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Abstract The process of integrating various source photos into a single image that 
is more informative than all the source images is known as image fusion. It is an 
efficient way of retrieving the information from the multiple sources into single 
image. The main purpose of image fusion is to not only decrease amount of data 
but also construct images that are more appropriate and comprehensible for human 
and machine perceptions. This paper describes morphology and empirical mode 
decomposition (EMD)-based image fusion strategy. The goal of this technique is to 
minimise the spatial distortions caused by noisy attributes of pixel-wise maps and to 
construct fusion images of high quality. Initially, we design a multi-channel, bidimen-
sional empirical mode decomposition (EMD) algorithm that divides the image data 
into IMFs of different scales and a residue utilising morphological dilation as well 
as erosion filters. While retaining the decomposing quality, it further increases the 
computing efficiency of EMD. Additionally, we create a patch-based fusion method 
that merges the IMFs as well as the residue with intersecting partitions to reduce 
noisy attributes. 
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1 Introduction 

A wide range of image acquisition sensors are available as a result of technological 
advancements. The information collected with a single image acquisition sensor is 
insufficient, irrespective of the fact that each sensor offers characteristics that cannot 
be replaced in its optimum operating environment and range. Image fusion is a 
technique for creating a composite image from several different source images. It 
is an effective method of combining significant data from various sources into a 
single image [1]. Image fusion objects to generate images that remain more relevant 
and understandable for both human and machine perceptions, as well as lower the 
amount of data necessary to hold numerous images. Image fusion is widely cast 
off in computer apparition, medical imaging, remote sensing, military, etc. Various 
benefits of image fusion include image sharpening, feature extraction, replacement 
of defective data. 

Different fusion techniques like (Intensity Hue Saturation), high-pass filtering, 
pyramid techniques, wavelet transform, discrete cosine transform are developed 
so far. Huang proposed a classical EMD algorithm that can decompose the one-
dimensional (1D) time series signal into different IMFs and residue using iterative 
sifting process. It is further developed for 2D images known as bidirectional empirical 
mode decomposition (EMD) which is applied to image fusion by many researchers 
to extract the feature and to overcome the distortion introduced by pre-defined func-
tions based on transformation techniques like wavelet transform and Fourier trans-
form [2]. Still, the known EMD methods have some drawbacks. They are highly 
time consuming with the increase in image size which in turn reduces computation 
efficiency. While merging IMFs, the spatial distortions are caused by noisy attributes 
of pixel-wise maps. So, these fusion methods will produce inappropriate outcomes. 

To enhance the efficiency of EMD-centred fusion technique, this research paper 
proposes a morphology and EMD-based fusion technique. Initially, to enhance 
computation efficiency, we design a multi-channel bidirectional EMD algorithm 
using morphological dilation and erosion filters which can moulder the source images 
obsessed by IMFs of various scales in addition to a residue. Further, to reduce spatial 
distortion, we design a patch fusion technique with overlapping partitions, where 
maximum selection rule based on energy levels is developed to merge IMFs and 
residue, and the final output image is obtained by accumulating all the IMFs and also 
the residue collected. 

The assistances in this paper include developing a morphological filter-based 
empirical decomposition algorithm for multi-channel images and patch-based fusion 
technique to fuse IMFs and the residue which can further minimise the decomposition 
time and maximise computation efficiency.
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2 Literature Survey 

Huang proposed a classical 1D EMD algorithm [3] for processing non-stationary 
and nonlinear 1D time signals. Through an iterative sifting process, any complex 
set of data is divided into a pre-defined and indeed small number of intrinsic mode 
functions and residue. It is confined to only 1D signals. Later, Nunes and their fellows 
developed it for 2D images and proposed image [4] analysis by bidirectional empir-
ical mode decomposition which lacks stability. In order to improve the dissolution 
by averaging algorithms of all noise-added images, Wang [5] created a BEEMD 
approach, that also consists of highly costly time expenses. By using automatic 
vehicle-selected selective restoration and improved fast empirical mode decompo-
sition, Trusiak’s [6] advanced computation of optical fringe patterns was proposed. 
While using segmentation method instead of order statistics filters, this will increase 
the efficiency of the algorithm of envelops, but it is only applicable to single-channel 
images. 

