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Abstract Emerging contaminants (ECs) are unregulated chemical substances that 
on account of their persistent nature and high toxicity can cause inimical impact on 
the ecosystem. ECs occurred as a mixture of complex compounds where an unde-
sirable synergy between them obviate their proper detection and remediation in the 
environment. Compounds like pharmaceuticals, personal care products, and poly-
fluoroalkyl substances comprised the major category of ECs. The surge in cancer 
incidence and chemotherapy treatment has enhanced the application of anticancer 
drugs (ACDs) which contributed to the existing problem of pharmaceutical pollu-
tion. ACDs being one of the major emerging contaminants are frequently detected 
in surface water, municipal wastewater, and pharmaceutical effluent that substan-
tially causes genotoxic and mutagenic effects on the aquatic environment. Several 
remediation techniques were reported on the removal of pharmaceutical compounds 
such as anti-inflammatory, analgesic, and endocrine disruptors however very few 
studies documented the degradation mechanism of anticancer drugs. Hence, this 
chapter elucidates the occurrence of ACDs and their major route in the environment. 
In addition to this, the current treatment technology like ozonation, electrochemical 
treatment, and membrane bioreactor, employed for the removal of ACDs are also 
discussed. 

Keywords Advanced treatment methods · Anticancer drugs · Emerging 
contaminants 

8.1 Introduction 

Emerging contaminants (ECs) are those chemical substances which occur either natu-
rally or anthropogenically and subsists for a long period in the environment (Sauvé
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and Desrosiers 2014; Galindo-Miranda et al. 2019). ECs slowly seek into the envi-
ronment and trigger negative impacts on human health. Pharmaceuticals compounds 
are considered as a significant group of ECs, which are frequently detected in various 
water matrices and can potentially affect the environment (Fent et al. 2006; Marsalek 
2008; Feier et al. 2017; Gojkovic et al. 2019). In aquatic environment, pharmaceu-
ticals remain biologically active and resists degradation (Aherne and Briggs 1989; 
Chen et al. 2002; Cleuvers 2004). Nevertheless, so far research on the fate and 
removal of anticancer drugs (ACDs) has received very less attention. The surge in 
cancer patients leads to the increase in the consumption of chemotherapy drugs 
which become a matter of concern, since these drugs never metabolize completely 
and ultimately reaches into the water which enhance the water pollution load (Trom-
bini et al. 2016; Gonçalves et al. 2022). The function of the ACDs is to intervene 
with the cancer cell to prevent the DNA replication (Załęska-Radziwiłł et al. 2011). 
Hence, these drugs can cause mutations at low level without even killing the cancer 
cells (O’Keefe 2011). This book chapter compiles the latest updates on the advanced 
treatment methods applied on the removal anticancer drugs. 

8.2 Sources, and Fate of Anticancer in Environment 

The fate of cytostatic in environment mainly depends on the factors like dose, cate-
gory consumption, and excretion rate of drugs from in and outpatients. Hospitals 
particularly focused on the tumour treatment are also recognized as the alleged source 
of cytostatic in the environment. As a matter of fact, the rate of excretion is consid-
ered as the main source of chemotherapy drugs in the environment. (O’Keefe 2011), 
detected ACDs in urine (40%), bile (45%), and faeces (50%) samples and advo-
cated that certain amount of unmetabolized ACDs passed through the outpatients to 
the municipal wastewater. Moreover, effluents from pharmaceutical industries also 
recognized as a potential source of ACDs which could reach to the aquatic envi-
ronment (Mahnik et al. 2006; Lenz et al. 2007; Zhang et al. 2013). Kosjek and 
Heath (2011) stated that most of the ACDs have high solubility which pertains to 
their high mobility in water, and they possibly pass from the wastewater treatment 
plant (WWTP) effluent to the surface water. Roberts and Thomas (2006) reported 
the concentration of tamoxifen up to 694 ng L−1 in the wastewater effluent of Tyne 
catchment in UK. Azuma et al. (2015) detected different ACDs (cyclophosphamide, 
tamoxifen, doxifluridine, capecitabine, and bicalutamide) in the Yodo river and efflu-
ents of sewage treatment plant (STP) of Japan. The concentration of the ACDs were 
measured up to 55 ng L−1 in river and up to 316 ng L−1 in STP effluent. The above 
studies confirmed that apart from hospital effluent, ACDs were also detected in 
the wastewater effluent which suggests the incapability of the convention methods 
in removing refractory compounds. Further the occurrence of different ACDs is 
presented in Table 8.1.
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Table 8.1 Most detected anticancer drugs in environment 

