
Chapter 7
Basics of Field-Programmable Gate
Array

Yota Yamamoto

Abstract Afield-programmable gate array (FPGA) is a large-scale integration (LSI)
that enables the user to modify the internal circuit structure. Central processing units
(CPUs) are also implemented on LSIs and have one or more arithmetic logic units
(ALUs). FPGAs, however, can have tens or hundreds of thousands ofALU-equivalent
arithmetic cores using their on-board logic resources. CPU ALUs can operate as
fast as 3 GHz, whereas FPGAs are nearly an order of magnitude slower at around
500 MHz. To build a high-speed special-purpose computer using FPGAs, we must
select suitable algorithms that have less dependence on data, employ low precision,
and are easily parallelizable. Effective parallel computation can be attained by taking
advantage of the FPGAs’ plentiful arithmetic units.

7.1 Structure of Field-Programmable Gate Array

Field-programmable gate arrays (FPGAs) are large-scale integrations (LSIs) that
enable the user to modify the internal circuit structure. Figure 7.1 reveals a typical
FPGA structure. Their internal circuits, unlike CPUs and graphics processing units
(GPUs), are not functionally connected, and they work by loading precise circuit
configuration data upon launch. The circuit configuration data configure the differ-
ent blocks in the FPGA, like the programmable logic blocks (LBs) that implement
logic circuits, programmable input-output blocks (IOBs) that offer the interface to
external circuits, and programmable routing blocks [connection blocks (CBs) and
switching blocks (SBs)], which connect each block. Inside the FPGA, these elements
are arranged in a grid.
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Fig. 7.1 Structure of FPGA

LBs are based on the lookup table (LUT) and multiplexer (MUX) cells to imple-
ment certain logic functions. The LB’s name differs among FPGA vendors: Xilinx
calls it a configurable LB (CLB) [1], and Intel calls it a logic array block (LAB) [2].
Furthermore, even if it is from the same vendor, the internal structure of the LB varies
depending on the family.

There are two primary kinds of LBs: hard logic and soft logic. Hard logic includes
a digital signal processor (DSP) [3] and block RAM [4]. Although it lacks the
flexibility of LUT-based soft blocks, it can run predetermined logic functions at a
high speed. Soft logic, which comprises LUTs and so on, fulfills any logic functions
that are unavailable in hard logic.

The primary difference betweenCPUs and FPGAs is the arithmetic units’ number.
CPUs have one or more arithmetic logic units (ALUs), whereas FPGAs can have tens
or hundreds of thousands of ALU-equivalent arithmetic cores using their on-board
logic resources. CPU ALUs can perform as fast as 3 GHz, while FPGA ALUs are
nearly an order of magnitude slower at around 500 MHz.

7.2 Hardware Description Language (HDL)

The circuit configuration data are produced by compiling the source code written by
hardware description languages (HDLs) using a tool offered by FPGA vendors
(Fig. 7.2). First, the HDL is transformed into an intermediate code called a netlist
using a process called logic synthesis. The netlist is then mapped to the physical pin
assignments and LBs of the actual device by a process called implementation, and
the circuit configuration data are produced [5].
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There are different types of HDLs, and there are compilers called high-level
synthesis tools that produce HDL from abstract descriptions in C language [6]. In
this section, we shortly present the VHDL [7] and SystemVerilog [8]. Listings 7.1
and 7.2 reveals the source code of an adder circuit using VHDL and SystemVerilog,
and Fig. 7.3 reveals the block diagram.

In HDL, it is possible to describe the logic circuit to be implemented in FPGA
using addition and subtraction of variables, conditional branching, and so on, just
as in C programming. However, it is crucial to note that the operations of CPUs
and FPGAs are very different. Software programming, including C programming,
describes how the CPU operates, and the process is run sequentially. However, FPGA
hardware programming explains the logic circuits’ structure. All the illustrated logic
circuits operate simultaneously.

