


Hardware Acceleration of Computational
Holography



Tomoyoshi Shimobaba · Tomoyoshi Ito
Editors

Hardware Acceleration
of Computational
Holography



Editors
Tomoyoshi Shimobaba
Chiba University
Chiba, Japan

Tomoyoshi Ito
Chiba University
Chiba, Japan

ISBN 978-981-99-1937-6 ISBN 978-981-99-1938-3 (eBook)
https://doi.org/10.1007/978-981-99-1938-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-99-1938-3


Preface

Invented by the Hungarian physicist Dennis Gabor in 1947 to improve the perfor-
mance of electron microscopes, holography uses interference and diffraction of light
to record three-dimensional information on two-dimensional recording media. The
resulting records are referred to as holograms, and the recorded three-dimensional
image is faithfully reproduced when such holograms are irradiated with visible light.
Hence, holography has been described as the ultimate 3D imaging technology. In the
1960s, after lasers with good coherence were developed, E. Leith and J. Upatnieks
showed that off-axis holography could be used to obtain 3D images that could be
mistaken for real objects. This led to holography attracting attention as a promising
3D imaging technology.

Conventional holographywas developed as an analogmethod involving recording
holograms on photosensitive materials. However, research began to be conducted
on recording holograms electronically instead of on photosensitive materials, as
well as on calculating holograms with computational hardware. For example, works
by B. R. Brown and A. W. Lohmann (Appl. Opt. 5, 967–969 (1966)) and J. W.
Goodman (Appl. Phys. Lett. 11, 77 (1967)) are representative pioneering studies on
computer-generated and digital holography.

In the 1990s, S. A. Benton of MIT showed that an electronic holographic display
could be realized using an acousto-optic modulator (Proc. SPIE 1212, Practical
Holography IV, (1 May 1990)) and N. Hashimoto of Citizen reported a holographic
LCD device (Proc. SPIE 1461, Practical Holography V, (1 July 1991)).

The theory of holography was intensively studied until the 1970s, and the theoret-
ical foundations of the subject were extensively elaborated. Research on computa-
tional holography began around 1970, and has now been adapted to a wide range of
applications with the rapid development of computer hardware. Typical applications
include holographic displays, digital holography, computer-generated holograms
(CGH), holographic memory, and optical cryptography.

Digital holography techniques have been developed to capture holograms with
resolutions greater than one gigapixel, and holographic displays ultimately need to
compute hologramswith resolutions that exceed terapixels to generate highly realistic
images. Hence, accelerating the computation of holographic images is an important
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vi Preface

issue and is expected to require the development of new algorithms and the adoption
of specialized hardware. The hardware used to control holographic displays includes
multi-core CPUs, graphics processing units (GPUs), and field programmable gate
arrays (FPGAs),which are integrated circuits to that canbe freely configuredbyusers.
Owing to the evolution of the associated development environment, the difficulties
associated with designing FPGAs have subsided in recent years.

This book is a guide to computational holography and its acceleration. Most of
the chapters were written by young researchers who are expected to play an active
role in this field in the future. The book is divided into four parts.

Part I consists of Chaps. 1–3, which explain the basic mechanics of light in terms
of wave optics alongwith the basics of holography and CGH. This introduction to the
subject was written by Prof. Takashi Kakue (Chiba Univ. Japan) and Dr. Yasuyuki
Ichihashi (NICT, Japan).

Computational holography requires high-speed computation that makes full use
of CPU, GPU, and FPGA hardware. In Chaps. 4 through 7 of Part II, the features
and usage of these types of hardware are explained by Takashige Sugie (formerly
of Chiba Univ. Japan), Minoru Oikawa (Kochi University Japan), Takashi Nishitsuji
(Tokyo Metropolitan Univ. Japan), and Yota Yamamoto (Tokyo Univ. of Science,
Japan).

Part III consists of Chaps. 8 through 18. Specific examples of implementa-
tions using C++, MATLAB, and Python are provided for diffraction and hologram
calculations, which are important in computational holography. Mr. Soma Fujimori
(Master’s student, Chiba University Japan) explains CPU and GPU implementations
of diffraction calculations. CGH algorithms include point-cloud, polygon, layer, and
light-field methods. Specific methods to implement each of these approaches are
provided by Prof. Takashi Nishitsuji, Mr. FanWang (Ph.D. student, Chiba University
Japan), Dr. Yasuyuki Ichihashi, Mr. Harutaka Shiomi (Ph.D. student, Chiba Univ.
Japan), and Prof. David Blinder (Vrije Universiteit Brussel and Imec, Belgium).
Visual quality assessments for holography are provided by Dr. Tobias Birnbaum
(Vrije Universiteit Brussel and Imec, Belgium). An overview written by Dr. Tatsuki
Tahara (NICT, Japan) from the perspective of the high-speed reproduction of holo-
grams acquired by digital holography is also included, along with an overview
of parallel computing using PC and GPU clusters by Prof. Naoki Takada (Kochi
Univ., Japan). A specific implementation of compressed holography is provided by
Dr. Yutaka Endo (Kanazawa Univ. Japan) to demonstrate the advantages of
compressed sensing in reducing the noise inherent in digital holography by
optimizing the sparsity of the signal.

Part IV comprises Chaps. 19 and 20. Here, Dr. Yota Yamamoto describes an
approach to implement point-cloud hologram calculations on FPGA hardware,
and Prof. Nobuyuki Masuda (Tokyo Univ. of Science, Japan) and Dr. Ikuo Hoshi
(NICT, Japan) explain the implementation of diffraction calculations used in digital
holography on this hardware.

Many excellent textbooks and commentaries on computational holography are
available, such as “Introduction toModern Digital Holography” (Cambridge Univer-
sity Press, 2014) by T.-C. Poon and J.-P. Liu; “Analog and Digital Holography with
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MATLAB” (SPIE, 2015) by G. T. Nehmetallah, R. Aylo, and L.William; and “Intro-
duction to Computer Holography” (Springer, 2020) by K. Matsushima. Compared
with these works, one unique aspect of this book is that specific implementations of
methods to accelerate computational holography are provided from both algorithmic
and hardware-centered perspectives. This book contains many sample source codes,
which can be downloaded from the book’s website.

We hope that this book will be helpful for students and researchers working on
computational holography in the future, as well as for those who have been actively
engaged in this field.

The editors hereby acknowledge the support of the Japan Society for the
Promotion of Science (22H03607).

Chiba, Japan
December 2022

Tomoyoshi Shimobaba
Tomoyoshi Ito
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Part I
Introduction to Holography

Part I consists of three chapters. In computer holography, diffraction calculations
play an important role. First, diffraction calculations are explained, followed by the
principles of holography, computer holograms, and digital holography.



Chapter 1
Light Wave, Diffraction, and Holography

Takashi Kakue

Abstract Optics can be mainly classified into three fields: geometric, wave, and
quantum optics. Holography is based on wave optics and treats interference and
diffraction, which are basic phenomena of light in wave optics. This chapter first
describes how to express light waves mathematically based on wave optics. Then,
the properties of light waves such as interference and diffraction and the principle
of holography are described. For detailed descriptions in this chapter, please refer to
the following references [1–3].

1.1 Expression of Light

Light is an electromagnetic wave generated by synchronized oscillations of electric
andmagnetic fields. Their oscillation is orthogonal and perpendicular to the propaga-
tion direction of light. When the scalar approximation holds, light can be described
by only one of the electric or magnetic field; the electric field is generally used for
the description.

1.1.1 Scalar Waves

The wave equation with scalar representation is given by

∂2E

∂z2
− 1

c2
∂2E

∂t2
= 0. (1.1)

Then, based on Eq. (1.1), linearly polarized light, which propagates along the
z-direction, can be described as follows:
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Fig. 1.1 Relationship of the
angles between wave vector
and xyz-axes

= cos

= cos

= cos

E(x, y, z, t) = E(r, t) = A cos(k · r − ωt − θ0). (1.2)

Here, E(x, y, z, t) indicates the electric field at the point r = (x, y, z) at t . c is the
speed of light in a vacuum. A is the amplitude of the electric field. k = (kx , ky, kz)
indicates the wave vector. ω denotes the angular frequency of light and can be
expressed as follows using the frequency f or the wavelength λ of light:

ω = 2π f = 2πc

λ
. (1.3)

θ0 denotes the initial phase.
The wave vector can be described using the unit vector p = (cosα, cosβ, cos γ )

along the propagation direction as follows:

k = kp = (k cosα, k cosβ, k cos γ ), (1.4)

where k is defined as the wave number and can be described by

k = |k| = 2π

λ
. (1.5)

Because α, β, and γ denote the angles between the wave vector and x-, y-, and
z-axes, respectively, as shown in Fig. 1.1, and cosα, cosβ, and cos γ are defined as
the direction cosines.

The expression of light of Eq. (1.2) can be given in complex-number form:

E(x, y, z, t) = A exp[i(k · r − ωt − θ0)]. (1.6)
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In this case, only the real part represents the physical wave. By using the complex-
number form, the expression of light can be separated into two exponential parts:

E(x, y, z, t) = A exp[i(k · r − θ0)] exp(−iωt). (1.7)

Here, exp[i(k · r − θ0)] includes the spatial part of the electric field only. In contrast,
exp(−iωt) includes the temporal part only. In holography, the spatial distribution of
the electric field is used for light calculations for simplicity. Then, henceforth, the
temporal part of light can be neglected, and light can be described using the spatial
part only of the electric field:

E(x, y, z) = A exp[i(k · r − θ0)] = A exp(iθ). (1.8)

Here, A exp(iθ) is the complex amplitude of light. θ is defined as the phase of light.

1.1.2 Plane Waves and Spherical Waves

Assuming that k · r is constant in Eq. (1.8), we get

k · r = ckr , (1.9)

where ckr is constant. Equation (1.9) indicates that point r is perpendicular to the
unit vector p. Then, the wavefront of light, which satisfies Eq. (1.9), becomes a
plane. This wave is called the plane wave. Because the wave phases are equal at the
wavefront, the wavefront is called the equiphase surface.

Then, we represent light with the following equation:

E(x, y, z) = A

|r − rs| exp[i(k · (r − rs) − θ0)], (1.10)

where rs = (xs, ys, zs). The wave expressed by Eq. (1.10) is called the spherical
wave. It diverges from or converges to the source point rs. The amplitude of the
spherical wave attenuates according to the distance from the source point rs. Equation
(1.10) also shows the plane wave can be expressed by Eq. (1.10) when the source
point rs is at infinity; we can regard (r − rs) as a constant when the source point rs
is at infinity.

1.2 Coherence of Light

Coherence is defined as the interference capacity of light. The coherence can be
classified into temporal and spatial coherence. The temporal coherence indicates
the relationship between waves generated at different times. The spatial coherence
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indicates the relationship between the waves at the different parts of a light source
or a wavefront of light. The detail of coherence is described in Refs. [1, 2].

1.3 Interference of Light

Interference is produced by the correlation between the individual waves. However,
no interference pattern can be observed even if the waves emitted from the two light
bulbs or light-emitted diodes (LEDs) are used as the light source. We can observe
only the uniform brightness pattern according to the sum of brightness of the light
source. This is because the waves emitted from the light bulb and LED are based
on spontaneous emission to generate light and have no or little correlation. Light
interference requires correlation (or coherence) between individual waves. The most
common light sources with high coherence are laser sources, which are based on
stimulated emission to generate light.

If the following coherent light waves are superposed at a point (x, y, z)

E1(x, y, z) = A1 exp(iθ1),

E2(x, y, z) = A2 exp(iθ2).
(1.11)

Because the superposed complex amplitude is E1(x, y, z) + E2(x, y, z), its intensity
is given by

I (x, y, z) = |E1(x, y, z) + E2(x, y, z)|2
= A2

1 + A2
2 + 2A1A2 cos(θ2 − θ1)

= I1 + I2 + 2
√
I1 I2 cos(
θ).

(1.12)

Here, I1 = A2
1, I2 = A2

2, and 
θ = θ2 − θ1. Equation (1.12) implies that the inten-
sity of the superposed waves increases or decreases depending on 
θ , which is the
phase difference between the two waves. This phenomenon indicates light interfer-
ence. When 
θ = 2nπ , where n is an integer, the intensity is maximum, which is
constructive interference. In contrast, when 
θ = (2n + 1)π , where n is an integer,
the intensity is minimum, which is destructive interference.

1.4 Diffraction of Light

The situation, as shown in Fig. 1.2, is considered; a screen is set behind an obsta-
cle, and a light wave illuminates the screen through the obstacle. Because light is
blocked by the obstacle, the obstacle forms a shadow on the screen. Here, based on
geometrical optics, the edge of the shadow should be sharp. However, in practice,
the edge becomes blurred, indicating that the light wave goes around the obstacle
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Fig. 1.2 Formation of
edge-blurred shadow on
screen by obstacle

Light source

Obstacle

Screen

Edge-blurred shadow

against the behavior defined by geometrical optics. This is called diffraction and
can be explained using wave optics. Diffraction can be mathematically expressed by
diffraction integrals [1–3].

1.4.1 Sommerfeld Diffraction Integral

Diffraction integrals express light propagation from the source plane to the destina-
tion plane. Let us assume that the function of the aperture pattern at A1(x1, y1) on
the source plane is u1(x1, y1). When a light wave is introduced into the source plane
from −z-direction in Fig. 1.3, diffraction occurs by the aperture pattern u1(x1, y1).
The diffraction pattern at A2(x2, y2) on the destination plane, u2(x2, y2), is observed

1

1

2

2

O

A1 1, 1

A2 2, 2

12

Source plane

Destination plane

Fig. 1.3 Diffraction integral between source and destination planes
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at the destination plane. In this section, several algorithms for calculating diffraction
integrals are derived based on the Sommerfeld diffraction integral.

The Sommerfeld diffraction integral can be described as follows:

u2(x2, y2) = 1

iλ

∫ ∫
u1(x1, y1)

exp(ikr)

r
cosφ dx1dy1, (1.13)

where r denotes the distance between A1 and A2 and can be expressed as

r =
√

(x2 − x1)2 + (y2 − y1)2 + z212. (1.14)

Here, z12 represents the distance between the source and destination planes, and φ

is the angle between the normal of the source plane and the line segment A1A2, as
shown in Fig. 1.3. cosφ is called the inclination factor or obliquity factor and can
be expressed by cosφ = z12/r . Then, Eq. (1.13) can be also expressed as

u2(x2, y2) = 1

iλ

∫ ∫
u1(x1, y1)

exp(ikr)

r

z12
r
dx1dy1. (1.15)

1.4.2 Angular Spectrum Method

The angular spectrummethod (or plane wave expansion method) is mainly used
to calculate diffraction integrals on a computer and can be derived based on Eq.
(1.15). First, in this book, two-dimensional (2D) Fourier transform and inverse 2D
Fourier transform are, respectively, defined as follows:

U ( fx , fy) =
∫ ∞

−∞

∫ ∞

−∞
u(x, y) exp[−i2π( fx x + fy y)]dxdy

= F[u(x, y)],
(1.16)

u(x, y) =
∫ ∞

−∞

∫ ∞

−∞
U ( fx , fy) exp[i2π( fx x + fy y)]d fxd fy

= F−1[U ( fx , fy)].
(1.17)

Here, F[ ] and F−1[ ] indicates the operators of 2D Fourier and inverse 2D Fourier
transforms, respectively. ( fx , fy) denote x- and y-coordinates in the frequency
domain. Although the coefficient 1/(2π) or 1/

√
2π is generally set before the inte-

grals of Eqs. (1.16) and (1.17), we omit it for simplicity.
The convolution integral can be described as

uconv(x2, y2) =
∫ ∞

−∞

∫ ∞

−∞
u1(x1, y1)u2(x2 − x1, y2 − y1)dx1dy1

= u1(x1, y1) ⊗ u2(x2, y2),

(1.18)
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where ⊗ represents the convolution operator. Using the convolution theorem [2],
Eq. (1.18) can also be described using Fourier transforms as follows:

uconv(x2, y2) = F−1[F[u1(x1, y1)]F[u2(x1, y1)]]. (1.19)

Applying Eqs. (1.19) to (1.15), the following relationship can be obtained:

u2(x2, y2) =
∫ ∫

u1(x1, y1)

[
z12
iλ

exp(ikr)

r2

]
dx1dy1

= F−1

[
F[u1(x1, y1)]F

[
z12
iλ

exp(ikr)

r2

]]

= F−1[F[u1(x1, y1)]F[h(x1, y1)]]
= F−1[F[u1(x1, y1)]H( fx , fy)]].

(1.20)

Here,

h(x1, y1) = z12
iλ

exp(ikr)

r2
, (1.21)

H( fx , fy) = F[h(x1, y1)] = F
[
z12
iλ

exp(ikr)

r2

]]
. (1.22)

h(x1, y1) is called the impulse response. H( fx , fy) is called the transfer function
and can be calculated analytically as follows [2]:

H( fx , fy) = exp

(
i2π z12

√
1

λ2
− f 2x − f 2y

)
. (1.23)

Therefore, the angular spectrum method can be described by

u2(x2, y2) = F−1

[
F[u1(x1, y1)] exp

(
i2π z12

√
1

λ2
− f 2x − f 2y

)]

= F−1

[
U ( fx , fy) exp

(
i2π z12

√
1

λ2
− f 2x − f 2y

)]
.

(1.24)

Here,

U ( fx , fy) = F[u1(x1, y1)]
=

∫ ∫
u1(x1, y1) exp[−i2π( fx x1 + fy y1)]dx1dy1.

(1.25)

U ( fx , fy) is called the angular spectrum. The inverse Fourier transform of the
angular spectrum can be given by
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u1(x1, y1) = F−1[U ( fx , fy)]
=

∫ ∫
U ( fx , fy) exp[i2π( fx x1 + fy y1)]d fxd fy .

(1.26)

Meanwhile, a plane wave u plane(x, y, z), which propagates along the wave vector
k = (kx , ky, kz), is considered. Assuming that the amplitude of the plane wave is a,
it can be expressed by

u plane(x, y, z) = a exp[ik · r]
= a exp[i(kx x + ky y + kzz)]. (1.27)

Here, a planewave at (x1, y1, 0) is defined as u plane(x1, y1, 0) = u plane(x1, y1). Com-
paring Eq. (1.26) with (1.27) using u plane(x1, y1, 0) = u plane(x1, y1), u1(x1, y1) is
expressed as the sum of plane waves with various spatial frequencies and whose
amplitudes areU ( fx , fy). The relationship between the wave vector and spatial fre-
quency can be expressed as

U ( fx , fy) exp[i2π( fx x1 + fy y1)] = a exp[i(kx x1 + ky y1)]. (1.28)

Then, using thedirection cosines and
√
cos2 α + cos2 β + cos2 γ = 1, the following

equations can be obtained:

cosα = λ fx ,

cosβ = λ fy,

cos γ =
√
1 − (λ fx )2 − (λ fy)2.

(1.29)

The angular spectrum method can calculate the Sommerfeld diffraction integral
using Fourier transforms with no approximation. Moreover, the angular spectrum
method has a short computational time because fast Fourier transform can be used
to perform the Fourier transform on a computer.

1.4.3 Fresnel Diffraction

The Fresnel diffraction can be derived from Eq. (1.15) by approximation. Based on
Taylor expansion, Eq. (1.14) can be expressed by
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r =
√

(x2 − x1)2 + (y2 − y1)2 + z212

= z12

√

1 + (x2 − x1)2 + (y2 − y1)2

z212

≈ z12 + (x2 − x1)2 + (y2 − y1)2

2z12
−

[
(x2 − x1)2 + (y2 − y1)2

]2

8z312
+ · · ·.

(1.30)

Equation (1.30) is approximated using only its first and second terms and omitting
terms after the third in wave optics:

r ≈ z12 + (x2 − x1)2 + (y2 − y1)2

2z12
. (1.31)

This approximation is called the Fresnel or paraxial approximation. Using Eqs.
(1.31) and (1.15), it can be rewritten as

u2(x2, y2) = 1

iλ

∫ ∫
u1(x1, y1)

exp(ikr)

r

z12
r
dx1dy1

≈ 1

iλ

∫ ∫
u1(x1, y1)

exp

{
ik

[
z12 + (x2−x1)2+(y2−y1)2

2z12

]}

z12

z12
z12

dx1dy1.

(1.32)
Here, approximation of r ≈ z12 is applied, except for the inside of its exponential
term. r inside the exponential term must be calculated accurately according to Eq.
(1.31) because it affects the phase of a light wave. In contrast, the others affect not
the phase, but the amplitude of a light wave. Finally, the Fresnel diffraction can be
described as

u2(x2, y2) ≈ exp(i 2π
λ
z12)

iλz12

×
∫ ∫

u1(x1, y1) exp

{
i

π

λz12

[
(x2 − x1)

2 + (y2 − y1)
2
]}

dx1dy1.

(1.33)
The Fresnel approximation is satisfied when the terms of Eq. (1.30) after the second
term are sufficiently smaller than λ:

[
(x2 − x1)2 + (y2 − y1)2

]2

8z312
� λ. (1.34)

For example, if the maximum value of |x2 − x1| and |y2 − y1| is 2 cm and λ =
550[nm],



12 T. Kakue

z312 �
[
(2 × 10−2)2 + (2 × 10−2)2

]2

8 × 550 × 10−9
= 6.4 × 10−7

4.4 × 10−6
≈ 1.5 × 10−1[m3]. (1.35)

Then,
z12 � (1.5 × 10−1)

1
3 ≈ 0.5[m]. (1.36)

For computational time, the Fresnel diffraction is calculated on a computer using
convolution and Fourier transform expressions.

1.4.4 Fresnel Diffraction Based on Convolution Expression

The Fresnel diffraction can be described using a convolution integral:

u2(x2, y2) = exp(i 2π
λ
z12)

iλz12

×
∫ ∞

−∞

∫ ∞

−∞
u1(x1, y1) exp

{
i

π

λz12

[
(x2 − x1)

2 + (y2 − y1)
2
]}

dx1dy1

= exp(i 2π
λ
z12)

iλz12

{
u1(x2, y2) ⊗ exp[i π

λz12
(x22 + y22 )]

}

= exp(i 2π
λ
z12)

iλz12
[u1(x2, y2) ⊗ h f (x2, y2)].

(1.37)
Here, the impulse response h f (x2, y2) is defined as

h f (x2, y2) = exp

[
i

π

λz12
(x22 + y22 )

]
. (1.38)

Using the convolution theorem, the Fresnel diffraction based on the convolution
expression can be derived as

u2(x2, y2) = exp(i 2π
λ
z12)

iλz12
[u1(x2, y2) ⊗ h f (x2, y2)]

= exp(i 2π
λ
z12)

iλz12
F−1[F[u1(x2, y2)]F[h f (x2, y2)]]

= F−1

[
F[u1(x2, y2)]F

[
exp(i 2π

λ
z12)

iλz12
h f (x2, y2)

]]

= F−1[F[u1(x2, y2)]H( fx , fy)].

(1.39)

Here, Hf ( fx , fy) is defined as follows and can be calculated analytically:
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Hf ( fx , fy) = F
[exp

(
i 2π

λ
z12

)

iλz12
h f (x2, y2)

]

= exp

(
i
2π

λ
z12

)
exp

[
iπλz12( f

2
x + f 2y )

]
,

(1.40)

where fx and fy denote the x- and y-coordinates in the frequency domain.

1.4.5 Fresnel Diffraction Based on Fourier transform
Expression

The Fresnel diffraction based on the Fourier transform expression can be derived as
follows. First, based on Eq. (1.33), the following equation can be obtained:

u2(x2, y2) = exp(i 2π
λ
z12)

iλz12

∫ ∞

−∞

∫ ∞

−∞
u1(x1, y1)

× exp

{
i

π

λz12

[
(x2 − x1)

2 + (y2 − y1)
2
]}

dx1dy1

= exp(i 2π
λ
z12)

iλz12

∫ ∞

−∞

∫ ∞

−∞
u1(x1, y1)

× exp

{
i

π

λz12

(
x22 − 2x2x1 + x21 + y22 − 2y2y1 + y21

)}
dx1dy1

= exp(i 2π
λ
z12)

iλz12
exp

[
i

π

λz12
(x22 + y22 )

]

×
∫ ∞

−∞

∫ ∞

−∞
u1(x1, y1) exp

[
i

π

λz12
(x21 + y21 )

]

× exp

[
−i2π

(
x1x2
λz12

+ y1y2
λz12

)]
dx1dy1.

(1.41)

Then, the following definitions are introduced:

u′
1(x1, y1) = u1(x1, y1) exp

[
i

π

λz12
(x21 + y21 )

]
, (1.42)

x ′
2 = x2

λz12
, y′

2 = y2
λz12

. (1.43)

Then, from Eq. (1.41),
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u2(x2, y2) = exp(i 2π
λ
z12)

iλz12
exp

[
i

π

λz12
(x22 + y22 )

]

×
∫ ∞

−∞

∫ ∞

−∞
u′
1(x1, y1) exp [−i2π(x1x

′
2 + y1y

′
2)]dx1dy1.

(1.44)

Here, comparing Eq. (1.16) with the integrals of Eq. (1.44), the following equation
can be derived:

∫ ∞

−∞

∫ ∞

−∞
u′
1(x1, y1) exp [−i2π(x1x

′
2 + y1y

′
2)]dx1dy1 = F[u′

1(x1, y1)]. (1.45)

Finally, applying Eqs. (1.45) to (1.44),

u2(x2, y2) = exp (i 2π
λ
z12)

iλz12
exp

[
i

π

λz12
(x22 + y22 )

]
F[u′

1(x1, y1)]. (1.46)

The above indicates that the Fresnel diffraction can be calculated using single Fourier
transform.

1.4.6 Fraunhofer Diffraction

TheFraunhofer diffraction is usedwhen calculating the diffraction pattern far from
the source plane. Let us assume that the phase of the exponential term of Eq. (1.42)
is sufficiently smaller than 2π as follows:

π

λz12
(x21 + y21 ) � 2π. (1.47)

Then, the value of the exponential term is approximated as 1.

exp

[
i

π

λz12
(x21 + y21 )

]
≈ 1. (1.48)

The Fraunhofer diffraction can be described by

u2(x2, y2) = exp (i 2π
λ
z12)

iλz12
exp

[
i

π

λz12
(x22 + y22 )

]
F[u1(x1, y1)]. (1.49)

The Fraunhofer diffraction can be calculated by Eq. (1.47) when the following
inequality satisfies:

z12 � x21 + y21
2λ

. (1.50)
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For example, if the maximum value of |x1| and |y1| is 2 cm and λ = 550[nm],

z12 � (2 × 10−2)2 + (2 × 10−2)2

2 × 550 × 10−9
= 8 × 10−4

1.1 × 10−6
≈ 730[m]. (1.51)

Optical experiments of the Fraunhofer diffraction based on the condition of Eq.
(1.51) are difficult to perform. In fact, lenses are used for obtaining the Fraunhofer
diffraction because the diffraction pattern at the focal plane of a lens corresponds to
the Fraunhofer diffraction pattern [2].

1.4.7 Special Diffraction Calculations

Although the angular spectrum method and Fresnel diffraction are mainly used to
calculate diffraction patterns, they have the following limitations:

1. The source and destination planes are parallel.
2. The optical axes of the source and destination planes are identical.
3. The sampling intervals of the source and destination planes are not determined

freely.

Recently, several algorithms have been proposed for overcoming these limitations
[4–20]. In this book, the shifted and scaled diffractions are described. The former
can overcome the second limitation, and the latter can overcome the third limitation.
Let us introduce the parameters s and (ox , oy), which determine the scale and shift
rates between the source and destination planes, to express the shifted and scaled
diffraction. Then, as shown in Fig. 1.4, the sampling intervals of the destination and

1

1

2

2

O

12

,

Source plane

Destination plane

Fig. 1.4 Scaled and shifted diffractions
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source planes are defined as p and sp, respectively. When s = 1, this is the same
situation as normal Fresnel diffraction. When s > 1, the area of the source plane
is larger than that of the destination plane. In contrast, when s < 1, the area of the
source plane is smaller than that of the destination plane. The Fresnel diffraction is
described by Eq. (1.33). Here, the coordinates (x1, y1) are s times greater, and the
origin of the destination plane, which indicates the position of the optical axis, is
shifted to (ox , oy). Then, (x2 − x1)2 and (y2 − y1)2 of Eq. (1.33) can be considered
as

(x2 − sx1 + ox )
2

= s(x2 − x1)
2 + (s2 − s)x21 + (1 − s)x22 + 2ox x2 − 2sox x1 + o2x ,

(1.52)

(y2 − sy1 + oy)
2

= s(y2 − y1)
2 + (s2 − s)y21 + (1 − s)y22 + 2oy y2 − 2soy y1 + o2y .

(1.53)

Applying Eqs. (1.52) and (1.53) to (1.33), the following equation can be obtained:

u2(x2, y2) = Cz

∫ ∫
u1(x1, y1)

× exp

{
i

π

λz12

[
(s2 − s)x21 − 2sox x1 + (s2 − s)y21 − 2soy y1

]}

× exp

{
i

π

λz12

[
s(x2 − x1)

2 + s(y2 − y1)
2
]}

dx1dy1.

(1.54)
Here,

Cz = exp (i 2π
λ
z12)

iλz12
exp

{
i

π

λz12

[
(1 − s)x22 + 2ox x2 + o2x

]}

× exp

{
i

π

λz12

[
(1 − s)y22 + 2oy y2 + o2y

]}
.

(1.55)

Because Eq. (1.54) has the form of the convolution integral, it can be described as
follows using the convolution theorem:

u2(x2, y2) = CzF−1[F[u1(x1, y1) exp(iφu)]F[exp(iφh)]], (1.56)

where

exp (iφu) = exp

{
i

π

λz12

[
(s2 − s)x1 − 2sox x1

]}

× exp

{
i

π

λz12

[
(s2 − s)y21 − 2soy y1

]}
,

(1.57)

exp (iφh) = exp

{
i

π

λz12

[
sx21 + sy21

]}
. (1.58)
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1.5 Holography

Holography was proposed in 1948 by Dennis Gabor as a technique to record a
wavefront of light [21]. Although he invented this technique to improve the spatial
resolution of electron microscopy, he was unable to realize his aim. This failure was
owing to the insufficient coherence of light sources. After the invention of holography
in 1960, lasers were developed, which have high coherence. In 1962, Leith and
Upatnieks proposed a novel holographic recording method using lasers [22]. In this
book, we first consider the method proposed by Leith and Upatnieks.

1.5.1 Recording of the Hologram

Figure1.5 shows the holography recording process. A light wave, which is emitted
from an optical source with laser-like coherence, is split into two optical paths by a
beam splitter. One is introduced into a three-dimensional (3D) object after expand-
ing its beam diameter using lenses. Light waves reflected and/or diffused by the
3D object arrive at a recording material and are called object waves. Another light
wave from the beam splitter is directly introduced into the recording material after
expanding its beam diameter using lenses and is called a reference wave. Because a
high coherence light source is used, the object waves and reference wave interfere.
Here, the distribution of the object waves can be described as

O(x, y) = AO(x, y) exp [iθO(x, y)]. (1.59)

Here, AO(x, y) and θO(x, y) represent the amplitude and phase of the object wave
at the coordinates of (x, y). Similarly, the distribution of the reference wave can be
expressed by

Optical source

Beam splitter

Mirror
Lens

3D object

Recording 
material

Reference 
wave

Object wave
Lens

Mirror

Fig. 1.5 Recording process in holography



18 T. Kakue

R(x, y) = AR(x, y) exp [iθR(x, y)], (1.60)

where AR(x, y) and θR(x, y) represent the amplitude and phase of the referencewave
at the coordinates of (x, y). Then, the intensity distribution generated by interference
between the object and reference waves can be described by

I (x, y) = |O(x, y) + R(x, y)|2
= [O(x, y) + R(x, y)][O(x, y) + R(x, y)]∗
= |O(x, y)2| + |R(x, y)|2 + O(x, y)R∗(x, y) + O∗(x, y)R(x, y).

(1.61)
Here, ∗ indicates the complex conjugate of a complex number. I (x, y) is called a
hologram. Holograms have information of the 3D object as interference patterns.

When photosensitive materials such as silver-halide emulsion, a photopolymer,
and a photoresist are used as hologram recording materials, development (and/or
bleaching) processes are necessary.When image sensors, such as CCDs andCMOSs,
are used, a development process is unnecessary, and the image the sensors record
corresponds to a hologram.

1.5.2 Reconstruction of Hologram

When reconstructing a hologram, a light wave identical to the reference wave, called
the hologram-illumination wave, is introduced into the hologram (Fig. 1.6). Mathe-
matically, this phenomenon corresponds to multiplying the amplitude transmission
of the hologram by the hologram-illumination wave. Then, the following equation
can describe hologram reconstruction:

I (x, y) × R(x, y)

= [|O(x, y)2| + |R(x, y)|2 + O(x, y)R∗(x, y) + O∗(x, y)R(x, y)] × R(x, y)

= [|O(x, y)2| + |R(x, y)|2]R(x, y) + A2
R(x, y)O(x, y) + O∗(x, y)R2(x, y).

(1.62)
The first term of the right-hand side of Eq. (1.62) includes the hologram-illumination
wavemultiplied by |O(x, y)|2 + |R(x, y)|2. This is called the zeroth-order diffrac-
tion (or non-diffraction) wave. The second term includes the object wave, which
forms the virtual image behind the hologram. The coefficient A2

R(x, y) represents
the intensity of the light introduced into the hologram, which affects the intensity (or
brightness) of the reconstructed object wave. The third term includes the complex
conjugate of the object wave multiplied by R2(x, y). This is called the conjugate
wave and forms the real image in front of the hologram.
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Optical source

Mirror

Mirror
Lens

Reconstruction 
image

Hologram

Hologram-illumination 
wave

Reconstructed 
object wave

Observer

Fig. 1.6 Reconstruction process in holography

1.5.3 In-line Holography and Off-Axis Holography

Holography can be categorized into two types: in-line and off-axis holography. As
shown in Fig. 1.7a, in-line holography uses a reference wave introduced perpendic-
ular to the recording material. In contrast, off-axis holography uses a reference wave
that is obliquely introduced into a recording material (Fig. 1.7b). The angle between
the normal of the recording material and propagation direction of the reference wave

(a)

Recording
material

Object wave

Reference wave

Recording process

Reconstruction process

Hologram

R

Hologram-illumination 
wave

Object wave

Non-diffraction wave

Conjugate wave

Observer

(d)

Recording 
material

R

Object wave

Reference wave

Recording process

( )

Reconstruction process

Hologram

Object wave

Hologram-illumination 
wave

Non-diffraction wave
Conjugate wave

Observer

( )

Fig. 1.7 Two types of holography. a and b represent the recording process in in-line and off-axis
holography, respectively. c and d represent the reconstruction processes in in-line and off-axis
holography, respectively
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is defined by ϕR . Then, ϕR = 0◦ indicates in-line holography, and ϕR �= 0◦ indicates
off-axis holography.

First, in-line holography is considered. Because ϕR = 0◦ corresponds to α =
90◦, β = 90◦, and γ = 0◦ in Fig. 1.1, the reference wave at the recording material
(z = 0) can be expressed based on Eqs. (1.8) and (1.60) as

R(x, y) = AR(x, y) exp [i(k · 0 − θ0)] = AR(x, y) exp (−iθ0). (1.63)

Then, assuming that a plane wave whose amplitude and initial phase at the recording
material are 1 and 0, respectively, is used as a reference wave for simplicity, R(x, y)
can be described by

R(x, y) = 1. (1.64)

The intensity distribution of interference patterns can be expressed by

I (x, y) = |O(x, y) + R(x, y)|2
= |O(x, y)2| + 1 + O(x, y) + O∗(x, y).

(1.65)

For hologram reconstruction, R(x, y) = 1 is used as the reconstruction light:

I (x, y) × R(x, y) = I (x, y)

= |O(x, y)2| + 1 + O(x, y) + O∗(x, y).
(1.66)

The first and second terms indicate the zeroth-order diffraction wave. The third and
fourth terms describe the object and conjugate waves, respectively. Although only the
third term contributes to the reconstruction of the object image, the other terms are
also reconstructed simultaneously. In in-line holography, as shown in Fig. 1.7c, not
only the object wave but also the zeroth-order diffraction and conjugate waves arrive
at the observer’s eyes. This situation suggests that the zeroth-order diffraction and
conjugate waves prevent an observer from observing the object wave only. Hence,
the quality of the reconstructed object image is degraded. This degradation is called
the twin-image problem and a major problem of in-line holography.

Off-axis holography can overcome this problem. Here, α = 90◦ − ϕR , β = 90◦,
and γ = 0◦ are considered ϕR �= 0◦ for simplicity. The reference wave at the record-
ing material can be expressed as

R(x, y) = AR(x, y) exp
{
i[k(x cosα + 0) − θ0]

}

= AR(x, y) exp
[
i(kx sin ϕR − θ0)

]
.

(1.67)

Then, assuming that a plane wave whose amplitude and initial phase at the recording
material are 1 and 0, respectively, is used as a reference wave for simplicity, R(x, y)
can be described by

R(x, y) = exp (ikx sin ϕR). (1.68)
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The intensity distribution of interference patterns can be expressed by

I (x, y) = |O(x, y) + R(x, y)|2
= |O(x, y)2| + 1

+ O(x, y) exp (−ikx sin ϕR) + O∗(x, y) exp (ikx sin ϕR).