A wide range of fusion techniques have been developed in spatial, frequency trans-
form, deep learning, and neural network-based domains. The decomposition algo-
rithms are mainly suited for transform-domain fusion techniques. The input source 
images’ transformed coefficients, which were gathered using transform-domain tech-
niques, are integrated, and restoration step with a conforming inverse transform 
results in the creation of the fused image [7, 8]. Certainly, in these techniques, 
the choice of the transform domain is crucial. The Laplacian pyramid, empirical 
mode decomposition (EMD), multi-scale geometric analysis, wavelet transform, fast 
Fourier transform, and other transformations have all been used till now to conduct 
image fusion. Unlike traditional transform techniques that rely on pre-explained 
basis functions. EMD is completely flexible, and data dependent. Qin [9] created the 
decomposition. The extreme selection criteria dependent on two saliency parameters 
and a pixel-based algorithm were used to combine the residual and all IMFs, which 
may have caused some distortions. The multivariate 1D EMD is cast off to dissect 
source images in order to equalise the quantity and properties of the decompositions 
of various source images [10]. A variance-based weighted averaging method can 
then be used to aggregate each component pixel by pixel. In order to gain the multi-
scale breakdown, Xia [11] used the MBEMD based on surface projection, which may 
progress the fusion excellence of the multivariate one-dimensional empirical mode 
decomposition-based fusion technique. To handle Zhu’s [12] ground-breaking fusion 
technique, sparse representation (SR) and bivariate bidimensional empirical mode 
decomposition (B-BEMD) are used, by properly combining the common and novel 
characteristics of two patterns of pictures. In order to successfully keep the fine qual-
ities of the source pictures, the high-frequency components are combined using the 
“max-absolute” method as the activity level measurement. Then, in order to empha-
sise the common features and reserve the innovation features, the common and inno-
vative features among low-frequency components are extracted by the deftly devised 
SR-based approach and fused, respectively, by the appropriate fusion rules. The fused 
picture is then rebuilt using the inverse B-BEMD procedure. Sufyan [13] proposed
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a new MMAI fusion method constructed on structure extraction and contrast which 
eliminates distortions from source images and then fuses the images based on local 
contrast and salient structure [14]. This paper presents a morphological filter-based 
empirical mode decomposition algorithm for multi-channel images and then the 
extracted IMFs and residue are fused with the help of patch-based fusion technique, 
where a maximum selection rule based on energy levels is employed [15]. This 
method increases the computation efficiency and minimises the decomposition time 
[16]. 

3 Methodology 

3.1 Existing Method 

IHS (Intensity Hue Saturation) Transform 

The three characteristics of a colour—intensity, hue, and saturation—provide a regu-
lated visual representation of an image. The IHS transform method is the most tradi-
tional picture fusion technique. Because the IHS space carries the majority of the 
spectral information, hue and saturation need to be carefully regulated [17]. 

High-pass filtering (HPF) 

High-pass filtering is used to create high-resolution multispectral photographs. The 
high-frequency data from the high-resolution panchromatic image and the low-
resolution multispectral image are combined to create the final image [18]. Either a 
high-pass filter is employed to filter the high-resolution panchromatic image or the 
original HRPI is used and the LRPI is removed from it. 

Wavelet Transform 

The wavelet transform is an alternative to the rapid Fourier transforms. The Fourier 
transform only provides the proper resolution in the frequency domain, but this 
method supplies it in both the time domain and the frequency domain [19]. In contrast 
to the wavelet transform, which scales and shifts versions of the mother wavelet 
or function, the Fourier transform separates the signal into sine waves of various 
frequencies. 

Discrete Cosine Transform 

It has become important for the MPEG, JVT, and other compressed picture formats. 
The spatial domain image is transformed into frequency-domain image using 
the discrete cosine transform [20]. Low frequency, medium frequency, and high 
frequency are three categories used to divide the images. The DC value reflects 
average illumination, whereas the AC values are the high-frequency coefficients. 
The RGB picture is divided into 8 × 8 pixel blocks for segmentation. The picture
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is then turned into a greyscale image after being separated into groups based on the 
red, green, and blue matrices [21]. 

3.2 Proposed Method 

The bidirectional EMD method, which is based on morphological dilation and erosion 
filters, first divides the contribution source images hooked on numerous IMFs and 
also a residue. Second, it uses an overlapping patch-based fusion technique to fuse 
the residue and IMFs separately. A maximum selection method based on energy 
levels is constructed about the fusion of the IMFs, along with two separate rules 
which are built for the fusing of the residue based on the key information collected 
by IMFs from the input images. The intrinsic mode functions and also fused residue 
are ultimately used to reconstruct the required fused image. 

The block diagram below depicts the entire structure of EMD algorithm (Fig. 1). 

Morphological Filter Based EMD Algorithm 

In the proposed morphological filter-based multi-channel bidirectional empirical 
mode decomposition, using morphological dilation as well as erosion filters which 
have the same window size for every channel, which retrieve the very same spatial 
extent from every channel image at the moment of decomposition, envelope edges 
for the inter image are produced. The lower (upper) envelope D = (D1, ...., Dn) 
((U = (U1, ...., Un)) for a multi-channel image I = (I1, ...., In) with window size

Fig. 1 Block diagram of morphology and EMD-based patch-wise image fusion 
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W × H can be generated by 

Uk(x, y)|k=1,...,n = (Ik ⊕ b)(x, y) = max 
(s,t)∈Zxy  

Ik(s, t) 

Dk(x, y)|k=1,...,n = (IkΘb)(x, y) = min 
(s,t)∈Zxy  

Ik(s, t) (1) 

where ⊕ represents the morphological dilation filter,Θ represents the morphological 
erosion filter, b characterises a binary group pointer function on Zxy , and Zxy  denotes 
the group of pixels centred on the pixel (x, y) in the window w × w. To obtain 
significantly smoother envelopes, the average filter is utilised. 