The defining of input and output signals is the first step in both VHDL and Sys-
temVerilog. The circuit is synchronizedwith “clk,”which is a clock signal that repeats
“0” and “1,” The circuit conducts the addition of the input values of “a” and “b.”
The bit width of the CPU and GPU is fixed, whereas that of the FPGA can be freely
determined by the user.

Listing 7.1 Source code for adder circuit using VHDL

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use ieee.std_logic_arith.all;
4 use ieee.std_logic_unsigned.all;
5

6 entity adder_vh is
7 generic (
8 INPUT_WIDTH : integer := 8
9 );
10 port (
11 clk : in std_logic;
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12 a : in std_logic_vector(INPUT_WIDTH−1 downto 0);
13 b : in std_logic_vector(INPUT_WIDTH−1 downto 0);
14 c : out std_logic_vector(INPUT_WIDTH−1+1 downto 0)
15 );
16 end adder_vh ;
17

18 architecture rtl of adder_vh is
19 signal add : std_logic_vector(INPUT_WIDTH−1+1 downto 0);
20 begin
21 c <= add;
22

23 process (clk)
24 begin
25 if clk’event and clk = ’1’ then
26 add <= (’0’&a) + (’0’&b);
27 end if;
28 end process;
29

30 end architecture;

Listing 7.2 Source code for adder circuit using SystemVerilog

1 module adder_sv #(
2 parameter int INPUT_WIDTH = 8
3 )(
4 input wire clk,
5 input wire [INPUT_WIDTH−1:0] a,
6 input wire [INPUT_WIDTH−1:0] b,
7 output wire [INPUT_WIDTH−1+1:0]c
8 );
9

10 logic [INPUT_WIDTH−1+1:0] add;
11

12 assign c = add;
13

14 always_ff @(posedge clk) begin
15 add <= a + b;
16 end
17

18 endmodule

7.3 Special-Purpose Computation Circuit Using FPGA

To build a high-speed special-purpose computer using FPGAs, it is a must to use tens
to hundreds of thousands of arithmetic units. However, FPGAs are about one order
of magnitude slower than CPUs in terms of operating frequency, and it is crucial to
consider effective data flow to build a high-speed special-purpose computer using
FPGAs.
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Fig. 7.4 Sequential execution of Eq. 7.1

There are two important factors for efficient computation: throughput and latency.
Throughput is the processing capacity per unit of time. Latency is the delay time
needed for each process. By enhancing throughput and latency, faster computation
becomes possible.

To enhance throughput and latency, pipeline and data parallelization can be
employed. To explain this, we consider the implementation of Eq. 7.1 to compute a
computer-generated hologram (CGH):

I (xa, ya) =
M−1∑

j=0

cos
[
ρ j

{(
xa − x j

)2 + (
ya − y j

)2} ]
, (7.1)

where(xa, ya) represents a coordinate on the CGH plane, ρ j = π/2λz j , (x j , y j , z j )
are the coordinates of the 3D object’s point cloud,M denotes the point-cloud number,
and λ represents the reference light’s wavelength.

For a sequential computation on a CPU, the computation inside � in Eq. 7.1 is
shown in Fig. 7.4.

For example, we consider the computation time t [s] for 1,024 × 1,024-pixel
CGH from M = 100 object points at the latency shown in Fig. 7.4. Assuming that
each operation is run at 250 MHz (4 ns), the computation time is

t = 1

250 MHz
× 7 × 100 × 1,024 × 1,024 = 2.94 s. (7.2)

Since xaj and yaj are independent of each other, the computations for them can
be parallelized as illustrated in Fig. 7.5. Here, the latency is reduced from 7 to 5, and
the computation time can be lowered to

t = 1

250 MHz
× 5 × 100 × 1,024 × 1,024 = 2.10 s. (7.3)

Although we have focused on the computation of only a single CGH pixel, the
CGH computation can be parallelized for each CGH pixel. Figure 7.6 reveals the
five-step computation in Fig. 7.5 parallelized for two CGH pixels:
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Fig. 7.6 Pixel-by-pixel parallelization

t = 1

250MHz
× 5 × 100 × 1,024 × 1,024 ÷ 2 = 1.05 s. (7.4)

This parallelization approach, which takes advantage of the lack of dependency
between data and performs operations in parallel, is called data parallelization.