Drugs Concentration Matrix References 

Cyclophosphamide 6–146 
10–20; 64 
2–43; 20 

Hospital effluent 
Surface water 
WWTP -effluent 

Steger-Hartmann et al. (1996), 
Steger-Hartmann et al. (1997) 
Ternes (1998), Moldovan 
(2006) 
Negreira et al. (2014) Cristóvão  
et al. (2021) 

Cytarabine 9.9 
1.3 

WWTP -effluent 
Surface water 

Jureczko and Kalka (2020) 

5-fluorouracil 5–124,000 Hospital effluent Mahnik et al. (2004), Kovalova 
et al. (2009) 

Gemcitabine 0.9–38 Hospital effluent Kovalova et al. (2009) 

Tamoxifen 0.2–8 
110–147;143–694 

Hospital effluent 
WWTP-effluent 

Liu et al. (2010), Roberts and 
Thomas (2006), Negreira et al. 
(2014) 

Procarbazine < 5 Hospital effluent Yin et al. (2010) 

Ifosamide 30–1914 
2–27; 30–40 

Hospital effluent 
WWTP-effluent 

Kümmerer et al. (1997) 
Negreira et al. 2014), Cristóvão 
et al. (2021), Catastini et al. 
(2008) 

Doxorubicin 0.1–10 Hospital effluent Mahnik et al. (2006), Yin et al. 
(2010), Mahnik et al. (2007) 

2.7 WWTP-effluent Negreira et al. (2014) 

8.3 Toxicity and Effect of Anticancer Drugs 
on the Environment 

Anticancer drugs are designed to kill the cancer cells by modifying the cell DNA 
structure. However, upon reaching the aquatic environment, the ACDs interfere with 
the cells of non-target biota and alter their molecular pathways (Kiffmeyer et al. 1998; 
Nussbaumer et al. 2011; Russo et al. 2020). The solubility factor is also considered as 
an important aspect of ACDs in environment which determines the presence of ACDs 
in water. Most of the ACDs are hydrophilic in nature with negative log Kow value. 
This blend of low Kow values and high solubility factor leads to the high mobility of 
ACDs in water (Meylan et al. 1999). Previous studies on the ecotoxicity of the ACDs 
suggests the potential toxicity of these drugs on the aquatic organisms. (Fonseca 
et al. 2018) conducted an exposure study of the cyclophosphamide on the ragworm 
Nereis diversicolor. The ragworm was exposed with the drug having concentration 
of 0.5 μg/L for fourteen days and damaged the DNA of the organisms completely. 
Liu et al. (2019), reported that cyclophosphamide not only affect the cell DNA 
but can also inhibit the activity of lactate dehydrogenase enzyme of the non-target 
organisms. The authors conducted an exposure study of cyclophosphamide with 
320 μg/L concentration on the Megalobrama amblycephala for 24 h. The applied
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dose of the drug results in the elevated levels of peripheral blood leukocytes in the 
blunt snout bream. ACDs can also induce histopathological modifications in kidney 
and liver of the aquatic organisms such as zebrafish (Kovács et al. 2015). 