(1.69)

For hologram reconstruction, R(x, y) = exp (ikx sin ϕR) is used as the reconstruc-
tion light:

I (x, y) × R(x, y) = (|O(x, y)|2 + 1) exp (ikx sin ϕR)

+ O(x, y) + O∗(x, y) exp (i2kx sin ϕR).
(1.70)

The second term describes the object wave. The first term indicates the zeroth-order
diffraction wave and propagates along ϕR . Meanwhile, the third term indicates the
conjugate wave, and it propagates along 2ϕR under the rough approximation of
2 sin ϕR ≈ 2ϕR . Therefore, in off-axis holography, the object wave is not superposed
on the zeroth-order diffraction and conjugate waves (Fig. 1.7d).

1.5.4 Types of Holograms

Holograms can be categorized according to how they are recorded. In-line and off-
axis holograms are one of the categories in terms of incident angles of the reference
wave. In terms of distances between the object and recordingmaterial, holograms can
be categorized into the following three types: Fresnel, image, and Fraunhofer holo-
grams. Fresnel holograms can be obtained when the object wave can be described
by the Fresnel diffraction. This situation implies that they can be recorded using the
standard optical setup shown in Fig. 1.5. Fraunhofer holograms can be obtained
when the object wave can be described by the Fraunhofer diffraction, indicating that
they can be recorded when the object is extremely far from the recording material.
However, as described in Sect. 1.4.6, it is difficult to realize the Fraunhofer diffrac-
tion. Then, a convex lens is used to record Fraunhofer holograms. A spherical wave
from a point-light source positioned at the focal point of a convex lens is converted
into a plane wave or a collimated wave by the lens. This function makes it possible
to realize the Fraunhofer diffraction approximately. As shown in Fig. 1.8, an object
is positioned at the front focal point of a convex lens with a focal length of f , and
a recording material is set at the back focal point of the lens. Because light waves
from the object become collimated waves after passing through the lens, they can
be regarded as Fraunhofer-diffraction-based light waves. The lens function shown in
Fig. 1.8 can be described and calculated using a Fourier transform. Hence, holograms
recorded by the optical setup of Fig. 1.8 are called Fourier holograms.

Image holograms can be obtained when an object is positioned near the record-
ing material. However, positioning an object near the recording material is difficult
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Fig. 1.8 Recording of
Fourier hologram

3D object
Convex lens

Recording 
material

Reference wave

Fig. 1.9 Recording of image
hologram

3D object

Convex lens

Recording 
material

Reference wave

because an actual object has size and/or volume. Then, as shown in Fig. 1.9, a con-
vex lens with a focal length of f is used to record image holograms. An object and
recording material are positioned at 2 f behind and in front of the lens, respectively.
A real image of the object is formed near the recording material by the lens function.
Then, image holograms can be obtained using the real image as the object wave.
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Chapter 2
Computer-Generated Hologram

Yasuyuki Ichihashi

Abstract This chapter explains the principles of computer-generated holograms
based on the point-cloud method, which is required for implementation into central
processing units (CPUs) in Chap.9, graphics processing units (GPUs) in Chap.10,
and field programmable gate arrays (FPGAs) in Chap. 19.

2.1 Computer-Generated Amplitude Hologram

As described in the principle of holography in Chap. 1, the light intensity distribution
I on a hologram [1] is expressed by the following equation:

I = |O + R|2 = |O|2 + |R|2 + OR∗ + O∗R, (2.1)

where O is the object light, R is the reference light, and * represents the complex
conjugate. When the reference light is parallel light incident with amplitude R0 at
incident angle θ , the light distribution of the reference light on the hologram is
expressed by

R(xα, yα) = R0e
jkxα sin θ , (2.2)

where k is the wave number and j = √−1.
Considering the object light as a collection (point cloud) of point light sources

emitted as spherical waves, O(xα, yα) can be expressed as

O(xα, yα) =
N∑

i=1

Ai

rαi
e jkrαi , (2.3)
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where Ai is the amplitude of the object light and the distance between a hologram
pixel and an object point expressed as

rαi =
√

(xα − xi )2 + (yα − yi )2 + z2i . (2.4)

InEq. (2.1), thefirst and second termsdonot contribute to holographic reconstruction,
the third term is the reconstructed object light we require, and the fourth term is the
conjugate light. Ignoring the first and second terms in Eq. (2.1) and substituting Eqs.
(2.2) and (2.3) into Eq. (2.1), we obtain the amplitude hologram as

I (xα, yα) =
N∑

i=1

Ai R0

rαi
e jk(rαi−xα sin θ) + Ai R0

rαi
e− jk(rαi−xα sin θ)

=
N∑

i=1

2Ai R0

rαi
cos (k(rαi − xα sin θ)) . (2.5)

As can be seen from Eq. (2.5), the calculation of a computer-generated hologram
(CGH) includes trigonometric functions and square roots [2]. The calculation cost
is proportional to the number of object points and the resolution of the CGH, M :

Calculation cost = M × N .

When the number of object points is 10,000 and the resolution of the hologram is
1, 920 × 1, 080 pixels (approximately 2million pixels), about 20 billion calculations
of trigonometric functions and square roots must be performed. Furthermore, when
the number of object points reaches 100,000, the number of calculations will be 200
billion. Therefore, methods for reducing this enormous number of calculations are
described next.

2.2 Fresnel CGH

First, to simplify the calculation, the hologram is irradiated vertically with the ref-
erence light (θ = 0), and the object points are gathered in a specific range. When
the distance between the point cloud and the hologram plane is sufficiently long,
the change in Rαi is small. The coefficient 2R0/Rαi of the cosine function can be
ignored. Therefore, Eq. (2.5) can be simplified to

I (xα, yα) =
N∑

i=1

Ai cos(krαi ), (2.6)
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rαi can be approximated as follows by using theTaylor expansionwith the binomial
theorem:

rαi = zi

√

1 + (xα − xi )
2 + (yα − yi )

2

zi 2

= zi + (xα − xi )
2 + (yα − yi )

2

2zi
−

{
(xα − xi )

2 + (yα − yi )
2
}2

8zi 3
· · ·

≈ zi + (xα − xi )
2 + (yα − yi )

2

2zi
, (2.7)

wherewe assume that zi 2 ismuch larger than (xα − xi )
2 + (yα − yi )

2. This is referred
to as the Fresnel approximation.

2.3 Recurrence Algorithm

To further reduce the calculation cost, rather than calculating the distance between
each object point and each hologram pixel one by one, a method that uses a recur-
rence formula [3, 4] with the phase difference between adjacent hologram pixels is
described.

By writing rαi = �(xα, yα) in Eq. (2.6) and considering a point (xα + n, yα),
where n = p, 2p, 3p · · · and p is the sampling interval of the hologram, away from
an arbitrary point (xα, yα) on the hologram plane in the x-axis direction, the distance
�n between the point (xα + n, yα) and the object point (xi , yi , zi ) can be expressed
by

�n = �(xα + n, yα) = zi + (xα + n − xi )
2 + (yα − yi )

2

2zi

= zi + (xα − xi )
2 + (yα − yi )

2

2zi
+ 2n (xα − xi ) + n2

2zi
. (2.8)

Similarly, �n−1 is expressed by

�n−1 = � (xα + n − 1, yα) = zi + (xα + n − 1 − xi )
2 + (yα − yi )

2

2zi

= zi + (xα − xi )
2 + (yα − yi )

2

2zi
+ 2 (n − 1) (xα − xi ) + (n − 1)2

2zi
. (2.9)

Therefore, the difference between Eqs. (2.8) and (2.9) is expressed by
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�n − �n−1 = 2n (xα − xi ) + n2

2zi
− 2 (n − 1) (xα − xi ) + (n − 1)2

2zi

= 2 (xα − xi ) + 2n − 1

2zi
= 2 (xα − xi ) + 1

2zi
+ n − 1

zi
. (2.10)

Since Eq. (2.10) is a recurrence formula, �0 is expressed by

�0 = zi + (xα − xi )
2 + (yα − yi )

2

2zi
. (2.11)

Equation (2.11) matches Eq. (2.7). In addition, the following two formulas are intro-
duced:

�0 = 2(xα − xi)

2zi
(2.12)

� = 1

zi
. (2.13)

By substituting Eqs. (2.12) and (2.13) into Eq. (2.10), the following equation is
obtained:

�n − �n−1 = �0 + (n − 1)�. (2.14)

Here, �n−1 is defined as
�n−1 = �0 + (n − 1)�. (2.15)

Thus, Eq. (2.14) can be expressed as

�n = �n−1 + �n−1. (2.16)

Equation (2.16) means that�n can be obtained from�n−1 for the previous point and
�n−1. Furthermore, �n − �n−1 is calculated from Eq. (2.15) as follows:

�n − �n−1 = �0 + n� − �0 − (n − 1)� = � ↔ �n = �n−1 + �. (2.17)

Equation (2.17) is a recurrence formula for�. In summary, the hologram calculation
procedure is as follows.

First, the distance rαi = �(xα, yα) between an arbitrary point (xi , yi , zi ) in
the three-dimensional image and a point (xα, yα) on an arbitrary hologram plane
is obtained using Eq. (2.11). Next, �0 = �(xα, yα) and �1 = �(xα + 1, yα) are
obtained from Eqs. (2.16) and (2.17). The subsequent hologram pixels from �2 to
�n are then obtained by applying Eqs. (2.16) and (2.17). Then, the light intensity at
all points on the hologram plane is obtained using Eq. (2.6).

The square root calculation is eliminated by approximation using the binomial
theorem as shown in Eq. (2.7). As a result, not only the CPU but also hardware
accelerators such as graphics processing units (GPUs) [5, 6] and field programmable
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gate arrays (FPGAs) [7, 8] can be used to speed up the calculation effectively. The
method using the recurrence formulas shown in Eqs. (2.16) and (2.17) can achieve
even higher speedswhen implemented in hardware accelerators such as FPGAs using
fixed-point numbers. These implementation methods are described in Chaps. 9 and
19.

2.4 Kinoform (Phase-Only Hologram)

Equation (2.1) represents an amplitude hologram. On the other hand, there is a
phase-only hologram called a kinoform. A kinoform can be obtained from the
phase distribution of object light on the hologram plane and is represented by the
following equation:

�(xα, yα) = arg {O (xα, yα)}, (2.18)

where arg{·} represents the operator calculating the argument of the complex ampli-
tude O (xα, yα). A kinoform has the disadvantage that the amplitude cannot be con-
trolled but the advantage that it has high light efficiency (theoretically 100%) and
does not contain conjugate light, in contrast to the amplitude hologram expressed by
Eq. (2.1). A kinoform can be displayed as a hologram on a phase-modulated spatial
light modulator.
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Chapter 3
Basics of Digital Holography

Takashi Kakue

Abstract Holograms can be recorded by image sensors, such as CCDs and CMOSs
as digital 2D image data. In this book, a holography for digital holograms is called
digital holography. Digital holography requires no mechanical movement of optical
elementswhen acquiring 3D information of anobject; the amplitude (or intensity) and
phase information of the object wave can be dynamically obtained simultaneously.
For detailed descriptions, please refer to [1].

3.1 Digital Holography

Figure 3.1 shows an optical setup of digital holography [2–4]. A laser beam is
expanded by the beam expander and introduced into a beam splitter and split into
two paths. One illuminates the object at zO from the image sensor. Here, trans-
parent objects, such as microorganisms and biological cells, are assumed because
microscopy based on digital holography is an example. Then, the transmitted and
diffracted waves correspond to the object wave. The object wave includes amplitude
(or intensity) and phase information. The amplitude information corresponds to the
transparency of the object. The phase information corresponds to the thickness of the
object. The object wave is introduced into the image sensor via the beam combiner
such as a half mirror. Another beam from the beam splitter is used as the refer-
ence wave and introduced into the image sensor via the beam combiner. The object
and reference waves interfere at the image sensor plane and intensity distribution of
interference fringes, which corresponds to a hologram, is recorded as a digital image
by the image sensor. Assuming that the image sensor plane is defined as z = 0, the
hologram image I (xI , yI , 0) can be expressed by

I (xI , yI , 0) = |O(xI , yI , 0)|2 + |R(xI , yI , 0)|2
+ O(xI , yI , 0)R

∗(xI , yI , 0) + O∗(xI , yI , 0)R(xI , yI , 0),
(3.1)

T. Kakue (B)
Graduate School of Engineering, Chiba University, Chiba, Japan
e-mail: t-kakue@chiba-u.jp

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
T. Shimobaba and T. Ito (eds.), Hardware Acceleration of Computational Holography,
https://doi.org/10.1007/978-981-99-1938-3_3

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-1938-3_3&domain=pdf
mailto:t-kakue@chiba-u.jp
https://doi.org/10.1007/978-981-99-1938-3_3


32 T. Kakue

Laser

Mirror

Beam 
splitter

Beam 
combiner

Image 
sensor

Object

Mirror

O

Beam expander

Fig. 3.1 Recording process in digital holography

where O(xI , yI , 0) and R(xI , yI , 0) are considered the object and reference waves
at the image sensor plane, respectively.

The object wave at z = zO , O(xO , yO , zO) can be described by

O(xO , yO , zO) = AO(xO , yO , zO) exp [iθO(xO , yO , zO)]. (3.2)

Here, AO(xO , yO , zO) and θO(xO , yO , zO) correspond to the amplitude and phase
information of the object wave, respectively. Because O(xO , yO , zO) propagates to
the image sensor plane, O(xI , yI , 0) can be expressed by

O(xI , yI , 0) = Prop[O(xO , yO , zO);−zO ], (3.3)

where Prop[ ] denotes the operator of the diffraction calculation and can be described
using the Fresnel diffraction, for example, by

Prop[u1(x1, y1, 0); z12] = u2(x2, y2, z12)

= exp
(
i 2π

λ
z12

)

iλz12
×

∫ ∫
u1(x1, y1, 0)

× exp

{
i

π

λz12

[
(x2 − x1)

2 + (y2 − y1)
2
]}

dx1dy1.

(3.4)

The operator has the following properties:
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Prop[u1(x, y, z) + u2(x, y, z); d] = Prop[u1(x, y, z); d] + Prop[u2(x, y, z); d],
(3.5)

Prop[C × u(x, y, z)] = C × Prop[u(x, y, z); d], (3.6)

Prop[u(x, y, z); d1 + d2] = Prop
[
Prop[u(x, y, z); d1]; d2

]
. (3.7)

The reconstruction process of holograms in digital holography is performed com-
putationally. The reconstruction of the constructed hologram can be mathematically
described by

I (xI , yI , 0) × R(xI , yI , 0)

= (|O(xI , yI , 0)|2 + |R(xI , yI , 0)|2
)
R(xI , yI , 0)

+ O(xI , yI , 0) + O∗(xI , yI , 0)R2(xI , yI , 0)

= D(xI , yI , 0)R(xI , yI , 0) + O(xI , yI , 0) + O∗(xI , yI , 0)R2(xI , yI , 0),
(3.8)

where
D(xI , yI , 0) = |O(xI , yI , 0)|2 + |R(xI , yI , 0)|2, (3.9)

and the intensity of the reference wave is assumed as 1. Although Eq. (3.8) includes
the object wave in the second term, it is not O(xO , yO , zO) but O(xI , yI , 0). Then,
as shown in Fig. 3.2, backward-diffraction calculation is required for obtaining
O(xO , yO , zO). The reconstruction process of holograms in digital holography can
be expressed by

UO(xO , yO , zO) = Prop[I (xI , yI , 0) × R(xI , yI , 0); zO ]
= Prop[D(xI , yI , 0)R(xI , yI , 0); zO ] + O(xO , yO , zO)

+ Prop[O∗(xI , yI , 0)R2(xI , yI , 0); zO ].
(3.10)

Because the second term indicates the object wave at z = zO , the object wave
can be reconstructed by backward-diffraction calculation. As backward-diffraction
calculation, not only the Fresnel diffraction but also the angular spectrum method
can be applied.

Because AO(xO , yO , zO) and θO(xO , yO , zO) of the reconstructed object wave
have the relationship shown in Fig. 3.3, they can be calculated using

AO(xO , yO , zO) =
√

{Re [O(xO , yO , zO)]}2 + {Im [O(xO , yO , zO)]}2, (3.11)

θO(xO , yO , zO) = arg

[
Im[O(xO , yO , zO)]
Re[O(xO , yO , zO)]

]
. (3.12)

Here, Re[ ] and Im[ ] denote the operators that describe the real and imaginary parts of
a complex number, respectively. arg[ ] indicates the operator that describes the argu-
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ment of a complex number. To calculate the argument on a computer, arctangent2,
which has a range of (−π, π ], is generally used.

3.2 Off-Axis Digital Holography

Asdescribed inEq. (1.5.3),off-axis holography canovercome the twin-imageprob-
lem. In digital holography, off-axis holography is also preferred to in-line holography
in terms of image quality [5–12]. However, for off-axis digital holography, the inci-

http://dx.doi.org/10.1007/978-981-99-1938-3_3
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Fig. 3.4 Wave vectors in off-axis digital holography

dent angle of the reference wave cannot be large due to the insufficient performance
of image sensors.

Let us consider the period of interference fringes formed by the reference and
object waves. For simplicity, the x-z-plane is shown in Fig. 3.4. The wave number k
is defined by Eq. (1.5.3). The object wave Or , emitted from a point of the object, at
r = (x, z) on the image sensor plane is described by

Or = AO exp (ikO · r). (3.13)

Here, kO denotes the wave vector of the object wave and can be expressed by

kO = (kOx , kOz) = (k sin ϕO , k cosϕO). (3.14)

The reference wave Rr at r can be described by

Rr = AR exp (ikR · r). (3.15)

Here, kR denotes the wave vector of the object wave and can be expressed by

kR = (kRx , kRz) = (k sin ϕR, k cosϕR). (3.16)

http://dx.doi.org/10.1007/978-981-99-1938-3_3
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Then, the interference fringe pattern at r can be expressed by

I (r) = |Or + Rr |2 = A2
O + A2

R + 2AO AR cos [(kO − kR) · r]
= A2

O + A2
R + 2AO AR cosϕOR,

(3.17)

ϕOR = (kO − kR) · r
= k(sin ϕO + sin ϕR)x + k(cosϕO + cosϕR)z.

(3.18)

Here, obtaining the spatial frequency of a signal is considered. The spatial frequency
of a one-dimensional signal exp(i2π f x) is f . By defining θ(x) as θ(x) = 2π f x ,
the spatial frequency can also be calculated as follows:

1

2π

dθ(x)

dx
= f. (3.19)

Applying Eqs. (3.19)–(3.18), the spatial frequency fx of the interference fringe pat-
tern I (r) can be calculated by

fx = 1

2π

dϕOR

dx
= k(sin ϕO + sin ϕR)

2π
= sin ϕO + sin ϕR

λ
. (3.20)

The period of the interference fringe pattern, dx , can be described by the reciprocal
of the spatial frequency:

dx = 1

fx
= λ

sin ϕO + sin ϕR
. (3.21)

For example, dx ≈ 1µm assuming λ = 532 nm, φO = 0◦, and φR = 30◦. Based
on the sampling theorem, the interference fringes of dx must be detected by a
sampling interval of less than dx/2. In the condition described above, a sampling
interval of approximately 500 nm is required for recording hologram materials. This
can be easily satisfied by photosensitive materials, such as silver-halide emulsion,
a photopolymer, and a photoresist. In contrast, the pixel pitch of even leading-edge
image sensors is no more than 1 µm. This limited leading edge makes setting a large
incident angle of the reference wave difficult in digital holography. Thus, the viewing
zone and spatial resolution of the reconstructed images of the object decrease.

Then, spectra or spatial frequencies of the object, reference, and zeroth-order
diffraction waves are considered. By applying Fourier transform to Eq. (3.1), the
following equation can be obtained:

F[I (x, y)] = F [|O(x, y)|2 + |R(x, y)|2] + F[O(x, y)R∗(x, y)]
+ F[O∗(x, y)R(x, y)]. (3.22)

Here, the z-coordinate is omitted for simplicity. The first term of the right-hand side
of Eq. (3.22) denotes the spectrum of the zeroth-order diffraction term, and it consists
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of low-frequency components. The second term includes the spectrum of the object
wave. Assuming that the reference wave is a plane wave and can be described by

R(x, y) = exp
[
i(kx sin ϕRx + ky sin ϕRy)

]
, (3.23)

the second term of Eq. (3.22) can be expressed by

F[O(x, y)R∗(x, y)] = F [
O(x, y) exp

[−i(kx sin ϕRx + ky sin ϕRy)
]]

. (3.24)

Here, the following frequency-shift property of Fourier transforms is considered by
assuming U ( fx , fy) = F[u(x, y)]:

F[u(x − s, y − t)] = U ( fx , fy) exp [−i2π( fx s + fyt)], (3.25)

F−1[u(x, y) exp [i2π(sx + t y)] = U ( fx − s, fy − t)]. (3.26)

Then, applying Eqs. (3.25) and (3.24),

F[O(x, y)R∗(x, y)] = Õ

(
fx + sin ϕRx

λ
, fy + sin ϕRy

λ

)
, (3.27)

where Õ indicates the spectrum of the object wave and Õ( fx , fy) = F[O(x, y)].
Equation (3.27) implies that the spectrum of the object wave shifts by

(λ sin ϕRx , λ sin ϕRy), (3.28)

from Õ( fx , fy) in the frequency domain according to the incident angle of the
reference wave. Similarly, the third term of Eq. (3.22) can be described by

F[O∗(x, y)R(x, y)] = F [
O∗(x, y) exp

[
i(kx sin ϕRx + ky sin ϕRy)

]]

= Õ∗
(
fx − sin ϕRx

λ
, fy − sin ϕRy

λ

)
,

(3.29)

where Õ∗ indicates the spectrum of the conjugate wave and Õ∗( fx , fy) =
F[O∗(x, y)]. Equation (3.29) indicates the spectrum of the conjugate wave shifts by

(λ sin ϕRx , λ sin ϕRy), (3.30)

from Õ∗( fx , fy) in the frequency domain.
As described previously, the spectra of the object, reference, and zeroth-order

diffraction waves can be separated in the frequency domain. Then, it is easy to extract
the spectrumof the objectwave only.After the extraction of the spectrumof the object
wave, it is shifted to the origin of the frequency domain. Finally, applying inverse
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Fourier transform to the shifted spectrum, the object wave only can be obtained in
the spatial domain. Certainly, a diffraction calculation is required for the obtained
object wave.

3.3 Phase-Shifting Digital Holography

Phase-shifting digital holography [13–21] can also overcome the twin-image prob-
lem. This technique is a type of in-line holography. Figure 3.5 shows an optical setup
of phase-shifting digital holography. This optical setup has a phase-shifting device to
shift the phase of the referencewave in nanometer order.Amirrormountedon apiezo-
electric element or a phase retarder, such as awave plate and a phase-modulation-type
spatial-light modulator, can be used as a phase-shifting device. Here, assuming the
phase of the reference wave as θR , the complex amplitude of a planar reference wave
at the image sensor plane can be described as a function of θR by

R(θR) = AR exp(iθR). (3.31)

Then, a hologram, I (θR), formed by R(θR) and the object wave O can be described
by

I (θR) = |O + R(θR)|2
= |O|2 + |R(θR)|2 + OR∗(θR) + O∗R(θR)

= |O|2 + |AR|2 + OAR exp (−iθR) + O∗AR exp (iθR).

(3.32)
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combiner
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Mirror
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Laser
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Fig. 3.5 Optical setup of phase-shifting digital holography
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3.3.1 Four-Step Phase-Shifting Digital Holography

Let us consider reference waves with four different phase shifts of 0,π2,π , and 3π/2
[13, 15]. Four holograms recorded by the four reference waves can be described by

I (0) = |O|2 + A2
R + OAR + O∗AR, (3.33)

I
(π

2

)
= |O|2 + A2

R − i O AR + i O∗AR, (3.34)

I (π) = |O|2 + A2
R − OAR − O∗AR, (3.35)

I

(
3π

2

)
= |O|2 + A2

R + i O AR − i O∗AR . (3.36)

The real part of the object wave can be obtained using Eqs. (3.33) and (3.35):

Re[O] = 1

4AR
[I (0) − I (π)]. (3.37)

Meanwhile, the imaginary part of the object wave can be obtained using Eqs. (3.34)
and (3.36):

I (
π

2
) − I (

3π

2
) = −i2OAR + i2O∗AR = −i2AR(O − O∗) = 4ARIm[O].

(3.38)
Then,

Im[O] = 1

4AR

[
I (

π

2
) − I (

3π

2
)

]
. (3.39)

Finally, O can be calculated by

O = 1

4AR

{
[I (0) − I (π)] + i

[
I
(π

2

)
− I

(
3π

2

)]}
. (3.40)

The number of phase shifts affects the robustness of results in practice; it can be
enhanced according to the number of phase shifts. In contrast,more time is required to
record holograms necessary for calculating the phase-shifting method in proportion
to the number of phase shifts.
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3.3.2 Three-Step Phase-Shifting Digital Holography

Let us consider reference waves with three different phase shifts [15]. The values
of 0, π2, and π are assumed as three phase shifts. Then, as with the four-step case,
three holograms recorded by the three reference waves can be described by

I (0) = |O|2 + A2
R + OAR + O∗AR, (3.41)

I
(π

2

)
= |O|2 + A2

R − i O AR + i O∗AR, (3.42)

I (π) = |O|2 + A2
R − OAR − O∗AR . (3.43)

Here, the first and second terms, which correspond to the zeroth-order diffraction
waves, on the right-hand side are common. This equality implies that they can be
cancelled by subtraction. First, focusing on Eqs. (3.41) and (3.43), the following
equation can be obtained:

I (0) − I (π) = 2OAR + 2O∗AR

= 2AR(O + O∗)
= 4ARRe[O].

(3.44)

Then,

Re[O] = 1

4AR
[I (0) − I (π)]. (3.45)

Because AR can be considered constant when the reference wave is assumed as a
plane wave, the coefficient 1(4AR) can be omitted for simplicity when it is calculated
on a computer. Therefore, Eq. (3.45) indicates that the real part of the object wave
can be calculated using I (0) and I (π). Similarly, using the three holograms, the
following equation can be obtained:

I (0) − 2I
(π

2

)
+ I (π) = i2OAR − i2O∗AR

= i2AR(O − O∗)
= −4ARIm[O].

(3.46)

Then,

Im[O] = − 1

4AR

[
I (0) − 2I

(π

2

)
+ I (π)

]
. (3.47)

Equation (3.47) indicates that the imaginary part of the object wave can be calculated
using I (0), I (π2), and I (π). Finally, O can be calculated by

O = 1

4AR

{
[I (0) − I (π)] − i

[
I (0) − 2I

(π

2

)
+ I (π)

]}
. (3.48)
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3.4 Single-Shot Phase-Shifting Digital Holography

Although phase-shifting digital holography can reconstruct the object wave without
the zeroth-order and conjugate waves, it requires the sequential recording of multi-
ple holograms for calculating the phase-shifting method. Therefore, it is difficult for
phase-shifting digital holography to record amoving object or dynamic phenomenon.
To overcome this problem, single-shot phase-shifting digital holography was pro-
posed [22–32]. There are some techniques to realize single-shot phase-shifting digital
holography. Here, a method using space-division multiplexing of holograms is con-
sidered [22, 23]. Figure 3.6 shows an optical setup for single-shot phase-shifting
digital holography using space-division multiplexing. A light wave from the optical
source is split into two paths by the polarization-beam splitter. One is introduced into
the object, and another is used as the reference wave. The object wave and reference
waves are combined by the polarization-beam combiner. After passing through the
quarter-wave plate in front of the image sensor, the two waves are introduced into
the image sensor plane, and interference fringes are recorded by the image sensor.
Here, the image sensor has a pixel-by-pixel micro-polarizer array (Fig. 3.6). This
micro-polarizer array can select four polarization axes of 0◦, 45◦, 90◦, and 135◦ for a
set of 2 × 2 pixels. Owing to the micro-polarizer array, an interference fringe pattern
that includes four pixel-by-pixel phase-shifted holograms can be recorded with a
single-shot exposure.

Let us consider the relationship between the polarizationdirections andphase-shift
values. Figure 3.7a shows the polarization states of the object and reference waves
in Fig. 3.6. After passing through the polarization-beam splitter, their polarization
states are linear and orthogonal. This orthogonality is kept after passing through the
polarization-beam combiner. The two waves with orthogonal linear polarization are
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micro-polarizer array

Quarter-
wave plate
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micro-polarizer array

Polarization-beam 
combiner

Object

Mirror

Laser
Beam expander

Fig. 3.6 Optical setup of single-shot phase-shifting digital holography
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Fig. 3.7 Phase shift using polarization. a Transition of polarization states of object and reference
waves. b Expression of circular polarization using two orthogonal linear polarizations. c Phase-
shifted holograms detected by the micro-polarizer array

introduced into the quarter-wave plate. Because the fast axis of the quarter-wave
plate is inclined to 45◦ relative to the polarization directions of the reference and
object waves, the polarization states of the two waves are converted into circular
polarization by the function of the quarter-wave plate. Their rotating directions are
opposite. This is because the polarization directions of the object and referencewaves
before passing through the quarter-wave plate are orthogonal. The object and refer-
ence waves with circular polarization are introduced into the image sensor with the
micro-polarizer array. Because the micro-polarizer array can independently detect
four linear polarization directions pixel by pixel, we consider circular polarizations as
combinations of two orthogonal linear polarizations, as shown in Fig. 3.7b. The hor-
izontal component of the polarization of the object wave has 90◦ retardation relative
to its vertical component. Conversely, the horizontal component of the polarization
of the reference wave has 270◦ retardation relative to its vertical component. Then,
if micro-polarizers with vertical (0◦) and horizontal (90◦) orientations are used to
detect the object and reference waves, holograms with 0◦ and 180◦ phase shifts,
respectively, can be recorded (Fig. 3.7c). Similarly, micro-polarizers with 45◦ and
135◦ orientations can record holograms with 90◦ and 270◦ phase shifts, respectively.
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Therefore, using the micro-polarizer array, an interference fringe pattern including
four pixel-by-pixel phase-shifted holograms can be recorded. Single-shot phase-
shifting digital holography can be realized by other optical setups: using the Talbot
effect (or self-imaging phenomenon), a reference wave with random phases, and a
reference wave with an inclined angle (corresponding to the off-axis setup).
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Part II
Introduction to Hardware

Part II consists of four chapters. Computer holography requires many computation-
ally time-consuming calculations of lightwaves. In computer holography, knowledge
of hardware accelerators that speed up these calculations is important. In Part II, an
overview of each hardware accelerator is given.



Chapter 4
Basic Knowledge of CPU Architecture
for High Performance

Takashige Sugie

Abstract In this chapter, we show the advantages and disadvantages of the pipeline
processing architecture. We also discuss the effects of instruction and program algo-
rithm on processing speed of the central processing unit (CPU). In order to increase
the computation speed of a CPU, it is important to know what functions the CPU
is equipped with for computation. On the basis of this, the mechanism of functions
related mainly to parallel processing is explained. We show that as the degree of par-
allel processing increases, the amount of data required per unit time also increases.
This implies that it is not enough to only process arithmetic instructions efficiently,
but it is also important to transfer data at high speed. Finally, we discuss different
memory types in which data are stored and the data structure suitable for the CPU.

4.1 Introduction

Broadly speaking, there exist two methods for speeding up numerical computations
on central processing units (CPUs). The first method involves a soft approach that
can help enhance CPU performance by improving computational algorithms. The
secondmethod is developing a program that canmaximize CPU’s peak performance.
When a CPU is working at its peak performance, all of its computing units are per-
forming valid computations. Therefore, for speeding up a CPU, we must understand
what functions are implemented in the CPU, and then ensure that all those functions
perform valid computations at all times. Moreover, the programs and data that make
up these functions can be rearranged into appropriate calculation procedures and
data formats, respectively, in such a way that the functions become easy to process.
Such a method can be called a hard approach to speeding up a CPU’s numerical
computations because it involves modifications suitable to the computer’s architec-
ture. This chapter introduces the basic knowledge of the CPU architecture needed to
implement the hard approach. Pipeline processing, parallel computer architecture,

T. Sugie (B)
Chiba University, 1-33 Yayoi-cho, Inege-ku, Chiba 263-8522, Japan
e-mail: myrhrk@gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
T. Shimobaba and T. Ito (eds.), Hardware Acceleration of Computational Holography,
https://doi.org/10.1007/978-981-99-1938-3_4

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-1938-3_4&domain=pdf
mailto:myrhrk@gmail.com
https://doi.org/10.1007/978-981-99-1938-3_4


48 T. Sugie

and cache memory architecture all affect the speedup of numerical calculations. This
chapter explains the CPU architecture to focus on these three points.

Pipeline processing is an essential technology for achieving high-speed pro-
cessing in CPUs. The scheduling of pipeline processing is very complicated, and
in certain situations, the desired speedup effect cannot be obtained. Fortunately, the
compiler optimization and the instruction scheduler inside CPUs have become highly
intelligent in recent years, and therefore we hardly need to design a program while
considering pipeline schedules. In the first place, this problem is so complex not to
be solved at the level of software programming. However, we prefer to know the
pipeline architecture because it is a technology that is adopted always in current
CPUs. Here, we elaborate on developing efficient programs that can realize high-
speed calculations in CPUs.

The CPU comprises multiple circuits that can execute program instructions. Gen-
erally only one of these circuits works unless we create a program that uses multiple
circuits. As the number of the circuits used in computers is increasing year by year,
it is important that we program on the premise of parallel processing.

The parallelization of circuits allows us to perform multiple calculations at once.
For performing calculations smoothly, all operands must have been prepared to the
arithmetic circuits. One downside of parallelization of circuits, however, is that the
supply of data cannot keep up with high calculation speeds. Therefore, considering
efficient data processing is critical for achieving peak CPU performance. As a coun-
termeasure against this problem, the CPU has a built-in high-speed memory device
called cache memory. Creating a data processing procedure that can use the cache
memory effectively is key for achieving speedup.

Certain concepts in this chapter are explained using the C programming language.
Furthermore, notation methods such as hexadecimal numbers, which follow the C
programming language format, are also used.

4.2 Pipeline Processing

4.2.1 Fundamentals of CPU Architecture

Before explaining pipeline processing, we describe the basic operation of the CPU.
The CPU is designed performing general-purpose calculations. Not all calculations
are implemented through the hardware. In fact, complex calculations are realized
by repeating simple operations. The basic functions that the CPU performs as hard-
ware are relatively simple. These are: four arithmetic operations, bit operations, and
data load/store [1]. For complex but frequently used mathematical formulas such as
trigonometric functions and square roots, specialized arithmetic circuits are imple-
mented [2].

When performing a calculation, operands are loaded into the memory called a
register. A register can only store about 64 bits in general. The register is the only
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memory that is closely connected to the arithmetic circuit, and it operates at the
highest speed. The number of mounted multi-purpose registers in recent CPUs is
about 16 [3], which is not a very high number. Current computers use dynamic
random access memories (DRAMs), which have a larger storage capacity than
registers, but their communication speed is relatively slow.

A program is a list of instructions in a pre-determined order. TheCPUuses various
advanced technologies to execute programs. Therefore the instruction processing is
highly complicated [4]. Instruction processing in CPUs can be roughly divided into
five steps:

(1) IF: Instruction Fetch First, the CPU fetches instructions from the systemmem-
ory (DRAMs).

(2) ID: Instruction Decode The CPU decodes the instruction to interpret what it
means.

(3) EX: Execution The CPU executes the instruction.
(4) MEM: Memory Read/Write If the instruction requires access to the system

memory, the CPU communicates with an external memory device (e.g., DRAMs
or Hard disk drives).

(5) WB: Write Back Finally, the result of the processing is written to the specified
register according to each instruction.

Types of instruction processing include numerical operations, data transfer, and
program flow control. Depending on the content of the instruction, not all of the
aforementioned steps are necessary.

4.2.2 Pipeline Architecture

When a control circuit of the CPU processes instructions sequentially, the execution
efficiency is poor because the next instruction cannot be processed until all steps of
the first instructions are completed. In general, we divide the processing into different
steps in such a way that each step can be executed independently. For example, for
this study, we prepare a controller specialized for fetching instructions in the IF step
and a controller that has only the function that can decode instructions in the ID
step. These controllers can operate independently in other steps as well. In this way,
if the control circuit of the IF step fetches the instruction from the system memory
and passes it to the ID step, the control circuit of the IF step can immediately start
fetching the next instruction. In the ID step, when the processing is taken over to the
appropriate step by the decoded instruction, the decoding of the next instruction can
start. The same applies to other steps. If instructions can be processed continuously,
each step has an intermediate state of the instruction processing, as shown in Fig.
4.1. If the processing time of each step is the same and instructions can be processed
continuously, we can obtain instruction-processing results at equal time intervals.
The biggest advantage is that the instruction-processing time becomes from 5 steps
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Fig. 4.1 Processing of instructions using the pipeline processing technology. It looks like that
processing of the instruction has the write back step only

to 1 step. In the last step (the WB step), the instruction has been processed until the
fourth step. Therefore, it looks like that the processing of the instruction has been
completed by 1 step. As each step is always ready for execution, the operation rate
of the circuit increases and execution efficiency improves. In other words, pipeline
processing is the method that involves dividing the problem into small pieces and
stacking their processing results. An individual piece is called a pipeline stage. The
number of divisions is called the pipeline depth. Moreover, the time taken to obtain
the final result in the pipeline architecture is called the pipeline delay. In Fig. 4.1,
the pipeline depth is 5. Due to the use of advanced technologies in current CPUs, the
number of divisions increases, and consequently the pipeline becomes deeper. The
pipeline depth of recent Intel CPUs is about 14 [5].

