
Chapter 6
Basics of OpenCL

Takashi Nishitsuji

Abstract Open Computing Language (OpenCL), which is generally called a het-
erogeneous computing system, is an open programming framework of parallel com-
puting for a calculation system comprising different computers (e.g., CPU, GPU,
DSP, FPGA). Although CUDA only applies to NVIDIA’s GPU, OpenCL can drive
the GPUs of different vendors (AMD, NVIDIA, Intel, Qualcomm), as well as the
CPU or another computer, via the sameOpenCL-written source code. Thus, OpenCL
is more portable than CUDA. In this chapter, OpenCL, as well as the strategy for con-
structing a calculation environment, is briefly introduced employing a source code
example for calculating a computer-generated hologram (CGH). Based on the con-
tents of this chapter, holography calculations employing OpenCL can be attempted.
Readers who wish to improve their OpenCL coding skills, programming guides that
are published by chip vendors, etc., may be consulted.

6.1 General Introduction of OpenCL

OpenComputingLanguage (OpenCL) is an open framework of parallel computing
for many devices (GPU, CPU, FPGA); it is dissimilar to CUDA that only supports
NVIDIA’s GPU. The specification of OpenCL was developed by the Khronos group
[1], which is an open consortium of software frameworks.

Although device vendors supply the Software Development Kits (SDKs) of
OpenCL that comply with the specifications of the Khronos groups, the extension
deviates from the approved specifications. They exhibit two types of application
programming interfaces (APIs): one is a candidate for future specifications, and the

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-981-99-1938-3_6.

T. Nishitsuji (B)
Faculty of Systems Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino-shi, Tokyo,
Japan
e-mail: nishitsuji@gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
T. Shimobaba and T. Ito (eds.), Hardware Acceleration of Computational Holography,
https://doi.org/10.1007/978-981-99-1938-3_6

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-1938-3_6&domain=pdf
https://doi.org/10.1007/978-981-99-1938-3_6
mailto:nishitsuji@gmail.com
https://doi.org/10.1007/978-981-99-1938-3_6

84 T. Nishitsuji

other is vendor dependent and can be distinguished by their names [2]. Thus, the
consumers must consider the conformance of each API.

Although OpenCL is based on the C language, there are some wrappers for other
languages, e.g., the official C++ wrapper [3] and PyOpenCL [4] for python (further
information are descriptive on the website of STREAM HPC [5]), enabling many
software engineers to utilize GPGPU. This chapter focuses on OpenCL based on
C/C++.

The basic techniques for accelerating a program with OpenCL and CUDA are
almost similar; thus, this chapter focuses on clarifying the technique for utilizing
OpenCL on your devices, as well as its differences with CUDA. However, owing to
the page limit, the details of OpenCL (the definition of APIs) cannot be discussed;
thus, the programming guides, which are released by vendors of the computing
device, can be referenced by readers who wish to learn OpenCL detailedly [6–8].

6.2 Setting Up an OpenCL Environment

Most vendors of OpenCL-supporting devices avail their SDKs for developers; these
SDKs include the OpenCL library of their devices and standard headers (.h), as well
as other headers for extended functions that support only their devices. Therefore,
intending users of OpenCLmust first download and install the SDKs of their devices.

Notably, aWindows 10 64-bit environmentwas employed in this chapter, although
readers employing other environments, e.g., macOS and Linux, can substitute the
filenames or extensions according to the available environment, e.g., OpenCL.dll ->
OpenCL.so for Linux users. The static“OpenCL.lib” and dynamic link “OpenCL.dll”
libraries are the required libraries for developing and executing theOpenCLprogram.
“OpenCL.lib” is available in the directories of an SDK, while “OpenCL.dll” is prein-
stalled in the systemdirectories ofWindows, following the installation of the graphics
driver. Further, a header file (“cl.h”), which is available in the directory of an SDK,
should be included in the program.

