R.F. Siliciano, H.K. Fung, C.A. Floudas, 
Discovery of entry inhibitors for HIV-1 via a new de novo protein design framework. Biophys. 
J. 99(10), 3445–3453 (2010) 

148. M.J. Gomara, Y. Perez, P. Gomez-Gutierrez, C. Herrera, P. Ziprin, J.P. Martinez, A. 
Meyerhans, J.J. Perez, I. Haro, Importance of structure-based studies for the design of a 
novel HIV-1 inhibitor peptide. Sci. Rep. 10(1), 14430 (2020). https://doi.org/10.1038/ 
s41598-020-71404-0 

149. Y. Zhu, H. Chong, D. Yu, Y. Guo, Y. Zhou, Y. He, Design and characterization of 
cholesterylated peptide HIV-1/2 fusion inhibitors with extremely potent and long-lasting 
antiviral activity. J. Virol. 93(11), e02312–e02318 (2019) 

150. M.K. Siddiqi, P. Alam, T. Iqbal, N. Majid, S. Malik, S. Nusrat, A. Alam, M.R. Ajmal, V.N. 
Uversky, R.H. Khan, Elucidating the inhibitory potential of designed peptides against amyloid 
fibrillation and amyloid associated cytotoxicity. Front. Chem. 6, 311 (2018) 

151. Y.S. Cheng, Z.T. Chen, T.Y. Liao, C. Lin, H.C. Shen, Y.H. Wang, C.W. Chang, R.S. Liu, R.P. 
Chen, P.H. Tu, An intranasally delivered peptide drug ameliorates cognitive decline in 
Alzheimer transgenic mice. EMBO Mol. Med. 9(5), 703–715 (2017) 

152. R. Nelson, M.R. Sawaya, M. Balbirnie, A.Ø. Madsen, C. Riekel, R. Grothe, D. Eisenberg, 
Structure of the cross-beta spine of amyloid-like fibrils. Nature 435(7043), 773–778 (2005) 

153. S.A. Sievers, J. Karanicolas, H.W. Chang, A. Zhao, L. Jiang, O. Zirafi, J.T. Stevens, J. Münch, 
D. Baker, D. Eisenberg, Structure-based design of non-natural amino-acid inhibitors of 
amyloid fibril formation. Nature 475(7354), 96–100 (2011) 

154. J. Rajadas, C.W. Liu, P. Novick, N.W. Kelley, M. Inayathullah, M.C. Lemieux, V.S. Pande, 
Rationally designed turn promoting mutation in the amyloid-β peptide sequence stabilizes 
oligomers in solution. PLoS One 6(7), e21776 (2011) 

155. J. Lu, Q. Cao, C. Wang, J. Zheng, F. Luo, J. Xie, Y. Li, X. Ma, L. He, D. Eisenberg, J. Nowick, 
L. Jiang, D. Li, Structure-based peptide inhibitor design of amyloid-β aggregation. Front. Mol. 
Neurosci. 12, 54 (2019) 

156. J.R. Horsley, B. Jovcevski, K.L. Wegener, J. Yu, T.L. Pukala, A.D. Abell, Rationally designed 
peptide-based inhibitor of Aβ42 fibril formation and toxicity: a potential therapeutic strategy 
for Alzheimer’s disease. Biochem. J. 477(11), 2039–2054 (2020) 

157. T. Ikenoue, F.A. Aprile, P. Sormanni, F.S. Ruggeri, M. Perni, G.T. Heller, C.P. Haas, C. 
Middel, R. Limbocker, B. Mannini, T.C.T. Michaels, T.P.J. Knowles, C.M. Dobson, M. 
Vendruscolo, A rationally designed bicyclic peptide remodels Aβ42 aggregation in vitro and 
reduces its toxicity in a worm model of Alzheimer’s disease. Sci. Rep. 10(1), 15280 (2020)

https://doi.org/10.1038/s41598-020-71404-0
https://doi.org/10.1038/s41598-020-71404-0