Pipeline processing is an indispensable technology for current computers. How-
ever, in practice, it is difficult to perform pipeline processing efficiently. First, there
is no guarantee that instructions can be continuously input into the pipeline. In addi-
tion, the circuit area is enlarged because the processing circuit cannot be simply
divided. Furthermore, the very structure of the pipeline gives rise to other problems
as described in the next paragraph.

Listing 4.1 is part of aCprogram that finds theminimumfrom the two-dimensional
array psi. The element of the two-dimensional array psi has an 8-bit integer type
with HEIGHT × WIDTH as the number of elements. Figure 4.2 shows how this
program is processed by the pipeline processing. The horizontal axis denotes time
and the vertical axis denotes the program flow. The values of the variables i, j, and
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Fig. 4.2 Image diagram of the pipeline bubble

WIDTH and the pointer to the two-dimensional array psi are assumed to be loaded
into registers. The second line of the program compares j and WIDTH. If it is true,
the for statement continues, and if false, it ends. If true, the CPU loads psi[i][j] to
check the condition of the if statement on the third line. The variable psi is a pointer
indicating the start address of a two-dimensional array. We need to calculate the
address of psi[i][j] by psi + (i × WIDTH + j). The calculation of i × WIDTH must
be completed in order to calculate (i × WIDTH) + j. In other words, the EX stage
of the (i × WIDTH) + j instruction can be processed only after the WB stage of
the i × WIDTH instruction is completed. In such a case, a process called NOP (No
Operation), which basically does nothing, is automatically inserted. Although the
NOP results in the intended processing, the original pipeline delay increases from 4
to 5. In the next load instruction, two NOP stages are inserted. The pipeline delay
becomes 7. Such a hazard is called a pipeline bubble. Even if there is no dependency
relationship between instructions, a pipeline bubble occurs. The same stage overlaps
at the same time by depending on the timing because different instructions require
different numbers of pipeline stages. In a conditional branch instruction or the like,
any one program is speculatively executed according to the conditional result. If the
result is not expected, all speculatively executed instructions are invalidated. Such a
hazard is called a pipeline stall. In a pipeline with multiple stages, a stall in a deep
stage can be a serious hazard.

Listing 4.1 Sample program that may cause pipeline stall

1 for (i = 0; i < HEIGHT; i++) {
2 for (j = 0; j < WIDTH; j++) {
3 if (psi[i][j] < psi_min) psi_min = psi[i][j];
4 }
5 }

Although the pipeline architecture is of high-speed processing performance, if
the pipeline processing flow is obstructed, the performance drops. One way to speed
up computations on the CPU is to design programs that can keep the pipeline pro-
cessing flow as smooth as possible. In the past, improvements could be made by
making adjustments such as rearranging instructions to minimize pipeline hazards.
At present, however, CPUs come with excellent compiler optimization, because of
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which there is no need to consider the pipeline flow while designing programs. The
CPU is highly parallelized and can execute the many programs in parallel. Compared
with the programs we design, compilers can design better, that is, more efficient and
safer programs. The scheduler in the current CPUs is also highly functional and can
change the order of instructions to some extent [6–8]. Therefore, we appropriate to
take the stance that we help the compiler to achieve its full performance. For example,
we can give optimization hints to the compiler.

Listing 4.2 is a program that counts the number of zero values from the two-
dimensional array psi. If the two-dimensional array psi is a dense matrix, the eval-
uation of the condition of the if statement is likely to be false. If we know that the
probability of branching is biased, we can give a hint to the compiler. We can use
the built-in function __builtin_expect [9] provided by the C language compiler of
the GCC (Gnu Compiler Collection) [10]. If we know the two-dimensional array
psi is sparse, we can hint to the compiler using __builtin as in Listing 4.3. How-
ever, in Listing 4.3 we cannot obtain the effect because the program is too simple.
We can also use __builtin_expect_with_probability [9] if we know the probability of
branching is biased. In the first place, wemay be able to substitute branch instructions
with arithmetic instructions. It is also important that we carefully consider whether
a branch instruction is really needed. Reducing branch instructions is helpful for the
compiler to work efficiently.

Listing 4.2 Sample program of counting the number of zero values

1 for (i = 0; i < HEIGHT; i++) {
2 for (j = 0; j < WIDTH; j++) {
3 if (psi[i][j] == 0) n++;
4 }
5 }

Listing 4.3 Sample program of counting the number of zero values using __builtin_expect

1 for (i = 0; i < HEIGHT; i++) {
2 for (j = 0; j < WIDTH; j++) {
3 if (__builtin_expect(psi[i][j] == 0, 0)) n++;
4 }
5 }

At the software programming stage, we basically do not have to consider the
pipeline processing of the instructions. The most appropriate way to deal with
pipeline hazards is to use the CPU’s compiler optimization and scheduler. However,
we should know that pipeline technology is used to process instructions. Because
it helps to understand other technologies such as atomic processing in parallel pro-
gramming. Being aware of the advantages and disadvantages of pipeline processing
can help us deepen our understanding of computers, and using it in a precise manner
can help us speed up CPU computation.
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4.2.3 Instruction Latency and Throughput

We consider the following two programs: Listing 4.4 and Listing 4.5. Because the
two instructions used in Listing 4.4 have no dependency on each other, both can
be executed simultaneously. Listing 4.5 cannot execute the next instruction without
completing the first instruction. The first line in the both lists is the same instruc-
tion. However, the instruction on the first line affects the instruction on the second
line differently. Regarding this difference, Intel defines two values for instructions:
latency and throughput [11]. Latency is the number of the clock cycles until the
contents of a instruction are completed, such as until the result of a trigonometric
function is obtained, or until the data is completely written to the system memory.
Throughput is the number of clock cycles required to wait before the pipeline
is free to accept the same instruction again. For example, if the operand is given to
the trigonometric function arithmetic circuit, other trigonometric function arithmetic
instructions can be started without waiting for the result. In Listing 4.4, the process-
ing of the instruction on the second line can start after the throughput time of the
instruction on the first line. In Listing 4.5, the processing of the instruction on the
second line must wait for the calculation result of the instruction on the first line.
That is, the processing of the instruction on the second line can start after the latency
of the instruction on the first line.

Listing 4.4 Two instructions are independent mutually

1 xaj = xa − xj;
2 yaj = ya − yj;

Listing 4.5 Second instruction can calculate to get the result of the first instruction

1 xaj = xa − xj;
2 xaj2 = xaj ∗ xaj;

To make calculations efficient, we need to build a program that ensures that as
many instructions as possible are processed with the throughput time. Depending on
the order in which the instructions are processed, latency can be hidden. Rather than
continuously executing instructions with high latency, concealment can be realized
by putting some instructions with low latency between instructions of high latency.
The thing we need to keep in mind is that there should be no dependency between
these instructions. For example, the CPU first processes the load instructions of data
used later. Next, the CPU executes other low-latency instructions unrelated to the
previous load instructions. In this way, data arrives in the registers while the CPU
processes the low-latency instructions. The processing speed increases because the
latency seems to approach the throughput. That said, as with pipeline processing,
compiler optimization in current CPUs can determine a better instruction order than
what we can. In other words, the performance improvement achieved by manually
changing the order of the instructions is rarely significant. Another issue with chang-
ing the order of the instructions manually is that it can make reading of the source
code difficult. Therefore, the order of the instructions should be left to the compiler.
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Considering whether we can replace high latency instructions with some low-latency
instructions is also one way.

4.3 Parallel Architecture

4.3.1 Single Instruction Multiple Data (SIMD) Architecture

It is a well-known fact that the processing performance of the CPU increases as the
clock frequency increases. Almost all computer circuits operate in synchronization
with the clock. Therefore, the computer performance is directly proportional to the
clock frequency. In fact, in the 1990s, to achieve higher speedups, clock frequency
of the computers was significantly increased. To maintain a high clock frequency,
the pipeline stage is further subdivided, which in turn creates a deeper pipeline.
For example, the CPU called Prescott made by Intel has 31 stages. In addition,
the increase in power consumption and heat generation becomes significant as the
frequency increases. With times, these became fatal problems and the increase in the
clock frequency in computers stagnated.

To address this problem, a method was developed to effectively utilize circuits
that perform meaningless operations. A so-called 32-bit CPU is equipped with 32-
bit registers. These registers could also be used for operations of short word lengths
(such as 8-bit operations). Figure 4.3 shows a simple addition operation of 8-bit data.
At this time, only the lower 8 bits are performing valid operations. The upper 24 bits
only perform 0 + 0 operations. Here, we assume that 32-bit data are composed of
four 8-bit data. Subsequently, we perform four operations with one instruction. Such
an operation can be realized using a special register that ignores the carry at the main
bit position that is the power of 2 such as 8-bit and 16-bit, as shown in Fig. 4.4.
This method is called saturation calculation. It is also called the single instruction
multiple data (SIMD) method because the CPU calculates multiple data using only
one instruction.

Intel’s SIMD technology continues to evolve to MMX, streaming SIMD exten-
sions (SSE), and advanced vector extensions (AVX). Currently, we can perform
saturation calculations using 512-bit SIMD instructions [12]. This means the ability

Fig. 4.3 Image diagram of
addition calculation of 8-bit
data using the 32-bit normal
register
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Fig. 4.4 Image diagram of
four addition calculations of
8-bit data using the 32-bit
SIMD register

to process 16 float-type calculations simultaneously. Therefore, we must design the
part of the program that deals with numerical calculations on the assumption that
SIMD is used.

4.3.2 Superscalar and Vector Processor

In Sect. 4.2.1, we explained that the CPU processes instructions in five steps. EX
in the third step processes arithmetic and logical operations in the execution unit
according to the instructions. For general-purpose calculations, the execution unit
has various types of calculator circuits. Normally, it processes the instructions one
by one in order. A processor that has one instruction pipeline and executes one basic
operation according to the instruction is called a scalar computer.

Independent operations, that is, operations with no dependencies between them,
can be processed in parallel, for example, calculating the distance between twopoints.
The formula for calculating the distance between two points (xα, yα) and (x j , y j )
is

√
(xα − x j )2 + (yα − y j )2. We can see that the terms x and y are not related.

Therefore, if there exist multiple execution units, they can be processed in parallel.
A processor with multiple execution units is called a superscalar computer. As
shown in red and green in Fig. 4.5, (xα − x j )

2 and (yα − y j )2 can be assigned to
different execution units. Hence, the instruction related to y can start processing
without waiting for the execution of the instruction related to x . The current CPU
has 8, 10, or 12 execution units [13–15].

In addition to a scalar processor, there also exist a vector processor. In the execu-
tion unit of the vector processor, arithmetic units are arranged according to a specific
mathematical expression. For example, the vector processor used for calculating the
distance between two points is shown in Fig. 4.6. The rounded rectangle of “sqrt” in
the figure is a square root operation. Since it is a circuit that can calculate only a spe-
cific mathematical formula, no instruction is required. In a vector processor, pipeline
processing is used in the arithmetic circuit, and the operands input directly. There-
fore, in vector processors, if the operands can be input continuously, the expected
calculation time is 1 clock. In such case, vector processors can calculate faster than
scalar processors.
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Fig. 4.5 Superscalar
processor with two execution
units

Fig. 4.6 Calculation
pipeline for finding the
distance between two points
in a vector processor

Takashige Sugie

The circuit of “sqrt” is actually a vector-type circuit in also scalar processors.
Intel CPUs have a latency of about 30 [16]. This means that these CPUs consist
of approximately 30 stages of pipeline. Even though the current general CPUs are
superscalar processor, it is highly parallelized, it’s not too wrong to say a vector
processor. The current CPUs achieve general-purpose computations by inheriting
scalar processors and use vector processors to improve computational performance
for algorithms with high computational costs. The current CPUs have a flexible
design that can calculate various mathematical formulas at high speed.
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4.3.3 Logical CPU

A superscalar CPU can process multiple instructions as long as the number of avail-
able execution units allows it. In a general program, it is difficult to always use all
execution units. Some programs may be able to assign valid instructions to all execu-
tion units, but it is a very specific algorithm. For example, a program that requires the
calculation result of the previous instruction, such as a recurrence formula, cannot
process instructions in parallel. In a memory-dependent algorithm, most execution
units may process NOP instructions described in Sect. 4.2.2 for a long time due to
multiple memory access instructions. In such a program, many execution units do
not perform valid operations. If a program different from the currently executing
program can be processed in the instruction pipeline, there is a possibility to assign
another instruction to an empty execution unit. For this purpose, the input port of
the instruction decoder is expanded so that two programs can be accepted. We can
virtually make it look like there are two CPUs. This technology is called Hyper-
Threading Technology [17] in Intel’s CPUs. Using two physical CPUs, we can
expect nearly double the performance. However, this technology cannot always give
such performance. Fortunately, computer-generated hologram (CGH) calculations
can slightly improve performance using logical CPUs.

4.3.4 Multi-Core CPU

Remarkable advancements have been made in the microfabrication technology, and
nowadays it is possible to develop a CPU with an extremely small process size of 2-
nm [18]. As the processor size decreases, more semiconductors and wiring, and thus
instruction-processing circuits, can be mounted in the same area. This, consequently,
increases CPU cache memory capacity and execution units.

A circuit part corresponding to a single CPU is called a “physical core” or simply
a “core”, and a CPU with four cores or more on a single chip is called multi-core
CPU or many-core CPU. When we take virtual CPUs such as the hyper-threading
technology into account, we use the term logical-core to prevent misunderstandings.
In the multi-core CPU shown in Fig. 4.7, there are four physical cores or eight logical
cores.Normally, an executionprogramcreated inC languagedoes not include parallel
processing. Therefore, even if we use a multi-core CPU, only a single-core is used.

All CPUcores, including logical cores,must be used to achieve high-speed numer-
ical calculations. The simplestway to achieve this is to run the program for the number
of CPU cores without using parallel processing. The operating system (OS) normally
used in computers these days is a multitasking OS. Using the multitasking OS, we
can runmultiple programs. In UNIX, a task is traditionally called a process. The shell
(e.g., bash, tcsh, or zsh) calls the child processes created by itself “job”, and manages
it. These were designed in the age of single-core CPUs and are not suitable for usage
that distributes the load in the program. Therefore, “thread” that was suitable parallel
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Fig. 4.7 Single-core CPU
with the hyper-threading
technology and a multi-core
CPU that has four physical
cores

distributed processing was developed. The thread is designed to reduce the overhead
required for parallel distributed processing.

One of themost common application program interfaces (API) formulti-threading
programming is pthreads (POSIX Threads). One of the well-known standard C
library, the GNU C Library (glibc) [20], includes NPTL (Native POSIX Thread
Library) [21] as pthreads. We can write a program that each thread directly can
access all variables in source codes at the time of programming. It happens that
multiple threads access the same variable at a given point in time. In such a case,
a function to protect the consistency of variables is also provided by pthreads. We
can also control the execution of the thread by some condition, and specify the CPU
core that executes the thread. However, it is difficult to program because executing
multiple programs simultaneously in parallel is a complicated task.

OpenMP [22] provides an excellent feature that helps parallel programming.Com-
pilers such as GCC [10] support OpenMP. There is no need to prepare a special
development environment for OpenMP. We only need to add one compiler option
(-fopenmp) to enable the compiler’s OpenMP processing. The OpenMP header file is
included in the source code, and a parallelization method that uses the pragma direc-
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tive in the part we want to parallel is used. Furthermore, OpenMP supports SIMD
parallelization, through which OpenMP manages all controls of load balancing in
multi-core CPUs and parallel processing.

4.4 Memory Architecture

4.4.1 Continuity of Data

The CPU always performs calculations while communicating with the system mem-
ory to compensate for the small memory capacity of the registers. If communication
with the system memory is interrupted, the processing speed of the CPU is signifi-
cantly affected. For example, Intel Core X-Series processor has four channels to the
system memory [23]. This processor can request different communications for the
four memory modules. In other words, we can expect up to four times the commu-
nication speed of a single memory module using the Intel Core X-Series processor.
In this way, the CPU and the system memory are connected by a dedicated high-
speed communication path.However, achieving peak performance is impossiblewith
inefficient processing. Inefficient processing is a discontinuous access that accesses
distant addresses. Therefore, it is important to pay attention to whether discontinuous
access is occurring, and try to prevent it from happening as much as possible.

Even if we write a program that intends to access data continuously, there is
actually a rudimentary misunderstanding that it is discontinuous access. Listings 4.6
and 4.7 involve finding themaximumandminimumvalues from the two-dimensional
array psiwithWIDTH×HEIGHTelements. Both programs use the variables h andw
as loop counters. Since these variables increase one byone, the two-dimensional array
psi is continuously referenced. The difference is whether they access sequentially to
the column direction or to the row direction. Figures 4.8 and 4.9 are image diagrams
of column- and row-major order access. The square block shows the elements of the
two-dimensional array psi. The red arrow indicates the access order. Access starts
from psi[0][0]. Both appear to be correct, but the problem arises when we consider
howmulti-dimensional arrays are allocated inmemory. TheCPUmanages data using
addresses. Since the address is basically comprised of one integer value, the data are

Fig. 4.8 Image diagram of
Listing 4.6 (column-major
order access)
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Fig. 4.9 Image diagram of
Listing 4.7 (row-major order
access)

managed in a one-dimensional array. A multi-dimensional array in a program is in
reality a very long one-dimensional array.

Listing 4.6 Access program example to the column direction.

1 void loop_column(int (∗psi)[WIDTH])
2 {
3 int w, h, max = INT32_MIN, min = INT32_MAX;
4 struct timespec start_time, diff_time;
5

6 stopwatch_get_time(&start_time);
7 for (w = 0; w < WIDTH; w++) { // difference from Listing 4.7
8 for (h = 0; h < HEIGHT; h++) { // difference from Listing 4.7
9 if (psi[h][w] < min) min = psi[h][w];
10 if (max < psi[h][w]) max = psi[h][w];
11 }
12 }
13 stopwatch_diff_from(&start_time, &diff_time);
14 printf("[%-16s] %’ld.%09ld sec. (min: %d) (max: %d)\n", "loop 

column", diff_time.tv_sec, diff_time.tv_nsec, min, max);
15 }

Listing 4.7 Access program example to the row direction.

1 void loop_row(int (∗psi)[WIDTH])
2 {
3 int w, h, max = INT32_MIN, min = INT32_MAX;
4 struct timespec start_time, diff_time;
5

6 stopwatch_get_time(&start_time);
7 for (h = 0; h < HEIGHT; h++) { // difference from Listing 4.6
8 for (w = 0; w < WIDTH; w++) { // difference from Listing 4.6
9 if (psi[h][w] < min) min = psi[h][w];
10 if (max < psi[h][w]) max = psi[h][w];
11 }
12 }
13 stopwatch_diff_from(&start_time, &diff_time);
14 printf("[%-16s] %’ld.%09ld sec. (min: %d) (max: %d)\n", "loop row

", diff_time.tv_sec, diff_time.tv_nsec, min, max);
15 }

Figure 4.10 is a representation of Fig. 4.8 as a one-dimensional array. The variable
psi is a pointer indicating the starting address of its own array. There are data in the
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Fig. 4.10 Image diagram of
the column-major order
access on the memory space

Fig. 4.11 Image diagram of
the row-major order access
on the memory space

order of psi[0][0], psi[0][1], psi[0][2], ..., psi[0][w] from the position indicated by
the variable psi. Next data is followed by psi[1][0], psi[1][1], psi[1][2], ..., psi[1][w]
corresponding to the second row of the two-dimensional array. Hence, the program
in Listing 4.6 accesses data of the two-dimensional array psi in the order shown
by the red line in Fig. 4.10. Access to the column direction is discontinuous access
in the memory even if the index is continuous. The CPU regenerates the address
and issues a memory access instruction each time variable h changes. The overhead
for communication increases, and the access speed to the two-dimensional array psi
decreases.

Figure 4.11 shows the access in the row direction, that is, access in the order of
the one-dimensional array. If the data to be accessed are continuous, the CPU uses
a communication method called burst transfer to communicate with the system
memory. The burst transfer can read and write several consecutive data from a spec-
ified address. Some CPUs support 8-cycle burst transfer [24]. The CPU can transfer
at higher speeds than when communicating while always distant addresses such as
Listing 4.6.

Data continuity also affects the performance of SIMD processing. Operands
used in SIMD instructions are packed multiple data. Therefore, the instructions
calledgather-scatter,which create packeddata bygatheringdata fromdiscontinuous
addresses and scatter the packed data to discontinuous addresses, are implemented.
Although gather-scatter instructions can access discontinuous data efficiently, we
can perform more high-speed processing by arranging data sequentially in the order
in which they are used and by accessing them in that order. We should design the
data structure suitable for the memory architecture.
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4.4.2 Cache Hierarchy

Due to advances in microfabrication technology, general CPUs are equipped with
multiple circuits called cores that correspond to the functions of a single CPU. Some
AMD CPUs have up to 64 cores [25]. Even though such a large-scale circuit is
implemented, the circuits of the CPU chip are not filled with the core alone. A
faster memory than the system memory called the cache memory is implemented.
Installing a cache memory between the low-speed system memory and the register
that operates at the highest speed reduces the performance difference between the
two.When the CPU saves data from the register, the CPU only needs to write the data
to the cache memory. The writing is completed in a much shorter time than writing to
the system memory. The cache memory controller sends data to the system memory
at an appropriate time. When data are loaded into a register, it can be retrieved
immediately if the data exist in the cache memory. In this way, the CPU does not
necessarily need to access the system memory.

The cache memory has a three-level hierarchical structure. As an example,
Fig. 4.12 shows a block diagram of Skylake architecture. A separate cache memory
for instructions and data is provided in the core so that it can quickly send instruction
to the pipeline and data to the registers. The capacity of these cache memories is 32
KiB and is called the first cache (L1: Level.1). Next, a mid-level cache (L2: Level.2)
is connected, which can store 1 MiB mixture of instructions and data used in the
CPU core. Furthermore, the low-level cache (L3: Level.3) shared by multiple CPU

Fig. 4.12 Cache hierarchy of sixth-generation Intel core X-series processor families
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cores follows, followed by the system memory. In Linux [19], we can confirm the
cache memory size using the command “lscpu”.

While the cache memory can transfer data faster as it gets closer to the execution
unit, it has the trade-off, namely, that the storage capacity decreases. The latency
of the L1 cache is 4–6 clocks [26]. Access to the L2 cache takes 2–3 times longer
compared with the L1 cache. The L3 cache takes 4–5 times longer compared with
the L2 cache, and it has 8–15 times higher latency than the L1 cache. One of the
important points of speeding up is whether or not we can write a program that the
operands necessary for the processing of the instruction exist in a low-level cache
memory.

Algorithms that access addresses that change discontinuously one after another
in a wide space exceeding the cache memory size are not recommended. Since the
probability of existing the data in the cachememory is extremely low, communication
with the systemmemory occurs, and the cache memory does not function effectively.
The matrix computation algorithm, which is highly memory dependent and cannot
access addresses continuously, is an example of such an algorithm. Therefore, a
technique called cache blocking is often used to increase the cache hit rate. The cache
blocking technique does not deal with a big program as it is, and performs processing
in small programs wherein the amount of data required for calculation is less than
the cache memory size. In the case of CGH calculation, instead of calculation using
all object points simultaneously, object points are divided into smaller sets within
the cache memory size. When using this method, it is important to pay attention to
the cache level. As mentioned earlier, the cache memory has different levels that
have different properties. For example, the L2 cache is dedicated to the CPU core,
and the L3 cache is common to multiple CPU cores. Furthermore, it is important to
understand the characteristics of data, that is, whether the data are used only by a
specific CPU core or referenced by multiple CPU cores. For algorithms where there
is no common data, we divide the data using the L2 + L3 cache size as the cache size
per CPU core [27].

A multi-core CPU requires large volumes of operand data to execute instructions.
The number of instructions and operands is multiplied by the number of cores, and
using SIMD computations increases the operand size per instruction. Therefore, it is
very important to design cache efficiency well for CPUs that are heavily dependent
on system memory.

4.4.3 Cache Line

Here we consider a case where an instruction that uses one float-type variable is
executed. Since the float type is 32 bits, 4 bytes are loaded from the system memory
into the register through the cache memory. In reality, only 4 bytes are not loaded
from the system memory at this time. The cache memory manages data in a unit
called cache line, and the size of the minimum data that is loaded is equal to the
size of the cache line. In recent CPUs, it is 64 bytes. In Linux, the cache line size
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is described in /sys/devices/system/cpu/cpu0/cache/index0/coherency_line_size. In
other words, a 64-byte communication always occurs for data access of 64 bytes or
less. At first glance, it may seem like a disadvantage, but there is greater merit by
arranging the data in the order used by the program.

The problem occurs when the program has a calculation that requires more than
contiguous 64 bytes of data. For example, if all the float-type variables used in the
calculation are arranged at positions separated by 64 bytes or more, the communi-
cation amount is 16 times in the worst case. If there are many types of variables
necessary for the calculation, there is a possibility that the data loaded at the begin-
ning is deleted from the cache memory. If there is another variable to be used in
the deleted cache line, the same cache line data must be loaded again, increasing
unnecessary load.

Therefore, it is critical to design the data format by considering the boundary of
the cache line and the order in which the data are used, rather than arranging the data
randomly. In general, data optimization for the cache line is sometimes discussed.
Fortunately, in CGH calculations, we can easily determine by using the calculation
that continuously uses the coordinate data of the object. Section 9.2.3 describes the
detail.
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Chapter 5
Basics of CUDA

Minoru Oikawa

Abstract Graphics processing units (GPU) were originally developed to perform
calculations related to graphics; however, GPUs are widely used to process scientific
and technical calculations because they realize performance in highly parallel com-
puting. NVIDIA’s programming environment includes the compute unified device
architecture (CUDA), which is a programming model that applies GPUs for gen-
eral calculations. This chapter introduces the CUDA programming model and basic
usage through sample programs.

5.1 Evolution of GPUs

In the late 2010s, in addition to general-purpose central processing units (CPU),
GPUs were widely introduced in many consumer products, e.g., mobile phones,
personal computers (PC), and video game consoles. A GPU is frequently mounted
as an independent device; however, GPUs can be found on motherboards or may
be integrated in the same package as a CPU. GPUs have been widely applied for
image processing and general calculations due to their highly parallel processing
performance,which is realized by the compute unifieddevice architecture (CUDA)
and various software libraries. Understanding how graphics processors came to be
applied to scientific and engineering computing will help us understand CUDA.

The term GPU was first announced publicly in 1999 by NVIDIA. A GPU is a
high-performance graphic accelerator chipwith hardware 3D rendering functions but
programmable features yet. The challenge of accelerating graphics drawing functions
using special hardware goes back to the 1970s. Prior to the emergence of GPUs, such
technology was referred to as “video display processors” or “graphics accelerators”.
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Many modern computer display devices comprise a two-dimensional array of
color point light sources called pixels. If each pixel can display 256 gradations of red,
green, and blue (RGB), 3 bytes per pixel of data is required.A full high-definition (full
HD) display has a resolution of 1,980 × 1,080 pixels; thus, the amount of data for a
full color image displayed in full screen is approximately 6MB (= 1,920 × 1,080 ×
3). The display pattern of a graphical user interface (GUI) is updated instantly by
operating of a keyboard, mouse, or other input devices. To make this function appear
to run smoothly, it is necessary to update display pattern at a frequency of 30 times
or more per second. As a result, the computer must update the display data up to 180
MB(= 6MB × 30) per second while calculating the pattern to display.

Updating display data continuously in real time is not so light task that can be
neglected to burden the CPU running many other programs. Updating the display
pattern on the screen is a limited (but a large amount) operation of functions, e.g.,
painting specific areas and drawing lines. Therefore, it is more efficient to offload
these tasks from the CPU to a dedicated processing module. Thus, in the 1980s, 2D
graphic accelerators were developed to speeds up planar graphics processing on PC.

In the same period, in terms of professional computing, Silicon Graphics, Inc.
(SGI) announced many high-performance computers that focused on 3D graphics
processing. To project 3D objects comprising many polygons on a 2D screen, a
huge number of calculations are required for coordinate transformation, light scat-
tering and reflection, texture mapping, etc. SGI made a significant contribution to the
computer graphics field in terms of both hardware and software. For example, SGI
developed a very large-scale integrated circuit chip dedicated to intensive graphics
processing required for 3D graphics, and these chips were incorporated by them into
their own computers, which were sold at high numbers. SGI also developed a high-
performance graphics software library IRIS GL (integrated raster imaging system
graphics library), which was later renamed OpenGL. OpenGL subsequently became
a de facto standard graphics library.

In the 1990s, graphics-related functions and performance on PCs saw great
progress. While GUIs began to increase in popularity, the resolution of display
devices also increased higher; thus, more computational capacity was required for
graphics processing. As a result of the standardization of OpenGL including the
graphic interface API, graphics accelerator chips that were compatible with OpenGL
could be developed by manufactures. Microsoft announced Direct3D API in 1996,
which was a component ofMicrosoft’s DirectXAPIs, as its own 3D graphic interface
for their Windows operating systems. Around this time, real-time 3D arcade games
thatmade heavy use of polygons emerged, and the demand for such 3D games on PCs
increased. Many manufacturers competed to provide faster graphic chips to accel-
erate 3D graphics functions. As a result, various manufacturers announced video
cards with 3D accelerator functions for the PC market that were compliant with the
standardized Direct3D or OpenGL. NVIDIA, which was founded in 1993, released
a series of 3D graphics accelerator chips (at this time, these chips were not referred
to as GPUs). The first graphics accelerator chip1 from NVIDIA to be referred to as

1 The product was called the GeForce256.
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a GPU was released in 1999, and this chip had excellent features and demonstrated
good performance at the time.

Early GPUs or graphics accelerators showed high performance; however, they
were designed to execute predetermined graphics data processing, which is now
referred to as a fixed-function graphics pipeline or fixed-function shader. While
new graphics rendering algorithms or techniques were devised, it is inefficient for
manufacturers to release newGPUs that support on hardware one by one. Eventually,
a flexible feature was developed that allowed users to program a part of the graphics
pipeline functions, which are referred to as programmable shaders. Programmable
shaders are described using a special-purpose language called shading language,
e.g., GLSL, HLSL, and Cg.2 The programmable functions were used to describe
graphics data processing; however, the computing power based on the massively
parallel architecture of the GPU was attractive for researchers who required high
computational capability at the time. They demonstrated that it is possible to execute
scientific and technological calculations efficiently using GPUs and their graphics
library interfaces. However, it was not easy to use for general-purpose programming.

5.2 Introduction to CUDA

In the 2000s, the fixed-function shader function was nearly replaced by the pro-
grammable shader. A GPU that realizes a programmable shader function should
have a large number of small processor cores to process many polygons and pixels
instantaneously and to support various types of shading functions. Gradually, many
researchers used GPUs to process scientific and technical computing; however, since
this was only possible by using the shader language created for graphics processing,
it was not so easy to use environment. An environment in which the high computing
power of the GPU could be used easily for general purposes was required. Thus, the
CUDA development environment was announced by NVIDIA in 2006 in response
to these demands.

CUDA is a general-purpose parallel computing platform, and its programming
interface model on CUDA-capable GPUs was developed by the NVIDIA Corpora-
tion. The CUDA development environment is referred to as the CUDA toolkit, and
it is freely available from NVIDIA’s website [1]. The CUDA toolkit includes a com-
piler, math libraries, debuggers, profilers, and many sample programs. Essentially,
the description syntax of CUDA is designed as an extension of C/C++. Since its
first release in 2007, newer versions with new features are released each year; thus,
CUDA supports many features.

2 GLSL (OpenGL shading language) is part of OpenGL 2.0 (1992); HLSL (high-level shading
language) is used with Direct3D 9.0 (2002); Cg(C for graphics) was released by NIVDIA in 2003.
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5.3 Setting Up the CUDA Environment

Many versions of the CUDA toolkit [1] have been released by NVIDIA, and version
11.3.1was released in 2021, as shown in Fig. 5.1.Generally, all versions of theCUDA
toolkit support the Linux,Windows, Mac OSX (may not be supported by a particular
version) operating systems. The basic installation procedure [3] is generally the same
for any OS. First, the OS-specific installer must be downloaded from the NVIDIA
site [1], and then the installer is executed. Detailed installation instructions [4–6] are
provided by NVIDIA for each OS; thus, we omit this information here. However,
we provide some general information in the following.

First, to install the CUDA toolkit, a CUDA-capable NVIDIA GPU must be
installed. The CUDA toolkit can even be installed on mobile PCs as long as the
GPU is made by NVIDIA. Unfortunately, the CUDA toolkit may not be compatible
with low-cost or very old computers. Thus, it is necessary to check the hardware con-
figuration of the target computer. CUDA-capable GPUs may be called “GeForce”,
“Quadro”, “TITAN”, or “Tesla” [2].

Fig. 5.1 CUDA toolkit download site [1]
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Table 5.1 CUDA toolkit version, GPU product name, and other environments used in this chapter

CUDA toolkit version 9.2 (released in 2018)

GPU product name NVIDIA GeForce 1050Ti (Compute capability 6.1) CUDA cores: 768

Operation system Linux Ubuntu 16.04 LTS (64-bit version)

C/C++ Compiler GNU Compiler Collection (GCC) version 5.4.0

Second, the OS environment must be prepared appropriately. For example, for
Windows or Mac OSX, the version of the OS should be determined. If you are
running a Linux OS, the distribution name should be identified. The installation
procedure varies depending on the OS and its version; thus, users should refer to the
NVIDIA site for the procedure that matches the target environment.

Third, the C/C++ language development environment must be installed. Here,
Microsoft Visual Studio, Xcode, and GNU Compiler Collection must be installed
for Windows, Mac OSX, and Linux, respectively, prior to setting up the CUDA
environment.

The CUDA installer can be executed once the above hardware and software
requirements have been satisfied. Table 5.1 shows the computer environment we
have used to run the sample programs discussed in the following.

After the installation is complete, we must confirm that the CUDA compiler can
be used from the console by running the “nvcc” command as shown in Listing5.1. If
the installationwas completed correctly, the version information of the CUDA toolkit
should be displayed. If another message, e.g., “Command not found” is displayed,
the installation was not completed as required; thus, the user should review the
installation procedure.

Listing 5.1 nvcc command

1 $ nvcc --version
2 nvcc: NVIDIA (R) Cuda compiler driver
3 Copyright (c) 2005-2018 NVIDIA Corporation
4 Built on Tue_Jun_12_23:07:04_CDT_2018
5 Cuda compilation tools, release 9.2, V9.2.148

5.4 Hello World

Here, we explain the programming method of CUDA through some examples. List-
ing5.2 shows the first CUDA sample code, which displays “Hello world” on the
screen. While the original version in standard C language was intended to be exe-
cuted by the CPU, this first program is executed by the GPU. This short program
only involves a few lines; however, it includes important concepts of the CUDA
programming model.
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Listing 5.2 Sample program “hello.cu”, which print messages with thread index numbers

1 #include <cuda_runtime.h>
2 #include <stdio.h>
3

4 __global__ void hello() //This funtion is executed by GPU.
5 {
6 printf("Hello world, block(%d,%d,%d),thread(%d,%d,%d).\n",
7 blockIdx.x, blockIdx.y, blockIdx.z, threadIdx.x, threadIdx.y, threadIdx.z);
8 }
9 int main()
10 {
11 dim3 grid(2,1,1); //define "grid" size for folloing hello().
12 dim3 block(3,1,1); //define "block" size for following hello().
13 hello <<<grid, block>>> ( ); // launch kernel function.
14 cudaDeviceSynchronize( ); // wait for completion of hello().
15 return 0;
16 }

The CUDA source code comprises two parts. The first common part is executed
by the CPU, which is referred to as the host code, and the other part executed by the
GPU, which is referred to as the device code. The host code is written in standard
C/C++ (lines 9–16 in Listing5.2). The device code is defined as functions that have a
“__global__” declaration specifier at the front of its function name (line 4). Functions
defined with “__global__” are referred to as kernel functions. A kernel function is
device code that can only be invoked from the host code.

Figure 5.2 shows a schematic diagram of a typical hardware architecture, which
illustrates the relationship between a CPU andGPU. Both have independent memory
devices (DRAM) and are connected via a high-speed PCI Express interconnection.

 CPU GPU

Graphics cardMother board

Interconnect

DRAM DRAM

(PCIe)

- Execute the “host” code

- Launch the “device” code

- Execute the “device” code:

 __global__ func( )

Fig. 5.2 Architecture of CPU and GPU
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GPUs have simpler but many more processor cores than CPUs. By running many
processor cores in parallel, the overall computational speed of a GPU is superior.
Here, the host code is executed sequentially on the CPU, and the GPU code is
executed in parallel on the GPU (Fig. 5.2). Therefore, it is necessary to specify how
many threads are to be executed in parallel for the device code executed on the GPU
(lines 11–13 in Listing5.2). Note that two variables of “dim3” type can be seen in
this region, i.e., “grid(2,1,1)” and “block(3,1,1)”, and these variables are explained
in the following.