The computation time can be further accelerated using pipeline parallelization.
Data parallelization is user-controllable not only in FPGAs but also in CPUs and
GPUs,whereas pipeline parallelization is a user-controllable parallelization approach
only in FPGAs. Here, we denote xa − x j and ya − y j operations, xaj 2 and yaj 2

operations, xyaj
2 operation, θ operation, and cos (θ) operation in Fig. 7.4 as OP0 j ,

OP1 j , OP2 j , OP3 j , and OP4 j , respectively. In pipeline parallelization, the amount of
arithmetic units needed for the entire computation is arranged as illustrated in Fig. 7.7
for Fig. 7.4. Additionally, it is parallelization at the operator level. Here, the latency
is the same as that in data parallelization. However, the throughput is enhanced. In
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Fig. 7.7 Pipeline parallelization

the case of data parallelization only, the next data cannot be input to the circuit until
all five operations are completed. However, in the case of pipeline parallelization,
the following object point data can be input immediately. The computation time can
be expressed as follows:

t = 1

250MHz
× (5 + 100 − 1) × 1024 × 1024 = 0.44 s. (7.5)

The computation is nearly five times faster than when neither data parallelization
nor pipeline parallelization is employed. Combining pipeline parallelization and
data parallelization is also possible. When the two are combined, the computation
time in Eq. 7.5 is reduced by the number of parallels. If 10 CGH pixels can be
data-parallelized, for example, the computation time can be further accelerated from
Eq. 7.5 as

t = 1

250MHz
× (5 + 100 − 1) × 1024 × 1024 ÷ 10 = 0.044 s. (7.6)

FPGAs can attain high-speed computation by employing data parallelization and
pipeline parallelization, as well as an efficient parallel computation that takes advan-
tage of the reconfigurable resources inside the FPGA. To attain high-speed compu-
tation, the algorithm should have less resilience on data, should be able to compute
with as low accuracy as feasible, and should be readily parallelized.



104 Y. Yamamoto

7.4 Fixed-Point and Floating-Point Arithmetic

Floating-point arithmetic are frequently employed in CPUs. Floating-point arith-
metic employs exponential representation to denote numerical values, and the
IEEE754 [9] standard defines the data format. Although floating-point arithmetic
can handle a wide range of values, exponentiation operations are required. How-
ever, fixed-point arithmetic is frequently employed for numerical computations in
FPGAs. In fixed-point arithmetic, the user places the decimal point’s position arbi-
trarily. Compared with floating-point arithmetic, fixed-point arithmetic has a smaller
range of values, but they do not need exponentiation operations and can be computed
with simple hardware.

Equation 7.7 is the phase computation part of Eq. 7.1, and we describe how to
compute it using fixed-point arithmetic.

θ = ρ j

{(
xa − x j

)2 + (
ya − y j

)2}
. (7.7)

FPGAs can use any data width, whereas floating-point arithmetic use 32-bit or 64-
bit data widths. The smaller the data width, the more resources (gates or transistors)
can be employed to construct the arithmetic unit and the more parallelism can be
realized.

If xa , x j , ya , y j in Eq. 7.7 are normalized by the sampling interval of CGH, they are
integer values. The normalized values’ data width is determined from the minimum
and maximum values. Here, (xa, ya) is the coordinate on the CGH plane and x j , y j
is the point cloud’s coordinate. These coordinates range from -2,048 to 2,047 when
using a CGH with 4,096 × 4,096 pixels; therefore, xa , x j , ya , y j are denoted by
12 bits. Figure 7.8 reveals the data widths and decimal point positions of fixed-point
integer arithmetic. In the fixed-point arithmetic’s addition and subtraction between
integers, no decimal point change occurs. However, the data width is extended by
1 bit in addition. Also, in multiplication, the sum of the data widths of both operands
is extended.