U '
k(x, y)

|
|
k=1,....,n = 

1 

ω × ω
∑

(s,t)∈Zxy  

Uk(s, t) 

D'
k(x, y)|k=1,....,n = 

1 

ω × ω
∑

(s,t)∈Zxy  

Dk(s, t) (2) 

The window size w in Eqs. (1) and (2) is set to the smallest average extreme 
distance of all image channels in order to evaluate feature abstraction for all statistics 
channels of the source images. 

ω = min{ω1, ..., ωn} (3) 

where average extreme space of kth channel picture Ik is represented by wk (k = 1, 
…, n) and is determined by 

ωk =
√

w × h 
Nk 

(4) 

where Nk represents the average value of all Ik’s local maxima and minima. In 
each iteration, this compares the values of each pixel and neighbourhood pixels 
in 3 × 3 window centred on it to locate all local maxima (minima) of Ik . This  
could iteratively extract IMFs of various scales using a sifting technique based on 
the envelope calculation technique described above, until residue is a monotonic 
function or a constant or the required number of IMFs is obtained. 

EMD-Based Patch-Wise Image Fusion 

The two source images I1 and I2 are combined to form a two-channel image I = 
(I1, I2) that is decomposed by Algorithm 1 into K IMFs and a residue. 

I = 
K

∑

I =1 

Fi + Rk (5)
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where Fi = (Fi1, Fi2)(i = 1, ..., k) is the ith IMF and Rk = (RK 1, RK 2) is the associ-
ated residue. All intrinsic mode functions and residues are divided into several patches 
of size M × M, with N overlapping columns/rows. This overlapping patch technique 
is developed to minimise the distortions that occur around partition boundary while 
using patch-based fusion techniques. 

Fusion of IMFs 

On measuring the energy levels of two related patches, the fused patch G j i is generated 
using a maximum selection rule based on energy levels, for the jth patch F j i = 
(F j i1, F 

j 
i2) of ith IMF Fi 

G j i = 

⎧ 
⎨ 

⎩ 
F j i1, E

(

F j i1

)

≥ E
(

F j i2

)

F j i2, E
(

F j i1

)

< E
(

F j i2

) (6) 

Equation (6) computes the energy of each patch by 

E(F j i p) =
∑

(s,t)∈Z j 
F j i p(s, t)

2 , p = 1, 2, (7) 

where Z j stands for the pixels group in jth patch. The above formula is utilised to 
obtain the significant features from the source pictures. 

Fusion of Residue 

As for jth patch R j K = (R j K 1, R 
j 
K 2) of residue RK , two different methods are designed 

centred on the statistics collected by the intrinsic mode functions to extract fusion 
residue of patch H j k in accordance with the image types. 

The first one combines multi-focus images using a maximum selection method 
that is energy-based. In the first IMF, the energy of two identical patches is compared 
as 

H j k = 

⎧ 
⎨ 

⎩ 
R j K 1, E

(

F j 11

)

≥ E
(

F j 12

)

R j K 2, E
(

F j 11

)

< E
(

F j 12

) (8) 

where E(F j i p) (p = 1, 2) represents the energy of initial intrinsic mode functions, 
and this could acquire the features up to finest scales. The above fusion method 
accurately describes the focused area of multi-focus pictures. 

The second combines multi-modal images using an energy-based algorithm. The 
knowledge area retrieved by IMFs is used to merge the actually imply area of the 
residue patch, and the mean of a residue serves is helpful to fuse the illumination of 
each multi-modal image. The fusion equation can be obtained from
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H j k = 
2

∑
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where μ j k P  is mean of the jth patch of residue R j k P , The two non-negative exponent 
parameters for controlling feature guidance intensity as well as brightness fusion 
intensity, respectively, are p = 1, 2, l, and m. If  l and m are both set to zero, the result 
is just an average of the leftover information from two multi-modal images. The 
knowledge area retrieved by IMFs is used as the guidance to merge the brightness of 
each modal image if the virtues l and m have been set greater than 0, and the mean 
of the residue patch is used to fuse the mean divided section of the residue of each 
modal image if the results of l and m are set larger than 0. A higher value of l denotes 
that the merged result contains much stronger features, while a greater value of m 
indicates that more brilliant targets are included in the fusion result. Both the values 
of l and m are set to 6 in trials, which can produce successful outcomes. 