5.4.1 CUDA Thread Construction

Figure 5.3 shows the thread configuration of the device code in the CUDA pro-
gramming model. The CUDA threads model is defined hierarchically in two levels.
Here, a “grid” is the highest level of the hierarchy, and a grid comprises multi-
ple “thread blocks” (or simply referred to as a block). The thread blocks comprise
multiple CUDA threads, which are represented as a single cube. The grid and thread
blocks can be configured using one-dimensional (x), two-dimensional (x, y), or three-
dimensional (x, y, z) indexes. For example, in the “hello world” program (Listing
5.2), the grid has a one-dimensional array of size two and the thread block has a one-
dimensional array of size three. Therefore, a total of six CUDA threads are launched
in parallel.

At line 13 in the program above, we launch the kernel functions which have six
CUDA threads from the host code. Here, we observe the “<<<grid, block>>>”
description between the device function name “hello” and its parameters list “( )”.
These constructs are not used in typically C/C++ language but are a part of the CUDA

 “thread”

    “block” =               threads

“grid” =              blocks

x = 2

y = 3

z = 2

x = 4

y = 4 z = 4

Fig. 5.3 Hierarchical CUDA thread construction
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extension syntax. The first parameter inside the triple angle brackets “<<<...>>>”
determines the dimensionof the grid, and the secondparameter determines the dimen-
sion of the thread block. On the right side of these, the parameters to be passed to
the kernel function “hello()” are described in the same manner as ordinary C/C++.

5.4.2 Kernel Function

Here, we describe the kernel function that is the device code. In the hello() kernel
function in Listing5.2, we find the only “printf(...)”, which outputs a message to
the screen using the GPU. As described previously, the hello() kernel function is
executed in six parallel CUDA threads comprising the grid and thread blocks. As a
result, the hello worldmessage is output six times because all parallel threads execute
the same kernel function “hello()”.

Each CUDA thread (Fig. 5.3) has its own unique thread ID, i.e., the “threadIdx”
variables in following lines (Listing5.3).

Listing 5.3 Inside the kernel function in “hello.cu”

6 printf("Hello world: block(%d,%d,%d),thread(%d,%d,%d).\n",
7 blockIdx.x, blockIdx.y, blockIdx.z, threadIdx.x, threadIdx.y, threadIdx.z);

Here, the variable type of the threadIdx is “dim3”; thus, we can access threa-
dIdx using three predefined variables, i.e., “threadIdx.x”, “threadIdx.y”, and “threa-
dIdx.z”. By using these variables with the unique values for each CUDA thread, the
same device code and different calculations can be executed. As a result, the ker-
nel function “hello()” runs on six parallel CUDA threads, each outputting a “Hello
world” message and a three-dimensional number pair representing each thread ID.

5.4.3 Compilation and Execution

Now that we have introduced the basics of the CUDA programming model and
syntax, we can actually execute it. Note that CUDA source code should have the
“.cu” file extension to distinguish it from normal C/C++ source code. Please save the
source code shown in Listing5.2 with the filename “hello.cu”. The CUDA source
file can be compiled using the CUDA compiler “nvcc” from the command line as
follows (Listing 5.4).

Listing 5.4 Compilation, execution and result of “hello.cu”

1 $ nvcc -o hello hello.cu
2 $ ./hello
3 Hello world: block(1,0,0), thread(0,0,0).
4 Hello world: block(1,0,0), thread(1,0,0).
5 Hello world: block(1,0,0), thread(2,0,0).
6 Hello world: block(0,0,0), thread(0,0,0).
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7 Hello world: block(0,0,0), thread(1,0,0).
8 Hello world: block(0,0,0), thread(2,0,0).

Once executed, you should see the six “hello...” messages, i.e., the output of the
six parallel CUDA threads. Here, we explain the timing chart to execute the host code
and device code. The CUDA threads and host thread(s) are executed asynchronously
with each other (Fig. 5.4); therefore, it is necessary to wait for the CUDA thread
to finish before terminating the host thread. These two threads are synchronized by
calling the “cudaDeviceSynchronize()” function (line 14, Listing5.2).

5.5 Parallel Addition of Vectors

The second example program performs addition of two vectors on a GPU, as shown
in Fig. 5.5. Listing5.5 shows part of the source code in standard C language. Here,
the result of adding two vectors a and b with four elements each is stored in vector
s. The vectors are stored in a standard array. In the sequential programming method,

 CPU

GPU

time

block(0,0,0)

block(1,0,0)

thread(0,0,0)
thread(1,0,0)
thread(2,0,0)

thread(0,0,0)
thread(1,0,0)
thread(2,0,0)

(1) launch
(2) continue

without waiting

}

}
(3)cudaDeviceSynchronize( )

(program ends)(program begins)

grid}

host thread

Fig. 5.4 Timing chart of each CPU/GPU threads execution

vector a[ ]

a[0]

a[1]

a[3]

a[2]

b[0]

b[1]

b[3]

b[2]

s[0]

s[1]

s[2]

s[3]

+

vector b[ ] vector s[ ]

=
CUDA threadIdx(0,0,0)

CUDA threadIdx(1,0,0)

CUDA threadIdx(2,0,0)

CUDA threadIdx(3,0,0)

 (  () ) )  ( 
Fig. 5.5 Vector addition
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its addition of the number of elements is generally performed sequentially using a
loop syntax, e.g., “for” or “while”.

Listing 5.5 Sequential version for additon of vectors code on a CPU

1 int a[4]={1, 2, 3, 4};
2 int b[4]={10, 20, 30, 40};
3 int s[4];
4 for (int k=1; k<4; k++) s[k]=a[k]+b[k]; //Add one by one sequentially.

Listing5.6 shows the CUDA version of Listing5.5 for parallel addition on a GPU.
Here, like a typicalCUDAprogrammingmethod, addition of each element is assigned
to the CUDA thread to perform parallel computation (Fig. 5.5, right). This process
is described in detail in the following.

Listing 5.6 Sample program “vector.cu”, which add each elements in parallel

1 #include <cuda_runtime.h>
2 #include <stdio.h>
3 const int L = 4; // Length of vector.
4

5 __global__ void AddVector(int ∗a, int ∗b, int ∗c)
6 {
7 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
8 }
9 int main()
10 {
11 int host_a[L] = { 1, 2, 3, 4};
12 int host_b[L] = {10, 20, 30, 40};
13 int host_s[L] = { 0, 0, 0, 0};
14 int ∗dev_a, ∗dev_b, ∗dev_s;
15 // Allocate memory in GPU address space.
16 cudaMalloc(&dev_a, sizeof(int)∗L);
17 cudaMalloc(&dev_b, sizeof(int)∗L);
18 cudaMalloc(&dev_s, sizeof(int)∗L);
19 // Transfer data to be calculated by GPU.
20 cudaMemcpy(dev_a, host_a, sizeof(int)∗L, cudaMemcpyHostToDevice);
21 cudaMemcpy(dev_b, host_b, sizeof(int)∗L, cudaMemcpyHostToDevice);
22 // Invoke GPU threads.
23 dim3 grid(1,1,1);
24 dim3 block(L,1,1);
25 AddVector<<<grid,block>>>(dev_a, dev_b, dev_s);
26 // Transfer the results from GPU address space.
27 cudaMemcpy(host_s, dev_s, sizeof(int)∗L, cudaMemcpyDeviceToHost);
28 // Print the results.
29 printf("host_s[%d]={%2d, %2d, %2d, %2d}\n", L, host_s[0], host_s[1], host_s

[2], host_s[3]);
30 // Discard the allcated memory.
31 cudaFree(dev_a);
32 cudaFree(dev_b);
33 cudaFree(dev_s);
34

35 return 0;
36 }
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 CPU GPU
Interconnect

DRAM DRAM

(PCIe)

host_a[ ]={ 1, 2, 3, 4}

host_b[ ]={10,20,30,40}

host_s[ ]={ 0, 0, 0, 0}

*dev_a

*dev_b

*dev_s

{ x, x, x, x}

{ x, x, x, x}

{ x, x, x, x}

{ x, x, x, x}

{ x, x x, x}

- Allocated by “cudaMalloc( )”

- Transfered by “cudaMemcpy( )”

Fig. 5.6 Variables allocation at host and device

5.5.1 Data and Memory Management on GPU

As shown in Fig. 5.2, the memory spaces on the GPU and CPU sides are generally
not shared, which mean that CUDA threads cannot directly access CPU address
space (and vice versa). In other words, variables used by a CUDA thread must be
allocated explicitly in GPU memory space.3 For the data used on the GPU side, the
programmer must clearly instruct the description that allocates the data area and then
transfers the data from the host side, as shown in Fig. 5.6.

Typical functions that allocate and release memory on the GPU side include “cud-
aMalloc()” and “cudaFree()”, which correspond to the malloc() and free() functions
that perform equivalent processing on the host side, respectively. Similarly, the func-
tion to transfer data to the area allocated on the GPU side is “cudaMemcpy()”, and
this corresponds to memcpy(), which performs equivalent processing on the host
side. Therefore, we must write code to explicitly allocate and transfer the data (all
four elements of vectors a and b) between the CPU and GPU prior to executing the
kernel function at line 25 in Listing5.6.

3 Using the Unified Memory functions allows us to make it as if virtually shared introduced at the
chapter “Unified Memory Programming” in CUDA document [8].
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5.5.2 Performing Different Calculations on CUDA Threads

TheCUDA thread can be executed once the data required to perform parallel comput-
ing on the GPU are prepared. Here, the four elements of the vector are calculated by
four threads; thus, it is appropriate to configure the CUDA thread to begin with one
grid and four blocks (lines 23 and 24 in Listing5.6). Then, pass the memory address
where the data of the vector element to be calculated is stored to the CUDA thread
as a parameter, and start the kernel function “AddVector()” (line 25). After execution
of the kernel function is completed, the vector calculation result is copied from GPU
memory space to hostmemory space using cudaMemcpy(), and the result is shown on
the screen (line 29). Here, it is necessary to synchronize all CUDA threads using the
cudaDeviceSynchronize() function (Sect. 5.4); however, that is performed implicitly
when copying to the host memory space using the cudaMemcpy() function.

Listing 5.7 Compilation, execution and result of “vector.cu”

1 $nvcc -o vector vector.cu
2 $./vector
3 host_s[4]={11, 22, 33, 44}

Listing5.7 shows the compile command and execution result. While vectors a =
{1, 2, 3, 4} and b = {10, 20, 30, 40} are defined at lines 11 and 12, respectively,
in Listing5.6, the expected result is s = {(1 + 10), (2 + 20), (3 + 30), (4 + 40)},
which are the same as the execution result.

5.6 Parallel Reduction

The third example program deals with the parallelized computation of the sum of
integers series ak of length N , which is expressed in Eq. (5.1).

S =
N∑

k=1

ak = (a1 + a2 + · · · + aN) (5.1)

Listing 5.8 Sequential version of reduction code

1 int S = 0; //Initialize result S by zero.
2 for (int k=1; k<=N; k++) S += a[k]; //Add one by one sequentially.

This is generally referred to as a reduction algorithm that obtains a single result
by performing operations on multiple elements. It is not so difficult to describe code
snippet of this operation by a sequential algorithm shown in Listing5.8.

The parallelized version of this reduction algorithm is described as follows. Here,
even if the order of the addition is changed, the final result S does not change.
In addition, for the number of elements N , the total number of additions required
is (N − 1). For efficient parallelization, it is desirable to execute as many partial
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additions simultaneously as possible.Generally, the value of N is very large; however,
in this example, N = 8 is assumed in Eq. (5.2). The sequential calculations shown in
Listing5.8 are expressed in Eq. (5.3), which considers the order of addition. Here, the
additions in the for loop are added one by one in order; thus, a total of seven addition
operations are sequential from 1©, 2©, ..., and 7©. Assuming the time required to
execute a single addition operation is T , the total time required to obtain the result
is 7T . If multiple addition operations can be performed simultaneously, the results
can be obtained in less time by performing the order shown in Eq. (5.4). The four
addition operations in 1’© are executed simultaneously during the first T time. Then,
the obtained four partial sums 1’© are paired, and the addition operations 2’© are
executed simultaneously in second T time. Finally, the pair of 2’© can be added at 3’©
in third T time; thus, the total value S can be obtained in a total time of 3T with the
parallel version, which is faster than the elapsed time of the sequential calculation,
i.e., 7T .

S =
8∑

k=1

ak = (a1 + a2 + a3 + a4 + a5 + a6 + a7) (5.2)

= ((((((
(a1 + a2︸ ︷︷ ︸

1©
) +a3︸︷︷︸

2©

) +a4︸︷︷︸
3©

) +a5︸︷︷︸
4©

) +a6︸︷︷︸
5©

) +a7︸︷︷︸
6©

) +a8︸︷︷︸
7©

)
(5.3)

= (
(a1 + a2︸ ︷︷ ︸

1’©
) + (a3 + a4︸ ︷︷ ︸

1’©
︸ ︷︷ ︸

2’©

)
) + (

(a5 + a6︸ ︷︷ ︸
1’©

) + (a7 + a8︸ ︷︷ ︸
1’©

︸ ︷︷ ︸
2’©

︸ ︷︷ ︸
3’©

)
)

(5.4)

The CUDA source code for parallel reduction is shown in Listing 5.9 (corre-
sponding to Eq. (5.4)). First, consider the main() function. The final total value is
stored in the variable S defined at line 17. The eight integers ak to be added are stored
in the allocated memory region indicated by the pointer variable *a (lines 18–26).
This part includes a CUDA API function “cudaMallocManaged()” for the first time.
This function will be described in detail in a subsequent section. In the immediate
context it can be considered a memory allocation function to secure a memory region
that can be accessed fromboth the host function and the device function. At this point,
we are ready to calculate the total value S. Since the calculation of the total sum is
executed by the device function, the kernel function “reduce()” is called in lines 29–
31. The remaining part of the main() function includes the cudaDeviceSynchroize(),
which waits for the device function to finish, and cudaFree(), which releases the allo-
cated memory. Both cudaDeviceSynchroize() and cudaFree() were described in the
previous section. In line 36, the total value is obtained from a[0], which is a part of
the original integers. Since this is closely related to the “reduce()” kernel algorithm,
it will be explained next.



80 M. Oikawa

Listing 5.9 Sample program: “reduction.cu”

1 #include <cuda_runtime.h>
2 #include <stdio.h>
3 const int SIZE = 8;
4

5 __global__ void reduce(int ∗a)
6 {
7 int tid = threadIdx.x; // Thread ID
8 for (int i=1; i<SIZE; i∗=2) {
9 if (tid % (2 ∗ i) == 0) {
10 a[tid] += a[tid + i];
11 }
12 __syncthreads(); //-- synchronize all threads in this block.
13 }
14 }
15 int main()
16 {
17 int S; //--Result of total sum.
18 int ∗a; //--Number array to be summed.
19 //-- Allocate memory for both host and device.
20 cudaMallocManaged(&a, sizeof(int)∗SIZE);
21 //-- Initialize allocated memory region.
22 printf("a[]={ ");
23 for (int k=0; k<SIZE; k++){
24 a[k] = k + 1;
25 printf("%d ", a[k]);
26 }
27 puts("}");
28 //-- calculate sum by device(GPU).
29 dim3 gridDim(1,1,1);
30 dim3 blockDim(SIZE,1,1);
31 reduce <<<gridDim, blockDim>>> (a);
32

33 //-- Wait for finishing kernel function.
34 cudaDeviceSynchronize();
35 //-- Show the results.
36 S = a[0];
37 printf("S = %d\n", S);
38 cudaFree(a);
39 return 0;
40 }

Figure 5.7 shows the internal processing of the kernel function “reduce()” in
Listing 5.9. The horizontal axis indicates how partial additions are performed in
parallel using eight values in the array a[ ]. The vertical axis represents the operation
of the eight CUDA threads to be launched. The first step comprises the four additions
performedwhen index i = 1 in the for loop. These four additions are executed by each
CUDA thread which have an even tid number, and their partial sums are overwritten
on the even elements of a[ ]. At this time, threadswith odd numbers that do nothing are
masked by the conditional expression. The second step comprises the two additions
performed when index i = 2 in the for loop. These two additions are executed by
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Fig. 5.7 Time chart of CUDA parallel reduction in the “reduct()” kernel function

the CUDA thread whose tid is 0 or 4, and similarly the partial sum overwrites a[0]
and a[4]. In the final step, the thread with tid = 0 performs addition to obtain the final
result, i.e., “36”, overwrites the element in a[0], and exit the kernel function.

A “__syncthreads()” function plays an important role in synchronizing the exe-
cution timings of multiple CUDA threads in same thread block. It is often assumed
that CUDA threads are unconditionally guaranteed to proceed simultaneously, as
represented in Fig. 5.7. In reality, there is no guarantee that multiple CUDA threads
will run simultaneously. Therefore, the programmer needs to control the execution
flow ofmultiple CUDA threads.When a particular CUDA thread reaches the __sync-
thread(), execution is suspended until other threads reach the same __syncthreads().
For example, if __syncthreads() is not defined, the second part may be forcibly calcu-
lated before the calculation of the first partial sum ends, which may lead to incorrect
results.

Listing5.10 shows the compilation commands and the execution result. Note, the
sample code in Listing5.9 was saved as filename “reduction.cu”. Line 3 lists the
eight elements to be added, and line 4 shows the result of sum 36, corresponding
to Fig. 5.7. Listing5.10 is relatively simple sample code. Sample code dealing with
reduction is also included in the CUDA toolkit and uses more advanced techniques
than this example. Examples of reduction algorithms can be found in the “samples/”
directory in the CUDA toolkit.4

4 This was found in directory named /usr/local/cuda/samples/6_Advanced/reduction/ in author’s
computer.
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Listing 5.10 Compilation, execution and result of “reduction.cu”

1 $nvcc -o reduction reduction.cu
2 $./reduction
3 a[] = { 1 2 3 4 5 6 7 8 }
4 Sum = 36

Studies dealing with the detailed mechanics of CUDA and more advanced pro-
gramming techniques can be found in the literature [8–11].
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Chapter 6
Basics of OpenCL

Takashi Nishitsuji

Abstract Open Computing Language (OpenCL), which is generally called a het-
erogeneous computing system, is an open programming framework of parallel com-
puting for a calculation system comprising different computers (e.g., CPU, GPU,
DSP, FPGA). Although CUDA only applies to NVIDIA’s GPU, OpenCL can drive
the GPUs of different vendors (AMD, NVIDIA, Intel, Qualcomm), as well as the
CPU or another computer, via the sameOpenCL-written source code. Thus, OpenCL
is more portable than CUDA. In this chapter, OpenCL, as well as the strategy for con-
structing a calculation environment, is briefly introduced employing a source code
example for calculating a computer-generated hologram (CGH). Based on the con-
tents of this chapter, holography calculations employing OpenCL can be attempted.
Readers who wish to improve their OpenCL coding skills, programming guides that
are published by chip vendors, etc., may be consulted.

6.1 General Introduction of OpenCL

OpenComputingLanguage (OpenCL) is an open framework of parallel computing
for many devices (GPU, CPU, FPGA); it is dissimilar to CUDA that only supports
NVIDIA’s GPU. The specification of OpenCL was developed by the Khronos group
[1], which is an open consortium of software frameworks.

Although device vendors supply the Software Development Kits (SDKs) of
OpenCL that comply with the specifications of the Khronos groups, the extension
deviates from the approved specifications. They exhibit two types of application
programming interfaces (APIs): one is a candidate for future specifications, and the
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other is vendor dependent and can be distinguished by their names [2]. Thus, the
consumers must consider the conformance of each API.

Although OpenCL is based on the C language, there are some wrappers for other
languages, e.g., the official C++ wrapper [3] and PyOpenCL [4] for python (further
information are descriptive on the website of STREAM HPC [5]), enabling many
software engineers to utilize GPGPU. This chapter focuses on OpenCL based on
C/C++.

The basic techniques for accelerating a program with OpenCL and CUDA are
almost similar; thus, this chapter focuses on clarifying the technique for utilizing
OpenCL on your devices, as well as its differences with CUDA. However, owing to
the page limit, the details of OpenCL (the definition of APIs) cannot be discussed;
thus, the programming guides, which are released by vendors of the computing
device, can be referenced by readers who wish to learn OpenCL detailedly [6–8].

6.2 Setting Up an OpenCL Environment

Most vendors of OpenCL-supporting devices avail their SDKs for developers; these
SDKs include the OpenCL library of their devices and standard headers (.h), as well
as other headers for extended functions that support only their devices. Therefore,
intending users of OpenCLmust first download and install the SDKs of their devices.

Notably, aWindows 10 64-bit environmentwas employed in this chapter, although
readers employing other environments, e.g., macOS and Linux, can substitute the
filenames or extensions according to the available environment, e.g., OpenCL.dll ->
OpenCL.so for Linux users. The static“OpenCL.lib” and dynamic link “OpenCL.dll”
libraries are the required libraries for developing and executing theOpenCLprogram.
“OpenCL.lib” is available in the directories of an SDK, while “OpenCL.dll” is prein-
stalled in the systemdirectories ofWindows, following the installation of the graphics
driver. Further, a header file (“cl.h”), which is available in the directory of an SDK,
should be included in the program.

6.3 Constructing an OpenCL Program

This section introduces the construction of an OpenCL program employing a simple
computer-generated hologram (CGH) calculation source code as a “Hello, world”
programofOpenCL,which is depicted onListings 6.1 (host program) and 6.2 (device
program). Readers who have already set up the OpenCL environment can attempt to
execute the sample codes by copying Listing 6.1 (with an appropriate name for a C++
file) to your computer and Listing 6.2 with the name, “CGH_helloworld.cl,” which
should be placed in the same directory with an executable file of Listing 6.1. After
executing the program, a kinoform-type CGH with a resolution of 1024 × 1024 in
the “bfh_CGH” buffer can be obtained, as shown in Fig. 6.1.
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Fig. 6.1 Input and output of the example code: a a 3Dmodelwith 100 point clouds (input, generated
in the program), b kinoform-type CGH (output)

An OpenCL program comprises two types of source codes, the host (.c or .cpp, .h)
and device (.cl) codes. A standard OpenCL program adopts the online compile of the
device code to improve its portability. Therefore, a C/C++ compiler, e.g., clang, gcc,
and Visual C++, compiles the host code employing the OpenCL static library and
creates the executable file, which will read and compile the device code according
to specified devices for the program, following its execution. Noteworthily, OpenCL
also supports offline compile.

The most significant differences between CUDA and OpenCL are the concepts
of the platform and the devices. Since OpenCL supports many computing devices,
an OpenCL program requires the availability of the available devices; users must
specify the desired devices to execute the program. Every device must correspond to
a platform. For example, when executing OpenCL on a CPU Intel Core–i7 8700K
CPU employing an Intel OpenCL SDK environment, the platform would be “Intel
OpenCL,” and two devices (Integrated GPU, Intel UHD Graphics 630, and Intel
Core i7-8700K CPU), which are available on the platform, would be utilized. The
platforms and devices are specified by IDs; thus, many OpenCL APIs requests set
the IDs in the arguments.

6.3.1 Creating OpenCL Objects That Are Not Required
in CUDA

Dissimilar to CUDA, OpenCL defines many objects, e.g., the memory and kernel
objects, to manage the device-related information, such as memory address and
binary code of an executing program, since OpenCL is assumed to be executed
on different platforms and devices. Thus, OpenCL requires the creation of such
objects before the execution of a kernel. Table 6.1 and Fig. 6.2 exhibit the required
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Table 6.1 Definition of the objects in OpenCL

Name of object Role Defined per

Context Manages all the objects on a platform Platform

Command queue Manges all the commands to a device Device

Program object Manages the device program Device source code

Kernel object Compiles the kernel function of the device Kernel function

Memory object Manages the memory space on a device Buffer

Host

Platform

Context

Command queue

Commands
to device

Device

Memory object

Program object

Kernel object

Device

Fig. 6.2 Calculation model of OpenCL employing relation between the objects

object in a standard OpenCL program and the roles and relation between the objects,
respectively. The OpenCL objects that are not required in CUDA are introduced in
this subsection with reference to the sample code in Listing 6.1.

Context object is a fundamental object for managing all the objects on a platform;
thus, it must be declared on the first line of an OpenCL program with the intended
platform ID, as well as the number of devices on the platform. The available plat-
forms and devices can be obtained by “clGetPlatformIDs(),” which was employed
on Lines 65 and 69 of Listing 6.1, and “clGetDeviceIDs(),” which was used on Line
86 of Listing 6.1, for the platforms and devices, respectively. Detailed information
on the platforms and devices can be obtained by “clGetPlatformInfo()” and “clGet-
DeviceInfo(),” which employed utilized on Lines 77 and 91, respectively. Here, this
program obtains the names of the platforms and devices. The context object is created
by API “clCreateContext(),” which was employed on Line 115 of the list.

command-queue object is an interface that manages all the commands, e.g.,
the execute-the-kernel and the transfer-the-data-in-a-buffer functions; thus, it must
be declared per all to-be-utilized devices. A command-queue object is created by
“clCreateCommandQueueWithProperties()” with a corresponding device ID, which
is depicted onLine 118 of the list. The commands to a device are queued by the ”clEn-
queue***()” API via a command-queue object. For example, to copy data from the
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Table 6.2 Corresponding
names of memory

CUDA OpenCL

Global memory Global memory

Constant memory Constant memory

Shared memory Local memory

Register Private memory

Local memory

memory of a device to a host, “clEnqueueReadBuffer(),” Line 165 of the list, is called
employing the command-queue object in the first argument. Worthy, the commands
are only enqueued; thus, the time of executing is unknown, and it depends on the
preceding commands on the queue.

program object is an object that manages a raw (readable text) source code, as
well as the compiled program of a device function. Thus, it must read a device source
code as a text buffer before creating it. Lines 122–133 on the list show an example
of reading the device source code from a file (CGH_helloworld.cl) to a char buffer
(src), as well as creating a program object with “clCreateProgramWithSource()” on
Line 128. After creating the program object, it can be built by “clBuildProgram()”
employing a specified platform ID, as shown on Line 131 of the List.

kernel object is an object, which is created by the “clCreateKernel()” function
employing program object and named the kernel function, that specifies the kernel
function in a program object; thus, it must be created per device functions to be
executed. On the List, only one device function is defined in the device code (Listing
6.2); therefore, only one kernel object is created on Line 136 of the Listing 6.1.

memory object is an object that manages the memory buffer on a device. It func-
tions as a memory pointer. The memory object is created by “clCreateBuffer()”
with context object and attributions that pertain to memory (size and writability), as
obtainable in “cudaMalloc()” of CUDA. On Listing 6.1, four memory objects were
created on Lines 139–142. Noteworthy, the hierarchical memory architectures of
OpenCL and CUDA are almost the same (Table 6.2), and the memory buffer, which
was created by “clCreateBuffer(),” is assigned on the global memory.

The creations of the discussed objects indicate that the preparation for execut-
ing the kernel is almost completed. Further, the following section introduces the
procedure for driving the OpenCL kernel.

6.3.2 Executing the Kernel Function

Dissimilar to CUDA, OpenCL requires a two-step setup before executing the
enqueued kernel. The first step involves setting up the arguments of the kernel func-
tion via the “clSetKernelArg()” function (Lines 151–155 on Listing 6.1). Notably,
all the arguments must be passed by a void* type pointer.
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The second step involves the definition of the division unit for parallel execution;
these units are called the grid, block, and thread in CUDA. However, the “grid,”
“block,” and “thread” correspond to “NDRange,” “workgroup,” and “workitem,”
respectively. The sizes of NDRange and workgroup are specified by multidimen-
sional size_t-type arrays, as exhibited on Lines 158 and 159 of the List. In the sample
code, the size of NDRange was set to be equal to the size of the CGH, and the size
of the workgroup was set to 256 × 1. The maximum number of workitems in a work
group is defined by the specifications of hardware.

After the two-step preparation, the command for executing the kernel function can
be enqueued by “clEnqueueNDRange()” employing the sizes of NDRange (global-
Size), workgroup (localSize), and the queue object (Line 162 of the list).

Finally, the kernel function can be executed by transferring the buffer data from
the device to the host. “clEnqueueReadBuffer()” is a transfer function; it is executed
to transfer the buffer data from the device to the host (Line 165 of the list), and
it is equivalent to “cudaMemcopy()” in CUDA. To ensure complete transfer, a call
function for synchronizing the device to the host must be executed before subjecting
the data to the host buffer (bfh_CGH). In the sample code, the “clFinish()” function,
which was waiting to execute the last command that was enqueued in the command
queue, was executed. Noteworthy, there are other functions, e.g., clWaitForEvents()
with an event object, for achieving a finer synchronization; thus, those APIs can be
referenced by readers who wish to construct a more complex OpenCL program.

This subsection only discusses the method for executing data-parallel-type com-
putation. However, OpenCL comprises methods for parallelizing the calculation in
a task unit, as obtainable in CUDA. Readers who wish to employ the task-parallel
program may refer to the instruction manual of OpenCL, which is supplied by the
vendors of devices.

To summarize the above introductions, the standard structure of the host program
of OpenCL is, as follows:

1. Determine an available platform, as well as devices, and specify the appropriate
devices.

2. Create a context object, which manages all the objects on a platform.
3. Create a command-queue object, which is connected to a device to manage the

commands to be executed therein.
4. Read a device program as a text and build it, thereby treating it as a program

object.
5. Create the kernel objects from a program object by specifying the name of the

function that was written in the .cl file
6. Create the memory objects, which manage the memory space on a device.
7. Set the arguments and workgroup size, which are to be executed by the kernel.
8. Execute the kernel function.
9. Copy the result from the device memory.
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Table 6.3 Corresponding names of the modifiers of the variables and memories

CUDA OpenCL Meaning

__device__ __global On the global memory

__constant__ __constant On the constant memory

__shared__ __local On the shared memory

Table 6.4 Corresponding names of the modifier of the functions

CUDA OpenCL Meaning

__global__ __global Kernel function

__device__ Not required Inner function of the kernel

6.3.3 Writing the Kernel Function

The kernel function is one, which would be executed by a device. The grammars
and syntaxes of the kernel functions of OpenCL and CUDA are almost the same,
although the names of the modifiers of their variables, memories, and functions, as
well as the methods for obtaining their index values, e.g., “gridDim” in CUDA, are
different. Tables 6.3, 6.4, and 6.5 present the correlations of the modifiers and other
basic functions of CUDA and OpenCL. N in Table 6.5 indicates that a dimension
must be obtained employing the functions; thus, blockDim.x in CUDA is equivalent
to get_num_groups(0);

The standard kernel function for calculating CGH is presented on Listing 6.2,
which is a simplified version of the sample code of calculating CGH employing
CUDA (Listing 10.2). For the readers who wish to execute an OpenCL program,
the modification of Listing 6.2 is an easy technique for first building the OpenCL
program.Here (Listing6.2), three pre-processors are defined to substitute the constant

Table 6.5 Corresponding methods for obtaining the index values: N is a dimension

CUDA OpenCL Meaning

gridDim get_num_groups(N ) Number of blocks per grid

blockDim get_local_size(N ) Size of a block

blockIdx get_group_id(N ) Index of a block

threadIdx get_local_id(N ) Index of a thread

threadIdx + blockIdx *
blockDim

get_global_id(N ) Global index of a thread

gridDim * blockDim get_global_size(N ) Size of a grid
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values. “CNS_255_DIV_2_PI” and “CNS_2_PI_DIV_LAMBDA”correspond to 255
2π

and 2π
λ
, respectively (λ = 532 [nm] and “CNS_PITCH” represents the pixel pitch of

a displaying device.
The calculation times for this execution are 95.2 ms with NVIDIA Quadro P1200

GPU and CUDA 11.0, 1738 ms with an Intel Core i7-8850H CPU, and 324 ms
with an Intel UHD Graphics 630 GPU, all of them are evaluated with OpenCL.
The kernel source code (Listing 6.2) is a very simple structure to understand; thus,
applying the optimization techniques that are mentioned in Chapter 6 will be quite
fast. Unfortunately, the techniques described in those sections are not within the
scope of OpenCL, although readers who already briefly understand the differences
and similarities of CUDA and OpenCL can easily apply those techniques in their
OpenCL codes.

Moreover, only a few literature illustrate the fast calculation of CGH via OpenCL,
although readers can refer to [9] as a practical example of implementing OpenCL to
calculate CGH.