8.4 Treatment Techniques for Anticancer Drugs 

Anticancer drugs (ACDs) considered as an emerging pollutant in water system and 
concerns are raised towards this category. Wastewater treatment plant play a crucial 
role in eliminating such persistent pollutant. However, the conventional processes, 
viz. adsorption, coagulation, and biodegradation lack complete removal of such 
compounds. Early studies reported on ACDs degradation were mostly devoted on 
the photocatalytic and UV-based treatment system. 

8.4.1 Biological Treatment 

8.4.1.1 Membrane Bioreactor (MBR) 

Membrane bioreactor is recently explored as an effective treatment process for the 
removal of emerging pollutants. In MBR, activated sludge process is combined 
with the membrane filtration. (Delgado et al. 2009) studied the microbial behaviour 
of cyclophosphamide (CPH) and its major metabolite in a membrane bioreactor. 
The reactor run for 70 days along with a control without the drug. The chemical 
stress caused by CPH might obstruct the rate of sludge production where the energy 
consumption diverted towards the adaptive response instead of growth. This reflects 
the toxicity and low biodegradability of cytostatic drugs. In recent years advance-
ment made in membrane technology improve the removal of refractory compounds. 
(Wang et al. 2018) employed forward osmosis method to enhance the removal effi-
cacy of anaerobic membrane reactor. The anaerobic MBR-FO reactor was applied 
to eliminate a group of eight ACDs including cyclophosphamide, doxorubicin, and 
tamoxifen from wastewater. For the concentration of 100 ng/L, 95–97% of drug 
removed from the wastewater. Such elevated rate of drug removal suggests the 
high rejection capacity of the FO-MBR. It was also observed that molecular weight 
and surface charge of the ACDs mainly influenced the rejection capacity of the 
membrane. However, surge in volatile fatty acids implies the toxicity of ACDs 
towards the microbes. (Cristóvão et al. 2022), explored the potential of nanofiltration 
in removing ACDs namely cyclophosphamide, ifosamide, capecitabine, paclitaxel, 
and etoposide) in domestic wastewater at pilot scale. The removal efficiency of the 
applied system was maximized through operational parameters, viz. permeate flux, 
and recovery rates. The applied method results in 96% of rejection with 6 bar of 
pressure and 73% of recovery rate. Additionally, the samples did not induce any 
immobilization effect on the Daphnia magna species.
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8.4.1.2 Fungi-Based Treatment 

Besides membrane reactor, fungi-based degradation counts as a non-conventional 
biological method for the remediation of pharmaceuticals (Ferrando-Climent et al. 
2015; Pereira et al. 2020). The enzyme associated with fungi species mainly partic-
ipate in the degradation process. (Jureczko et al. 2021), used white rot fungi (WRF) 
for the attenuation of cytostatic drugs, viz. bleomycin and vincristine from conven-
tional wastewater plant. The authors employed five species of WRTF namely Tram-
etes versicolor and Pleurotus ostreatus which often used for the pharmaceutical 
removal. The degradation study was run over a period of 9 days that gives 95% 
of drug removal efficiency. Their study revealed that laccase and cytochrome P450 
were the main enzymes which facilitates the extracellular oxidation and intracellular 
degradation. However, by-products formed by the parent compound was found as 
toxic to the fungal strains. Similarly, Yadav et al. (2022) also stated the potential of 
the WRF in the degradation of anticancer drugs. Their study evaluated three strains of 
WRF, viz. Ganoderma lucidum, Trametes versicolor, and Phanerochaete chrysospo-
rium) on the removal of etoposide and cyclophosphamide. The G.lucidum strain 
has shown the highest removal of etoposide (99%) after six days of the treatment. 
However, only 71% of the cyclophosphamide was removed after treatment. 