	Preface
	Contents
	About the Editors
	Applications of Circular Dichroism Spectroscopy in Studying Protein Folding, Stability, and Interaction
	1 Introduction
	2 Determination of Secondary and Tertiary Structures of Proteins Using CD Spectroscopy
	2.1 Servers to Estimate the Secondary Structure of Proteins from CD Data
	2.1.1 DichroWeb
	2.1.2 BeStSel
	2.1.3 K2D3


	3 Determination of Conformational Changes in the Protein Using CD Spectroscopy
	4 Analyzing the Conformational Changes in a Polypeptide Sequence upon Mutations Using CD
	5 Analysis of Protein-Ligand Interactions
	6 Determination of Protein Folding Pathways
	7 Determination of Protein Stability
	7.1 Thermal Denaturation
	7.2 Chemical Denaturation

	8 Time-Resolved CD Measurements
	9 Concluding Remarks
	References

	Fluorescence Spectroscopy-Based Methods to Study Protein Folding Dynamics
	1 Introduction
	2 Fluorescence Spectroscopy to Study the Kinetics of Protein Folding Dynamics
	2.1 Fluorescence Principle
	2.2 Fluorescence Instrumentation
	2.3 Fluorescence Measurement Using Intrinsic Fluorophores
	2.4 Fluorescence Measurement Using Extrinsic Fluorophores
	2.4.1 Steady-State Fluorescence
	2.4.2 Steady-State Fluorescence Anisotropy
	2.4.3 Time-Resolved Fluorescence
	2.4.4 Fluorescence Correlation Spectroscopy


	3 Conclusions
	References

	Applications of Differential Scanning Calorimetry in Studying Folding and Stability of Proteins
	1 Introduction
	2 Theory and Governing Equations
	3 Instrumentation
	3.1 Types of DSC Instruments
	3.1.1 Heat-Compensated DSC
	3.1.2 Power-Compensated DSC
	3.1.3 Nano-Calorimeter or Flash DSC
	3.1.4 Temperature-Modulated DSC

	3.2 Method and Sample Preparation for DSC

	4 Current Approaches to Studying Protein Folding and Stability
	5 DSC as a Tool to Study the Protein Folding
	5.1 Folding of PBX DB (Pre-B-Cell Leukaemia Transcription Factor Homeodomain)
	5.2 Folding of Tetratricopeptide Repeats
	5.3 Folding Mechanism of the Bovine Pancreatic Trypsin Inhibitor
	5.4 Studying Protein Aggregation
	5.5 Fast Folding Proteins
	5.6 DSC as a Tool to Measure Barrier Heights in Protein Folding

	6 DSC as a Tool to Determine Protein Stability
	6.1 Advantages of DSC over Other Techniques in Studying Thermal Denaturation
	6.2 DSC to Determine the Stability of Coacervation: Lysozyme and Heparin
	6.3 Structural Transitions in Recombinant Human IFNα2a as a Function of pH and Temperature
	6.4 Analysing Thermal Stability of Therapeutic Monoclonal Antibodies Using DSC
	6.5 Effects of Electrostatic Repulsions on the Stability and Aggregation of the NIST Monoclonal Antibody

	7 Conclusions
	References

	Nuclear Magnetic Resonance Spectroscopy to Analyse Protein Folding and Dynamics
	1 Introduction
	2 Studies of Protein Folding and Unfolding at Equilibrium
	2.1 Folding and Unfolding Studies by 1D NMR
	2.2 Folding and Unfolding Studies by 2D NMR
	2.3 Measurement of Residue-Wise Stability by Hydrogen Exchange (HX) Experiments
	2.4 Equilibrium HX Experiments
	2.5 Relaxation Dispersion Experiments

	3 Studies of Protein Folding-Unfolding Kinetics
	3.1 Protein Folding Studies by Fast 2D NMR Experiments
	3.2 Protein Folding by Real-Time NMR Spectroscopy
	3.3 Determination of Folding Pathways by HX Labelling Experiments