Listing 6.1 Simple CGH calculation employing OpenCL (host code)

1 #include <CL/cl.h>
2 #include <stdio.h>
3 #include <math.h>
4

5 #define MAX_CL_SOURCE_SIZE 10000
6 #define PI 3.14159265358979323846
7

8 int main()
9 {
10 //Constants*********************************
11 const char st_CLSrcName[1024] = "CGH_helloworld.cl";
12 const int numPLS = 100; //number of PLS
13 const int cgh_width = 1024; //width of CGH [pixel]
14 const int cgh_height = 1024; //height of CGH [pixel]
15 const float p = 0.000008; //pixel pitch for displaying device [m]
16

17 //Classes***********************************
18 FILE∗ fp_CLSrc = fopen(st_CLSrcName, "rb");
19

20 //Control variables for OpenCL
21 cl_int status = 0;
22

23 cl_platform_id v_SelectedPlatformID = 0;
24 cl_platform_id∗ v_PlatformIDs;
25 unsigned int v_SelectedPlatform;
26 unsigned int v_NumPlatforms;
27

28 cl_device_id v_SelectedDeviceID = 0;
29 cl_device_id∗∗ v_DeviceIDs;
30 unsigned int v_SelectedDevice;
31 unsigned int v_NumDevices;
32

33 cl_context context;
34 cl_command_queue queue;
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35 cl_program prog;
36 cl_kernel ker_CGH;
37

38 //Buffers***********************************
39 //(host)
40 cl_uchar∗ bfh_CGH = new cl_uchar[cgh_width ∗ cgh_height];
41 cl_float∗ bfh_ox = new cl_float[numPLS];
42 cl_float∗ bfh_oy = new cl_float[numPLS];
43 cl_float∗ bfh_oz = new cl_float[numPLS];
44

45 //(device)
46 cl_mem bfd_CGH;
47 cl_mem bfd_ox;
48 cl_mem bfd_oy;
49 cl_mem bfd_oz;
50

51 //===Create Point cloud (circle)===
52 float r = 300 ∗ p; //radius of circle
53 float cx = cgh_width ∗ 0.5 ∗ p; //center of circle (x)
54 float cy = cgh_width ∗ 0.5 ∗ p; //center of circle (y)
55

56 for (int i = 0; i < numPLS; i++)
57 {
58 bfh_ox[i] = r ∗ cos(i / (float)numPLS ∗ 2.0 ∗ PI) + cx;
59 bfh_oy[i] = r ∗ sin(i / (float)numPLS ∗ 2.0 ∗ PI) + cy;
60 bfh_oz[i] = 0.1 + 0.001∗i;
61 }
62

63 //====Select the platform and devices to use====//
64 //Obtain the number of available platforms
65 status = clGetPlatformIDs(0, NULL, &v_NumPlatforms);
66 v_PlatformIDs = new cl_platform_id[v_NumPlatforms];
67

68 //Obtain the IDs of available platform
69 status = clGetPlatformIDs(v_NumPlatforms, v_PlatformIDs, &v_NumPlatforms);
70 v_DeviceIDs = new cl_device_id∗[v_NumPlatforms];
71

72 //Show available platforms and device IDs
73 char msg[1024];
74 for (int i = 0; i < v_NumPlatforms; i++)
75 {
76 //Obtain platform information (name of platform)
77 clGetPlatformInfo(v_PlatformIDs[i], CL_PLATFORM_NAME, sizeof(msg), msg,

NULL);
78 printf("[%d] : %s\n", i, msg);
79

80 //Obtain the number of available devices on the platform
81 status = clGetDeviceIDs(v_PlatformIDs[i], CL_DEVICE_TYPE_ALL, NULL, NULL,

&v_NumDevices);
82 printf("Found %d devices\n", v_NumDevices);
83

84 //Obtain the IDs of available platform
85 v_DeviceIDs[i] = new cl_device_id[v_NumDevices];
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86 status = clGetDeviceIDs(v_PlatformIDs[i], CL_DEVICE_TYPE_ALL, v_NumDevices,
v_DeviceIDs[i], &v_NumDevices);

87

88 //Show the avaialble devices in the platform
89 for (int j = 0; j < v_NumDevices; j++)
90 {
91 clGetDeviceInfo(v_DeviceIDs[i][j], CL_DEVICE_NAME, sizeof(msg), msg, NULL);
92 printf("\t[%d][%d]%s\n", i, j, msg);
93 }
94 }
95

96 //Select the platform and devices to use
97 printf("Select platform ID to use: ");
98 scanf_s("%d", &v_SelectedPlatform);
99

100 v_SelectedPlatformID = v_PlatformIDs[v_SelectedPlatform];
101 clGetPlatformInfo(v_SelectedPlatformID, CL_PLATFORM_NAME, sizeof(msg), msg,

NULL);
102 printf("Selected: %s\n\n", msg);
103

104 printf("Select device ID to use: ");
105 scanf_s("%d", &v_SelectedDevice);
106 v_SelectedDeviceID = v_DeviceIDs[v_SelectedPlatform][v_SelectedDevice];
107 clGetDeviceInfo(v_SelectedDeviceID, CL_DEVICE_NAME, sizeof(msg), msg, NULL);
108 printf("Selected: %s\n\n", msg);
109

110 //====Create a context====//
111 //obtain the number of devices in the selected platform
112 clGetDeviceIDs(v_SelectedPlatformID, CL_DEVICE_TYPE_ALL, NULL, NULL, &

v_NumDevices);
113

114 //Create a context for the selected platform
115 context = clCreateContext(NULL, v_NumDevices, v_DeviceIDs[v_SelectedPlatform],

NULL, NULL, &status);
116

117 //====Create a command queue on the context====//
118 queue = clCreateCommandQueueWithProperties(context, v_DeviceIDs[

v_SelectedPlatform][v_SelectedDevice], NULL, &status);
119

120 //====Build a program from a .cl source====//
121 //Read .cl file to char buffer as text
122 char∗ src;
123 src = new char[MAX_CL_SOURCE_SIZE];
124 size_t v_SizeOfSrc = fread(src, sizeof(char), MAX_CL_SOURCE_SIZE − 1, fp_CLSrc);
125 src[v_SizeOfSrc] = ’\0’;
126

127 //Create program object with the .cl source file
128 prog = clCreateProgramWithSource(context, 1, (const char∗∗)&src, NULL, &status);
129

130 //Build program
131 status = clBuildProgram(prog, v_NumDevices, v_DeviceIDs[v_SelectedPlatform], NULL,

NULL, NULL);
132
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133 delete[] src;
134

135 //====Create kernels to execute====//
136 ker_CGH = clCreateKernel(prog, "simpleCGH", &status);
137

138 //====Create memory objects====//
139 bfd_CGH = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(cl_uchar)∗

cgh_width∗cgh_height, NULL, &status);
140 bfd_ox = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float) ∗ numPLS,

NULL, &status);
141 bfd_oy = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float) ∗ numPLS,

NULL, &status);
142 bfd_oz = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float) ∗ numPLS,

NULL, &status);
143

144 //====Transfer the PLS data from the host ====//
145 status = clEnqueueWriteBuffer(queue, bfd_ox, CL_TRUE, 0, sizeof(cl_float) ∗ numPLS,

bfh_ox, 0, NULL, NULL);
146 status = clEnqueueWriteBuffer(queue, bfd_oy, CL_TRUE, 0, sizeof(cl_float) ∗ numPLS,

bfh_oy, 0, NULL, NULL);
147 status = clEnqueueWriteBuffer(queue, bfd_oz, CL_TRUE, 0, sizeof(cl_float) ∗ numPLS,

bfh_oz, 0, NULL, NULL);
148

149 //====Execute kernels====//
150 //Set arguments of the kernel
151 status = clSetKernelArg(ker_CGH, 0, sizeof(cl_mem), (void∗)&bfd_CGH);
152 status = clSetKernelArg(ker_CGH, 1, sizeof(int), (void∗)&numPLS);
153 status = clSetKernelArg(ker_CGH, 2, sizeof(cl_mem), (void∗)&bfd_ox);
154 status = clSetKernelArg(ker_CGH, 3, sizeof(cl_mem), (void∗)&bfd_oy);
155 status = clSetKernelArg(ker_CGH, 4, sizeof(cl_mem), (void∗)&bfd_oz);
156

157 //Set the division unit for parallel execution
158 size_t globalSize[] = { (size_t)cgh_width, (size_t)cgh_height };
159 size_t localSize[] = { 256, 1 };
160

161 //Execute the kernel
162 status = clEnqueueNDRangeKernel(queue, ker_CGH, 2, NULL, globalSize, localSize, 0,

NULL, NULL);
163

164 //====Transfer the CGH data from the device====//
165 status = clEnqueueReadBuffer(queue, bfd_CGH, CL_TRUE, 0, sizeof(cl_char)∗

cgh_width∗cgh_height, bfh_CGH, 0, NULL, NULL);
166

167 //Wait for finish the last enqueued command
168 clFinish(queue);
169

170 //====Termination (Freeing memory)====//
171 fclose(fp_CLSrc);
172 clReleaseMemObject(bfd_CGH);
173 clReleaseMemObject(bfd_ox);
174 clReleaseMemObject(bfd_oy);
175 clReleaseMemObject(bfd_oz);
176
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177 delete[] bfh_CGH;
178 delete[] bfh_ox;
179 delete[] bfh_oy;
180 delete[] bfh_oz;
181

182 return 0;
183 }

Listing 6.2 Simple CGH calculation employing OpenCL (device code; CGHspshelloworld.cl)

1 #define CNS_255_DIV_2_PI 40.58451049
2 #define CNS_2_PI_DIV_LAMBDA 11810498.7
3 #define CNS_PITCH 0.000008
4

5 __kernel void simpleCGH(__global uchar∗ dbf_CGH, const int numPLS, __global float∗
ox, __global float∗ oy, __global float∗oz)

6 {
7 float x = get_global_id(0) ∗ CNS_PITCH;
8 float y = get_global_id(1) ∗ CNS_PITCH;
9 int width = get_global_size(0);
10 int dst_addr = get_global_id(0) + get_global_size(0) ∗ get_global_id(1);
11

12 float2 c = (float2)(0.0, 0.0);
13

14 for (int i = 0; i < numPLS; i++)
15 {
16 float phase = CNS_2_PI_DIV_LAMBDA ∗ sqrt(pow(ox[i]−x, 2) + pow(oy[i]−y, 2) +

pow(oz[i], 2));
17 c += (float2)(cos(phase), sin(phase));
18 }
19

20 float arg = CNS_255_DIV_2_PI ∗ atan2(c.y, c.x);
21 dbf_CGH[dst_addr] = convert_uchar((int)arg);
22 }
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Chapter 7
Basics of Field-Programmable Gate
Array

Yota Yamamoto

Abstract Afield-programmable gate array (FPGA) is a large-scale integration (LSI)
that enables the user to modify the internal circuit structure. Central processing units
(CPUs) are also implemented on LSIs and have one or more arithmetic logic units
(ALUs). FPGAs, however, can have tens or hundreds of thousands ofALU-equivalent
arithmetic cores using their on-board logic resources. CPU ALUs can operate as
fast as 3 GHz, whereas FPGAs are nearly an order of magnitude slower at around
500 MHz. To build a high-speed special-purpose computer using FPGAs, we must
select suitable algorithms that have less dependence on data, employ low precision,
and are easily parallelizable. Effective parallel computation can be attained by taking
advantage of the FPGAs’ plentiful arithmetic units.

7.1 Structure of Field-Programmable Gate Array

Field-programmable gate arrays (FPGAs) are large-scale integrations (LSIs) that
enable the user to modify the internal circuit structure. Figure 7.1 reveals a typical
FPGA structure. Their internal circuits, unlike CPUs and graphics processing units
(GPUs), are not functionally connected, and they work by loading precise circuit
configuration data upon launch. The circuit configuration data configure the differ-
ent blocks in the FPGA, like the programmable logic blocks (LBs) that implement
logic circuits, programmable input-output blocks (IOBs) that offer the interface to
external circuits, and programmable routing blocks [connection blocks (CBs) and
switching blocks (SBs)], which connect each block. Inside the FPGA, these elements
are arranged in a grid.
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Fig. 7.1 Structure of FPGA

LBs are based on the lookup table (LUT) and multiplexer (MUX) cells to imple-
ment certain logic functions. The LB’s name differs among FPGA vendors: Xilinx
calls it a configurable LB (CLB) [1], and Intel calls it a logic array block (LAB) [2].
Furthermore, even if it is from the same vendor, the internal structure of the LB varies
depending on the family.

There are two primary kinds of LBs: hard logic and soft logic. Hard logic includes
a digital signal processor (DSP) [3] and block RAM [4]. Although it lacks the
flexibility of LUT-based soft blocks, it can run predetermined logic functions at a
high speed. Soft logic, which comprises LUTs and so on, fulfills any logic functions
that are unavailable in hard logic.

The primary difference betweenCPUs and FPGAs is the arithmetic units’ number.
CPUs have one or more arithmetic logic units (ALUs), whereas FPGAs can have tens
or hundreds of thousands of ALU-equivalent arithmetic cores using their on-board
logic resources. CPU ALUs can perform as fast as 3 GHz, while FPGA ALUs are
nearly an order of magnitude slower at around 500 MHz.

7.2 Hardware Description Language (HDL)

The circuit configuration data are produced by compiling the source code written by
hardware description languages (HDLs) using a tool offered by FPGA vendors
(Fig. 7.2). First, the HDL is transformed into an intermediate code called a netlist
using a process called logic synthesis. The netlist is then mapped to the physical pin
assignments and LBs of the actual device by a process called implementation, and
the circuit configuration data are produced [5].
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There are different types of HDLs, and there are compilers called high-level
synthesis tools that produce HDL from abstract descriptions in C language [6]. In
this section, we shortly present the VHDL [7] and SystemVerilog [8]. Listings 7.1
and 7.2 reveals the source code of an adder circuit using VHDL and SystemVerilog,
and Fig. 7.3 reveals the block diagram.

In HDL, it is possible to describe the logic circuit to be implemented in FPGA
using addition and subtraction of variables, conditional branching, and so on, just
as in C programming. However, it is crucial to note that the operations of CPUs
and FPGAs are very different. Software programming, including C programming,
describes how the CPU operates, and the process is run sequentially. However, FPGA
hardware programming explains the logic circuits’ structure. All the illustrated logic
circuits operate simultaneously.

The defining of input and output signals is the first step in both VHDL and Sys-
temVerilog. The circuit is synchronizedwith “clk,”which is a clock signal that repeats
“0” and “1,” The circuit conducts the addition of the input values of “a” and “b.”
The bit width of the CPU and GPU is fixed, whereas that of the FPGA can be freely
determined by the user.

Listing 7.1 Source code for adder circuit using VHDL

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use ieee.std_logic_arith.all;
4 use ieee.std_logic_unsigned.all;
5

6 entity adder_vh is
7 generic (
8 INPUT_WIDTH : integer := 8
9 );
10 port (
11 clk : in std_logic;
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12 a : in std_logic_vector(INPUT_WIDTH−1 downto 0);
13 b : in std_logic_vector(INPUT_WIDTH−1 downto 0);
14 c : out std_logic_vector(INPUT_WIDTH−1+1 downto 0)
15 );
16 end adder_vh ;
17

18 architecture rtl of adder_vh is
19 signal add : std_logic_vector(INPUT_WIDTH−1+1 downto 0);
20 begin
21 c <= add;
22

23 process (clk)
24 begin
25 if clk’event and clk = ’1’ then
26 add <= (’0’&a) + (’0’&b);
27 end if;
28 end process;
29

30 end architecture;

Listing 7.2 Source code for adder circuit using SystemVerilog

1 module adder_sv #(
2 parameter int INPUT_WIDTH = 8
3 )(
4 input wire clk,
5 input wire [INPUT_WIDTH−1:0] a,
6 input wire [INPUT_WIDTH−1:0] b,
7 output wire [INPUT_WIDTH−1+1:0]c
8 );
9

10 logic [INPUT_WIDTH−1+1:0] add;
11

12 assign c = add;
13

14 always_ff @(posedge clk) begin
15 add <= a + b;
16 end
17

18 endmodule

7.3 Special-Purpose Computation Circuit Using FPGA

To build a high-speed special-purpose computer using FPGAs, it is a must to use tens
to hundreds of thousands of arithmetic units. However, FPGAs are about one order
of magnitude slower than CPUs in terms of operating frequency, and it is crucial to
consider effective data flow to build a high-speed special-purpose computer using
FPGAs.
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Fig. 7.4 Sequential execution of Eq. 7.1

There are two important factors for efficient computation: throughput and latency.
Throughput is the processing capacity per unit of time. Latency is the delay time
needed for each process. By enhancing throughput and latency, faster computation
becomes possible.

To enhance throughput and latency, pipeline and data parallelization can be
employed. To explain this, we consider the implementation of Eq. 7.1 to compute a
computer-generated hologram (CGH):

I (xa, ya) =
M−1∑

j=0

cos
[
ρ j

{(
xa − x j

)2 + (
ya − y j

)2} ]
, (7.1)

where(xa, ya) represents a coordinate on the CGH plane, ρ j = π/2λz j , (x j , y j , z j )
are the coordinates of the 3D object’s point cloud,M denotes the point-cloud number,
and λ represents the reference light’s wavelength.

For a sequential computation on a CPU, the computation inside � in Eq. 7.1 is
shown in Fig. 7.4.

For example, we consider the computation time t [s] for 1,024 × 1,024-pixel
CGH from M = 100 object points at the latency shown in Fig. 7.4. Assuming that
each operation is run at 250 MHz (4 ns), the computation time is

t = 1

250 MHz
× 7 × 100 × 1,024 × 1,024 = 2.94 s. (7.2)

Since xaj and yaj are independent of each other, the computations for them can
be parallelized as illustrated in Fig. 7.5. Here, the latency is reduced from 7 to 5, and
the computation time can be lowered to

t = 1

250 MHz
× 5 × 100 × 1,024 × 1,024 = 2.10 s. (7.3)

Although we have focused on the computation of only a single CGH pixel, the
CGH computation can be parallelized for each CGH pixel. Figure 7.6 reveals the
five-step computation in Fig. 7.5 parallelized for two CGH pixels:
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Fig. 7.6 Pixel-by-pixel parallelization

t = 1

250MHz
× 5 × 100 × 1,024 × 1,024 ÷ 2 = 1.05 s. (7.4)

This parallelization approach, which takes advantage of the lack of dependency
between data and performs operations in parallel, is called data parallelization.

The computation time can be further accelerated using pipeline parallelization.
Data parallelization is user-controllable not only in FPGAs but also in CPUs and
GPUs,whereas pipeline parallelization is a user-controllable parallelization approach
only in FPGAs. Here, we denote xa − x j and ya − y j operations, xaj 2 and yaj 2

operations, xyaj
2 operation, θ operation, and cos (θ) operation in Fig. 7.4 as OP0 j ,

OP1 j , OP2 j , OP3 j , and OP4 j , respectively. In pipeline parallelization, the amount of
arithmetic units needed for the entire computation is arranged as illustrated in Fig. 7.7
for Fig. 7.4. Additionally, it is parallelization at the operator level. Here, the latency
is the same as that in data parallelization. However, the throughput is enhanced. In
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Fig. 7.7 Pipeline parallelization

the case of data parallelization only, the next data cannot be input to the circuit until
all five operations are completed. However, in the case of pipeline parallelization,
the following object point data can be input immediately. The computation time can
be expressed as follows:

t = 1

250MHz
× (5 + 100 − 1) × 1024 × 1024 = 0.44 s. (7.5)

The computation is nearly five times faster than when neither data parallelization
nor pipeline parallelization is employed. Combining pipeline parallelization and
data parallelization is also possible. When the two are combined, the computation
time in Eq. 7.5 is reduced by the number of parallels. If 10 CGH pixels can be
data-parallelized, for example, the computation time can be further accelerated from
Eq. 7.5 as

t = 1

250MHz
× (5 + 100 − 1) × 1024 × 1024 ÷ 10 = 0.044 s. (7.6)

FPGAs can attain high-speed computation by employing data parallelization and
pipeline parallelization, as well as an efficient parallel computation that takes advan-
tage of the reconfigurable resources inside the FPGA. To attain high-speed compu-
tation, the algorithm should have less resilience on data, should be able to compute
with as low accuracy as feasible, and should be readily parallelized.
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7.4 Fixed-Point and Floating-Point Arithmetic

Floating-point arithmetic are frequently employed in CPUs. Floating-point arith-
metic employs exponential representation to denote numerical values, and the
IEEE754 [9] standard defines the data format. Although floating-point arithmetic
can handle a wide range of values, exponentiation operations are required. How-
ever, fixed-point arithmetic is frequently employed for numerical computations in
FPGAs. In fixed-point arithmetic, the user places the decimal point’s position arbi-
trarily. Compared with floating-point arithmetic, fixed-point arithmetic has a smaller
range of values, but they do not need exponentiation operations and can be computed
with simple hardware.

Equation 7.7 is the phase computation part of Eq. 7.1, and we describe how to
compute it using fixed-point arithmetic.

θ = ρ j

{(
xa − x j

)2 + (
ya − y j

)2}
. (7.7)

FPGAs can use any data width, whereas floating-point arithmetic use 32-bit or 64-
bit data widths. The smaller the data width, the more resources (gates or transistors)
can be employed to construct the arithmetic unit and the more parallelism can be
realized.

If xa , x j , ya , y j in Eq. 7.7 are normalized by the sampling interval of CGH, they are
integer values. The normalized values’ data width is determined from the minimum
and maximum values. Here, (xa, ya) is the coordinate on the CGH plane and x j , y j
is the point cloud’s coordinate. These coordinates range from -2,048 to 2,047 when
using a CGH with 4,096 × 4,096 pixels; therefore, xa , x j , ya , y j are denoted by
12 bits. Figure 7.8 reveals the data widths and decimal point positions of fixed-point
integer arithmetic. In the fixed-point arithmetic’s addition and subtraction between
integers, no decimal point change occurs. However, the data width is extended by
1 bit in addition. Also, in multiplication, the sum of the data widths of both operands
is extended.

Fixed-point arithmetic in binary numbers is each digit weights units of powers of
two as shown inFig. 7.9. Figure 7.9 reveals an example of an unsigned binary number;
in a signed binary number represented in two’s complement, themost significant bit’s
weight is −23 as in the case of Fig. 7.9.

Figure 7.10 shows the data width of two fixed-point arithmetics and howmultipli-
cation moves the decimal point. The multiplication of integer and decimal fraction
fixed-point arithmetics can also be computed in a straightforward manner. However,
the decimal point is shifted, and the decimal point’s position in the computation
finding θ becomes the 32nd bit position.

Here, θ is represented as a fixed-point number with a 32-bit decimal part. Here,
the decimal part’s minimum value is 0.000000000232 (2−32). In other words, we
must treat θ as estimated values with some error. This error is known as quantization
error. The quantization error may have a large influence on some computations, so it
is necessary to assess the effect of the quantization error in advance by simulation.
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Fig. 7.8 Integer fixed-point arithmetic
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Fig. 7.9 Fixed-point arithmetic representation. Here, the decimal number is 8.625
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Fig. 7.10 Fixed-point arithmetic of decimals
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7.5 Communication Between FPGAs and CPUs

A special-purpose computer using FPGAs is not employed alone but is connected to
CPUs (FPGA embedded or on a PC) that send and pre- and post-process the data.
There are different communication protocols, including Universal Serial Bus (USB)
and PCI Express. In Xilinx FPGAs, the advanced extensible interface (AXI) [10]
is employed for communication between a CPU (hard logic embedded on an FPGA)
and programmable logic (Fig. 7.11) [11]. Even if the FPGA is communicated with a
host PC through PCI Express or Zynq [12, 13] with a built-in CPU, we can employ
AXI communication by developing auxiliary circuits.

7.6 AXI Communication

AXI is an inter-module communication protocol created by ARM Ltd [10]. There
are three AXI communications: AXI(-Full), AXI-Lite, and AXI-Stream. AXI Lite is
employed for small-scale data communication (e.g., control signals), whereas AXI(-
Full) and AXI-Stream are used for large-scale data communication.

A circuit that requests data is called a “requester,” and a circuit that sends and
receives data in response to the request is called a “responder.” The requester retains
complete control over the data’s transmission and reception. In AXI(-Full) and AXI-
Lite, the data may be sent from the requester to the responder or from the responder
to the requester in this chapter. AXI-Stream always sends data from the requester to
the responder. Figure 7.12 reveals a diagram of the basic communication.

Fig. 7.11 Outline of the circuit connected by AXI
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requester responder

DATA

VALID

READY

Fig. 7.12 AXI basic communication

Fig. 7.13 The VALID-READY communication

When both VALID and READY of AXI signals are set to 1, the transfer is com-
plete. The form of communication in which VALID shows that valid data are being
introduced and READY illustrates that the data can be received is known as VALID-
READY communication. The AXI protocol can employ several channels based on
VALID-READY communication to improve communication capacity (Fig. 7.13).

Figure 7.14 shows a block diagram of a communication circuit using the AXI
protocol (the signal’s description can be found in Tables 7.1 and 7.2). In Fig. 7.14,
regulating to write and read data are implemented as state machines, which transi-
tion the internal state depending on the input and current state. Figure 7.15 reveals
the state transition diagrams for reading and writing data. Listing 7.3 indicates the
implementation of Fig. 7.13 written by SystemVerilog.

The READ state machine, which is the data read from a CPU to an FPGA, com-
prises R_IDLE (read wait state) and R_READ (read response). After the start (e.g.,
assertion of the reset signal), the circuit begins in the R_IDLE state. A transition is
made to the R_READ state when the signal S_AXI_ARVALID, which shows that
a valid address is an output from the requestor (CPU), becomes 1. In the R_READ
state, the FPGA maintains the signal S_AXI_RVALID as 1, indicating that it is out-
putting valid data, and returns to the R_ILDE state after receiving the read response
(S_AXI_BVALID set as 1).

The WRITE state machine, which is the data written from the CPU to the FPGA,
comprises the W_IDLE state, which is the write wait state, and the W_RESP state,
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Fig. 7.14 Block diagram of the communication circuit (excluding clock and reset signals). The
shaded lines on the signal lines in the figure show the bit width

Table 7.1 Description of
AXI signals

Signal name Description

S_AXI_AWADDR Write start address

S_AXI_AWVALID Write address valid

S_AXI_WDATA Write data

S_AXI_WVALID Write data valid

S_AXI_BREADY Acceptable

S_AXI_WSTRB Byte enable

S_AXI_AWREADY Write address can be accepted

S_AXI_WREADY Writing can be accepted

S_AXI_BRESP Write response

S_AXI_BVALID Write response enabled

S_AXI_ARREADY Readable address can be accepted

S_AXI_ARADDR Read start address

S_AXI_ARVALID Read address valid

S_AXI_RREADY Read data can be accepted

S_AXI_RDATA Read data

S_AXI_RRESP Read response

S_AXI_RVALID Read data valid
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Table 7.2 Description of local signals. These signals are defined by the author

Signal name Description

LOCAL_WREN Write data and address valid

LOCAL_WDATA Write data

LOCAL_AWADDR Write start address

LOCAL_RDEN Read data and address response

LOCAL_ARADDR Read start address

LOCAL_RDATA Read data

S_AXI_ARVALID=1 and

S_AXI_ARREADY=0

R_IDLE R_READ

S_AXI_ARREADY=1 and

S_AXI_ARVALID=1 and

S_AXI_RVALID=0

S_AXI_RVALID=1 and

S_AXI_RREADY=1

if

if

if

W_RESP

S_AXI_WREADY = 0
S_AXI_AWREADY = 0

S_AXI_BVALID = 1

S_AXI_AWVALID=1 and

S_AXI_WVALID=1

W_IDLE

S_AXI_WREADY = 0
S_AXI_AWREADY = 0

S_AXI_BVALID = 0

S_AXI_BREADY=1

if

if

Fig. 7.15 State transition diagram for AXI Lite. The upper and bottom figures show READ and
WRITE state machines, respectively

which is the write response state. The state machine starts in W_IDLE after ini-
tialization. When both the signal S_AXI_AWVALID, showing that the address is
generating a valid value, and the signal S_AXI_WVALID, indicating that the data
are valid, are set to 1 by the requestor (CPU), a transition to the W_RESP state
happens. The FPGA returns to the W_IDLE state after a successful read response in
W_RESP.
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Listing 7.3 reveals the sample source code for the AXI Lite response side.

Listing 7.3 Source code for AXI Lite

1 module axi_lite_s # (
2 parameter integer C_S_AXI_DATA_WIDTH = 32,
3 parameter integer C_S_AXI_ADDR_WIDTH = 32
4 ) (
5 // Users to add ports here
6 output wire local_wren,
7 output wire [C_S_AXI_DATA_WIDTH−1 : 0] local_wdata,
8 output wire [C_S_AXI_ADDR_WIDTH−1 : 0] local_awaddr,
9 output wire local_rden,
10 input wire [C_S_AXI_DATA_WIDTH−1 : 0] local_rdata,
11 output wire [C_S_AXI_ADDR_WIDTH−1 : 0] local_araddr,
12 output wire [(C_S_AXI_DATA_WIDTH/8)−1 : 0] local_wstrb,
13

14 // Ports of Axi S Bus Interface S_AXI
15 input wire s_axi_aclk,
16 input wire s_axi_aresetn,
17 input wire [C_S_AXI_ADDR_WIDTH−1 : 0] s_axi_awaddr,
18 input wire [2 : 0] s_axi_awprot,
19 input wire s_axi_awvalid,
20 output wire s_axi_awready,
21 input wire [C_S_AXI_DATA_WIDTH−1 : 0] s_axi_wdata,
22 input wire [(C_S_AXI_DATA_WIDTH/8)−1 : 0] s_axi_wstrb,
23 input wire s_axi_wvalid,
24 output wire s_axi_wready,
25 output wire [1 : 0] s_axi_bresp,
26 output wire s_axi_bvalid,
27 input wire s_axi_bready,
28 input wire [C_S_AXI_ADDR_WIDTH−1 : 0] s_axi_araddr,
29 input wire [2 : 0] s_axi_arprot,
30 input wire s_axi_arvalid,
31 output wire s_axi_arready,
32 output wire [C_S_AXI_DATA_WIDTH−1 : 0] s_axi_rdata,
33 output wire [1 : 0] s_axi_rresp,
34 output wire s_axi_rvalid,
35 input wire s_axi_rready
36 );
37

38 localparam W_IDLE = 2’d0, W_RESP = 2’d1;
39 localparam R_IDLE = 2’d0, R_READ = 2’d1;
40

41 logic [C_S_AXI_ADDR_WIDTH−1 : 0] axi_awaddr;
42 logic axi_awready;
43 logic [C_S_AXI_DATA_WIDTH−1 : 0] axi_wdata;
44 logic axi_wready;
45 logic axi_bvalid;
46 logic [C_S_AXI_ADDR_WIDTH−1 : 0] axi_araddr;
47 logic axi_arready;
48 logic axi_rvalid;
49 logic [(C_S_AXI_DATA_WIDTH/8)−1 : 0] axi_wstrb;
50
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51 logic [1:0] w_state, r_state;
52

53 // I/O Connections assignments
54 assign s_axi_awready = axi_awready;
55 assign s_axi_wready = axi_wready;
56 assign s_axi_bresp = 2’b0; // ’OKAY’ response
57 assign s_axi_bvalid = axi_bvalid;
58 assign s_axi_arready = axi_arready;
59 assign s_axi_rresp = 2’b0; // ’OKAY’ response
60 assign s_axi_rvalid = axi_rvalid;
61

62 always_ff @( posedge s_axi_aclk ) begin
63 if ( s_axi_aresetn == 1’b0 ) begin
64 w_state <= W_IDLE;
65 axi_awready <= 1’b0;
66 axi_awaddr <= 0;
67 axi_wready <= 1’b0;
68 axi_wdata <= 0;
69 axi_wstrb <= 0;
70 axi_bvalid <= 1’b0;
71 end else begin
72 case ( w_state )
73 W_IDLE: begin
74 if ( ~axi_awready && ~axi_wready && s_axi_awvalid && s_axi_wvalid ) begin
75 axi_awready <= 1’b1;
76 axi_awaddr <= s_axi_awaddr;
77 axi_wdata <= s_axi_wdata;
78 axi_wstrb <= s_axi_wstrb;
79 axi_wready <= 1’b1;
80 w_state <= W_RESP;
81 end else begin
82 axi_awready <= 1’b0;
83 axi_wready <= 1’b0;
84 axi_bvalid <= 1’b0;
85 end
86 end
87 W_RESP: begin
88 if ( s_axi_bready && axi_bvalid ) begin
89 axi_bvalid <= 1’b0;
90 w_state <= W_IDLE;
91 end else begin
92 axi_awready <= 1’b0;
93 axi_wready <= 1’b0;
94 axi_bvalid <= 1’b1;
95 end
96 end
97 default: begin
98 w_state <= W_IDLE;
99 end

100 endcase
101 end
102 end
103
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104 always_ff @( posedge s_axi_aclk ) begin
105 if ( s_axi_aresetn == 1’b0 ) begin
106 axi_arready <= 1’b0;
107 axi_araddr <= 0;
108 axi_rvalid <= 1’b0;
109 r_state <= R_IDLE;
110 end else begin
111 case ( r_state )
112 R_IDLE: begin
113 if ( ~axi_arready && s_axi_arvalid ) begin
114 axi_arready <= 1’b1;
115 axi_araddr <= s_axi_araddr;
116 r_state <= R_READ;
117 end else begin
118 axi_arready <= 1’b0;
119 axi_rvalid <= 1’b0;
120 end
121 end
122 R_READ: begin
123 if ( axi_arready && s_axi_arvalid && ~axi_rvalid ) begin
124 axi_rvalid <= 1’b1;
125 axi_arready <= 1’b0;
126 end else if ( axi_rvalid && s_axi_rready ) begin
127 axi_rvalid <= 1’b0;
128 axi_arready <= 1’b0;
129 r_state <= R_IDLE;
130 end
131 end
132 default: begin
133 r_state <= R_IDLE;
134 end
135 endcase
136 end
137 end
138

139 assign local_wren = axi_wready && s_axi_wvalid && axi_awready && s_axi_awvalid;
140 assign local_rden = axi_arready && s_axi_arvalid && ~axi_rvalid;
141 assign local_araddr = axi_araddr;
142 assign local_awaddr = axi_awaddr;
143 assign local_wdata = axi_wdata;
144 assign s_axi_rdata = local_rdata;
145 assign local_wstrb = axi_wstrb;
146

147 endmodule

7.7 Communication Program Between CPU and FPGA

Figure 7.15 shows that the CPU and FPGA are connected to communicate data, and
it is crucial to create a dedicated driver. However, since creating a driver is outside
the scope of this book, we will present an approach using /dev/mem [15], which
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is slow but easy to read and write data from/to an FPGA. As a prerequisite, we
examine a situation where a Linux OS, including Petalinux (Linux manufactured
by Xilinx) [14], is operating on the CPU embedded in Zynq. In Linux, reading and
writing data to a device (here, an FPGA) can be replaced by reading and writing to
a special file called /dev/mem. Listing 7.4 shows a sample program.

Listing 7.4 Source code for AXI Lite

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <fcntl.h>
5 #include <sys/mman.h>
6

7 FPGA_ADDR_START=0xA0000000;
8 FPGA_ADDR_SIZE=0x8000;
9

10 int main()
11 {
12 uint32_t ∗uio;
13 int fd;
14

15 // open "/dev/mem"
16 fd = open("/dev/mem", O_RDWR | O_SYNC);
17 if (fd < 1) {
18 perror("Failed to open devfile");
19 return −1;
20 }
21

22 // map FPGA physical address into user space
23 uio = (uint32_t ∗)mmap(NULL, FPGA_ADDR_SIZE, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, FPGA_ADDR_START);
24

25 // write "5" to FPGA
26 uio[0] = 0x5;
27

28 // cleanup
29 munmap((void∗)address, 0x1000);
30 close(fd);
31

32 return 0;
33 }

Listing 7.4 reveals an example where the start address for writing data to the
FPGA is 0xA0000000. This address is determined by vendors (refer to the datasheet
for details). The Linux system commands (C language functions) “write” and “read”
are employed to send data as if reading and writing to a file.

Using the /dev/mem technique removes the need for building a driver, but it should
be noted that this is not a permanent approach from the viewpoint of security and
speed. This is only for confirmation purposes. To improve the communication speed,
device drivers need to be created.
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7.8 Discussion

In this study, we presented a communication scheme between CPU and FPGA
abstracted by AXI in Xilinx FPGAs. Data communication is a barrier to paralleliza-
tion in FPGAs and CPUs and GPUs: in the CGH computation example, if the data
size that can be sent by the communication circuit is 128 bits, the number of pixels
that can be sent at a time (assumed to be 8 bits) is 16. Here, therewill be a delay in data
transmission if more than 16 are parallelized. If data transmission and reception are
slow, the communication time becomes a barrier that lowers the circuit’s arithmetic
efficiency and makes it impossible to produce an arithmetic speed commensurate
with parallelization.

A possible countermeasure is to create high-speed communication circuits that
can transmit and receive numerous data at high speeds using direct memory access
(DMA); DMA allows asynchronous communication so that the computation circuit
can operate while sending and receiving data. Pipeline parallelization is completed
at the operator level, so if all needed data can be stored in the FPGA, there are no
communication constraints during computation. The longer the pipeline, the higher
the pipeline parallelization’s speed-up rate. By integrating pipeline parallelization
with data parallelization, special-purpose computers that are unaffected by commu-
nication barriers can be built.

Funding This work was supported by JSPS KAKENHI Grant Number JP21K21294.
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Part III
Acceleration and Advanced Techniques

in Computational Holography

Part III consists of 11 chapters. Each chapter describes the implementation of
the algorithms in computational holography with specific source code. Diffrac-
tion calculations play an important role in computational holography. CPU and
GPU implementations of the main diffraction calculations are shown. The point-
cloud method, polygon method, layer method and light field method of hologram
computation algorithms will be described, and GPU cluster acceleration will be
presented. Compressed sensing, hologram image quality evaluation, and recent
digital holography acceleration will also be presented.



Chapter 8
CPU and GPU Implementations
of Diffraction Calculations

Soma Fujimori

Abstract In this chapter, we describe a set of C++ and CUDA programs to perform
diffraction calculations using a Fourier transform. The programs implement the Fres-
nel diffraction calculation and angular spectrum method. We provide sample source
code for both central processing unit (CPU) and graphics processing unit (GPU)
hardware because the execution of the computations can be accelerated on the latter.

8.1 Implementation of the Fresnel Diffraction Calculation

As explained in Chap.1, the Fresnel diffraction described as follows.

u2(x2, y2) = exp
(
i 2π z

λ

)

iλz
× u1(x1, y1) ⊗ exp

(
i
π

λz
(x21 + y21 )

)

= exp
(
i 2π z

λ

)

iλz
× u1(x1, y1) ⊗ h(x1, y1), (8.1)

where ⊗ is convolution operator, u1(x1, y1) and u2(x2, y2) are, respectively, the
complex amplitude of the source and destination planes, z is a propagation distance,
and λ is wavelength of light.

Let us rewrite Eq. (8.1) for computation on standard computer hardware. The
first term in Eq. (8.1) can be ignored when only the light intensity is considered. By
the convolution theorem [1], we replace the convolution operation with the Fourier
transform F and express Eq. (8.1) as follows.
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u2(x2, y2) = F −1[F [u1(x1, y1)]F [h(x1, y1)]]. (8.2)

Subsequently, we obtain x1 = pm1, x2 = pm2, y1 = pn1, y2 = pn2 by discretizing
x1, x2, y1, y2 with a sampling interval p. Hence,

u2(m2, n2) = F −1[F [u1(m1, n1)]F [h(m1, n1)]], (8.3)

where m1,m2, n1, n2 are discretized coordinates.
The Fourier transform is commonly computed using the fast Fourier transform

(FFT). Therefore, the Fresnel diffraction calculation can be formulated as given
below.

u2(m2, n2) = FFT−1[FFT[u1(m1, n1)]FFT[h(m1, n1)]]. (8.4)

In developing a computer program to calculate Eq. (8.4), we focused on the
following points.

(a) Linear and circular convolution
We considered both linear and circular convolution in this work. For example,
the program computes the two types of convolution operations as shown in Fig.
8.1. The linear convolution of Eq. (8.1) used only the data within a given region.
By contrast, the convolution computed by the FFTs in Eq. (8.4) is a circular
convolution that interprets the given data u1(m1) as periodic due to the properties
of FFT, which causes awraparound effect. Therefore, to obtain the same result
as the linear convolution with the circular convolution, zero padding was used,
as shown in Fig. 8.2, to avoid the wraparound effect. Finally, the same result as
linear convolution was obtained by cropping only the necessary parts. For 2D
data, zero padding was implemented as shown in Fig. 8.3.

(b) Arrangement of the frequency spectrum obtained by FFT
As shown in Fig. 8.4, the spectrum obtained by the 2D FFT exhibits low-
frequency components in the periphery and increases in frequency toward the
center. TheDC component is shown at the lower left of the image. If this arrange-
ment is inconvenient, the quadrants are exchanged such that the low-frequency
components are in the center of the image. This operation is called an FFT shift.

(c) Origin position in spatial and frequency domains
In FFT libraries, the origin (DC component) is set at the edge of the image in
both the spatial and frequency domains. Therefore, if the origin of data input to
the FFT algorithm is placed in the center of the image, the quadrants need to be
appropriately exchanged by the FFT shift to agree with the origin of the FFT as
shown in Fig. 8.5.
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Fig. 8.1 Linear and circular convolution (Based on [2])

Fig. 8.2 Avoiding the wraparound caused by circular convolution with zero padding (Based on
[2])
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Fig. 8.3 Zero padding for 2D data

Fig. 8.4 Frequency spectrum obtained via FFT

Fig. 8.5 Moving the origin by FFT shift
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8.1.1 Process Flow of the Fresnel Diffraction Calculation

Considering the above, the program developed to perform the Fresnel diffraction
calculation executes the following steps.

Step 1. Apply zero padding to the complex amplitude of the source usrc to avoid the
wraparound effect caused by circular convolution and obtain the zero-padded
complex amplitude u pad .

Step 2. Apply FFT to u pad to obtain the Fourier spectrum Upad .
Step 3. Compute the impulse response h (we assume that the origin is set at the

center of the computational windows) and move the position of the origin to
the edge of the image by using FFT shift, as shown in Fig. 8.5.