Fixed-point arithmetic in binary numbers is each digit weights units of powers of
two as shown inFig. 7.9. Figure 7.9 reveals an example of an unsigned binary number;
in a signed binary number represented in two’s complement, themost significant bit’s
weight is −23 as in the case of Fig. 7.9.

Figure 7.10 shows the data width of two fixed-point arithmetics and howmultipli-
cation moves the decimal point. The multiplication of integer and decimal fraction
fixed-point arithmetics can also be computed in a straightforward manner. However,
the decimal point is shifted, and the decimal point’s position in the computation
finding θ becomes the 32nd bit position.

Here, θ is represented as a fixed-point number with a 32-bit decimal part. Here,
the decimal part’s minimum value is 0.000000000232 (2−32). In other words, we
must treat θ as estimated values with some error. This error is known as quantization
error. The quantization error may have a large influence on some computations, so it
is necessary to assess the effect of the quantization error in advance by simulation.
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7.5 Communication Between FPGAs and CPUs

A special-purpose computer using FPGAs is not employed alone but is connected to
CPUs (FPGA embedded or on a PC) that send and pre- and post-process the data.
There are different communication protocols, including Universal Serial Bus (USB)
and PCI Express. In Xilinx FPGAs, the advanced extensible interface (AXI) [10]
is employed for communication between a CPU (hard logic embedded on an FPGA)
and programmable logic (Fig. 7.11) [11]. Even if the FPGA is communicated with a
host PC through PCI Express or Zynq [12, 13] with a built-in CPU, we can employ
AXI communication by developing auxiliary circuits.

7.6 AXI Communication

AXI is an inter-module communication protocol created by ARM Ltd [10]. There
are three AXI communications: AXI(-Full), AXI-Lite, and AXI-Stream. AXI Lite is
employed for small-scale data communication (e.g., control signals), whereas AXI(-
Full) and AXI-Stream are used for large-scale data communication.

A circuit that requests data is called a “requester,” and a circuit that sends and
receives data in response to the request is called a “responder.” The requester retains
complete control over the data’s transmission and reception. In AXI(-Full) and AXI-
Lite, the data may be sent from the requester to the responder or from the responder
to the requester in this chapter. AXI-Stream always sends data from the requester to
the responder. Figure 7.12 reveals a diagram of the basic communication.

Fig. 7.11 Outline of the circuit connected by AXI
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Fig. 7.13 The VALID-READY communication

When both VALID and READY of AXI signals are set to 1, the transfer is com-
plete. The form of communication in which VALID shows that valid data are being
introduced and READY illustrates that the data can be received is known as VALID-
READY communication. The AXI protocol can employ several channels based on
VALID-READY communication to improve communication capacity (Fig. 7.13).

Figure 7.14 shows a block diagram of a communication circuit using the AXI
protocol (the signal’s description can be found in Tables 7.1 and 7.2). In Fig. 7.14,
regulating to write and read data are implemented as state machines, which transi-
tion the internal state depending on the input and current state. Figure 7.15 reveals
the state transition diagrams for reading and writing data. Listing 7.3 indicates the
implementation of Fig. 7.13 written by SystemVerilog.

The READ state machine, which is the data read from a CPU to an FPGA, com-
prises R_IDLE (read wait state) and R_READ (read response). After the start (e.g.,
assertion of the reset signal), the circuit begins in the R_IDLE state. A transition is
made to the R_READ state when the signal S_AXI_ARVALID, which shows that
a valid address is an output from the requestor (CPU), becomes 1. In the R_READ
state, the FPGA maintains the signal S_AXI_RVALID as 1, indicating that it is out-
putting valid data, and returns to the R_ILDE state after receiving the read response
(S_AXI_BVALID set as 1).