8.4.2 Advanced Oxidation Process 

Advanced oxidation process is the chemical treatment method extensively used fort 
recalcitrant compounds. In this process factors like heat, catalyst, and light usually 
applied alone or in a combination to generate reactive oxygen species namely radicals. 
The high redox potential of these radicals significantly breaks the complex structure 
of hazardous compounds into non-toxic by-products rather than just a physical trans-
formation (Khan et al. 2016; Zhao et al. 2019). A brief description of the types of AOP 
is given in Fig. 8.1 and the treatment techniques for the ACDs removal is represented 
in Table 8.2.

8.4.2.1 Photocatalysis 

Photocatalysis is one of the significant AOPs which is widely applied in the wastew-
ater treatment (Hasanpour and Hatami 2020; Sundar and Kanmani 2020). The main 
reaction in a photocatalytic process is initiated when a photon is absorbed (hν) in  
the presence of an incident light and generate electron–hole pairs on the surface 
of the catalyst. The electron (eCB−) and holes (hνB) thus produced are oxidizing 
and reducing species, respectively (Zhu and Zhou 2019). The electrons react with 
the dissolved oxygen and produce superoxide radicals (Eqs. 8.1 and 8.2). On the 
contrary, water molecules react with the generated holes and produce hydroxyl radi-
cals as the oxidants (Eqs. 8.3–8.4) (Byrne et al.  2018; Wang et al. 2019; Motamedi
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Fig. 8.1 Classification of different AOPs. Adapted and modified from Kim et al. (2022) 

Table 8.2 Treatment methods applied on anticancer drugs 

Target compound Process Matrix Removal (%) References 

Cyclophosphamide 
Ifosfamide 

Biological – 59 Česen et al. 
(2015) 

Irinotecan, 
Ifosfamide 
Cyclophosphamide 
Capecitabine 

Ozonation Hospital effluent 97 Ferre-Aracil 
et al. (2016) 

Cyclophosphamide Photocatalysis Wastewater 69 Ofiarska et al. 
2016) 

Ifosfamide, 
Irinotecan 
Cyclophosphamide 
Capecitabine 

Ozonation Hospital effluent 97 Ferre-Aracil 
et al. (2016) 

16 Anticancer drugs Biological 
and 
photodegradation 

Ultrapure water 50–90 Franquet-Griell 
et al. (2016) 

Chlorambucil 
Cyclophosphamide 
Ifosfamide 
Decarbazine 
Tamoxifen 
Methotrexate 

Ozonation Wastewater 20–70 Li et al. (2016) 

Cyclophosphamide Membrane 
bioreactor 

Wastewater 60 Seira et al. 
(2016) 

Cyclophosphamide Electrochemical 
oxidation 

Ultrapure water 65–77 Siedlecka et al. 
(2018) 

Doxorubicin Electrochemical 
oxidation 

Ultrapure water 85–100 Garcia et al. 
(2020)



8 Advanced Treatment Methods for the Emerging Contaminants: … 203

et al. 2022). 

Photocatalyst + hv → hVB+ + eCB− (8.1) 

eCB− + O2 → O2· (8.2) 

hVB+ + H2O → ·OH + H+ (8.3) 

H2O2 + eCB− → ·OH + OH− (8.4) 

To understand more about the fate and degradation of ACDs, Franquet-Griell 
et al. (2016) studied the behaviour of 16 ACDs from hospital and wastewater effluent 
through different treatment process (hydrolysis, aerobic biodegradation, and UV-C 
photolysis). During hydrolysis process the chemotherapy drugs like doxorubicin, 
melphalan, and chlorambucil which were stable at pH 4–7 having high dielectric 
constant removed completely (95%) from the system. While nine drugs out of 16 
like cytarabine, etoposide, and cyclophosphamide showed only 50% removal. Later 
in biodegradation process most the compounds were found to be refractory to the 
applied process, which suggests process like advanced oxidation was required for 
further degradation. Lastly, photolysis was applied which gives > 90% of removal, 
although compounds having chlorine such as cyclophosphamide and ifosfamide still 
remain that were later removed in a combined UV-H2O2 system. At last, the ACDs 
removal were simulated in surface water by solar photocatalysis. It was observed 
that most of the drugs circumvents sun’s radiation which reflect the stability of such 
drugs in the environment. The high toxicity of ACDs towards biological system leads 
to the addition of advanced treatment, hence in later research mostly photocatalysis 
and advanced oxidation process was applied. 