Step 4. Apply FFT to h to obtain the transfer function H .
Step 5. Multiply the spectrum Upad by the transfer function H .
Step 6. Apply inverse FFT to the result of the multiplication.
Step 7. Crop only the necessary calculation result and obtain the complex amplitude

of the propagation destination, udst .

8.1.2 CPU Implementation

Let us consider implementing the Fresnel diffraction calculation on a CPU. We used
the FFTW [3, 4] FFT library. Listing 8.1 shows functions for FFT and inverse
FFT using the FFTW. Both the functions “fft” and “ifft” can be implemented by
(1) creating a plan (fftwf_plan_dft2d), (2) executing the calculation (fftwf_execute),
and (3) destroying the plan (fftwf_destroy_plan).Multi-thread calculations are also
possible by specifying the number of threads before creating a plan. In that case, the
OpenMP [5] interface is required.

Listing 8.1 Functions for FFT and inverse FFT using FFTW

1 void fft(std::complex<float>∗ src, std::complex<float>∗ dst, int32_t ny, int32_t nx)
2 {
3 fftwf_complex∗ _usrc = reinterpret_cast<fftwf_complex∗>(src);
4 fftwf_complex∗ _udst = reinterpret_cast<fftwf_complex∗>(dst);
5 fftwf_init_threads();
6 fftwf_plan_with_nthreads(omp_get_max_threads());
7 fftwf_plan p = fftwf_plan_dft_2d(ny, nx, _usrc, _udst, FFTW_FORWARD,

FFTW_ESTIMATE);
8 fftwf_execute(p);
9 fftwf_destroy_plan(p);
10 }
11

12 void ifft(std::complex<float>∗ src, std::complex<float>∗ dst, int32_t ny, int32_t nx)
13 {
14 fftwf_complex∗ _usrc = reinterpret_cast<fftwf_complex∗>(src);
15 fftwf_complex∗ _udst = reinterpret_cast<fftwf_complex∗>(dst);
16 fftwf_init_threads();
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17 fftwf_plan_with_nthreads(omp_get_max_threads());
18 fftwf_plan p = fftwf_plan_dft_2d(ny, nx, _usrc, _udst, FFTW_BACKWARD,

FFTW_ESTIMATE);
19 fftwf_execute(p);
20 fftwf_destroy_plan(p);
21 }

Listing 8.2 shows an example of the CPU implementation of the Fresnel diffrac-
tion calculation. Each function call in the “FresnelProp” function corresponds to a
step in the flow of the Fresnel diffraction calculation described in Sect. 8.1.1. “Fres-
nelResponse” is a function that computes the impulse response h(m1, n1).

Listing 8.2 Example of CPU implementation of the Fresnel diffraction calculation

1 void FresnelResponse(std::complex<float>∗ h, int32_t ny, int32_t nx, float dy, float dx, float
lambda, float z)

2 {
3 float tmp = 1 / (lambda ∗ z);
4 int32_t hny = ny / 2;
5 int32_t hnx = nx / 2;
6 for(int32_t n = 0;n < ny;n++){
7 float y = ((float) (n − hny)) ∗ dy;
8 for(int32_t m = 0;m < nx;m++){
9 int32_t idx = n ∗ nx + m;
10 float x = ((float) (m − hnx)) ∗ dx;
11 float phase = M_PI ∗ (x ∗ x + y ∗ y) ∗ tmp ;
12 h[idx] = std::complex<float>(cos(phase),sin(phase));
13 }
14 }
15 }
16

17 void FresnelProp(std::complex<float>∗ u,int32_t ny, int32_t nx,float dy, float dx, float lambda,
float z)

18 {
19 int32_t ny2 = 2 ∗ ny;
20 int32_t nx2 = 2 ∗ nx;
21 std::complex<float>∗ upad = new std::complex<float>[ny2 ∗ nx2];
22 auto h = new std::complex<float>[ny2 ∗ nx2];
23 // Step1
24 zeropadding(u, upad, ny, nx);
25 // Step2
26 fft(upad, upad, ny2, nx2);
27 multscalar(upad, 1.0 / (ny2 ∗ nx2), ny2, nx2);
28 // Step3
29 FresnelResponse(h, ny2, nx2, dy, dx, lambda, z);
30 fftshift(h, ny2, nx2);
31 // Step4
32 fft(h, h, ny2, nx2);
33 multscalar(h, 1.0 / (ny2 ∗ nx2), ny2, nx2);
34 // Step5
35 mult(upad, h, upad, ny2, nx2);
36 // Step6
37 ifft(upad, upad, ny2, nx2);
38 // Step7
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39 crop(upad, u, ny2, nx2);
40

41 delete[] upad;
42 delete[] h;
43 }

Listing 8.3 shows the implementation of each function used in Listing 8.2.

Listing 8.3 Functions of the Fresnel diffraction calculation on a CPU

1 void mult(std::complex<float>∗ src1, std::complex<float>∗ src2, std::complex<float>∗ dst,
int32_t ny, int32_t nx)

2 {
3 for(int32_t n = 0; n < ny;n++){
4 for(int32_t m = 0;m < nx;m++){
5 dst[m + n ∗ nx] = src1[m + n ∗ nx] ∗ src2[m + n ∗ nx];
6 }
7 }
8 }
9

10 void multscalar(std::complex<float>∗ u, float c, int32_t ny, int32_t nx)
11 {
12 for(int32_t n = 0;n < ny;n++){
13 for(int32_t m = 0;m < nx;m++){
14 u[m + n ∗ nx] ∗= c;
15 }
16 }
17 }
18

19 void zeropadding(std::complex<float>∗ src, std::complex<float>∗ dst, int32_t ny, int32_t nx)
20 {
21 int32_t nx2 = nx ∗ 2;
22 int32_t ny2 = ny ∗ 2;
23 for(int32_t n = 0;n < ny2;n++){
24 for(int32_t m = 0;m < nx2;m++){
25 if(ny / 2 <= n && n < ny ∗ 3 / 2 && nx / 2 <= m && m < nx ∗ 3 / 2)
26 {
27 dst[m + n ∗ nx2] = src[m − nx / 2 + (n − ny / 2) ∗ nx];
28 }
29 else{
30 dst[m + n ∗ nx2] = 0;
31 }
32 }
33 }
34 }
35

36 void crop(std::complex<float>∗ src, std::complex<float>∗ dst, int32_t ny, int32_t nx)
37 {
38 for(int32_t n = 0;n < ny;n++){
39 for(int32_t m = 0;m < nx;m++){
40 if(ny / 4 <= n && n < ny ∗ 3 / 4 && nx / 4 <= m && m < nx ∗ 3 / 4)
41 {
42 dst[m − nx / 4 + (n − ny / 4) ∗ nx / 2] = src[m + n ∗ nx];
43 }
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44 }
45 }
46 }
47

48 void fftshift(std::complex<float>∗ u, int32_t ny, int32_t nx)
49 {
50 int32_t hny = ny / 2;
51 int32_t hnx = nx / 2;
52 for(int32_t n = 0;n < hny;n++){
53 for(int32_t m = 0;m < hnx;m++){
54 int32_t idx1, idx2;
55 std::complex<float> tmp;
56 idx1 = n ∗ nx + m;
57 idx2 = (n + hny) ∗ nx + (m + hnx);
58 tmp = u[idx1];
59 u[idx1] = u[idx2];
60 u[idx2] = tmp;
61 idx1 = n ∗ nx + (m + hnx);
62 idx2 = (n + hny) ∗ nx + m;
63 tmp = u[idx1];
64 u[idx1] = u[idx2];
65 u[idx2] = tmp;
66 }
67 }
68 }

8.1.3 GPU Implementation

By contrast, Fresnel diffraction can be calculated at high speed by implementing
the procedure on a GPU using the CUDA toolkit, which provides cuFFT [6] as
an FFT library. FFT and inverse FFT functions using cuFFT are shown in Listing
8.4. Both the functions “fft” and “ifft” can be implemented by (1) creating a plan
(cufftPlan2d), (2) executing the calculation (cufftExecC2C), and (3) destroying the
plan (cufftDestroy). Because creating a plan with cuFFT takes a relatively long time,
creating a plan only once and using it for multiple FFTs is appropriate. For this
reason, Listing 8.4 provides a function “set” to create a plan.

Listing 8.4 FFT and inverse FFT functions using cuFFT

1 class gFFT{
2 public:
3 cufftHandle fftplan;
4 bool flag = false;
5 ~gFFT(){
6 if (flag == true)
7 cufftDestroy(fftplan);
8 }
9 void set(int32_t ny, int32_t nx){
10 cufftPlan2d(&fftplan, ny, nx, CUFFT_C2C);
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11 flag = true;
12 }
13 void fft(cufftComplex∗ src,cufftComplex∗ dst){
14 if (flag == true){
15 cufftExecC2C(fftplan, src, dst, CUFFT_FORWARD);
16 cudaDeviceSynchronize();
17 }
18 }
19 void ifft(cufftComplex∗ src,cufftComplex∗ dst){
20 if (flag == true){
21 cufftExecC2C(fftplan, src, dst, CUFFT_INVERSE);
22 cudaDeviceSynchronize();
23 }
24 }
25 };

Listing 8.5 shows an example of a GPU implementation of the Fresnel diffraction
calculation. Each function call in the “prop” function in theC++ class “gFresnelProp”
corresponds to a step in the flow of the Fresnel diffraction calculation described in
Sect. 8.1.1. “gFresnelResponse” is a function that computes the impulse response
h(m1, n1).

Listing 8.5 Example of the GPU implementation of the Fresnel diffraction calculation

1 __global__ void gFresnelResponseKernel(cufftComplex∗ u, int32_t ny, int32_t nx,float dy,
float dx, float lambda, float z){

2 int32_t m = blockIdx.x ∗ blockDim.x + threadIdx.x;
3 int32_t n = blockIdx.y ∗ blockDim.y + threadIdx.y;
4 int32_t idx = n ∗ nx + m;
5 if ( (m < nx) && (n < ny) ){
6 int32_t hnx = nx / 2;
7 int32_t hny = ny / 2;
8 float x = (m − hnx) ∗ dx;
9 float y = (n − hny) ∗ dy;
10 float tmp = M_PI ∗ (x ∗ x + y ∗ y) / (lambda ∗ z);
11 u[idx] = make_cuComplex(cos(tmp),sin(tmp));
12 }
13 }
14

15 void gFresnelResponse(cufftComplex∗ u,int32_t ny, int32_t nx, float dv,float du, float lambda,
float z)

16 {
17 dim3 block(16, 16, 1);
18 dim3 grid(ceil((float)nx / block.x), ceil((float)ny / block.y), 1);
19 gFresnelResponseKernel<<<grid,block>>>(u, ny, nx, dv, du, lambda, z);
20 cudaDeviceSynchronize();
21 }
22

23 class gFresnelProp{
24 private:
25 cufftComplex∗ buf1, ∗buf2;
26 gFFT fft;
27 public:
28 gFresnelProp(int32_t ny, int32_t nx){
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29 int32_t ny2 = ny ∗ 2;
30 int32_t nx2 = nx ∗ 2;
31 size_t mem_size = sizeof(cufftComplex) ∗ ny2 ∗ nx2;
32 cudaMalloc((void∗∗)&buf1, mem_size);
33 cudaMalloc((void∗∗)&buf2, mem_size);
34 fft.set(ny2,nx2);
35 }
36 ~gFresnelProp(){
37 cudaFree(buf1);
38 cudaFree(buf2);
39 }
40 void prop(cufftComplex∗ u, int32_t ny, int32_t nx,float dy, float dx, float lambda, float z){
41 int32_t ny2 = ny ∗ 2;
42 int32_t nx2 = nx ∗ 2;
43 // Step1
44 gzeropadding(u, buf1, ny, nx);
45 // Step2
46 fft.fft(buf1,buf1);
47 gmultscalar(buf1, 1.0f / (ny2 ∗ nx2), ny2, nx2);
48 // Step3
49 gFresnelResponse(buf2, ny2, nx2, dy, dx, lambda, z);
50 gfftshift(buf2, ny2, nx2);
51 // Step4
52 fft.fft(buf2, buf2);
53 gmultscalar(buf2, 1.0f / (ny2 ∗ nx2), ny2, nx2);
54 // Step5
55 gmult(buf1, buf2, buf1, ny2, nx2);
56 // Step6
57 fft.ifft(buf1, buf1);
58 // Step7
59 gcrop(buf1, u, ny2, nx2);
60 }
61 };

Listing 8.6 shows the implementation of each function used in Listing 8.5.

Listing 8.6 Functions of the Fresnel diffraction calculation on a GPU

1 __global__ void gmultKernel(cufftComplex∗ src1, cufftComplex∗ src2, cufftComplex∗ dst,
int32_t ny, int32_t nx)

2 {
3 int32_t m = blockIdx.x ∗ blockDim.x + threadIdx.x;
4 int32_t n = blockIdx.y ∗ blockDim.y + threadIdx.y;
5 uint32_t idx = m + n ∗ nx;
6 if ( m < nx && n < ny){
7 dst[idx] = cuCmulf(src1[idx], src2[idx]);
8 }
9 }
10

11 void gmult(cufftComplex∗ src1, cufftComplex∗ src2,cufftComplex∗ dst,
12 int32_t ny, int32_t nx)
13 {
14 dim3 block(16, 16, 1);
15 dim3 grid(ceil((float)nx / block.x), ceil((float)ny / block.y), 1);
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16 gmultKernel<<<grid,block>>>(src1, src2, dst, ny, nx);
17 cudaDeviceSynchronize();
18 }
19

20 __global__ void gmultscalarKernel(cufftComplex∗ u, float c, int32_t ny, int32_t nx)
21 {
22 int32_t m = blockIdx.x ∗ blockDim.x + threadIdx.x;
23 int32_t n = blockIdx.y ∗ blockDim.y + threadIdx.y;
24 size_t idx = (m + n ∗ nx);
25 if ( m < nx && n < ny){
26 u[idx].x ∗= c;
27 u[idx].y ∗= c;
28 }
29 }
30

31 void gmultscalar(cufftComplex∗ u,float c, int32_t ny, int32_t nx)
32 {
33 dim3 block(16, 16, 1);
34 dim3 grid(ceil((float)nx / block.x), ceil((float)ny / block.y), 1);
35 gmultscalarKernel<<<grid,block>>>(u, c, ny, nx);
36 cudaDeviceSynchronize();
37 }
38

39 __global__ void gzeropaddingKernel(cufftComplex∗ src,cufftComplex∗ dst, int32_t ny,int32_t
nx)

40 {
41 int32_t m = blockIdx.x∗blockDim.x + threadIdx.x;
42 int32_t n = blockIdx.y∗blockDim.y + threadIdx.y;
43 if (m < 2 ∗ nx && n < 2 ∗ ny){
44 if(ny / 2 <= n && n < ny ∗ 3 / 2 && nx / 2 <= m && m < nx ∗ 3 / 2)
45 {
46 dst[m + n ∗ 2 ∗ nx] = src[m − nx / 2+(n − ny / 2) ∗ nx];
47 }
48 else{
49 dst[m + n ∗ 2 ∗ nx] = make_cuComplex(0.0f, 0.0f);
50 }
51 }
52 }
53

54 void gzeropadding(cufftComplex∗ src, cufftComplex∗ dst, int32_t ny, int32_t nx){
55 int32_t ny2 = ny ∗ 2;
56 int32_t nx2 = nx ∗ 2;
57 dim3 block(16, 16, 1);
58 dim3 grid(ceil((float)nx2 / block.x), ceil((float)ny2 / block.y), 1);
59 gzeropaddingKernel<<<grid, block>>>(src, dst, ny, nx);
60 cudaDeviceSynchronize();
61 }
62

63 __global__ void gcropKernel(cufftComplex∗ src,cufftComplex∗ dst, int32_t ny, int32_t nx)
64 {
65 int32_t m = blockIdx.x ∗ blockDim.x + threadIdx.x;
66 int32_t n = blockIdx.y ∗ blockDim.y + threadIdx.y;
67 if ( m < nx && n < ny){
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68 if(ny / 4 <= n && n < ny ∗ 3 / 4 && nx / 4 <= m && m < nx ∗ 3 / 4)
69 {
70 dst[m − nx / 4 + (n − ny / 4) ∗ nx / 2] = src[m + n ∗ nx];
71 }
72 }
73 }
74

75 void gcrop(cufftComplex∗ src, cufftComplex∗ dst, int32_t ny, int32_t nx){
76 dim3 block(16, 16, 1);
77 dim3 grid(ceil((float)nx / block.x), ceil((float)ny / block.y), 1);
78 gcropKernel<<<grid,block>>>(src, dst, ny, nx);
79 cudaDeviceSynchronize();
80 }
81

82 __global__ void gfftshiftKernel(cufftComplex∗ u, int32_t ny, int32_t nx){
83 int32_t m = blockIdx.x ∗ blockDim.x + threadIdx.x;
84 int32_t n = blockIdx.y ∗ blockDim.y + threadIdx.y;
85 int32_t hnx = nx / 2; int32_t hny = ny / 2;
86 if (m >= hnx || n >= hny){
87 return;
88 }
89 int32_t idx1, idx2;
90 cufftComplex tmp;
91 idx1 = n ∗ nx + m;
92 idx2 = (n + hny) ∗ nx + (m + hnx);
93 tmp = u[idx1];
94 u[idx1] = u[idx2];
95 u[idx2] = tmp;
96 idx1 = n ∗ nx + (m + hnx);
97 idx2 = (n + hny) ∗ nx + m;
98 tmp = u[idx1];
99 u[idx1] = u[idx2];

100 u[idx2] = tmp;
101 }
102

103 void gfftshift(cufftComplex∗ u, int32_t ny, int32_t nx){
104 dim3 block(16, 16, 1);
105 int32_t hny = ny / 2;
106 int32_t hnx = nx / 2;
107 dim3 grid(ceil((float) hnx / block.x), ceil((float)hny / block.y), 1);
108 gfftshiftKernel<<<grid, block>>>(u, ny, nx);
109 cudaDeviceSynchronize();
110 }



8 CPU and GPU Implementations of Diffraction Calculations 131

8.2 Implementation of the Angular Spectrum Method

As explained in Chap.1, the angular spectrum method is described as follows.

u2(x2, y2) = F −1

[

F [u1(x1, y1)] exp
(

i2π z

√
1

λ2
− f 2x − f 2y

)]

= F −1[F [u1(x1, y1)]H( fx , fy)]. (8.5)

By discretizing Eq. (8.5) in the same manner as the Fresnel diffraction calcu-
lation with sampling intervals pxy in the spatial domain (x1, y1) and (x2, y2) and
p f in the frequency domain ( fx , fy), x1 = pxym1, x2 = pxym2, y1 = pxyn1, y2 =
pxyn2, fx = p f u, fy = p f v can be obtained. Equation (8.5) can be expressed as
follows using the FFTs.

u2(m2, n2) = FFT−1[FFT[u1(m1, n1)]H(u, v)]. (8.6)

8.2.1 Process Flow of the Angular Spectrum Method

As in the Fresnel diffraction calculation, the program to calculate the angular spec-
trum method is implemented in the following steps, focusing on the wraparound due
to circular convolution and quadrant exchange.

1. Apply zero padding to the complex amplitude of the source usrc to avoid the
wraparound caused by the circular convolution and obtain the zero-padded com-
plex amplitude u pad .

2. Apply FFT to u pad to obtain the Fourier spectrum Upad .
3. Compute the transfer function H and move the position of the origin to the edge

of the image by FFT shift.
4. Multiply the spectrum Upad by the transfer function H in the angular spectrum

method.
5. Apply inverse FFT to the result of the multiplication.
6. Crop only the necessary calculation result and obtain the complex amplitude of

the propagation destination udst .

8.2.2 CPU Implementation

Listing 8.7 shows an example of CPU implementation of the angular spectrum
method. Each function call in the “AsmProp” function corresponds to a step in
the flow of the angular spectrum method described in Sect. 8.2.1. The function

http://dx.doi.org/10.1007/978-981-99-1938-3_1
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“AsmTransferF” computes the transfer function H(u, v). The implementation of the
other functions is as shown in Listing 8.3.

Listing 8.7 Example of the CPU implementation of the angular spectrum method

1 void AsmTransferF(std::complex<float>∗ H, int32_t ny, int32_t nx, float dv, float du, float
lambda, float z)

2 {
3 float tmp = 1 / (lambda ∗ lambda);
4 for (int32_t n = 0;n < ny;n++){
5 float v = (n − ny / 2) ∗ dv;
6 for (int32_t m = 0;m < nx;m++){
7 int32_t idx = m + n ∗ nx;
8 float u = (m − nx / 2) ∗ du;
9 float w = sqrt(tmp − u ∗ u − v ∗ v);
10 float phase = 2 ∗ M_PI ∗ w ∗ z;
11 H[idx] = std::complex<float>(cos(phase),sin(phase));
12 }
13 }
14 }
15

16 void AsmProp(std::complex<float>∗ u, int32_t ny, int32_t nx, float dy, float dx, float lambda,
float z)

17 {
18 int32_t ny2 = ny ∗ 2;
19 int32_t nx2 = nx ∗ 2;
20 float du = 1 / (dx ∗ nx2);
21 float dv = 1 / (dy ∗ ny2);
22 auto upad = new std::complex<float>[ny2 ∗ nx2];
23 auto H = new std::complex<float>[ny2 ∗ nx2];
24 // Step1
25 zeropadding(u, upad, ny, nx);
26 // Step2
27 fft(upad, upad, ny2, nx2);
28 multscalar(upad, 1.0 / (ny2 ∗ nx2), ny2, nx2);
29 // Step3
30 AsmTransferF(H, ny2, nx2, dv, du, lambda, z);
31 fftshift(H, ny2, nx2);
32 // Step4
33 mult(upad, H, upad, ny2, nx2);
34 // Step5
35 ifft(upad, upad, ny2, nx2);
36 // Step6
37 crop(upad, u, ny2, nx2);
38

39 delete[] upad;
40 delete[] H;
41 }



8 CPU and GPU Implementations of Diffraction Calculations 133

8.2.3 GPU Implementation

Listing 8.8 shows an example of GPU implementation of the angular spectrum
method. Each function call in the “prop” function in the C++ class “gAsmProp”
corresponds to a step in the flow described in Sect. 8.2.1. The function “gAsm-
TransferF” computes the transfer function H(u, v). The implementation of the other
functions is the same as that in Listing 8.6.

Listing 8.8 Example of the GPU implementation of the angular spectrum method

1 __global__ void gAsmTransferFKernel(cufftComplex∗ H, int32_t ny, int32_t nx, float dv, float
du, float lambda, float z)

2 {
3 int32_t m = blockIdx.x ∗ blockDim.x + threadIdx.x;
4 int32_t n = blockIdx.y ∗ blockDim.y + threadIdx.y;
5 if ( (m < nx) && (n < ny) ){
6 int32_t idx = n ∗ nx + m;
7 int32_t hnx = nx / 2;
8 int32_t hny = ny / 2;
9 float u = (m − hnx) ∗ du;
10 float v = (n − hny) ∗ dv;
11 float w = sqrt(1 / (lambda ∗ lambda) − u ∗ u − v ∗ v);
12 float phase = 2.0f ∗ M_PI ∗ w ∗ z;
13 H[idx] = make_cuComplex(cos(phase), sin(phase));
14 }
15 }
16

17 void gAsmTransferF(cufftComplex∗ H, int32_t ny, int32_t nx, float dv, float du, float lambda,
float z)

18 {
19 dim3 block(16, 16, 1);
20 dim3 grid(ceil((float)nx / block.x), ceil((float)ny / block.y), 1);
21 gAsmTransferFKernel<<<grid, block>>>(H, ny, nx, dv, du, lambda, z);
22 cudaDeviceSynchronize();
23 }
24

25 class gAsmProp{
26 private:
27 cufftComplex∗ buf1, ∗buf2;
28 gFFT fft;
29 public:
30 gAsmProp(int32_t ny, int32_t nx){
31 int32_t ny2 = ny ∗ 2;
32 int32_t nx2 = nx ∗ 2;
33 size_t mem_size = sizeof(cufftComplex) ∗ ny2 ∗ nx2;
34 cudaMalloc((void∗∗)&buf1, mem_size);
35 cudaMalloc((void∗∗)&buf2, mem_size);
36 fft.set(ny2, nx2);
37 }
38 ~gAsmProp(){
39 cudaFree(buf1);
40 cudaFree(buf2);
41 }
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42 void prop(cufftComplex∗ u, int32_t ny, int32_t nx,float dy, float dx, float lambda, float z){
43 int32_t ny2 = ny ∗ 2;
44 int32_t nx2 = nx ∗ 2;
45 float du = 1 / (dx ∗ nx2);
46 float dv = 1 / (dy ∗ ny2);
47 // Step1
48 gzeropadding(u, buf1, ny, nx);
49 // Step2
50 fft.fft(buf1, buf1);
51 gmultscalar(buf1, 1.0f / (ny2 ∗ nx2), ny2, nx2);
52 // Step3
53 gAsmTransferF(buf2, ny2, nx2, dv, du, lambda, z);
54 gfftshift(buf2, ny2, nx2);
55 // Step4
56 gmult(buf1, buf2, buf1, ny2, nx2);
57 // Step5
58 fft.ifft(buf1, buf1);
59 // Step6
60 gcrop(buf1, u, ny2, nx2);
61 }
62 };

8.3 Results

Figure 8.6a and b shows an original image (1024 × 1024 pixels) and its diffracted
result obtained using the angular spectrum method, respectively. The calculation
conditions included a sampling interval of 8 µm, a wavelength of 633 nm, and a
propagation distance of 0.02 m.

Finally, we compared the computation speed of the Fresnel diffraction calculation
for three different cases, including a single-thread CPU, a multithreaded CPU, and

(a) Original image (b) Diffracted result

Fig. 8.6 Result of the angular spectrum method
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Table 8.1 Speed of the Fresnel diffraction calculation

Number of pixels CPU (1 thread) (ms) CPU (16 threads) (ms) GPU (ms)

2048 × 2048 2362 806 37

4096 × 4096 6109 1808 140

8192 × 8192 40031 13272 487

the GPU hardware. The computational environment used was a system with an Intel
Corei9-11900K CPU and an NVIDIAGeForce RTX 3060 GPU. Table 8.1 shows the
results of this comparison. Note that the measurement time for the GPU includes the
time required to send and receive data between the CPU and the GPU. As shown in
Table 8.1, the GPU had the lowest computation time for all numbers of pixels.
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Chapter 9
Acceleration of CGH Computing
from Point Cloud for CPU

Takashige Sugie

Abstract We practically accelerate the calculation for computer-generated holo-
gram (CGH) by using seven types of programs as examples. The source code is
improved step by step, finally achieving a speed increase of approximately 140
times. First, we show the importance of carefully choosing variable types. Next, we
use OpenMP to implement multithreading and SIMD instruction parallel processing.
We speed up the calculation by applying an algorithm to the calculation formula that
is suitable for the CPU. We shorten high latency instructions using the table look-up
method. It is important to supply data to the CPU at high speed to achieve high-
speed computation. We discuss the reduction of communication bandwidth between
CPU and system memory. Finally, we show how to calculate decimals using integer
variables.

9.1 Introduction

In this chapter, specific programs for computer-generated hologram (CGH) are
created and explained in tutorial format. Seven types of programs have been prepared
and are gradually improved to allow high-speed calculations to be performed. We
evaluated the amount of processing time and memory required to convert the coor-
dinate data of object points into CGH pixels. The personal computer (PC) shown
in Table 9.1 is used as a test machine, and we used C programming language. We
used Linux [1] as the operating system and GNU Compiler Collection (GCC) [2]
as the compiler. Another major compiler is Intel C/C++ Compiler (ICC) [3]. Both
compiler optimizations are excellent, with the little difference in the performance of
the executable program. The author occasionally encounters people who claim that
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Table 9.1 Test machine

CPU i7-7700 K (4 cores, 4.50 GHz)

System memory 32 GiB

OS linux-5.4.2 (x86_64), glibc-2.30

Compiler gcc-9.2.0

changing the compiler increases the speed. This is because they wrote a program that
could be improved, and in most cases, the problem is with the source code rather
than the compiler.

The calculation time depends on the number of object points and the resolution of
the hologram plane. If the calculation time varies significantly, we should check the
execution environment. We should check with the “top” or “ps” command whether
any heavy program is running in the background, such as daemons. If it exists,
we perform appropriate action such as terminating the process. If the computation
time still varies, we must check the functions and settings of the kernel. Depending
on the setting of the preemption model for interactive events and the governor for
the CPU operating frequency, the performance may change owing to the influence
of the runtime situation. This workaround requires recompiling the kernel and we
can ignore it if we are unsure. It is important to note that kernel tuning can affect
computation time.

9.2 Sample Source Code Package

9.2.1 How to Download and Build the Sample Source Code
Package

A sample source code package is available on the book site. We decompress the
downloaded sample program package and move to “sample” directory. Directories
corresponding to the contents of each subsection can be found in Sect. 9.3. Their
directory names start with a number from one to seven. The “appendix” directory
contains auxiliary source files for explanation. We can use the “make” command
to build all sample programs by inputting the following command on a terminal
software:

% make

An execution command “cgh” is generated in each directory. This command can be
executed by specifying the object point cloud data file as an argument. The “cgh”
command calculates the CGH pixels, normalizes the result to 256 gradations, and
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outputs it as a BMP format file [4]. To simplify the program, the “cgh” command can
read an object point cloud data file of 3df format only. The 3df format is described
in Sect. 9.2.3. Each directory contains several source files. The principal program is
written in cgh.c. We only need to read cgh.c.

9.2.2 Compile Optimization Options

The current CPUhas a highly parallel architecture. Asmentioned inChap. 4, theCPU
has parallelism such as pipeline processing of instruction, throughput and latency
of instruction, superscalar, SIMD processing, and multi-core. It is very difficult to
schedule combinations of instructions that can be calculated efficiently and correctly
while considering all of these parallel architectures. The compiler solves this problem
better than trial and error in the source code. Therefore, the compiler option that
specifies the strength of optimization to the compiler is important. The best known
optimization option is “-O”. This option is usually used with an optimization level.
Optimization levels range from zero to seven,with up to three currently implemented.
The optimization option for level three is “-O3” and strong optimization is applied,
whereas, “-O0” means no optimization.

The safest level is two,which generates a stable executable file.Because level three
is an optimization that assumes a numerical computation algorithm, the compiler
misinterprets program algorithms in extremely rare cases. Compiler optimization
is weak for algorithms that are difficult to predict program flow. For example, an
algorithm in which the loop condition changes depend on the calculation result in
the loop, or jump from inside a loop into another loop depending on the condition.

However, “-Ofast” is a stronger optimization option that is not a numerical level
specification. The -Ofast option attempts to optimize ignoring strict standard com-
pliance. We can expect even faster than the “-O3” option. It is worth using “-Ofast”
for numerical calculation programs. We must not forget that optimization options
stronger than “-O2” may generate instructions that are not what we intended. If the
behavior is strange using “-Ofast”, we change to “-O2” and check the operation.
Alternatively, we use “-Ofast” after confirming that the correct result is obtained
with “-O2”. We use “-Ofast” to compile the sample programs in this chapter.

Even with the “-O” option alone, we can obtain a good optimization effect. In
addition, if we notify the compiler the hardware environment to run, it may be faster.
The compiler optimizes using all the technologies and functions allowed in that envi-
ronment. The compiler options are “-march=native” and “-mtune=native”. Because
the execution code depending on a specific machine is generated, the compatibility
is low. It does not guarantee that the program functions correctly even on machines
with the same CPU series. To improve compatibility, we change the parameter from
“native” to “generic”. Three compiler options for optimization are sufficient: “-Ofast
-march=native -mtune=native”.
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9.2.3 Main Program Flow

Here is a brief explanation of the program flow in the main function. The main
function is described in cgh.c.

Listing 9.1 Main function

1 int main(int argc, char ∗∗argv)
2 {
3 FILE ∗obj_file;
4 int32_t n; // number of object points
5 float (∗obj_xyz)[3];
6 struct timespec ts_start, ts_diff;
7 char ∗bmp_fn;
8

9 if (argc != 2) return (−EINVAL);
10

11 obj_file = fopen(argv[1], "r");
12 if (!obj_file) return (−ENOENT);
13 fread(&n, sizeof (n), 1, obj_file);
14 if (n <= 0) {
15 fclose(obj_file);
16 printf("Too few object points\n");
17 return (−EINVAL);
18 }
19 if (MAX_N_POINTS < n) {
20 fclose(obj_file);
21 printf("Too many object points\n");
22 return (−EINVAL);
23 }
24 obj_xyz = (float (∗)[3])malloc(sizeof (float) ∗ 3 ∗ n);
25 if (obj_xyz) fread(obj_xyz, sizeof (float) ∗ 3 ∗ n, 1, obj_file);
26 fclose(obj_file);
27 if (!obj_xyz) return (−ENOMEM);
28

29 stopwatch_get_time(&ts_start);
30 xyz_to_psi(n, obj_xyz);
31 stopwatch_diff_from(&ts_start, &ts_diff);
32 printf("xyz(%’d) => psi(%’dx%’d): %’4ld.%09ld sec.\n", n,

LCD_WIDTH, LCD_HEIGHT, ts_diff.tv_sec, ts_diff.tv_nsec);
33

34 free(obj_xyz);
35

36 bmp_fn = malloc(strlen(argv[1]) + sizeof (".bmp"));
37 if (!bmp_fn) return (−ENOMEM);
38 strcpy(bmp_fn, argv[1]);
39 strcat(bmp_fn, ".bmp");
40 save_bitmap(bmp_fn);
41 free(bmp_fn);
42

43 return (0);
44 }
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Fig. 9.1 Image diagram of the coordinate data format of the object point considering the cache
line

Only the minimum necessary processing is implemented to keep the program for
becoming highly complex. The processing is roughly divided into three.

1. Read the coordinate data of the object points from a file.
2. Convert from coordinate data to CGH pixels.
3. Save it to a bitmap format file.

The file format of the file in which the coordinate data of the object point is
recorded is simple. The number of object points is recorded as a 32-bit integer at the
beginning. Subsequently, float type (32-bit) coordinate data is recorded in the order
of x , y, and z. Then, the x , y, and z coordinate data are repeated for the number of
object points. Therefore, we read 32 bits first to obtain the number of object points.
Next, we allocate memory to hold the coordinate data and read the coordinate data
from the file.

A program that converts coordinate data into CGH pixels is written in the
xyz_to_psi function. In the next section, we will improve the processing in this
function and increase the calculation speed. We will evaluate the memory size and
processing time required to execute this function.

Finally, we normalize the CGH pixels to 256 gradations and save it as a bitmap
format file. The output file name is the input file name with “.bmp” appended.

We consider the coordinate data format of an object point. The coordinate data
has three variables, x , y, and z, and each variable type is float type (4 bytes). CGH
calculation canbeperformedby the coordinate data of anobject point. The calculation
is possiblewith loading only 12 bytes of 3D coordinate data.We need to focus on data
cachemisses.When the instruction to load the 0th data is executed, 64 bytes including
it are read into the cache memory. If the subsequent data is used immediately, the
probability of being in the cache increases, and we can expect an improvement in
performance. If the data is not used immediately, the probability of being deleted
from the cache memory increases. Because the calculations are performed using the
variables x , y, and z in order, it is recommended to prepare the coordinate data of
the object point as shown in Fig. 9.1.
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9.3 Implementation of the xyz_to_psi Function

9.3.1 Direct Calculation Using Double-Precision
Floating-Point Type

The CGH pixels ψ(xα, yα) at the hologram plane (xα, yα) is obtained by

ψ(xα, yα) =
Nobj∑

j

cos

(
2π

p

λ

(xα − x j )
2 + (yα − y j )2

2|z j |
)

, (9.1)

where (x j , y j , z j ) are the discretized coordinates of the j-th point consisting the
object, p is the sampling rate of the hologram plane (corresponding to the pixel pitch
of the spatial light modulator (SLM)), λ is the wavelength of the reference light, and
Nobj is the total number of points consisting the object. We can obtain the hologram
by repeatedly calculating Eq. (9.1) for all the pixels consisting the hologram. Listing
9.2 is a program that describes Eq. (9.1) in C programming language.