The WRITE state machine, which is the data written from the CPU to the FPGA,
comprises the W_IDLE state, which is the write wait state, and the W_RESP state,
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Fig. 7.14 Block diagram of the communication circuit (excluding clock and reset signals). The
shaded lines on the signal lines in the figure show the bit width

Table 7.1 Description of
AXI signals

Signal name Description

S_AXI_AWADDR Write start address

S_AXI_AWVALID Write address valid

S_AXI_WDATA Write data

S_AXI_WVALID Write data valid

S_AXI_BREADY Acceptable

S_AXI_WSTRB Byte enable

S_AXI_AWREADY Write address can be accepted

S_AXI_WREADY Writing can be accepted

S_AXI_BRESP Write response

S_AXI_BVALID Write response enabled

S_AXI_ARREADY Readable address can be accepted

S_AXI_ARADDR Read start address

S_AXI_ARVALID Read address valid

S_AXI_RREADY Read data can be accepted

S_AXI_RDATA Read data

S_AXI_RRESP Read response

S_AXI_RVALID Read data valid
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Table 7.2 Description of local signals. These signals are defined by the author

Signal name Description

LOCAL_WREN Write data and address valid

LOCAL_WDATA Write data

LOCAL_AWADDR Write start address

LOCAL_RDEN Read data and address response

LOCAL_ARADDR Read start address

LOCAL_RDATA Read data

S_AXI_ARVALID=1 and

S_AXI_ARREADY=0

R_IDLE R_READ

S_AXI_ARREADY=1 and

S_AXI_ARVALID=1 and

S_AXI_RVALID=0

S_AXI_RVALID=1 and

S_AXI_RREADY=1

if

if

if

W_RESP

S_AXI_WREADY = 0
S_AXI_AWREADY = 0

S_AXI_BVALID = 1

S_AXI_AWVALID=1 and

S_AXI_WVALID=1

W_IDLE

S_AXI_WREADY = 0
S_AXI_AWREADY = 0

S_AXI_BVALID = 0

S_AXI_BREADY=1

if

if

Fig. 7.15 State transition diagram for AXI Lite. The upper and bottom figures show READ and
WRITE state machines, respectively

which is the write response state. The state machine starts in W_IDLE after ini-
tialization. When both the signal S_AXI_AWVALID, showing that the address is
generating a valid value, and the signal S_AXI_WVALID, indicating that the data
are valid, are set to 1 by the requestor (CPU), a transition to the W_RESP state
happens. The FPGA returns to the W_IDLE state after a successful read response in
W_RESP.
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Listing 7.3 reveals the sample source code for the AXI Lite response side.

Listing 7.3 Source code for AXI Lite

1 module axi_lite_s # (
2 parameter integer C_S_AXI_DATA_WIDTH = 32,
3 parameter integer C_S_AXI_ADDR_WIDTH = 32
4 ) (
5 // Users to add ports here
6 output wire local_wren,
7 output wire [C_S_AXI_DATA_WIDTH−1 : 0] local_wdata,
8 output wire [C_S_AXI_ADDR_WIDTH−1 : 0] local_awaddr,
9 output wire local_rden,
10 input wire [C_S_AXI_DATA_WIDTH−1 : 0] local_rdata,
11 output wire [C_S_AXI_ADDR_WIDTH−1 : 0] local_araddr,
12 output wire [(C_S_AXI_DATA_WIDTH/8)−1 : 0] local_wstrb,
13

14 // Ports of Axi S Bus Interface S_AXI
15 input wire s_axi_aclk,
16 input wire s_axi_aresetn,
17 input wire [C_S_AXI_ADDR_WIDTH−1 : 0] s_axi_awaddr,
18 input wire [2 : 0] s_axi_awprot,
19 input wire s_axi_awvalid,
20 output wire s_axi_awready,
21 input wire [C_S_AXI_DATA_WIDTH−1 : 0] s_axi_wdata,
22 input wire [(C_S_AXI_DATA_WIDTH/8)−1 : 0] s_axi_wstrb,
23 input wire s_axi_wvalid,
24 output wire s_axi_wready,
25 output wire [1 : 0] s_axi_bresp,
26 output wire s_axi_bvalid,
27 input wire s_axi_bready,
28 input wire [C_S_AXI_ADDR_WIDTH−1 : 0] s_axi_araddr,
29 input wire [2 : 0] s_axi_arprot,
30 input wire s_axi_arvalid,
31 output wire s_axi_arready,
32 output wire [C_S_AXI_DATA_WIDTH−1 : 0] s_axi_rdata,
33 output wire [1 : 0] s_axi_rresp,
34 output wire s_axi_rvalid,
35 input wire s_axi_rready
36 );
37