	4 Monitoring Protein Folding in Live Cells
	5 Conclusions
	References

	Molecular Dynamics Simulation Methods to Study Structural Dynamics of Proteins
	1 Introduction
	2 Statistical Mechanics
	3 Classical Mechanics
	3.1 Newton´s Second Law of Motion
	3.2 Integration Algorithms
	3.2.1 Verlet Algorithm
	3.2.2 The Leap-Frog Algorithm
	3.2.3 The Velocity Verlet Algorithm
	3.2.4 Beeman´s Algorithm


	4 Principle of MD Simulation
	4.1 Periodic Boundary Condition
	4.2 Ewald Summation
	4.3 Particle Mesh Ewald (PME) Method
	4.4 Thermostat in MD
	4.5 Solvent Models
	4.6 Energy Minimization

	5 Current Tools for Molecular Dynamics
	5.1 Gromacs
	5.2 Amber
	5.3 CHARMM
	5.4 NAMD
	5.5 HyperChem

	6 GUI-Based Software for MD Trajectories Analysis
	6.1 Visual Molecular Dynamics (VMD)
	6.2 PyMOL
	6.3 Chimera

	7 Other Advanced MD Simulation Methods
	7.1 Metadynamics
	7.2 Umbrella Sampling

	8 Structural Parameters to Analyse MD Simulation Data
	8.1 Root Mean Square Deviation (RMSD)
	8.2 Root Mean Square Fluctuation (RMSF)
	8.3 Radius of Gyration (Rg)
	8.4 Solvent Accessible Surface Area (SASA)
	8.5 Hydrogen Bonds

	9 Summary
	References

	Molecular Dynamics Simulation to Study Protein Conformation and Ligand Interaction
	1 Introduction
	2 Background of MD Simulation
	2.1 Theory Behind MD Simulation

	3 Steps in MD Simulation
	3.1 Initialization
	3.2 Periodic Boundary Conditions
	3.3 Energy Minimization
	3.3.1 First-Derivative Techniques
	3.3.2 Second-Derivative Techniques

	3.4 Thermostats and Barostats
	3.5 Production Stage
	3.6 Analysis of the MD Data

	4 Ligand Binding and Fold Transitions
	5 Case Studies
	6 Conclusions
	References

	Monte Carlo Approaches to Study Protein Conformation Ensembles
	1 Introduction
	2 Monte Carlo Simulations
	2.1 Lagrangian and Hamiltonian Dynamics (or How to Formulate the Problem)
	2.2 Partition Functions, Probability Density Functions, and Expectation (or How to Compute Observables)
	2.3 How to Sample Efficiently Thermodynamical Quantities
	2.4 Canonical Ensemble (NVT) Sampling (or How to Sample in Realistic Experimental Conditions)
	2.5 Isobaric-Isothermal Ensemble (NPT) Sampling (or How to Sample in Even More Realistic Experimental Conditions)
	2.6 Sampling and Local Minima (or When Temperature May Help to Escape Local Minima)

	3 Advantages and Limitations of MC Simulations
	3.1 Advantages
	3.2 Limitations

	4 Case Study of the MC Simulations of a Trp-Cage Protein
	5 Conclusions
	References

	Markov State Models of Molecular Simulations to Study Protein Folding and Dynamics
	1 Introduction
	1.1 Importance of Molecular Dynamics
	1.2 Motivation Behind Using MSM Technique

	2 Markov State Model
	2.1 Building of MSM
	2.2 Microstates and Macrostates Generation
	2.3 MSM Model and Validation

	3 MSM to Understand Protein Folding and Dynamics
	3.1 Peptide Modeling
	3.2 Protein Folding
	3.3 Protein-Ligand Binding
	3.4 Analyzing Intrinsically Disordered Proteins
	3.5 Native State Conformation Changes

	4 Summary
	References

	Enhanced Sampling and Free Energy Methods to Study Protein Folding and Dynamics
	1 Introduction
	2 Protein Folding and Dynamics
	3 Free Energy and Sampling Methods
	3.1 Collective Variables and Free Energy