Image Reconstruction 

The value at each pixel (x, y) of the fused IMFs and residue is determined by aver-
aging the values of the pixel (x, y) in all overlapping patches after all IMFs and 
residue patches have been fused. 

G
'
i (x, y) =

1 

s(x, y)
∑

j 
G j i (x, y) 

H
'
K (x, y) =

1 

s(x, y)
∑

j 
H j K (x, y) (10) 

where S(x, y) represents the overlapping patch number at the pixel (x, y), and the 
resultant fused image I ' is created by combining the fused IMFs and the fused residue. 

I
'
(x, y) = 

k
∑

i=1 

G
'
i (x, y) + H '

K (x, y) (11) 

The proposed method is implemented by setting the initial value of fused IMFs at 
each pixel (x, y), the fused residue, then with the help of overlapping patch number 
by G

'
i (x, y)|i=1,....k = 0, H '

K (x, y) = 0, and S(x, y) = 0. Each time a patch is 
combined, and fused values are updated using
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G
'
i (x, y) → G '

i (x, y) + G j i (x, y) 

H
'
K (x, y) → H '

K (x, y) + H j K (x, y) (12) 

and at the jth patch, each pixel’s overlapping patch value is modified by 

S(x, y) → S(x, y) + 1 (13) 

After fusing all the patches of K IMFs and residue, on every pixel, the resultant 
joined IMFs and residue are retrieved. 

G
'
i (x, y) →

1 

S(x, y) 
G

'
i (x, y) 

H
'
K (x, y) →

1 

S(x, y) 
H

'
K (x, y) (14) 

In pixel-based fusion, the noisy features of pixel-wise maps are reduced with the 
help of overlapping patch partition. 

4 Experimental Investigations 

4.1 Selection of Key Parameters 

K Decomposition level. The most effective selection principle based on the energy 
thresholds is used to combine all IMFs and extract the most important information 
from the images. However, K is chosen over 2 for multi-modal images so because 
top two IMFs of method 2 are where the majority of the input images’ information 
is concentrated in the tests performed multi-modal images. 

Overlapping number N of rows/columns Most of the time, decreasing distortions 
while also increasing computing costs can be accomplished by increasing the number 
of rows and columns that overlap N in the patch split. The block sizes are M = 2 for  
multi-modal images and M = 6 for multi-focus images. More tests have shown that 
these decisions can generate desired fusion outcomes. 

Block size M of the division. Combining all IMFs, the most efficient selection 
premise using the energy threshold values is used to get the most important informa-
tion from the images. The very same decomposition threshold K of sample b is set to 
1 in sequence for the initial IMF to signify that the focused province of multi-focus 
images is good. The top two IMFs of step 2 represent that the large number of input
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Fig. 2 Multi-focus colour image fusion using proposed method 

Fig. 3 Multi-focus greyscale image fusion using proposed method 

tiny pictures’ information is focused in the tests conducted with multi-modal image 
sets, so K is chosen over 2 in this case. 

4.2 Results 

The MATLAB R2017b software was used to create all the experimental results shown 
in this work on a laptop with an Intel Core i5 processor with Windows 11 operating 
system and RAM size is 16 GB. 

Using morphology and EMD-based patch-wise image fusion, Figs. 2, 3, 4, and 
5 show the fusion of multifocal (colour) photos, greyscale images, multi-modal 
(medical) images, and infrared images, respectively. Given that the maximum selec-
tion rule based on energy levels for the fusion of each IMF can extract more signif-
icant information, the patch-based fusion technique can enhance the fusion quality 
of each EMD method in visualisation while also reducing the distortions caused by 
pixel-wise fusion method. The structure of multi-modal images can also be better 
represented by the extracted IMFs’ energy-based weighted averaging method, and 
the focused area of multi-focus images can be captured more effectively by the first 
IMF’s activity level. It is clearly observed that the essential details present in the 
output image but absent in either of the source images.
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Fig. 4 Multi-modal medical image fusion using proposed method 

Fig. 5 Multi-modal infrared image fusion using proposed method 

5 Conclusion 

To obtain good quality images, this paper describes a morphology and an EMD-based 
patch-wise image fusion. First of all, a morphological filter-based bidirectional EMD 
algorithm is developed for multi-channel images which uses dilation and erosion 
filters to calculate lower and upper envelopes of source images. This algorithm breaks 
down the input images into intrinsic mode functions of various sizes and a residue. 
This will gradually improve the computation efficiency. The IMFs and residue are 
then merged using a patch-based fusion method with overlapping partitions. With the 
aid of maximum selection rule based on energy levels, the IMFs are fused, and the 
residue is combined using the key information they have collected. The fused image 
is finally produced by combining the fused IMFs with all of the fused residues. The 
fused images for different sets of source images are displayed in Figs. 2, 3, 4, 5.
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