38 localparam W_IDLE = 2’d0, W_RESP = 2’d1;
39 localparam R_IDLE = 2’d0, R_READ = 2’d1;
40

41 logic [C_S_AXI_ADDR_WIDTH−1 : 0] axi_awaddr;
42 logic axi_awready;
43 logic [C_S_AXI_DATA_WIDTH−1 : 0] axi_wdata;
44 logic axi_wready;
45 logic axi_bvalid;
46 logic [C_S_AXI_ADDR_WIDTH−1 : 0] axi_araddr;
47 logic axi_arready;
48 logic axi_rvalid;
49 logic [(C_S_AXI_DATA_WIDTH/8)−1 : 0] axi_wstrb;
50
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51 logic [1:0] w_state, r_state;
52

53 // I/O Connections assignments
54 assign s_axi_awready = axi_awready;
55 assign s_axi_wready = axi_wready;
56 assign s_axi_bresp = 2’b0; // ’OKAY’ response
57 assign s_axi_bvalid = axi_bvalid;
58 assign s_axi_arready = axi_arready;
59 assign s_axi_rresp = 2’b0; // ’OKAY’ response
60 assign s_axi_rvalid = axi_rvalid;
61

62 always_ff @( posedge s_axi_aclk ) begin
63 if ( s_axi_aresetn == 1’b0 ) begin
64 w_state <= W_IDLE;
65 axi_awready <= 1’b0;
66 axi_awaddr <= 0;
67 axi_wready <= 1’b0;
68 axi_wdata <= 0;
69 axi_wstrb <= 0;
70 axi_bvalid <= 1’b0;
71 end else begin
72 case ( w_state )
73 W_IDLE: begin
74 if ( ~axi_awready && ~axi_wready && s_axi_awvalid && s_axi_wvalid ) begin
75 axi_awready <= 1’b1;
76 axi_awaddr <= s_axi_awaddr;
77 axi_wdata <= s_axi_wdata;
78 axi_wstrb <= s_axi_wstrb;
79 axi_wready <= 1’b1;
80 w_state <= W_RESP;
81 end else begin
82 axi_awready <= 1’b0;
83 axi_wready <= 1’b0;
84 axi_bvalid <= 1’b0;
85 end
86 end
87 W_RESP: begin
88 if ( s_axi_bready && axi_bvalid ) begin
89 axi_bvalid <= 1’b0;
90 w_state <= W_IDLE;
91 end else begin
92 axi_awready <= 1’b0;
93 axi_wready <= 1’b0;
94 axi_bvalid <= 1’b1;
95 end
96 end
97 default: begin
98 w_state <= W_IDLE;
99 end

100 endcase
101 end
102 end
103
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104 always_ff @( posedge s_axi_aclk ) begin
105 if ( s_axi_aresetn == 1’b0 ) begin
106 axi_arready <= 1’b0;
107 axi_araddr <= 0;
108 axi_rvalid <= 1’b0;
109 r_state <= R_IDLE;
110 end else begin
111 case ( r_state )
112 R_IDLE: begin
113 if ( ~axi_arready && s_axi_arvalid ) begin
114 axi_arready <= 1’b1;
115 axi_araddr <= s_axi_araddr;
116 r_state <= R_READ;
117 end else begin
118 axi_arready <= 1’b0;
119 axi_rvalid <= 1’b0;
120 end
121 end
122 R_READ: begin
123 if ( axi_arready && s_axi_arvalid && ~axi_rvalid ) begin
124 axi_rvalid <= 1’b1;
125 axi_arready <= 1’b0;
126 end else if ( axi_rvalid && s_axi_rready ) begin
127 axi_rvalid <= 1’b0;
128 axi_arready <= 1’b0;
129 r_state <= R_IDLE;
130 end
131 end
132 default: begin
133 r_state <= R_IDLE;
134 end
135 endcase
136 end
137 end
138