Authors of Ofiarska et al. (2016) reported degradation of two ACDs namely ifos-
famide and cyclophosphamide by photocatalysis using TiO2 and Pt-doped TiO2 cata-
lyst. It was observed that when undoped TiO2 was used the removal occurred in the 
bulk solution while in case of Pt-doped TiO2, the removal occurred on the surface 
of the catalyst as well. The addition of platinum at the catalyst surface increased the 
electron or hole separation that further promote accumulation of the ·OH radicals at 
the TiO2 surface. Apart from TiO2, oxyhalides of bismuth was also used as photocat-
alyst in the degradation study of the anticancer drug (Wilczewska et al. 2021). It was 
established that halogen atom intersects the layer of BiO2 which facilitate the elec-
tric field that eventually enhanced the conduction band of the semiconductor. Unlike 
other photocatalyst, BiO2 generate superoxide radicals ·O− 

2 as the main oxidant no 
matter what light source was used during the photodegradation process. When used 
for the degradation of 5-FLU, it shows 95% of removal efficiency with 90 min of 
reaction time.
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8.4.2.2 Ozonation 

Ozonation process has been significantly applied in the treatment of organic contam-
inants. Ozone is a strong oxidant which can be generated through pure oxygen by 
means of different methods like chemical, photocatalytic, and electric discharge 
(corona) (Joseph et al. 2021; Gorito et al. 2021). Ferre-Aracil et al. (2016) employed 
ozonation to a hospital wastewater effluent contained with cytostatic drugs. With 
ozone gas concentration of 43 g m3 about 97% of the target drugs were eliminated. 
The key factor of their research was the economic assessment and development of 
a prediction model to study the behaviour of the ozone reactor. The applied model 
helps to determine the rate kinetics, total dissolved organic concentration along with 
chemical ozone demand. These factors later applied to evaluate the cost of the reactor. 

8.4.2.3 Electrochemical Advanced Oxidation Processes (EAOPs) 

Electrochemical advanced oxidation is associated with the in-situ generation oxidants 
like •OH and H2O2 without adding chemicals as compared to usual AOPs. The 
mechanism behind the production of oxidant species is driven by the current supply 
(j) supplied across the anode and cathode that eventually reduce or oxidize the organic 
components into biodegradable compounds. Further section defines the different 
types of EAOPs. 

Direct Oxidation 

When the target compound oxidized at the electrode surface by means of direct 
electron transfer at anode then it is called as direct oxidation (Eq. 8.5). The direct 
oxidation depends upon two factors (i) diffusion process where the organic pollutant 
diffused through the electrolyte bulk solution to the anode surface and (ii) electro-
catalytic property of the anode where interaction between the electrons and organic 
matter depends on the anode oxidation potential (Panizza and Cerisola 2009). 

R → +P + e− (8.5) 

Indirect Oxidation 

Indirect oxidation occurs when intermediate oxidant products generate at the inter-
face of solution or at the anode surface in the presence of the external voltage (Eqs. 8.6 
and 8.7) (Cavalcanti et al. 2013; Nidheesh et al. 2018). Whereas the generation of
·OH radicals in bulk through water electrolysis is knows as indirect electrode surface 
oxidation. Here the anode material plays a vital role in forming the oxidant species 
(Eq. 8.8) (Sánchez et al. 2013) (Paiva Barreto et al. 2015).
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2H2O → H2O2 + 2H+ + 2e− (8.6) 

3H2O → O3 + 6H+ + 6e− (8.7) 

M + H2O → M(·OH) + H+ + e− (8.8) 