6.3 Constructing an OpenCL Program

This section introduces the construction of an OpenCL program employing a simple
computer-generated hologram (CGH) calculation source code as a “Hello, world”
programofOpenCL,which is depicted onListings 6.1 (host program) and 6.2 (device
program). Readers who have already set up the OpenCL environment can attempt to
execute the sample codes by copying Listing 6.1 (with an appropriate name for a C++
file) to your computer and Listing 6.2 with the name, “CGH_helloworld.cl,” which
should be placed in the same directory with an executable file of Listing 6.1. After
executing the program, a kinoform-type CGH with a resolution of 1024 × 1024 in
the “bfh_CGH” buffer can be obtained, as shown in Fig. 6.1.

6 Basics of OpenCL 85

Fig. 6.1 Input and output of the example code: a a 3Dmodelwith 100 point clouds (input, generated
in the program), b kinoform-type CGH (output)

An OpenCL program comprises two types of source codes, the host (.c or .cpp, .h)
and device (.cl) codes. A standard OpenCL program adopts the online compile of the
device code to improve its portability. Therefore, a C/C++ compiler, e.g., clang, gcc,
and Visual C++, compiles the host code employing the OpenCL static library and
creates the executable file, which will read and compile the device code according
to specified devices for the program, following its execution. Noteworthily, OpenCL
also supports offline compile.

The most significant differences between CUDA and OpenCL are the concepts
of the platform and the devices. Since OpenCL supports many computing devices,
an OpenCL program requires the availability of the available devices; users must
specify the desired devices to execute the program. Every device must correspond to
a platform. For example, when executing OpenCL on a CPU Intel Core–i7 8700K
CPU employing an Intel OpenCL SDK environment, the platform would be “Intel
OpenCL,” and two devices (Integrated GPU, Intel UHD Graphics 630, and Intel
Core i7-8700K CPU), which are available on the platform, would be utilized. The
platforms and devices are specified by IDs; thus, many OpenCL APIs requests set
the IDs in the arguments.

6.3.1 Creating OpenCL Objects That Are Not Required
in CUDA

Dissimilar to CUDA, OpenCL defines many objects, e.g., the memory and kernel
objects, to manage the device-related information, such as memory address and
binary code of an executing program, since OpenCL is assumed to be executed
on different platforms and devices. Thus, OpenCL requires the creation of such
objects before the execution of a kernel. Table 6.1 and Fig. 6.2 exhibit the required

86 T. Nishitsuji

Table 6.1 Definition of the objects in OpenCL

Name of object Role Defined per

Context Manages all the objects on a platform Platform

Command queue Manges all the commands to a device Device

Program object Manages the device program Device source code

Kernel object Compiles the kernel function of the device Kernel function

Memory object Manages the memory space on a device Buffer

Host

Platform

Context

Command queue

Commands
to device

Device

Memory object

Program object

Kernel object

Device

Fig. 6.2 Calculation model of OpenCL employing relation between the objects

object in a standard OpenCL program and the roles and relation between the objects,
respectively. The OpenCL objects that are not required in CUDA are introduced in
this subsection with reference to the sample code in Listing 6.1.

Context object is a fundamental object for managing all the objects on a platform;
thus, it must be declared on the first line of an OpenCL program with the intended
platform ID, as well as the number of devices on the platform. The available plat-
forms and devices can be obtained by “clGetPlatformIDs(),” which was employed
on Lines 65 and 69 of Listing 6.1, and “clGetDeviceIDs(),” which was used on Line
86 of Listing 6.1, for the platforms and devices, respectively. Detailed information
on the platforms and devices can be obtained by “clGetPlatformInfo()” and “clGet-
DeviceInfo(),” which employed utilized on Lines 77 and 91, respectively. Here, this
program obtains the names of the platforms and devices. The context object is created
by API “clCreateContext(),” which was employed on Line 115 of the list.

command-queue object is an interface that manages all the commands, e.g.,
the execute-the-kernel and the transfer-the-data-in-a-buffer functions; thus, it must
be declared per all to-be-utilized devices. A command-queue object is created by
“clCreateCommandQueueWithProperties()” with a corresponding device ID, which
is depicted onLine 118 of the list. The commands to a device are queued by the ”clEn-
queue***()” API via a command-queue object. For example, to copy data from the