Listing 9.2 xyz_to_psi function using the double-precision floating-point type

1 float psi[LCD_HEIGHT][LCD_WIDTH];
2

3 void xyz_to_psi(int32_t obj_n, float (∗obj_xyz)[3])
4 {
5 int xa, ya, n;
6 float xj, yj, zj;
7

8 for (ya = 0; ya < LCD_HEIGHT; ya++) {
9 for (xa = 0; xa < LCD_WIDTH; xa++) {
10 psi[ya][xa] = 0.0;
11 }
12 }
13

14 for (ya = 0; ya < LCD_HEIGHT; ya++) {
15 for (xa = 0; xa < LCD_WIDTH; xa++) {
16 for (n = 0; n < obj_n; n++) {
17 xj = obj_xyz[n][0] ∗ XYZ_EXP + X_OFFSET;
18 yj = obj_xyz[n][1] ∗ XYZ_EXP + Y_OFFSET;
19 zj = obj_xyz[n][2] ∗ XYZ_EXP + Z_OFFSET;
20 psi[ya][xa] += cos(2.0 ∗ M_PI ∗ (LCD_DOT_PITCH / LAMBDA) ∗ ((xa − xj) ∗ (xa

− xj) + (ya − yj) ∗ (ya − yj)) / (2.0 ∗ fabs(zj)));
21 }
22 }
23 }
24 }

First, we initialize the two-dimensional array psi with zeros. Next, we prepare a
triple for-loop to calculate all hologram pixels using all object points. Because Eq.
(9.1) normalizes the coordinates with the pixel pitch of the hologram, we can simply
increment xα and yα . In the triple for-loop, we calculate CGH pixels using Eq. (9.1).
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Table 9.2 Performance of the xyz_to_psi function using the double-precision floating-point type

Nobj Calculation time [s] Used memory [MiB] (12Nobj + 4Nhol )

710 28.42 7.92 (0.01 + 7.91)

44,647 1,828.25 8.42 (0.51 + 7.91)

978,416 40,804.55 19.11 (11.20 + 7.91)

We evaluate the calculation time for obtaining 1,920 × 1,080 hologram from the
coordinate data of the points consisting of the object, and the amount of memory
used at that time. At the beginning of cgh.c, the hologram size and the wavelength
of the reference light are defined. We observe three kinds of objects consisting of
approximately 1,000 points, 40,000 points, and 1,000,000 points. The computer used
for the evaluation is the test PC shown in Table 9.1. Table 9.2 shows the performance
of Listing 9.2, which is the standard program in this subsection. Nhol is the number
of pixels in the hologram. The calculated hologram image is shown in Sect. 9.4.

We can calculate the hologram by using a buffer that stores the coordinate data of
the object point and the calculation result. The amount of memory used is as follows.

Point cloud data size: size of float type × 3D coordinates × number of the object points = 12Nobj
Hologram data size: size of float type × number of pixels of the hologram = 4Nhol

Therefore, the amount of memory used in xyz_to_psi function is 12Nobj + 4Nhol .
Listing 9.2 is the most straightforward program and also requires a very long

calculation time. We will investigate the problem, considering why this program is
slow, based on the functions and features of the CPU introduced in Chap. 4 or the
behavior of the compiler and programming language characteristic. From the next
subsection, we will improve the xyz_to_psi function step by step.

9.3.2 Direct Calculation Using Single-Precision
Floating-Point Type

We improve Listing 9.2 in the previous subsection. The improvement is simple and
we only need to use float types instead of using double types. We may think that the
program does not originally have a double type. In addition, the double type is used.
Even though the constant 0.0 in the initialization of the two-dimensional array psi
is not a problem, constants such as 2.0 and the actual value of M_PI are the double
type. The coordinate data is a float type, although when the calculation progresses
and a double type is used, it changes to processing using the double type to keep
accuracy. Furthermore, we use the cos function and the fabs function of the math
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library. Because both functions perform calculations with double precision, we also
use the double type here. We may use different types unconsciously if we are not
careful.

Listing 9.3 is a program that rewrites Listing 9.2 to allow it to calculate only with
the float type. We add suffix to constants to clarify the type. If the value is a float
type constant, we append suffix ’f’. For variables, we convert the type using the cast
operator. The cast operator is a prefix of parentheses. We write the converted type
in parentheses. We should use the cosf function instead of the cos function and the
fabsf function instead of the fabs function.

Listing 9.3 xyz_to_psi function using the single-precision floating-point type

1 float psi[LCD_HEIGHT][LCD_WIDTH];
2

3 void xyz_to_psi(int32_t obj_n, float (∗obj_xyz)[3])
4 {
5 int xa, ya, n;
6 float xj, yj, zj;
7

8 for (ya = 0; ya < LCD_HEIGHT; ya++) {
9 for (xa = 0; xa < LCD_WIDTH; xa++) {
10 psi[ya][xa] = 0.0f;
11 }
12 }
13

14 for (ya = 0; ya < LCD_HEIGHT; ya++) {
15 for (xa = 0; xa < LCD_WIDTH; xa++) {
16 for (n = 0; n < obj_n; n++) {
17 xj = obj_xyz[n][0] ∗ XYZ_EXP + X_OFFSET;
18 yj = obj_xyz[n][1] ∗ XYZ_EXP + Y_OFFSET;
19 zj = obj_xyz[n][2] ∗ XYZ_EXP + Z_OFFSET;
20 psi[ya][xa] += cosf(2.0f ∗ (float)M_PI ∗ (float)(LCD_DOT_PITCH / LAMBDA) ∗ ((

xa − xj) ∗ (xa − xj) + (ya − yj) ∗ (ya − yj)) / (2.0f ∗ fabsf(zj)));
21 }
22 }
23 }
24 }

With only this modification, we can improve the calculation speed. The measure-
ment results are shown in Table 9.3. The acceleration rate is a magnification that is
accelerated from Listing 9.2 shown in Sect. 9.3.1. The value in parentheses is a mag-
nification that is accelerated from the program shown in previous subsection. From
the results, we can observe that we can obtain about 1.6 times faster by focusing on
the type for data. Because most instructions have a lower latency for the 32-bit float
type than for the 64-bit double type, we can accelerate the computation. We should
always attempt to program while focusing on the word length of variables, rather
than randomly choosing a variable type. The word length of variables is related to
the data pack for executing SIMD operations, and directly affects the performance
of parallel processing. Therefore, we should choose the variable type carefully.

Type conversion is not possible without computational cost. Computational cost
is incurred each time a type conversion is performed. The problem is that using
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Table 9.3 Performance of the xyz_to_psi function using the single-precision floating-point type.
The value in parentheses is a magnification that is accelerated from the program shown in previous
subsection

Nobj Calculation time [s] Acceleration rate Used memory
[MiB]

(12Nobj + 4Nhol )

710 17.40 1.63 (1.63) 7.92 (0.01 + 7.91)

44,647 1,148.72 1.59 (1.59) 8.42 (0.51 + 7.91)

978,416 26,663.88 1.53 (1.53) 19.11 (11.20 + 7.91)

type conversion in an iterative process such as for-loop significantly increases the
overhead, which cannot be ignored. For example, in Listing 9.3, the computational
cost of type conversion is O(Nobj × Nhol). We should avoid using cast operators in
programs.

Furthermore, the cast operator is used in Listing 9.3, although the timing at which
the type conversion is performed is different. A cast operator is attached to a constant
in Listing 9.3. Constants do not need to be typecast at runtime. This type conversion
does not affect the calculation speed because it can be calculated when compiling.

9.3.3 Multi-thread and SIMD Programming Using OpenMP

To enable a multi-core CPU to perform parallel processing, we create multiple
threads and assign them to each CPU core for processing. In parallel processing
using SIMD, we write programs using CPU-dependent instructions such as AVX
[5]. Multithreaded programming is difficult to control threads. Because a program
using SIMD instructions is not similar to mathematical expressions, the readability
of the source code is poor. Therefore, in this chapter, we perform parallel processing
using OpenMP [6].

OpenMP is a tool that can implement parallel processing relatively easily even
with little specialized knowledge of hardware. If we inform the compiler that we
use OpenMP, SIMD instructions may be generated without writing a SIMD instruc-
tion program in the source code. The author assumes that the compiler understands
the program well and generates SIMD instructions. Therefore, even if we do not
intentionally program SIMD processing, the performance of the program is nearly
the same. Therefore, this subsection focuses on the implementation of multi-thread
processing using OpenMP. This subsection explains the preferred data for SIMD
instructions, not programs for generating SIMD instructions.

When using OpenMP, we prepare in two simple ways. We add “-fopenmp” to the
compile options and include “omp.h” in the source file. The programming method
is a way to parallelize using the pragma directive. The program part immediately
following the pragma directive is converted into a parallel program by OpenMP. The
pragma directive itself is supported by C programming language. It is a preprocessor
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instruction for passing specific information to the compiler, not a function provided
by OpenMP. From here, we understand the pragma directives in Listing 9.4.

Listing 9.4 xyz_to_psi function using OpenMP

1 #define SIMD_ALIGN (256 / 8) // avx2: 256 bits
2

3 float psi[LCD_HEIGHT][LCD_WIDTH] __attribute__((aligned(SIMD_ALIGN)));
4

5 void xyz_to_psi(int32_t obj_n, float (∗obj_xyz)[3])
6 {
7 int32_t n;
8

9 #pragma omp parallel for // (1st)
10 for (int32_t ya = 0; ya < LCD_HEIGHT; ya++) {
11 for (int32_t xa = 0; xa < LCD_WIDTH; xa++) {
12 psi[ya][xa] = 0.0f;
13 }
14 }
15

16 #pragma omp parallel for simd private(n) // (2nd)
17 for (n = 0; n < obj_n; n++) {
18 obj_xyz[n][0] = obj_xyz[n][0] ∗ XYZ_EXP + X_OFFSET;
19 obj_xyz[n][1] = obj_xyz[n][1] ∗ XYZ_EXP + Y_OFFSET;
20 obj_xyz[n][2] = obj_xyz[n][2] ∗ XYZ_EXP + Z_OFFSET;
21 }
22

23 #pragma omp barrier // (3rd)
24

25 #pragma omp parallel for private(n) reduction(+:psi) // (4th)
26 for (int32_t ya = 0; ya < LCD_HEIGHT; ya++) {
27 for (int32_t xa = 0; xa < LCD_WIDTH; xa++) {
28 float xaj, yaj;
29 for (n = 0; n < obj_n; n++) {
30 xaj = xa − obj_xyz[n][0];
31 yaj = ya − obj_xyz[n][1];
32 psi[ya][xa] += cosf(2.0f ∗ (float)M_PI ∗ (float)(LCD_DOT_PITCH / LAMBDA) ∗ (

xaj ∗ xaj + yaj ∗ yaj) / (2.0f ∗ fabsf(obj_xyz[n][2])));
33 }
34 }
35 }
36 }

The first pragma directive (#pragma omp parallel for) converts the following
for-loop to the parallel processing using multithread. We use the parallel clause
to create multi-threads using OpenMP. The first pragma directive also specifies the
parallelization target, which is the for clause that follows the parallel clause. OpenMP
divides the for-loop processing that immediately follows the pragma directive and
assigns it to each thread. By default, OpenMP adjusts the number of threads to
use all CPU logical cores. If we know an efficient load balancing method from
the characteristics of the algorithm, we can specify a parallel schedule. We refer to
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Fig. 9.2 Thread local variables

the OpenMP reference guide [7] for details. In this way, we can perform parallel
processing by inserting only one line of pragma directives.

We must design programs while always considering the situation where multiple
programs are executed simultaneously. For example, we consider how the variable
ya, which is used in the for-loop is accessed. Figure 9.2 shows the image when the
processing of the for-loop statement of the loop counter ya is equally allocated to the
4-core CPU. Because each CPU core processes different parts of the for-loop, the
loop counter ya must be a local variable for each thread. If we declare the variable
ya at the beginning of the xyz_to_psi function, as in Listing 9.3, all threads use
that single variable ya, preventing the correct processing. Therefore, we declare the
variable ya in the for statement to allow it to become a local variable in the thread.
The same applies to the variable xa, and we rewrite the program to allow the variable
xa to become a local variable of the thread. OpenMP simply rewrites the source code
part to be parallelized into a program that uses threads. OpenMP does not understand
exactly how the variables are used after parallelization. We must declare variables
by assuming exactly what happens when the program is processed in parallel.

The second pragma directive (#pragma omp parallel for simd private (n)) contains
nearly the same contents as the first and is intentionally changed for a supplementary
explanation. We can also create thread local variables using the OpenMP private
clause. The variable n should be prepared for each thread, although it is declared at
the beginning of the xyz_to_psi function. The second pragma directive uses a private
clause with the variable n. OpenMP replaces the variable n with the local variable of
each thread. The difference to the first pragma directive is whether C programming
language grammar is used to localize variable scope orOpenMP functionality is used.
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We can use either one. The simd clause analyzes whether the for-loop is replaced by
a SIMD instruction. OpenMP generates a SIMD instruction if possible.

Owing to parallel processing, different degrees of progress exist. Even if we
distribute the computational load evenly to the threads, the progress speed is different
in each thread. Processing of the xyz_to_psi function includes initialization of the
two-dimensional array psi, correction of coordinate data, and calculation of the CGH
pixels. Figure 9.3 shows an example of the flow in which four threads process the
xyz_to_psi function. Figure 9.3 has two figures at the top and bottom. The top figure
shows an example of an error that can occur when the program is simply executed.
The bottom figure shows the state of appropriate processing for the error. The arrows
in the figure indicate the processing progress position. In the top figure, Thread0
and Thread1 are in the process of initializing the two-dimensional array psi, and
Thread2 is performing the correction calculation of coordinate data. Because there
is no dependency between the initialization of the two-dimensional array psi and the
correction calculation of coordinate data, we can obtain the correct result regardless
of the order of processing. However, we must not start the calculation of the CGH
pixels similar to Thread3. To calculate theCGHpixels correctly, the two-dimensional
array psi must be initialized to zero, and the coordinate data must be converted to the
correct corrected value. Even if we distribute the computational load equally among
the threads, the degrees of processing progress are extremely different. One of the
main reasons is that the CPU usage right is deprived by other processes because the
OS is multitasking. Therefore, to enter the for-loop that calculates the CGH pixels,
we must ensure that all threads have reached that point. The barrier clause of the
third pragma directive (#pragma omp barrier) prevents execution of the program until
all threads reach there. It acts as a barrier as shown in Fig. 9.3. After all threads are

Fig. 9.3 Processing synchronization using barrier
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Fig. 9.4 Image diagram of a situation in which multiple threads access the same address

completed the processing up to that point, parallel processing by the fourth pragma
directive is started.

We can parallelize the for-loop that calculates the CGH pixels with one line
of pragma directive. The variable n is declared as a local variable, as shown on
line 25 of Listing 9.4. In other words, in this for-loop, the processing is faster by
parallelizing for the variable n. However, in contrast to the first and second directives,
inefficient processing is included. Figure 9.4 shows an example of that processing.
It shows a situation using a 4-core CPU. Each CPU core calculates the cosine and
summates the result to the element of the two-dimensional array psi. The problem
is that multiple CPU cores simultaneously access the exact same element in the
two-dimensional array psi depending on the timing of processing. The program part
written about variables accessed from multiple threads is called a critical section.
Critical sections require exclusive processing to maintain the integrity of shared
variables. Exclusive processing is processing that restricts access to shared variables
by only one thread. Although it is necessary for correct calculation, calculation
efficiency decreases because the time between calculations increases. Therefore, we
process the superposition for the element of the two-dimensional array psi in two
steps as shown in Fig. 9.5. We prepare one local variable for each thread. Each thread
performs a summation operation on its local variable. Because each thread is always
ready to performa summation operation, theCPUdoes not needwait for acquiring the
access right and can execute effective processing continuously. When the calculation
of the CGH pixels of the object point assigned to each thread is completed, the local
variables of each thread are summated as the next step. Therefore, we obtain a
complete value that is summated from all object points. Finally, we only need to
write it once for the element of the two-dimensional array psi.

OpenMP can also generate programs such complicated processing. As in the
fourth pragma directive (#pragma omp parallel for private (n) reduction (+:psi)), we
can inform OpenMP using the reduction clause. First, we specify an operator that
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Fig. 9.5 Image diagram of reducing access to shared variables using the reduction clause

calculates the local variables of each thread. In the calculation of the two-dimensional
array psi, we specify a plus operator because it is a summation calculation. OpenMP
prepares a thread local variable andmodifies the program to prevent it frombecoming
a critical section. Because the thread local variable is one variable in this study,
the probability that it can exist in the low-level cache of each CPU core increases.
Therefore, we can also expect the effects of reducing access to the system memory
and cache misses. It is very important to use the reduction clause when there are
many accesses to shared variables in parallel processing.

SIMD instructions can perform multiple operations of the same type with a sin-
gle instruction. To generate SIMD instructions, we need a program that performs the
sameprocess repeatedly. Compilers canfind efficiently such programparts.However,
if we do not prepare for the SIMD calculation, smooth operation may be prevented.
Operands used in SIMD instructions should be adjusted to an address where the CPU
can easily process. Because SIMD instructions require packed data for operands, the
CPU always accesses block data of several bytes. For AVX instructions, at least 32
bytes must be read and written. In addition, a 64-bit CPU operates using 64 bits
data as a basic block. When we allocate memory in a normal procedure, the starting
address is a positionwhere at least 8 bytes can be read andwritten in one access. How-
ever, if the SIMD register size is the basic block, the address granularity increases.
We should allocate memory from addresses that can simultaneously access the large
size block. This is because a boundary exists in the memory device. When accessing
across the boundary, the access occurs twice before and after the boundary. Regard-
ing the existence of boundaries, we can easily understand that the system memory
is composed of multiple memory chips rather than one large memory device. We
should align addresses with SIMD register size to avoid performance degradation.
Address alignment can be performed by two methods: using C programming lan-
guage attribute to inform the compiler, and using a memory allocation function that
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Table 9.4 Performance of the xyz_to_psi function using the OpenMP. The value in parentheses is
a magnification that is accelerated from the program shown in previous subsection

Nobj Calculation time [s] Acceleration rate Used memory
[MiB]

(12Nobj + 4Nhol )

710 0.38 74.14 (45.38) 7.92 (0.01 + 7.91)

44,647 22.04 82.97 (52.13) 8.42 (0.51 + 7.91)

978,416 1,892.76 21.56 (14.09) 19.11 (11.20 + 7.91)

can perform address alignment. The variable psi on line 3 of Listing 9.4 performs
address alignment by adding attributes at the time of declaration. The value assigned
to “aligned” is the amount of address to be aligned, that is, the amount of bytes in the
SIMD register size. In the main function, the memory allocation of the coordinate
data of the object point is rewritten to use the aligned_alloc function, which is the
C11 standard [8]. For SIMD instruction implementations using OpenMP, we only
focus on memory allocation. Although the compiler may not generate the SIMD
instructions as expected, it is usually generated well.

By implementing parallel processing, we can expect significant performance
improvements. The CPU of the test machine has four physical cores, and we can
use AVX2 for SIMD instructions. The AVX2 instruction can process data packed
with 8 float type data. Therefore, we can expect a speedup of approximately 32 times.
In addition, in Listing 9.4, we consider coordinate correction calculations out of the
triple for-loop and eliminate unnecessary calculations. The results are shown in Table
9.4. We have achieved higher speed than expected except for an object consisting of
one million points. Thus, we can expect a significant improvement in computation
speed by parallel processing. Implementing parallel processing is indispensable to
fully exploit CPU performance.

9.3.4 Recurrence Algorithm Implementation

In this subsection, we further increase the processing speed by improving the calcula-
tion algorithm. We have calculated the distances between all object points and pixels
of the hologram. From here, we adopt an algorithm that can calculate nearly all of
the hologram plane by a recurrence formula [9, 10]. Chapter 2 describes the detail
of the recurrence algorithm. This algorithm eliminates many distance calculations
and can reduce the amount of calculation. The recurrence formula is a sequential
process. It is highly suitable for a computer architecture because it can continuously
process the same instruction. However, we must be careful because the recurrence
formula is a typical formula that cannot be processed in parallel.
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We consider applying the recurrence formula toward the x-axis direction of the
hologram plane. We calculate θ ,�, and � at the first CGH point (xα|α=0, yα) of each
row that is the base point, using Eqs. (9.2), (9.3), and (9.4).

θα j = p

λ

1

2|z j | (x
2
α j + y2α j ) (9.2)

�α j = p

2λ|z j | (2xα j + 1) (9.3)

� j = p

λ|z j | , (9.4)

where xα j is xα − x j . After the base points θ ,�, and� are obtained, we can calculate
the θ and � of the neighboring pixels by the recurrence formulas of Eqs. (9.5) and
(9.6).

θ(α+n) j = θ(α+n−1) j + �(α+n−1) j (9.5)

�(α+n) j = �(α+n−1) j + � j . (9.6)

We can obtain the CGH pixels ψ by using θ as shown in Eq. (9.7).

ψ(xα, yα) =
Nobj∑

j

cos(2πθα j ) (9.7)

Listing 9.5 describes thesemathematical expressions inC programming language.
We allocate memory to store gamma, delta, and theta for each object point necessary
for the calculation. Because the calculations for delta and theta depend on the loop
counters ya and xa, they must be thread local. By contrast, the calculation of gamma
depends only on z j (obj_xyz[n][2]) and can be performed in common for all threads.
Therefore, we need to prepare only one variable as a buffer for gamma. However, it
is possible that the same address is referenced from multiple threads and contends
for access rights. In the sample program, we prepare gamma for each object point as
array to avoid conflict. Although the amount of memory used increases, it becomes
possible to process the recurrence formulas in parallel as will be described in the next
paragraph. Then we calculate gamma, delta, and theta of the base point for all object
points. Finally, we calculate the CGH pixels using the recurrence formula toward the
x-axis.

Listing 9.5 xyz_to_psi function using the recurrence algorithm

1 #define SIMD_ALIGN (256 / 8) // avx2: 256 bits
2

3 float psi[LCD_HEIGHT][LCD_WIDTH] __attribute__((aligned(SIMD_ALIGN)));
4

5 void xyz_to_psi(int32_t obj_n, float (∗obj_xyz)[3])
6 {
7 const float ppl = LCD_DOT_PITCH / LAMBDA;
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8

9 #pragma omp parallel for simd
10 for (int32_t n = 0; n < obj_n; n++) {
11 obj_xyz[n][0] = obj_xyz[n][0] ∗ XYZ_EXP + X_OFFSET;
12 obj_xyz[n][1] = obj_xyz[n][1] ∗ XYZ_EXP + Y_OFFSET;
13 obj_xyz[n][2] = obj_xyz[n][2] ∗ XYZ_EXP + Z_OFFSET;
14 }
15

16 memset(psi, 0, sizeof (psi));
17

18 #pragma omp barrier
19

20 #pragma omp parallel for reduction(+:psi)
21 for (int32_t ya = 0; ya < LCD_HEIGHT; ya++) {
22 int32_t n, xa;
23 float ∗gamma, ∗delta, ∗theta;
24 float rho;
25

26 gamma = aligned_alloc(SIMD_ALIGN, sizeof (float) ∗ obj_n);
27 delta = aligned_alloc(SIMD_ALIGN, sizeof (float) ∗ obj_n);
28 theta = aligned_alloc(SIMD_ALIGN, sizeof (float) ∗ obj_n);
29

30 for (n = 0; n < obj_n; n++) {
31 rho = ppl / (2.0f ∗ obj_xyz[n][2]);
32 gamma[n] = rho ∗ 2.0f;
33 delta[n] = rho ∗ (2.0f ∗ (0.0f − obj_xyz[n][0]) + 1.0f);
34 theta[n] = rho ∗ ((0.0f − obj_xyz[n][0]) ∗ (0.0f − obj_xyz[n][0]) + (ya − obj_xyz[n][1])

∗ (ya − obj_xyz[n][1]));
35 }
36

37 for (xa = 0; xa < LCD_WIDTH; xa++) {
38 for (n = 0; n < obj_n; n++) {
39 psi[ya][xa] += cosf(2.0f ∗ (float)M_PI ∗ theta[n]);
40 theta[n] += delta[n];
41 delta[n] += gamma[n];
42 }
43 }
44

45 free(theta);
46 free(delta);
47 free(gamma);
48 }
49 }

At the beginning of this subsection, we mentioned that the recurrence formula
is a mathematical formula that cannot be processed in parallel. Furthermore, no
dependencies exist between object points in CGH calculations. In the for-loop for
the loop counter n, psi[ya][xa] is a thread local variable by the reduction clause,
and the executable condition of the program depends only on the object points. We
can execute parallel processing by dividing the object point instead of dividing the
hologram plane. If the gamma, delta, and theta of the base point for each object
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point are available, we can calculate in parallel. Therefore, we prepared as many
gamma-rays as the number of object points.

The memory required for the calculation requires more buffers to store gamma,
delta, and theta. The test machine had eight logical CPUs. The buffer sizes were as
follows:

The amount of memory used increases by 96Nobj bytes. The amount of memory
required is highly dependent on the number of object points. This is a major problem
for high-definition objects. In this case, the calculation is impossible, regardless of
the calculation speed. We solve this problem in Sect. 9.3.6.

Buffer size of gamma: number of threads × size of float × number of the object points = 32Nobj
Buffer size of delta: number of threads × size of float × number of the object points = 32Nobj
Buffer size of theta: number of threads × size of float × number of the object points = 32Nobj

Table 9.5 lists the performances. By adopting an algorithm suitable for the CPU,
the calculation speed nearly doubled.

9.3.5 Latency Reduction with Look-Up Table

We can achieve a speedup of more than 100 times compared to the program using the
double type first introduced in Listing 9.2. Furthermore, to effectively speed up the
calculation, we must understand the computational complexity in the program. We
consider whether processing can be reduced by a heavily loaded program. The recur-
rence formula consists of addition operations with simple computational complexity.
Thus, we focus on the cosine calculation. The calculation of the trigonometric func-
tions is extremely complicated, therefore, the CPU is equipped with a vector-type
cosine arithmetic circuit. Furthermore, the cosine function in glibc [11] (in math.h)
simply passes arguments to a vector-type cosine arithmetic circuit. Despite using
a vector-type circuit, it has a latency of over 150 [12]. This calculation is time-

Table 9.5 Performance of the xyz_to_psi function using the recurrence algorithm. The value in
parentheses is a magnification that is accelerated from the program shown in previous subsection

Nobj Calculation time
[s]

Acceleration rate Used memory
[MiB]

(12Nobj + 4Nhol +
96Nobj )

710 0.21 136.96 (1.85) 7.98 (0.01 + 7.91 +
0.07)

44,647 11.20 163.28 (1.97) 12.51 (0.51 + 7.91 +
4.09)

978,416 1,908.04 21.39 (0.99) 108.68 (11.20 + 7.91 +
89.58)
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consuming. Because this is in the deepest for-loop, we need to improve it in some
way.

We reduce the latency by allowing cosines to be calculated using memory. The
basic operation of memory is that when an address is input, the corresponding data
are output. We regard the memory address as an argument for the cosine function.
If we write the cosine value corresponding to the argument as data in the memory,
the memory reference is equivalent to calculating the cosine. A data array for data
conversion is called a look-up table (LUT). For example, if data are output at the next
clock given an address to the memory, the latency is one, and the calculation speed
is remarkable. In practice, the latency is greater than one because of the hierarchical
structure of the cache memory and pipeline processing of instructions. Because the
LUT must be able to be referenced at high speed, it must be sufficiently large to
be stored in cache memory. Moreover, the size must be sufficiently small that LUT
data are not frequently cached out by other data. Therefore, the table size is limited,
which affects the size of the address space and the accuracy of the data. Nevertheless,
if we design to meet these requirements, latency can be reduced. We can expect a
sufficient speedup.

The sample program uses an LUT that uses 8 bits for the number of elements and
stores float type data (32 bits). The number of elements empirically determines the
accuracy with which the original object can be observed when we study the recon-
structed image. We sample 2π into 256 parts and store the corresponding cosine
values as LUT data. The LUT size is 256 × 4 = 1, 024 bytes. This is a practi-
cal size, considering that the L1 data cache size is 32 KiB. Listing 9.6 shows the
make_cos_table function that creates an LUT. We create the LUT by storing the
result of the cosf function in a one-dimensional array that has 256 float type data. We
executed this function before executing the xyz_to_psi function. In the xyz_to_psi
function, we rewrite the program to refer to the one-dimensional array cos_table,
instead of calling the cosf function, as shown in Listing 9.7. The variable theta is
considered as an array index, not as a function argument. Because the index must be
an integer that does not exceed the number of elements in an array, we only need to
extract the lower 8 bits of the variable theta. It is extremely easy to process because
it is a calculation of the bitwise AND of variables theta and 0xff. This operation is
no problem because trigonometric functions are periodic functions.

Listing 9.6 make_cos_table function to create LUT of float type data

1 #define COS_DEPTH 8 // [bit]
2 #define COS_N (0x1 << COS_DEPTH)
3 #define COS_MASK (COS_N − 1)
4

5 float cos_table[COS_N];
6

7 void make_cos_table()
8 {
9 int i;
10

11 for (i = 0; i < COS_N; i++) cos_table[i] = cosf(2.0 ∗ M_PI ∗ i / COS_N);
12 }
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Listing 9.7 xyz_to_psi function using the Look-Up Table

1 #define SIMD_ALIGN (256 / 8) // avx2: 256 bits
2 #define FtoI(n) (((n) < 0.0f) ? (int32_t)((n) − 0.5f) : (int32_t)((n) + 0.5f)) // float

to int32_t
3

4 float psi[LCD_HEIGHT][LCD_WIDTH] __attribute__((aligned(SIMD_ALIGN)));
5

6 void xyz_to_psi(int32_t obj_n, float (∗obj_xyz)[3])
7 {
8 const float ppl = LCD_DOT_PITCH / LAMBDA;
9

10 #pragma omp parallel for simd
11 for (int32_t n = 0; n < obj_n; n++) {
12 obj_xyz[n][0] = obj_xyz[n][0] ∗ XYZ_EXP + X_OFFSET;
13 obj_xyz[n][1] = obj_xyz[n][1] ∗ XYZ_EXP + Y_OFFSET;
14 obj_xyz[n][2] = obj_xyz[n][2] ∗ XYZ_EXP + Z_OFFSET;
15 }
16

17 memset(psi, 0, sizeof (psi));
18

19 #pragma omp barrier
20

21 #pragma omp parallel for reduction(+:psi)
22 for (int32_t ya = 0; ya < LCD_HEIGHT; ya++) {
23 int32_t n, xa;
24 float ∗gamma, ∗delta, ∗theta;
25 float rho;
26

27 gamma = aligned_alloc(SIMD_ALIGN, sizeof (float) ∗ obj_n);
28 delta = aligned_alloc(SIMD_ALIGN, sizeof (float) ∗ obj_n);
29 theta = aligned_alloc(SIMD_ALIGN, sizeof (float) ∗ obj_n);
30

31 for (n = 0; n < obj_n; n++) {
32 rho = ppl / (2.0f ∗ obj_xyz[n][2]);
33 gamma[n] = rho ∗ 2.0f;
34 delta[n] = rho ∗ (2.0f ∗ (0.0f − obj_xyz[n][0]) + 1.0f);
35 theta[n] = rho ∗ ((0.0f − obj_xyz[n][0]) ∗ (0.0f − obj_xyz[n][0]) + (ya − obj_xyz[n][1])

∗ (ya − obj_xyz[n][1]));
36 }
37

38 for (xa = 0; xa < LCD_WIDTH; xa++) {
39 for (n = 0; n < obj_n; n++) {
40 psi[ya][xa] += cos_table[FtoI(theta[n] ∗ COS_N) & COS_MASK];
41 theta[n] += delta[n];
42 delta[n] += gamma[n];
43 }
44 }
45

46 free(theta);
47 free(delta);
48 free(gamma);
49 }
50 }
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Table 9.6 Performance of the xyz_to_psi function using the look-up table. The value in parentheses
is a magnification that is accelerated from the program shown in previous subsection

Nobj Calculation time [s] Acceleration rate Used memory
[MiB]

(12Nobj + 4Nhol +
96Nobj )

710 0.11 260.90 (1.90) 7.98 (0.01 + 7.91 +
0.07)

44,647 6.02 303.81 (1.86) 12.51 (0.51 + 7.91 +
4.09)

978,416 1,573.55 25.93 (1.21) 108.68 (11.20 + 7.91 +
89.58)

The performance is presented in Table 9.6. The amount of memory used did not
include the LUT size. We succeeded in achieving higher speeds.

9.3.6 Memory Reduction by Rearranging Program Procedure

The expected performance cannot be obtained when the number of object points
increases. As we are aware, this problem is caused by the large amount of data
required for the calculation. Because the amount of data exceeds the CPU cache size,
calculations are alwaysperformedusing systemmemory,whichhas a slowprocessing
speed. Therefore, the calculation speed is limited by the speed of communication
with systemmemory. If the object consists of tens of thousands of points, the data are
all stored in the cache of the CPU, and thus the problem does not surface. Because
the CPU is not equipped with a large cache memory, as we increase the number
of object points, the calculation speed decreases significantly. In the case of the test
machine (Table 9.1), as described in Sect. 9.3.4, the recurrence algorithm requires
approximately 100 times more memory as the number of object points increases.

It is important to reduce the amount of data used as well as numerical calculations.
It is also important to understand the data characteristics. One of the characteristics
of the data is whether they must be prepared for each CPU core or whether they
can be shared by multiple CPU cores. Moreover, we should better understand the
characteristics and trends of the memory-access frequency, continuity, and range.
Devices with different performances, such as cache and system memory, have a
hierarchical structure and are involved in a complicated manner. What data can exist
in what level of cache memory, or whether we need to devise to make it exist, can
be hints for data design.

One of the easiest ways to increase the cache hit rate is by cache blocking. Cache
blocking is amethodof executingprocessing in small increments such that the amount
of data used for calculation is less than the cache size. A sample source code file using
cache blocking is provided as an appendix/5-recurrence_float_lut/xyz_to_psi.c in the
sample program package. The size of the one-dimensional arrays gamma, delta, and
theta exceed the cache size of the CPU. We delimit the processing to the extent that
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Table 9.7 Performance of the xyz_to_psi function using the cache blocking. The value in paren-
theses is a magnification that is accelerated from the program shown in previous subsection.

Nobj Calculation time [s] Acceleration rate Used memory
[MiB]

(12Nobj + 4Nhol +
96Nobj )

710 0.65 44.01 (0.17) 7.98 (0.01 + 7.91 +
0.07)

44,647 39.24 46.59 (0.15) 12.51 (0.51 + 7.91 +
4.09)

978,416 871.73 46.81 (1.81) 108.68 (11.20 + 7.91 +
89.58)

access to them is less than or equal to the CPU cache size. In the sample source code,
we restrict the extent of access using the macro name BLOCK. The performance is
shown in Table 9.7.We obtained approximately twice the improvement in computing
objects consisting of one million points that exceeded the CPU cache size. The
effect of cache blocking was certain. However, a better improvement way exists for
Listing 9.5 and Listing 9.7.

Listing 9.8 xyz_to_psi function using the cache blocking

1 #define SIMD_ALIGN (256 / 8) // avx2: 256 bits
2 #define FtoI(n) (((n) < 0.0f) ? (int32_t)((n) − 0.5f) : (int32_t)((n) + 0.5f)) // float

to int32_t
3 #define BLOCK (87000) // < 8 MiB (cache size) / 8 threads /

3 arrays / size of float
4

5 float psi[LCD_HEIGHT][LCD_WIDTH] __attribute__((aligned(SIMD_ALIGN)));
6

7 void xyz_to_psi(int32_t obj_n, float (∗obj_xyz)[3])
8 {
9 const float ppl = LCD_DOT_PITCH / LAMBDA;
10

11 #pragma omp parallel for simd
12 for (int32_t n = 0; n < obj_n; n++) {
13 obj_xyz[n][0] = obj_xyz[n][0] ∗ XYZ_EXP + X_OFFSET;
14 obj_xyz[n][1] = obj_xyz[n][1] ∗ XYZ_EXP + Y_OFFSET;
15 obj_xyz[n][2] = obj_xyz[n][2] ∗ XYZ_EXP + Z_OFFSET;
16 }
17

18 memset(psi, 0, sizeof (psi));
19

20 #pragma omp barrier
21

22 #pragma omp parallel for reduction(+:psi)
23 for (int32_t ya = 0; ya < LCD_HEIGHT; ya++) {
24 int32_t n, xa, m;
25 float ∗gamma, ∗delta, ∗theta;
26 float rho;
27

28 gamma = aligned_alloc(SIMD_ALIGN, sizeof (float) ∗ obj_n);
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29 delta = aligned_alloc(SIMD_ALIGN, sizeof (float) ∗ obj_n);
30 theta = aligned_alloc(SIMD_ALIGN, sizeof (float) ∗ obj_n);
31

32 for (n = 0; n < obj_n; n++) {
33 rho = ppl / (2.0f ∗ obj_xyz[n][2]);
34 gamma[n] = rho ∗ 2.0f;
35 delta[n] = rho ∗ (2.0f ∗ (0.0f − obj_xyz[n][0]) + 1.0f);
36 theta[n] = rho ∗ ((0.0f − obj_xyz[n][0]) ∗ (0.0f − obj_xyz[n][0]) + (ya − obj_xyz[n][1])

∗ (ya − obj_xyz[n][1]));
37 }
38

39 for (n = 0; n < obj_n; n += BLOCK) {
40 for (xa = 0; xa < LCD_WIDTH; xa++) {
41 for (m = 0; m < BLOCK && (n + m) < obj_n; m++) {
42 psi[ya][xa] += cos_table[FtoI(theta[n + m] ∗ COS_N) & COS_MASK];
43 theta[n + m] += delta[n + m];
44 delta[n + m] += gamma[n + m];
45 }
46 }
47 }
48

49 free(theta);
50 free(delta);
51 free(gamma);
52 }
53 }

We already understood that the buffer sizes of the one-dimensional arrays gamma,
delta, and theta are large. Although a large size is a problem, a more serious problem
is that a wide bandwidth is required for communication with the system memory.
Moreover, gamma, delta, and theta are closely related to both the calculation of the
base point and the recurrence formula. For example, in the calculation of a recurrence
formula in a triple for-loop, theta, cos_table, psi, delta, theta, gamma, and delta
are stored. As the ratio of memory-access instructions to arithmetic instructions
increases, we cannot hide the latency of the memory-access instructions. Hence,
the communication time with the system memory accounts for most of the total
processing time. It is best to reduce the memory-access instructions. If this is not
possible, we should devise, if possible, such that the latency can be hidden well by
balancing the calculation and memory-access instructions. Even if the data size used
for the calculation is much larger than the cache memory size, the calculation time
can be sufficiently long for the communication time, we can avoid the rate limiting
by the system memory. In other words, we should reduce communication bandwidth
rather than data size.