139 assign local_wren = axi_wready && s_axi_wvalid && axi_awready && s_axi_awvalid;
140 assign local_rden = axi_arready && s_axi_arvalid && ~axi_rvalid;
141 assign local_araddr = axi_araddr;
142 assign local_awaddr = axi_awaddr;
143 assign local_wdata = axi_wdata;
144 assign s_axi_rdata = local_rdata;
145 assign local_wstrb = axi_wstrb;
146

147 endmodule

7.7 Communication Program Between CPU and FPGA

Figure 7.15 shows that the CPU and FPGA are connected to communicate data, and
it is crucial to create a dedicated driver. However, since creating a driver is outside
the scope of this book, we will present an approach using /dev/mem [15], which
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is slow but easy to read and write data from/to an FPGA. As a prerequisite, we
examine a situation where a Linux OS, including Petalinux (Linux manufactured
by Xilinx) [14], is operating on the CPU embedded in Zynq. In Linux, reading and
writing data to a device (here, an FPGA) can be replaced by reading and writing to
a special file called /dev/mem. Listing 7.4 shows a sample program.

Listing 7.4 Source code for AXI Lite

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <fcntl.h>
5 #include <sys/mman.h>
6

7 FPGA_ADDR_START=0xA0000000;
8 FPGA_ADDR_SIZE=0x8000;
9

10 int main()
11 {
12 uint32_t ∗uio;
13 int fd;
14

15 // open "/dev/mem"
16 fd = open("/dev/mem", O_RDWR | O_SYNC);
17 if (fd < 1) {
18 perror("Failed to open devfile");
19 return −1;
20 }
21

22 // map FPGA physical address into user space
23 uio = (uint32_t ∗)mmap(NULL, FPGA_ADDR_SIZE, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, FPGA_ADDR_START);
24

25 // write "5" to FPGA
26 uio[0] = 0x5;
27

28 // cleanup
29 munmap((void∗)address, 0x1000);
30 close(fd);
31

32 return 0;
33 }

Listing 7.4 reveals an example where the start address for writing data to the
FPGA is 0xA0000000. This address is determined by vendors (refer to the datasheet
for details). The Linux system commands (C language functions) “write” and “read”
are employed to send data as if reading and writing to a file.

Using the /dev/mem technique removes the need for building a driver, but it should
be noted that this is not a permanent approach from the viewpoint of security and
speed. This is only for confirmation purposes. To improve the communication speed,
device drivers need to be created.



114 Y. Yamamoto

7.8 Discussion

In this study, we presented a communication scheme between CPU and FPGA
abstracted by AXI in Xilinx FPGAs. Data communication is a barrier to paralleliza-
tion in FPGAs and CPUs and GPUs: in the CGH computation example, if the data
size that can be sent by the communication circuit is 128 bits, the number of pixels
that can be sent at a time (assumed to be 8 bits) is 16. Here, therewill be a delay in data
transmission if more than 16 are parallelized. If data transmission and reception are
slow, the communication time becomes a barrier that lowers the circuit’s arithmetic
efficiency and makes it impossible to produce an arithmetic speed commensurate
with parallelization.

A possible countermeasure is to create high-speed communication circuits that
can transmit and receive numerous data at high speeds using direct memory access
(DMA); DMA allows asynchronous communication so that the computation circuit
can operate while sending and receiving data. Pipeline parallelization is completed
at the operator level, so if all needed data can be stored in the FPGA, there are no
communication constraints during computation. The longer the pipeline, the higher
the pipeline parallelization’s speed-up rate. By integrating pipeline parallelization
with data parallelization, special-purpose computers that are unaffected by commu-
nication barriers can be built.

Fundings This work was supported by JSPS KAKENHI Grant Number
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