6 Basics of OpenCL 87

Table 6.2 Corresponding
names of memory

CUDA OpenCL

Global memory Global memory

Constant memory Constant memory

Shared memory Local memory

Register Private memory

Local memory

memory of a device to a host, “clEnqueueReadBuffer(),” Line 165 of the list, is called
employing the command-queue object in the first argument. Worthy, the commands
are only enqueued; thus, the time of executing is unknown, and it depends on the
preceding commands on the queue.

program object is an object that manages a raw (readable text) source code, as
well as the compiled program of a device function. Thus, it must read a device source
code as a text buffer before creating it. Lines 122–133 on the list show an example
of reading the device source code from a file (CGH_helloworld.cl) to a char buffer
(src), as well as creating a program object with “clCreateProgramWithSource()” on
Line 128. After creating the program object, it can be built by “clBuildProgram()”
employing a specified platform ID, as shown on Line 131 of the List.

kernel object is an object, which is created by the “clCreateKernel()” function
employing program object and named the kernel function, that specifies the kernel
function in a program object; thus, it must be created per device functions to be
executed. On the List, only one device function is defined in the device code (Listing
6.2); therefore, only one kernel object is created on Line 136 of the Listing 6.1.

memory object is an object that manages the memory buffer on a device. It func-
tions as a memory pointer. The memory object is created by “clCreateBuffer()”
with context object and attributions that pertain to memory (size and writability), as
obtainable in “cudaMalloc()” of CUDA. On Listing 6.1, four memory objects were
created on Lines 139–142. Noteworthy, the hierarchical memory architectures of
OpenCL and CUDA are almost the same (Table 6.2), and the memory buffer, which
was created by “clCreateBuffer(),” is assigned on the global memory.

The creations of the discussed objects indicate that the preparation for execut-
ing the kernel is almost completed. Further, the following section introduces the
procedure for driving the OpenCL kernel.

6.3.2 Executing the Kernel Function

Dissimilar to CUDA, OpenCL requires a two-step setup before executing the
enqueued kernel. The first step involves setting up the arguments of the kernel func-
tion via the “clSetKernelArg()” function (Lines 151–155 on Listing 6.1). Notably,
all the arguments must be passed by a void* type pointer.

88 T. Nishitsuji

The second step involves the definition of the division unit for parallel execution;
these units are called the grid, block, and thread in CUDA. However, the “grid,”
“block,” and “thread” correspond to “NDRange,” “workgroup,” and “workitem,”
respectively. The sizes of NDRange and workgroup are specified by multidimen-
sional size_t-type arrays, as exhibited on Lines 158 and 159 of the List. In the sample
code, the size of NDRange was set to be equal to the size of the CGH, and the size
of the workgroup was set to 256 × 1. The maximum number of workitems in a work
group is defined by the specifications of hardware.

After the two-step preparation, the command for executing the kernel function can
be enqueued by “clEnqueueNDRange()” employing the sizes of NDRange (global-
Size), workgroup (localSize), and the queue object (Line 162 of the list).

Finally, the kernel function can be executed by transferring the buffer data from
the device to the host. “clEnqueueReadBuffer()” is a transfer function; it is executed
to transfer the buffer data from the device to the host (Line 165 of the list), and
it is equivalent to “cudaMemcopy()” in CUDA. To ensure complete transfer, a call
function for synchronizing the device to the host must be executed before subjecting
the data to the host buffer (bfh_CGH). In the sample code, the “clFinish()” function,
which was waiting to execute the last command that was enqueued in the command
queue, was executed. Noteworthy, there are other functions, e.g., clWaitForEvents()
with an event object, for achieving a finer synchronization; thus, those APIs can be
referenced by readers who wish to construct a more complex OpenCL program.

This subsection only discusses the method for executing data-parallel-type com-
putation. However, OpenCL comprises methods for parallelizing the calculation in
a task unit, as obtainable in CUDA. Readers who wish to employ the task-parallel
program may refer to the instruction manual of OpenCL, which is supplied by the
vendors of devices.

To summarize the above introductions, the standard structure of the host program
of OpenCL is, as follows:

1. Determine an available platform, as well as devices, and specify the appropriate
devices.

2. Create a context object, which manages all the objects on a platform.
3. Create a command-queue object, which is connected to a device to manage the

commands to be executed therein.
4. Read a device program as a text and build it, thereby treating it as a program

object.
5. Create the kernel objects from a program object by specifying the name of the

function that was written in the .cl file
6. Create the memory objects, which manage the memory space on a device.
7. Set the arguments and workgroup size, which are to be executed by the kernel.
8. Execute the kernel function.
9. Copy the result from the device memory.