	4 Collective Variable-Based Sampling
	4.1 Umbrella Sampling
	4.2 Metadynamics

	5 Collective Variable-Free Sampling
	5.1 Replica Exchange Molecular Dynamics
	5.2 Accelerated Molecular Dynamics

	6 Conclusion and Outlook
	References

	Investigating Protein Unfolding and Stability Using Chaotropic Agents and Molecular Dynamics Simulation
	1 Introduction
	2 Basic Concept of Protein Folding
	3 Chaotropic Agents and Their Mechanism of Action
	4 Molecular Dynamics (MD) Simulation
	5 Application of MD Simulation in Investigating Protein Unfolding
	6 Case Studies
	6.1 Urea-Induced Unfolding
	6.2 GdnHCl-Induced Unfolding

	7 Conclusions
	References

	pH-Based Molecular Dynamics Simulation for Analysing Protein Structure and Folding
	1 Introduction
	2 Protein Folding and the Intermediate States
	3 Effect of pH on Amino Acids
	4 Simulating Proteins at Multiple pHs
	5 Case Study of Leishmania donovani Tyrosine Aminotransferase (LdTAT) Enzyme
	5.1 Root Mean Square Deviation
	5.2 Radius of Gyration
	5.3 Solvent Accessible Surface Area
	5.4 Root Mean Square Fluctuation
	5.5 Secondary Structure Analysis
	5.6 Intramolecular Hydrogen Bonding and Internal Energy Analysis
	5.7 Principal Component Analysis

	6 Other Case Studies
	7 Conclusions and Future Perspectives
	References

	Molecular Dynamics Simulation to Study Thermal Unfolding in Proteins
	1 Introduction
	2 Effect of Temperature on Protein Structure
	3 Temperature-Induced Protein Unfolding
	4 MD Simulation to Understand Protein Denaturation
	4.1 Force Field in MD Simulations
	4.2 Strong Coupling Methods
	4.2.1 Velocity Rescaling
	4.2.2 Velocity Reassignment

	4.3 Weak Coupling Methods
	4.3.1 Berendsen Thermostat

	4.4 Stochastic Methods
	4.4.1 Andersen Thermostat
	4.4.2 Lowe-Andersen Thermostat
	4.4.3 Bussi´s Stochastic Velocity Rescaling Thermostat
	4.4.4 Langevin Thermostat

	4.5 Extended System Dynamics
	4.5.1 Nosé-Hoover Thermostat
	4.5.2 Nosé-Hoover-Chains

	4.6 Analysis of MD Simulation Trajectories
	4.7 Root Mean Square Deviation
	4.8 Root Mean Square Fluctuation
	4.9 Hydrogen Bonding Analysis
	4.10 Dihedral Angle Analysis
	4.11 Radius of Gyration
	4.12 Protein Solvent Accessible Surface Area
	4.13 Principal Component Analysis
	4.14 Free Energy Landscape Analysis
	4.15 Dynamic Cross-Correlation Matrix
	4.16 Loss of Secondary Structures in High Temperatures
	4.17 Analysing the Unfolding of Human Prion Protein Under Low pH and High-Temperature Conditions

	5 Applications of MD Simulation in Understanding Biological Problems
	6 Conclusion and Future Prospects
	References

	Principles, Methods, and Applications of Protein Folding Inside Cells
	1 Introduction
	2 Protein Folding in Cells
	3 Cellular Factors That Facilitate Protein Folding in Cells
	3.1 Macromolecular Crowding and Compartmentalization
	3.2 Inter- and Intramolecular Interactions in Proteins
	3.3 Post-Translational Modifications
	3.4 Chaperones
	3.4.1 Hsp70 Chaperone
	3.4.2 Chaperonins
	3.4.3 Hsp90 Chaperone

	3.5 Solution Properties

	4 Protein Misfolding Diseases
	5 Biophysical Methods to Study Protein Folding in Cells
	5.1 In-Cell NMR Spectroscopy
	5.2 In-Cell FRET
	5.3 Fast Relaxation Imaging (FREI)
	5.4 FlAsH as an In-Cell Protein Folding Probe

	6 Applications of Protein Folding in Cells
	6.1 De Novo Protein Design
	6.2 Drug Design
	6.2.1 For Cancer
	6.2.2 For Human Immunodeficiency Virus
	6.2.3 For Alzheimer´s Disease


	7 Conclusions
	References