Basedon the  formationof  ·OH radical, oxidation mechanism of an electrochemical 
cell can be determined. The ·OH radicals thus formed get adsorbed at the anode 
surface either physically or chemically. When a chemical bond is established between 
the oxygen atom of •OH molecules and anode surface then the radicals are chemically 
adsorbed (Eq. 8.9) (Panizza and Cerisola 2009; Brillas and Sirés 2015). Anodes like 
platinum, ruthenium, and graphite produce such radicals and they are known as active 
anode. On the other hand, radicals formed without any involvement of chemical bond 
form physiorbed radicals. These types of radicals are formed by electrodes such as 
boron diamond and are often called as inactive anodes (Escalona-Durán et al. 2020; 
Malpass and Jesus Motheo 2021). Furthermore, the reactivity of the anode also 
depends upon the oxygen evolution potential. The OEP of the non-active anode is 
less as compared to active anode thereby it shows higher reactivity towards organic 
compound. Moreover, oxidation of electrolytic solution also gives oxidizing radicals 
like Cl2, H2S2O8, and HClO− that are not as strong as •OH radicals but can remain 
for a long time of duration in the system and diffused at the same time in the reaction 
medium (Eqs. 8.10–8.12) (Neodo et al. 2012; Chanikya et al. 2021). 

M(·OH) → MO + H+ + e− (8.9) 

M(·OH) + Cl− → M(HClO) (8.10) 

2Cl− → Cl2(aq) + 2e− (8.11) 

HClO → H+ + ClO− (8.12) 

The structure of cytostatic drugs is complex having purine or pyrimidine rings 
and are mostly non-biodegradable, hence restrict the performance of conventional 
wastewater treatment plants. Only few studies were reported on removal of CSTs 
through electrochemical process. (Siedlecka et al. 2018), removed five cytostatic 
drugs from aqueous solution through BDD electrode. Their study suggested that 
compound having more electron donor sites such as cyclophosphamide were more 
resistant to hydroxyl free radical attack. Though, use of BDD at pilot scale could 
increase the cost of the electrochemical reactor. Use of inactive anodes like graphite 
might solve this problem as this electrode is inexpensive and widely used for organic 
pollutant removal. Graphite in presence of sodium chloride as an electrolyte, generate 
chlorine oxidants and was reported to eliminate 90% of cytarabine from aqueous
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solution (Sivodia and Sinha 2020). The presence of anions in solution matrix also 
affects the degradation process, as anions like nitrite inhibit the oxidation process, 
while Cl− ions accelerate the oxidation rate (Xu et al. 2020). The application of ECPs 
probably enhanced the biodegradability of such complex compounds. 

8.5 Conclusions and Future Prospectus 

Anticancer drugs as a group of pharmaceutical compounds become a matter of 
concern due to increase in the consumption rate, their endurance towards the conven-
tional treatment methods (coagulation, filtration, and biodegradation) and carcino-
genic effects on eukaryotic organisms. Besides, the ubiquitous occurrence of anti-
cancer drugs in different water matrix such as surface water, groundwater, and 
wastewater effluent also reflect the resilience of ACDs against the applied treat-
ment methods because of which they can easily seek into the environment. The 
chapter gives an insight on the ongoing remediation techniques of ACDs. Cyclophos-
phamide is the most studied compound of all ACDs because of its high consump-
tion rate and low degradability. Oxidation process is the most effective technique 
which completely degrade the refractory compounds in a short span of time. The 
membrane technology also shown effective removal of various ACDs such as 
cyclophosphamide, capecitabine, and ifosamide, however higher removal efficiency 
was achieved only after combining other removal techniques. The number of studies 
reported on biodegradation of ACDs is limited and only white rot fungi has shown an 
effective degradation of the anticancer drugs. Also, toxicity study of the degradation 
by-products can also give more insights on the fate of ACDs after treatment. Lastly, 
removal of anticancer drugs in real water matrix should be explored to comprehend 
the implementation of the current methods at pilot scale. 
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