6 Basics of OpenCL 89

Table 6.3 Corresponding names of the modifiers of the variables and memories

CUDA OpenCL Meaning

__device__ __global On the global memory

__constant__ __constant On the constant memory

__shared__ __local On the shared memory

Table 6.4 Corresponding names of the modifier of the functions

CUDA OpenCL Meaning

__global__ __global Kernel function

__device__ Not required Inner function of the kernel

6.3.3 Writing the Kernel Function

The kernel function is one, which would be executed by a device. The grammars
and syntaxes of the kernel functions of OpenCL and CUDA are almost the same,
although the names of the modifiers of their variables, memories, and functions, as
well as the methods for obtaining their index values, e.g., “gridDim” in CUDA, are
different. Tables 6.3, 6.4, and 6.5 present the correlations of the modifiers and other
basic functions of CUDA and OpenCL. N in Table 6.5 indicates that a dimension
must be obtained employing the functions; thus, blockDim.x in CUDA is equivalent
to get_num_groups(0);

The standard kernel function for calculating CGH is presented on Listing 6.2,
which is a simplified version of the sample code of calculating CGH employing
CUDA (Listing 10.2). For the readers who wish to execute an OpenCL program,
the modification of Listing 6.2 is an easy technique for first building the OpenCL
program.Here (Listing6.2), three pre-processors are defined to substitute the constant

Table 6.5 Corresponding methods for obtaining the index values: N is a dimension

CUDA OpenCL Meaning

gridDim get_num_groups(N) Number of blocks per grid

blockDim get_local_size(N) Size of a block

blockIdx get_group_id(N) Index of a block

threadIdx get_local_id(N) Index of a thread

threadIdx + blockIdx *
blockDim

get_global_id(N) Global index of a thread

gridDim * blockDim get_global_size(N) Size of a grid

90 T. Nishitsuji

values. “CNS_255_DIV_2_PI” and “CNS_2_PI_DIV_LAMBDA”correspond to 255
2π

and 2π
λ
, respectively (λ = 532 [nm] and “CNS_PITCH” represents the pixel pitch of

a displaying device.
The calculation times for this execution are 95.2 ms with NVIDIA Quadro P1200

GPU and CUDA 11.0, 1738 ms with an Intel Core i7-8850H CPU, and 324 ms
with an Intel UHD Graphics 630 GPU, all of them are evaluated with OpenCL.
The kernel source code (Listing 6.2) is a very simple structure to understand; thus,
applying the optimization techniques that are mentioned in Chapter 6 will be quite
fast. Unfortunately, the techniques described in those sections are not within the
scope of OpenCL, although readers who already briefly understand the differences
and similarities of CUDA and OpenCL can easily apply those techniques in their
OpenCL codes.

Moreover, only a few literature illustrate the fast calculation of CGH via OpenCL,
although readers can refer to [9] as a practical example of implementing OpenCL to
calculate CGH.

Listing 6.1 Simple CGH calculation employing OpenCL (host code)

1 #include <CL/cl.h>
2 #include <stdio.h>
3 #include <math.h>
4

5 #define MAX_CL_SOURCE_SIZE 10000
6 #define PI 3.14159265358979323846
7

8 int main()
9 {
10 //Constants*********************************
11 const char st_CLSrcName[1024] = "CGH_helloworld.cl";
12 const int numPLS = 100; //number of PLS
13 const int cgh_width = 1024; //width of CGH [pixel]
14 const int cgh_height = 1024; //height of CGH [pixel]
15 const float p = 0.000008; //pixel pitch for displaying device [m]
16

17 //Classes***********************************
18 FILE∗ fp_CLSrc = fopen(st_CLSrcName, "rb");
19

20 //Control variables for OpenCL
21 cl_int status = 0;
22

23 cl_platform_id v_SelectedPlatformID = 0;
24 cl_platform_id∗ v_PlatformIDs;
25 unsigned int v_SelectedPlatform;
26 unsigned int v_NumPlatforms;
27

28 cl_device_id v_SelectedDeviceID = 0;
29 cl_device_id∗∗ v_DeviceIDs;
30 unsigned int v_SelectedDevice;
31 unsigned int v_NumDevices;
32

33 cl_context context;
34 cl_command_queue queue;

6 Basics of OpenCL 91

35 cl_program prog;
36 cl_kernel ker_CGH;
37

38 //Buffers***********************************
39 //(host)
40 cl_uchar∗ bfh_CGH = new cl_uchar[cgh_width ∗ cgh_height];
41 cl_float∗ bfh_ox = new cl_float[numPLS];
42 cl_float∗ bfh_oy = new cl_float[numPLS];
43 cl_float∗ bfh_oz = new cl_float[numPLS];
44

45 //(device)
46 cl_mem bfd_CGH;
47 cl_mem bfd_ox;
48 cl_mem bfd_oy;
49 cl_mem bfd_oz;
50

51 //===Create Point cloud (circle)===
52 float r = 300 ∗ p; //radius of circle
53 float cx = cgh_width ∗ 0.5 ∗ p; //center of circle (x)
54 float cy = cgh_width ∗ 0.5 ∗ p; //center of circle (y)
55

56 for (int i = 0; i < numPLS; i++)
57 {
58 bfh_ox[i] = r ∗ cos(i / (float)numPLS ∗ 2.0 ∗ PI) + cx;
59 bfh_oy[i] = r ∗ sin(i / (float)numPLS ∗ 2.0 ∗ PI) + cy;
60 bfh_oz[i] = 0.1 + 0.001∗i;
61 }
62

63 //====Select the platform and devices to use====//
64 //Obtain the number of available platforms
65 status = clGetPlatformIDs(0, NULL, &v_NumPlatforms);
66 v_PlatformIDs = new cl_platform_id[v_NumPlatforms];
67

68 //Obtain the IDs of available platform
69 status = clGetPlatformIDs(v_NumPlatforms, v_PlatformIDs, &v_NumPlatforms);
70 v_DeviceIDs = new cl_device_id∗[v_NumPlatforms];
71

72 //Show available platforms and device IDs
73 char msg[1024];
74 for (int i = 0; i < v_NumPlatforms; i++)
75 {
76 //Obtain platform information (name of platform)
77 clGetPlatformInfo(v_PlatformIDs[i], CL_PLATFORM_NAME, sizeof(msg), msg,

NULL);
78 printf("[%d] : %s\n", i, msg);
79

80 //Obtain the number of available devices on the platform
81 status = clGetDeviceIDs(v_PlatformIDs[i], CL_DEVICE_TYPE_ALL, NULL, NULL,

&v_NumDevices);
82 printf("Found %d devices\n", v_NumDevices);
83

84 //Obtain the IDs of available platform
85 v_DeviceIDs[i] = new cl_device_id[v_NumDevices];

92 T. Nishitsuji

86 status = clGetDeviceIDs(v_PlatformIDs[i], CL_DEVICE_TYPE_ALL, v_NumDevices,
v_DeviceIDs[i], &v_NumDevices);

87

88 //Show the avaialble devices in the platform
89 for (int j = 0; j < v_NumDevices; j++)
90 {
91 clGetDeviceInfo(v_DeviceIDs[i][j], CL_DEVICE_NAME, sizeof(msg), msg, NULL);
92 printf("\t[%d][%d]%s\n", i, j, msg);
93 }
94 }
95

96 //Select the platform and devices to use
97 printf("Select platform ID to use: ");
98 scanf_s("%d", &v_SelectedPlatform);
99

100 v_SelectedPlatformID = v_PlatformIDs[v_SelectedPlatform];
101 clGetPlatformInfo(v_SelectedPlatformID, CL_PLATFORM_NAME, sizeof(msg), msg,

NULL);
102 printf("Selected: %s\n\n", msg);
103

104 printf("Select device ID to use: ");
105 scanf_s("%d", &v_SelectedDevice);
106 v_SelectedDeviceID = v_DeviceIDs[v_SelectedPlatform][v_SelectedDevice];
107 clGetDeviceInfo(v_SelectedDeviceID, CL_DEVICE_NAME, sizeof(msg), msg, NULL);
108 printf("Selected: %s\n\n", msg);
109

110 //====Create a context====//
111 //obtain the number of devices in the selected platform
112 clGetDeviceIDs(v_SelectedPlatformID, CL_DEVICE_TYPE_ALL, NULL, NULL, &

v_NumDevices);
113

114 //Create a context for the selected platform
115 context = clCreateContext(NULL, v_NumDevices, v_DeviceIDs[v_SelectedPlatform],

NULL, NULL, &status);
116

117 //====Create a command queue on the context====//
118 queue = clCreateCommandQueueWithProperties(context, v_DeviceIDs[

v_SelectedPlatform][v_SelectedDevice], NULL, &status);
119

120 //====Build a program from a .cl source====//
121 //Read .cl file to char buffer as text
122 char∗ src;
123 src = new char[MAX_CL_SOURCE_SIZE];
124 size_t v_SizeOfSrc = fread(src, sizeof(char), MAX_CL_SOURCE_SIZE − 1, fp_CLSrc);
125 src[v_SizeOfSrc] = ’\0’;
126

127 //Create program object with the .cl source file
128 prog = clCreateProgramWithSource(context, 1, (const char∗∗)&src, NULL, &status);
129

130 //Build program
131 status = clBuildProgram(prog, v_NumDevices, v_DeviceIDs[v_SelectedPlatform], NULL,

NULL, NULL);
132

6 Basics of OpenCL 93

133 delete[] src;
134

135 //====Create kernels to execute====//
136 ker_CGH = clCreateKernel(prog, "simpleCGH", &status);
137

138 //====Create memory objects====//
139 bfd_CGH = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(cl_uchar)∗

cgh_width∗cgh_height, NULL, &status);
140 bfd_ox = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float) ∗ numPLS,

NULL, &status);
141 bfd_oy = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float) ∗ numPLS,

NULL, &status);
142 bfd_oz = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float) ∗ numPLS,

NULL, &status);
143

144 //====Transfer the PLS data from the host ====//
145 status = clEnqueueWriteBuffer(queue, bfd_ox, CL_TRUE, 0, sizeof(cl_float) ∗ numPLS,

bfh_ox, 0, NULL, NULL);
146 status = clEnqueueWriteBuffer(queue, bfd_oy, CL_TRUE, 0, sizeof(cl_float) ∗ numPLS,

bfh_oy, 0, NULL, NULL);
147 status = clEnqueueWriteBuffer(queue, bfd_oz, CL_TRUE, 0, sizeof(cl_float) ∗ numPLS,

bfh_oz, 0, NULL, NULL);
148

149 //====Execute kernels====//
150 //Set arguments of the kernel
151 status = clSetKernelArg(ker_CGH, 0, sizeof(cl_mem), (void∗)&bfd_CGH);
152 status = clSetKernelArg(ker_CGH, 1, sizeof(int), (void∗)&numPLS);
153 status = clSetKernelArg(ker_CGH, 2, sizeof(cl_mem), (void∗)&bfd_ox);
154 status = clSetKernelArg(ker_CGH, 3, sizeof(cl_mem), (void∗)&bfd_oy);
155 status = clSetKernelArg(ker_CGH, 4, sizeof(cl_mem), (void∗)&bfd_oz);
156

157 //Set the division unit for parallel execution
158 size_t globalSize[] = { (size_t)cgh_width, (size_t)cgh_height };
159 size_t localSize[] = { 256, 1 };
160

161 //Execute the kernel
162 status = clEnqueueNDRangeKernel(queue, ker_CGH, 2, NULL, globalSize, localSize, 0,

NULL, NULL);
163

164 //====Transfer the CGH data from the device====//
165 status = clEnqueueReadBuffer(queue, bfd_CGH, CL_TRUE, 0, sizeof(cl_char)∗

cgh_width∗cgh_height, bfh_CGH, 0, NULL, NULL);
166

167 //Wait for finish the last enqueued command
168 clFinish(queue);
169

170 //====Termination (Freeing memory)====//
171 fclose(fp_CLSrc);
172 clReleaseMemObject(bfd_CGH);
173 clReleaseMemObject(bfd_ox);
174 clReleaseMemObject(bfd_oy);
175 clReleaseMemObject(bfd_oz);
176

94 T. Nishitsuji

177 delete[] bfh_CGH;
178 delete[] bfh_ox;
179 delete[] bfh_oy;
180 delete[] bfh_oz;
181

182 return 0;
183 }

Listing 6.2 Simple CGH calculation employing OpenCL (device code; CGHspshelloworld.cl)

1 #define CNS_255_DIV_2_PI 40.58451049
2 #define CNS_2_PI_DIV_LAMBDA 11810498.7
3 #define CNS_PITCH 0.000008
4

5 __kernel void simpleCGH(__global uchar∗ dbf_CGH, const int numPLS, __global float∗
ox, __global float∗ oy, __global float∗oz)

6 {
7 float x = get_global_id(0) ∗ CNS_PITCH;
8 float y = get_global_id(1) ∗ CNS_PITCH;
9 int width = get_global_size(0);
10 int dst_addr = get_global_id(0) + get_global_size(0) ∗ get_global_id(1);
11

12 float2 c = (float2)(0.0, 0.0);
13

14 for (int i = 0; i < numPLS; i++)
15 {
16 float phase = CNS_2_PI_DIV_LAMBDA ∗ sqrt(pow(ox[i]−x, 2) + pow(oy[i]−y, 2) +

pow(oz[i], 2));
17 c += (float2)(cos(phase), sin(phase));
18 }
19

20 float arg = CNS_255_DIV_2_PI ∗ atan2(c.y, c.x);
21 dbf_CGH[dst_addr] = convert_uchar((int)arg);
22 }

Fundings This work was supported by JSPS KAKENHI Grant Number 22H03616.

References

1. OfficialOpenCLwebsite of khronos group https://www.khronos.org/opencl/ Cited 30Oct. 2019.
2. Khonos group, The OpenCL Extension Specification https://www.khronos.org/registry/

OpenCL/specs/2.2/html/OpenCL_Ext.html. Cited 30 Oct. 2019
3. Khronos’s github repository for OpenCL C++ bindings https://github.khronos.org/OpenCL-

CLHPP/ Cited 30 Oct. 2019
4. A. Klöckener, PyOpenCL https://mathema.tician.de/software/pyopencl/. Cited 30 Oct. 2019
5. STREAMHigh Peformance Computing, OpenCLWrappers https://streamhpc.com/knowledge/

for-developers/opencl-wrappers/. Cited 30 Oct. 2019
6. NVIDIA, OpenCL Programming Guide for the CUDA Architecture Ver 4.2 http://developer.

download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_
Guide.pdf. Cited 30 Oct. 2019

https://www.khronos.org/opencl/
https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Ext.html
https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Ext.html
https://github.khronos.org/OpenCL-CLHPP/
https://github.khronos.org/OpenCL-CLHPP/
https://mathema.tician.de/software/pyopencl/
https://streamhpc.com/knowledge/for-developers/opencl-wrappers/
https://streamhpc.com/knowledge/for-developers/opencl-wrappers/
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf

6 Basics of OpenCL 95

7. Intel, Intel FPGA SDK for OpenCL Pro Edition Programming Guide 19.3 https://
www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_
programming_guide.pdf. Cited 30 Oct. 2019

8. Qualcomm, Snapdragon Mobile Platform OpenCL General Programming and Optimization,
Nov. 3, 2017 https://developer.qualcomm.com/software/adreno-gpu-sdk/tools. Cited 30 Oct.
2019

9. Shimobaba, T., Ito. T., Masuda, N., Ichihashi. Y., Takada, N.: Fast calculation of computer-
generated-hologram on AMD HD5000 series GPU and OpenCL, Opt. Express 18, 10, 9955–
9960 (2010).

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://developer.qualcomm.com/software/adreno-gpu-sdk/tools

	6 Basics of OpenCL
	6.1 General Introduction of OpenCL
	6.2 Setting Up an OpenCL Environment
	6.3 Constructing an OpenCL Program
	6.3.1 Creating OpenCL Objects That Are Not Required in CUDA
	6.3.2 Executing the Kernel Function
	6.3.3 Writing the Kernel Function

	References