We solve the problem by reducing both the data size and the communication
bandwidth. Listing 9.5 and Listing 9.7 complete the calculation for one pixel of the
hologram plane before starting the calculation for the next pixel. Although one pixel
of the hologram plane is calculated intensively, we change the program to calculate
one line of the hologram plane using one object point. Because CGH pixels can be
obtained by superposition calculation, they can be summated in any order or timing.
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The deepest for-loop changes to a process of repeating the movement of pixels in the
x-axis direction of the hologram plane instead of repeating for the object point. After
the gamma, delta, and theta of the next pixel are obtained, the gamma, delta, and
theta of the current pixel become unnecessary. We no longer need to store gamma,
delta, and theta for all object points. We can calculate with only a few registers that
can hold the current gamma, delta, and theta values.

The program appears similar to Listing 9.9. It just swaps the for-loop for the loop
counter xa and the for-loop for the object point. Because arrays gamma, delta, and
theta have each been reduced to a single variable, we can significantly reduce the
amount of memory used. Communication with the system memory owing to access
to the one-dimensional arrays gamma, delta, and theta, which occurred during the
calculation, has been eliminated. The cosine table is a size that can be stored in the
L1 cache. In the for-loop that computes a recurrence formula, the only access to
system memory is to the two-dimensional array psi. The advantage of this is that all
the operations except for the instruction to save data in the two-dimensional array psi
can be performed only with the registers and the L1 cache. During communication
of psi[ya][xa] by the store instruction, the CPU can process arithmetic instructions.
Becausewe can hide the latency of store instructions, the apparent latency approaches
the throughput. In addition to achieving a reduction in data volume and communi-
cation bandwidth, we have also achieved faster calculations.

Listing 9.9 xyz_to_psi function using the memory reduction by one line calculation of hologram
plane

1 #define SIMD_ALIGN (256 / 8) // avx2: 256 bits
2 #define FtoI(n) (((n) < 0.0f) ? (int32_t)((n) − 0.5f) : (int32_t)((n) + 0.5f)) // float

to int32_t
3

4 float psi[LCD_HEIGHT][LCD_WIDTH] __attribute__((aligned(SIMD_ALIGN)));
5

6 void xyz_to_psi(int32_t obj_n, float (∗obj_xyz)[3])
7 {
8 const float ppl = LCD_DOT_PITCH / LAMBDA;
9

10 #pragma omp parallel for simd
11 for (int32_t n = 0; n < obj_n; n++) {
12 obj_xyz[n][0] = obj_xyz[n][0] ∗ XYZ_EXP + X_OFFSET;
13 obj_xyz[n][1] = obj_xyz[n][1] ∗ XYZ_EXP + Y_OFFSET;
14 obj_xyz[n][2] = obj_xyz[n][2] ∗ XYZ_EXP + Z_OFFSET;
15 }
16

17 memset(psi, 0, sizeof (psi));
18

19 #pragma omp barrier
20

21 #pragma omp parallel for // reduction(+:psi)
22 for (int32_t ya = 0; ya < LCD_HEIGHT; ya++) {
23 float xaj, yaj, rho, gamma, delta, theta;
24

25 for (int32_t n = 0; n < obj_n; n++) {
26 xaj = 0.0f − obj_xyz[n][0];
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27 yaj = (float)ya − obj_xyz[n][1];
28 rho = ppl / (2.0f ∗ obj_xyz[n][2]);
29 gamma = rho ∗ 2.0f;
30 delta = rho ∗ (2.0f ∗ xaj + 1.0f);
31 theta = rho ∗ (xaj ∗ xaj + yaj ∗ yaj);
32

33 for (int32_t xa = 0; xa < LCD_WIDTH; xa++) {
34 psi[ya][xa] += cos_table[FtoI(theta ∗ COS_N) & COS_MASK];
35 theta += delta;
36 delta += gamma;
37 }
38 }
39 }
40 }

For the coordinate data of the object point, we only need to be able to load the
coordinate data of one point during calculation of one line of the hologram plane.
If we divide the loop of the loop counter ya evenly and provide it to the threads, all
the threads calculate using the coordinate data of the object point in the same order.
The coordinate data of the object point is data that can be shared by all CPU cores.
Therefore, all CPU cores other than the CPU core that first accessed the coordinate
data can load it from the L3 cache with high probability. The communication with
the system memory is only one coordinate data per one line of the hologram plane.
We can understand that it is even more efficient considering the cache line size that
can have coordinate data of five object points as shown Fig. 9.1.

The for-loop for the loop counter xa is the deepest. The value of xa changes
whenever the for-loop is processed even once. Multiple threads do not access the
same psi[ya][xa]. Whether we use the OpenMP “reduction” clause or not, it does not
affect the performance.

The results changed as shown in Table 9.8. The computation time for an object
consists of one million points, where access to the system memory was a bottleneck,
has been reduced by less than one-third. By contrast, the performance of other objects
was worse. OpenMP analyzes for-loop iteration instructions and distributes the load
to threads. In addition, OpenMP converts instructions repeated in for-loop into SIMD
instructions. Therefore, for OpenMP, the loop counter is an important indicator for
scheduling parallel processing. For example, Listing 9.7 is described by a program
that accesses an array using the loop counter n. In Listing 9.9, the program changed

Table 9.8 Performance of the xyz_to_psi function using the memory reduction by one line calcu-
lation of hologram plane. The value in parentheses is a magnification that is accelerated from the
program shown in previous subsection.

Nobj Calculation time [s] Acceleration rate Used memory
[MiB]

(12Nobj + 4Nhol )

710 0.36 79.85 (0.31) 7.92 (0.01 + 7.91)

44,647 22.08 82.79 (0.27) 8.42 (0.51 + 7.91)

978,416 481.81 84.69 (3.27) 19.11 (11.20 + 7.91)
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to an instruction with the loop counter removed. Although OpenMP can generate a
parallel program using threads even if it loses the index, OpenMP does not seem to
be able to generate packed data for SIMD instructions.

We calculate the recurrence formula toward the x-axis direction of the hologram
plane and obtain the CGH pixels for one line. At this time, we can also calculate other
lines of the hologram plane. We should be able to use the SIMD instruction because
multiple rows can be computed simultaneously using the same formula. We can use
256-bit packed data for AVX. We can calculate eight lines of the hologram plane
using SIMD instructions if the calculation precision is 32 bits. Therefore, the loop
counter ya moves eight lines ahead. A sample program is prepared to help the com-
piler generate SIMD instructions using packed data. The source file is “appendix/6-
recurrence_float_lut_line/xyz_to_psi.c” in the sample program package. However, it
is far from the expected performance and the performance is only slightly improved.
We use the Intel Intrinsics [13] to generate SIMD instructions without OpenMP.

9.3.7 Decimal Fraction Calculation Using Integer Type

The first improvement was to speed up the calculation by reducing the excessive data
precision to an appropriate word length. This time, we accelerate the calculation by
changing the data format to integer type. The data format changes fromfloating point
to fixed point. In fixed-point arithmetic, we can process binary numbers as they are.
Arithmetic circuits are simplified, and the throughput and latency of instructions are
shorter than those of arithmetic instructions using floating point. Another advantage
is the ability to perform operations using the nature of binary numbers. For example,
we can calculate faster by shifting the value 1 bit to the right than by dividing it by
two.

We cannot calculate correctly by simply changing the variable type. The integer
type is a simple binary number. An n-bit register can represent zero to (2n − 1) if
the variable type is an unsigned integer. However, the floating-point format uses a
mantissa and an exponent to represent values. As the position of the decimal point
moves, the exponent is rewritten to maintain the correct value. The float type can
represent a wider range of numerical values than the integer type even with the same
word length. However, the number of significant digits decreases because bits are
assigned to the exponent. The decimal point position is automatically adjusted andwe
are not usually aware of it. When representing a decimal value using an integer type
variable, we must adjust the position of the decimal point to ensure the necessary
significant digits. The overhead to convert the numerical value increases, and the
source code becomes more difficult to read. Therefore, the introduction of programs
using integer types is the last.

The sample program is Listing 9.10. At the beginning of the xyz_to_psi function,
we obtain the pixel pitch (LCD_DOT_PITCH) divided by the laser wavelength.
Both the pitch and the wavelength are O(10−6). We can reduce the dynamic range
for the coordinate data of an object point by performing this division. Because 106
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is equivalent to 220, we can save approximately 20 bits. In the program part that
corrects the coordinate data of the object point, we convert the value to an integer
while rounding it.

Listing 9.10 xyz_to_psi function using the integer type

1 #define SIMD_ALIGN (256 / 8) // avx2: 256 bits
2 #define FtoI(n) (((n) < 0.0f) ? (int32_t)((n) − 0.5f) : (int32_t)((n) + 0.5f)) // float

to int32_t
3

4 #define GDT_FP_POS (24) // Fixed-Point Position of Gamma,
Delta, and Theta [bit]

5

6 int32_t psi[LCD_HEIGHT][LCD_WIDTH] __attribute__((aligned(SIMD_ALIGN)));
7

8 void xyz_to_psi(int32_t obj_n, float (∗obj_xyz)[3])
9 {
10 const float ppl = LCD_DOT_PITCH / LAMBDA;
11 int32_t (∗int_xyz)[3] = (int32_t (∗)[3])obj_xyz;
12

13 #pragma omp parallel for simd
14 for (int32_t n = 0; n < obj_n; n++) {
15 int_xyz[n][0] = FtoI(obj_xyz[n][0] ∗ XYZ_EXP + X_OFFSET);
16 int_xyz[n][1] = FtoI(obj_xyz[n][1] ∗ XYZ_EXP + Y_OFFSET);
17 int_xyz[n][2] = FtoI(obj_xyz[n][2] ∗ XYZ_EXP + Z_OFFSET);
18 }
19

20 memset(psi, 0, sizeof (psi));
21

22 #pragma omp barrier
23

24 #pragma omp parallel for // reduction(+:psi)
25 for (int32_t ya = 0; ya < LCD_HEIGHT; ya++) {
26 int32_t n, xa, xaj, yaj;
27 uint32_t rho;
28 int32_t gamma, delta, theta;
29

30 for (n = 0; n < obj_n; n++) {
31 rho = ppl / int_xyz[n][2] ∗ (0x1UL << (GDT_FP_POS − 1));
32 gamma = rho << 1;
33 xaj = 0 − int_xyz[n][0];
34 yaj = ya − int_xyz[n][1];
35 delta = rho ∗ ((xaj << 1) + 1);
36 theta = rho ∗ (xaj ∗ xaj + yaj ∗ yaj);
37

38 for (xa = 0; xa < LCD_WIDTH; xa++) {
39 psi[ya][xa] += cos_table[(theta >> (GDT_FP_POS − COS_DEPTH)) & COS_MASK

];
40 theta += delta;
41 delta += gamma;
42 }
43 }
44 }
45 }
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Fig. 9.6 Movement of decimal point

Figure 9.6 shows how the decimal point moves. The figure uses a constant of 1.25
for simplicity. We need to devise ways to retain the significant digits of the variable
rho. The result of dividing the float type constant ppl by 2z j (= 2 * int_xyz[n][2])
is also a decimal fraction with the float type. When we assign it to the integer type
variable rho, the fractional information is lost. Therefore, the significant digits of the
variable rho may be lost. In the sample program, we maintain the significant digits
by shifting the decimal point position to the left. Based on the authors’ experience,
the number of significant digits that can be observed as a good reconstruction image
is 24 bits. The specific calculation method is to move the decimal part to the integer
part by multiplying by 224. In the sample program, we multiply by 223, which is 24
bits minus 1 bit, and then divide by z j (int_xyz[n][2]). We calculate the integer type
variables gamma, delta, and theta using the integer type variable rho.

Listing 9.11 is a function to create the cosine table of integer type data. The cosine
table data is an 8-bit integer. This is a word length that can observe an image that
is nearly the same as the reconstructed image calculated with the float type. The
sampling rate is obtained by dividing one period of the cosine into 256. Therefore,
we use the right shift operation to change the decimal point position of theta to the
8th bit. We mask the variable theta with the constant 0xff and remove the integer part
of the value. We refer to the cosine table using the normalized variable theta.
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Table 9.9 Performance of the xyz_to_psi function using the integer type. The value in parentheses
is a magnification that is accelerated from the program shown in previous subsection

Nobj Calculation time
[s]

Acceleration rate Used memory
[MiB]

(12Nobj +
4Nhol )

710 0.21 137.09 (1.72) 7.92 (0.01 + 7.91)

44,647 12.89 141.88 (1.71) 8.42 (0.51 + 7.91)

978,416 282.26 144.56 (1.71) 19.11 (11.20 + 7.91)

Listing 9.11 make_cos_table function to create LUT of integer type data

1 #define COS_DEPTH 8 // [bit]
2 #define COS_N (0x1 << COS_DEPTH)
3 #define COS_MASK (COS_N − 1)
4 typedef int8_t cos_tbl_t;
5

6 cos_tbl_t cos_table[COS_N];
7

8 void make_cos_table()
9 {
10 const unsigned long offset = (0x1UL << (sizeof (cos_tbl_t) ∗ 8 − 1)) − 1;
11 int i;
12

13 for (i = 0; i < COS_N; i++) cos_table[i] = roundf(cosf(2.0 ∗ M_PI ∗ i / COS_N) ∗ offset);
14 }

Finally, we obtain the computational performance shown in Table 9.9. We suc-
ceeded in accelerating the calculation even if the overhead such as the adjustment
of the decimal point position, which does not exist in the original hologram calcula-
tion increases. This is because we changed from the floating-point arithmetic to the
integer arithmetic and reduced the cosine table size. We can calculate a hologram
that is practically sufficient. As shown in Chap.7, the fact that operations can be per-
formed in a fixed-point format means that we can reduce the circuit area compared
to arithmetic circuits using floating-point numbers. We obtained excellent results for
designing hardware such as special purpose computers.

9.4 Results

Figure 9.7 is a 3D object “chess” image consisting of 44,647 points. The holograms
were calculated using the coordinate data of the chess. Figures 9.8, 9.9 and 9.10 show
the calculation results for the double-precision type, the single-precision type, and
the integer type. Only the calculation result using the integer type is slightly different
from the others. Figure 9.11 is a reconstructed image obtained from the hologram
in Fig. 9.8 using the numerical Fresnel diffraction in Chap. 8. Similarly, Fig. 9.12 is
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Fig. 9.7 Image of the chess
constructed of 44,647 points

Fig. 9.8 Hologram image
generated by the direct
calculation using the double
type

Fig. 9.9 Hologram image
generated by the direct
calculation using the float
type

Fig. 9.10 Hologram image
generated by the recurrence
algorithm using the integer
type

a reconstructed image obtained from Fig. 9.10. We could obtain good reconstructed
images from holograms using integer arithmetic.

Table 9.10 summarizes the performance results from the previous section. Fur-
thermore, Table 9.11 also shows the performance of a CPUwith eight physical cores.
Even if the number of physical cores is doubled, the processing speed is not limited
by communication with the system memory. The processing speed nearly doubled
as expected.
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Fig. 9.11 Reconstructed image from the hologram of Fig. 9.8

Fig. 9.12 Reconstructed image from the hologram of Fig. 9.10

Table 9.10 Performance summary of the xyz_to_psi functions. CPU is i7-7700K (4 cores, 4.5
GHz). “rate” is the rate of speedup relative to the program using the double-precision type

Method Nobj : 710 Nobj : 44, 647 Nobj : 978, 416
Time [s] Rate Time [s] Rate Time [s] Rate

Double-precision
(Listing 9.2)

28.42 1.00 1,828.25 1.00 40,804.55 1.00

Single-precision
(Listing 9.3)

17.40 1.63 1,148.72 1.59 26,663.88 1.53

OpenMP
(Listing 9.4)

0.38 74.14 22.04 82.97 1,892.76 21.56

Recurrence
Algorithm
(Listing 9.5)

0.21 136.96 11.20 163.28 1,908.04 21.39

Look-Up Table
(Listing 9.7)

0.11 260.90 6.02 303.81 1,573.55 25.93

Memory
Reduction
(Listing 9.9)

0.36 79.85 22.08 82.79 481.81 84.69

Integer
(Listing 9.10)

0.21 137.09 12.89 141.88 282.26 144.56
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Table 9.11 Performance summary of the xyz_to_psi functions. CPU is i7-7820X (8 cores, 4.2
GHz at single thread, 4.0 GHz at multi-threads). “rate” is the rate of speedup relative to the program
using the double-precision type.

Method Nobj : 710 Nobj : 44, 647 Nobj : 978, 416
Time [s] Rate Time [s] Rate Time [s] Rate

Double-precision
(Listing 9.2)

28.73 1.00 1,931.08 1.00 41,101.11 1.00

Single-precision
(Listing 9.3)

18.45 1.56 1,215.42 1.59 28,148.78 1.46

OpenMP
(Listing 9.4)

0.21 135.20 10.62 181.89 1,114.84 36.87

Recurrence
Algorithm
(Listing 9.5)

0.16 183.55 6.79 284.44 1,104.35 37.22

Look-Up Table
(Listing 9.7)

0.09 303.55 4.21 458.33 804.29 51.10

Memory
Reduction
(Listing 9.9)

0.22 131.01 12.58 153.48 275.51 149.18

Integer
(Listing 9.10)

0.14 204.15 7.36 262.35 160.45 256.16
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Chapter 10
Computer-Generated Hologram
Calculation Employing the Graphics
Processing Unit

Takashi Nishitsuji

Abstract As discussed in the previous chapter, a point-cloud is among the simplest
3D model for implementing CGH calculation. Further, since the point-cloud-based
CGH calculation is very similar to the ray-tracing process in computer graphics
technologies, it can suitably drive graphic processing units (GPUs). In this section,
two different approaches, namely, ray-tracing and look-up table (LUT) methods,
were introduced to implement the point-cloud-based CGH calculation. Employing
these source codes, which were written in CUDA, readers can attempt the point-
cloud-based CGH calculation employing GPU on their computers.

10.1 General Instruction for Implementing
Point-Cloud-Based CGH on GPU

There are two approaches for accelerating point-cloud-based CGH calculation on
GPU: (1) the selection of an appropriate algorithm for the calculation and (2) applying
effective implementation techniques for the GPU. The first approach is common in
any device, although it is crucial to consider the affinity between the algorithm and
the GPU. Generally, GPUs can suitably execute many homogeneous calculations
(it is not suitable for executing complex calculations involving many conditional
branches); they exhibit limited memory capacities and bandwidths. Therefore, the
selection of a simple algorithm that does not requiremanymemory operations should
be among the initial guidelines for designing aGPUprogram to execute a point-cloud-
based CGH calculation. Conversely, regarding the second approach, implementing
a memory-based algorithm for calculating point-cloud-based CGH on GPU would
be a preferred choice if many calculations of the point-cloud-based CGH can be
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substituted with precalculated values, which can be stored in the memory of the
GPU, and if the transfer speed of the memory of the GPU is sufficiently high.

Thus, two examples are introduced in this section. The first one involves the effec-
tive implementation of CGH by modifying the algorithm for its calculation, as well
as optimizing the computational operations, e.g., employing the fast-math functions.
The second example entails the LUT approach in which sequential calculations are
substituted with precalculated outputs of the whole or a part of the CGH calculation.

There are three major techniques for effectively implementing point-cloud-based
CGH calculations on GPU; they include the following:

• Reduction of access to the global memory.
• Reduction of the computational loads of the operations.
• Reduction of the number of wasted operations.

GPUs comprise a hierarchical memory architecture in which each layer exhibits
a different size and access speed. Therefore, a reduction of the frequency to access
the global memory, which is the slowest memory space in a GPU, is among the
straightforward strategies for accelerating CGH computation. Put differently, the
utilization of other faster memory spaces, e.g., the shared memory and register, must
be considered to achieve accelerated CGH calculation. In point-cloud-based CGH
calculation, three major kinds of buffers are required on the GPU; they include for a
point cloud, for a complex amplitude distribution of thewavefront as the intermediate
data, and for CGH as the final output. Here, the complex amplitude distribution of
the wavefront should be stored in the registers rather than the global memory since
it is the intermediate data of each pixel of CGH, which does not require a direct
transfer from the GPU. Therefore, the kernels in the following section include the
iteration loop for scanning all the point clouds to calculate the wavefront of each one
and accumulate them separately in the register of each thread.

Conversely, the utilization of fast-math operations is also a straightforward
approach for accelerating the CGH calculation since the computational loads of
the trigonometric functions, e.g., cos and sin, are generally intensive. Fast math
operations proceed via specially designed and implemented circuits on the GPU
core; thus, they calculate faster than usual math functions, although with generally
low precision. As the CGH calculation is generally robust against noises, the loss of
computational precision with the fast-math operations does not significantly degrade
the quality of the reconstructed 3D image. Therefore, the fast-math operations, e.g.,
__cosf() for the cosine function, should be actively employed in point-cloud-based
CGH calculations.

Further, the substitution of operations with precalculated values is the easiest
method for reducing the number of wasted operations and computational loads. For
example, the wave number k = 2π

λ
can be substituted with precalculated constants

because it is invariant in the video sequence and determined as preliminary. Similar
to the example, if the calculated values of apart or the whole of the output in the CGH
calculation can be assumed to be in a reasonable range and invariant within a video
sequence, the utilization of precalculated values rather than directly calculating the
equations will effectively reduce the number of operations and the computational
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loads. This idea is generally called the LUT whose point-cloud-based CGH calcula-
tion on a GPU has been widely studied [1].

10.2 Examples of Point-Cloud-Based CGH Calculation
on GPU

10.2.1 Ray-Tracing Method

Ray-tracing method is the simplest method of processing point-cloud-based CGH
calculation on GPU since it can separately calculate the wavefront of each point
cloud in each pixel. For effective implementation, the tasks or data for point-cloud-
based CGH calculation, which is to be allocated to the processing unit in GPU,
should be considered. In many cases involving point-cloud-based CGH calculation,
the pixel-wise partitioning of the tasks is better because GPU can suitably execute
many homogeneous and independent calculations for each pixel. Further, since the
resolution of CGH is generally invariable with the same video sequence, the pixel-
wise distribution of the tasks favors the point-cloud-based CGH calculation on the
GPU, i.e., grid sizes (corresponding to workgroup sizes in OpenCL) should be set as
the resolution of CGH so that each thread (corresponding to a work item in OpenCL)
can facilitate the calculation of one-pixel value on CGH.

In the following source codes, the Thrust library [2] was employed to simplify the
source code, especially in managing the memory. Owing to the permitted page limit,
the details of the Thrust APIs are not discussed here. Thus, the official reference
on the website can be referenced to understand in detail the Thrust API and other
usages [2].

Listing 10.1 is the host code for executing the kernel employing ray-tracing
method. According to the list, the point-cloud-based CGH calculation on GPU pro-
ceeds, as follows:

• Setting the constant values (Lines 18–21)
• Allocating the host and device buffers as the Thrust vectors (Lines 24–27)
• Reading the point-cloud data to the host-vector (Line 30)
• Transferring the point-cloud data into a device (Line 33)
• Setting the sizes of the grid and threads (Lines 36 and 37)
• Executing the kernel (Lines 40–42)
• Receiving the calculated hologram from the GPU (Line 45).

On this list, the format of the input point-cloud data is sequentially aligned with the
coordinates, such as x j , y j , z j , x j+1, and y j+1..., which are read from file employing
the original function, ReadPointCloud(), whose arguments are the filename of the
file and the host-vector for point light sources (PLSs). Here, the coordinates of the
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Table 10.1 Arguments of the kernels in ray-tracing method

Type Name Description

float3* dPLS Raw pointer to the device vector for point light sources

uchar* dCGH Raw pointer to the device vector for CGH

const int numPLS Number of PLSs stored in dPLS

const float cgh_width Width of the CGH

point clouds are assumed to be normalized by the pixel pitch of the display device,
p, and distributed in a reasonable range to visualize the 3D object via the numerical
simulation.

Listing 10.2 exhibits the kernels of the ray-tracingmethod in which the arguments
are the same (Table10.1).

Next, the basic structure of the point-cloud-based CGH calculation is described
by referencing the PC_CGH_RT() function as an example (Lines 5–21 on the Listing
10.2). The kernel calculates all the wavefronts of the point clouds in each pixel and
accumulates them via the temporary variables (cplx tmp) in the iteration on Lines
from 14–18. Notably, the local variables in the kernel without a modifier will be
assigned to the registers except if the utilization of the register exceeds the limit
of the hardware. cplx is the redefined form of thrust::complex< float > (Line 13),
which is a built-in type of variable for a complex number in the float precision of the
Thrust library that can be employed along with thrust/complex.h. After the iteration,
the argument of the complex wavefront is calculated employing the thrust::arg()
function on Line 20 to obtain the pixel value of the kinoform-type CGH.

To avoid the unnecessary calculation of the invariable constants, the constants,
c2_pi_pp_div_wl and c128_div_pi, were introduced to precalculate 2πp

λ
and 128

π
,

respectively, to map from −π to π , representing the output range (thrust::arg()),
−128 to 127. Line 20 calculates the phase value of the kinoform-type CGH from
tmp, which utilizes the overflow of the unsigned char tomap the output, thrust::arg(),
i.e., the negative output (−128 to−1) ismapped to+128 to+255; the positive output
(0 to +127) is mapped to 0 to +127.

To further accelerate the process, several techniques were introduced into the
PC_CGH_RT() kernel function. Firstly, the fast-mathematical functions were
attempted instead of the normal mathematical operations. Considering
PC_CGH_RT(), it is observed that many basic operations, including the subtrac-
tion, multiplication, and cosine and sine functions, were utilized in the code, and
all of them can be substituted with the fast functions. PC_CGH_RT_fastmath() is
the kernel code of ray-tracing method employing the fast-mathematical functions. It
employs __fsub_rd(),__fsqrt_rd(), and __fmul_rd() for the subtraction, square root,
multiplication, and __cosf(),__sinf() for the cosine and sine functions, respectively,
thus significantly affecting the computational speed. Notably, the prototypes of these
functions must be declared in the device code when employing the special mathe-
matical functions, as shown on Listing10.3.
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Another approach for accelerating the process involves the application of an effec-
tive algorithm. Similar to a CPU implementation, ray-tracing method can be easily
accelerated by applying the Fresnel approximation, which can be applied to calculate
the distance between the point light source and CGH pixel, as follows:

r =
√

(xh − x j )2 + (yh − y j )2 + z2j − z j ,≈ (xh − x j )
2 + (yh − y j )2

2z j
, (10.1)

where r is the distance, (xh, yh) are the coordinates of CGH, and (x j , y j , z j ) are the
coordinates of the j-th point light source. Compared with the ray-tracing method
without an approximation, the square-root calculation is removed from the equa-
tion in the ray-tracing method instead of adding the division operation, and this
is generally a computationally intensive operation; thus, the effective implemen-
tation of the division operation is the main consideration of the Fresnel approx-
imation. The Fresnel approximation can be effectively implemented in the GPU
via two approaches: the precalculation of the reciprocal, z j , in the host computer
before launching the kernel, and the utilization of special mathematical functions.
Subsequently, an example involving the special division functions is illustrated.
PC_CGH_RT_Fresnel_fastmath() is the kernel function of the Fresnel approxima-
tion in CUDA employing the special division function. In Line 67, instead of the
normal division operation, /, the special division function, __fdividef(), is employed.
Here, the constant (pi_pp_div_wl) in Line 66 corresponds to πp

λ

Conversely, the lowest (among the discussed three methods of implementation)
computational load of the Fresnel approximation can be obtained if 1/z j can be
precalculated on the host computer (sending the point-cloud data as (x j , y j , 1/z j ).
Further, if the wavelength, λ, and display pitch, p, are the constant within the video
sequence, it will be better to send πp

λz j
instead of 1

z j
.

Listing 10.1 Host code of the point-cloud-based CGH calculation employing the ray-tracing
method.

1 #include <cuda_runtime.h>
2 #include <device_launch_parameters.h>
3 #include <device_functions.h>
4 #include <cuda.h>
5 #include <thrust/host_vector.h>
6 #include <thrust/device_vector.h>
7 #include <thrust/complex.h>
8

9 //Prototype Declaration
10 __host__ void ReadPointCloud(const char∗ filename, thrust::host_vector<float3>& obj);
11 __global__ void PC_CGH_RT(float3∗ dPLS, unsigned char∗ dCGH, const int numPLS, const

int cgh_width);
12

13 using cplx = thrust::complex<float>;
14

15 int main() {
16

17 //Constants*************************************************
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18 const float depth = 0.3F; // nearest depth of the PLS [m]
19 const int numPLS = 11646; // num of PLSs
20 const int cghWidth = 2048; // width of CGH [pixel]
21 const int cghHeight = 1024; // height of CGH [pixel]
22

23 //Buffers***************************************************
24 thrust::host_vector<unsigned char> hCGH(cghWidth ∗ cghHeight); //quantized CGH

buffer (host)
25 thrust::device_vector<unsigned char> dCGH(cghWidth ∗ cghHeight); //quantized CGH

buffer (device)
26 thrust::host_vector<float3> hPLS(numPLS); //point light sources (host)
27 thrust::device_vector<float3> dPLS(numPLS); //point light souces (device)
28

29 //Reading Point-clouds
30 ReadPointCloud("tyranno11646.3df", hPLS);
31

32 //Send point-clouds data to GPU
33 dPLS = hPLS;
34

35 //Set the grid and block size for a kernel execution
36 dim3 threads(256, 1, 1);
37 dim3 blocks(cghWidth / threads.x, cghHeight / threads.y, 1);
38

39 //Execute the kernel
40 PC_CGH_RT <<< blocks, threads >>> (
41 thrust::raw_pointer_cast(dPLS.data()),
42 thrust::raw_pointer_cast(dCGH.data()), numPLS, cghWidth);
43

44 //Trasnfer the CGH data from GPU
45 hCGH = dCGH;
46

47 return 0;
48 }

Listing 10.2 Kernel code for the point-cloud-based CGH calculation employing the RT method.

1 #define c128_div_pi 40.743665431525205956f
2 #define c2_pi_pp_div_wl 94.48398958f
3 #define pi_pp_div_wl 47.24199479f
4

5 __global__ void PC_CGH_RT(float3∗ dPLS, unsigned char∗ dCGH, const int numPLS, const
int cgh_width)

6 {
7 int x = blockIdx.x ∗ blockDim.x + threadIdx.x;
8 int y = blockIdx.y ∗ blockDim.y + threadIdx.y;
9 int addr = x + y ∗ cgh_width;
10

11 cplx tmp(0.0, 0.0);
12 float phase;
13

14 for (int i = 0; i < numPLS; i++)
15 {
16 phase = c2_pi_pp_div_wl ∗ sqrtf(powf(x − dPLS[i].x, 2.0f) + powf(y − dPLS[i].y, 2.0f) +

powf(dPLS[i].z, 2));
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17 tmp += cplx(cosf(phase), sinf(phase));
18 }
19

20 dCGH[addr] = (unsigned char)((int)(c128_div_pi ∗ thrust::arg(tmp)));
21 }
22

23

24 __global__ void PC_CGH_RT_fastmath(float3∗ dPLS, unsigned char∗ dCGH, const int
numPLS, const int cgh_width)

25 {
26 int x = blockIdx.x ∗ blockDim.x + threadIdx.x;
27 int y = blockIdx.y ∗ blockDim.y + threadIdx.y;
28 int addr = x + y ∗ cgh_width;
29

30 cplx tmp(0.0, 0.0);
31 float phase;
32 float dx;
33 float dy;
34

35 for (int i = 0; i < numPLS; i++)
36 {
37 dx = __fsub_rd(x, dPLS[i].x);
38 dy = __fsub_rd(y, dPLS[i].y);
39

40 phase = __fsqrt_rd(__fmul_rd(dx, dx) + __fmul_rd(dy, dy) + __fmul_rd(dPLS[i].z, dPLS[i].z
));

41 phase = __fmul_rd(c2_pi_pp_div_wl, phase);
42 tmp += cplx(cosf(phase), sinf(phase));
43 }
44

45 float arg = __fmul_rd(c128_div_pi, thrust::arg(tmp));
46 dCGH[addr] = (unsigned char)((int)arg);
47 }
48

49 __global__ void PC_CGH_Fresnel_fastmath(float3∗ dPLS, unsigned char∗ dCGH, const int
numPLS, const int cgh_width)

50 {
51 int x = blockIdx.x ∗ blockDim.x + threadIdx.x;
52 int y = blockIdx.y ∗ blockDim.y + threadIdx.y;
53

54 int addr = x + y ∗ cgh_width;
55 cplx tmp(0.0, 0.0);
56 float phase;
57 float dx;
58 float dy;
59

60 for (int i = 0; i < numPLS; i++)
61 {
62 dx = __fsub_rd(x, dPLS[i].x);
63 dy = __fsub_rd(y, dPLS[i].y);
64

65 phase = __fmul_rd(dx, dx) + __fmul_rd(dy, dy);
66 phase = __fmul_rd(pi_pp_div_wl, phase);



176 T. Nishitsuji

67 phase = __fdividef(phase, dPLS[i].z);
68 tmp += cplx(__cosf(phase), __sinf(phase));
69 }
70

71 float arg = __fmul_rd(c128_div_pi, thrust::arg(tmp));
72 dCGH[addr] = (unsigned char)((int)arg);
73 }

Listing 10.3 Prototype declarations for the fast mathematical functions in CUDA.

1 __device__ float __cosf(float);
2 __device__ float __sinf(float);
3 __device__ float __powf(float, float);
4 __device__ float __fdividef(float, float);
5 __device__ float __fsqrt_rd(float);
6 __device__ float __fmul_rd(float, float);
7 __device__ float __fsub_rd(float, float);
8 __device__ float __fadd_rd(float, float);

10.2.2 LUT Method

LUT is a well-known method for accelerating various computations employing pre-
calculated values that have been stored in thememory. The requiredmemory capacity
and access speed for reading and writing the data generally pose practical challenges
except if the LUT method theoretically eliminates the computational load.

Many LUT-based methods have been proposed for the CGH calculation [1, 3–6],
and almost all of them store the wavefront of each point cloud and process them
according to the coordinates of the point cloud. Figure10.1 shows the fundamental
process of LUT [1]. The pattern of the wavefront only depends on z j ; thus, the
required memory capacity for LUT is approximately LW 2, where W is the average
width of thewavefront of the point cloud, and L is the resolutionof the depthdirection.
Employing LUT, CGH can be calculated by reading the wavefront according to z j
and processing it as the center of the wavefront become (x j , y j ).

Although the LUT method effectively calculates CGH, the gigabyte order of
the memory capacity is required. Unfortunately, this cannot be easily implemented
on a GPU owing to its limited memory capacity and bandwidth. Therefore, many
compression algorithms for LUT should be studied [1, 4–6]. In this section, the
Split-LUT (S-LUT)-based LUT method is introduced [4]. This method (S-LUT)
can reduce the memory capacity to 2LW by dividing the two-dimensional point-
cloud-based CGH calculation into two one-dimensional ones, followed by storing
the one-dimensional precalculated data in LUT. Since the computation can be divided
by the axes, the number of computations can be reduced by grouping the point clouds
that exhibit the same x j or y j values.

The point-cloud-based CGH calculation employing the Fresnel approximation
can also be described, as follows:
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Fig. 10.1 Calculation system for LUT [1]

I (xh, yh) =
N−1∑
j=0

a j exp

{
2π i

λ

[
z j + 1

2z j

(
�x2 + �y2

)]}
, (10.2)

where �x = (xh − x j ),�y = (yh − y j ). the equation can be rewritten as

I (xh, yh) =
N−1∑
j=0

a j exp

{
2π i

λ

(
z j + �x2

2z j
+ �y2

2z j

)}
, (10.3)

=
N−1∑
j=0

a j exp

{
π i

λ

(
z j + �x2

z j

)
+ π i

λ

(
z j + �y2

z j

)}
, (10.4)

=
N−1∑
j=0

a j exp

{
π i

λ

(
z j + �x2

z j

)}
exp

{
π i

λ

(
z j + �y2

z j

)}
, (10.5)

=
N−1∑
j=0

a j H(�x, z j ) × V (�y, z j ). (10.6)

Since Eq. (10.6) becomes the multiples of the functions, H(�x, z j ) and V (�y, z j ),
which are independent along the x and y directions, respectively, the data stored in
LUT will become two one-dimensonal data. Here, a j = 1 was set for simplifica-
tion. Further, those functions exhibit the same structure; both LUTs do not require
independent preparations.

Listing 10.4 shows the host code of the S-LUT-based method employing CUDA;
Listing 10.5 is a kernel code. In this implementation, the LUT data are calculated on
the host side, which is described on Lines 51–70 of Listing 10.4 and sent to GPU
before the execution of the kernel, which is described on Line 80. Thememory capac-
ities of the host and GPU are allocated, as described on Lines 43–48 of Listing 10.4.
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Fig. 10.2 Overview of S-LUT

To determine the required memory capacity, the depth resolution must be defined;
it is set as 512 on Line 39 in the host code. Further, to avoid the aliasing noise, the
maximum width of the LUT, which is calculated employing the diffraction angle
of the spatial light modulator at each depth, is determined on Line 57 of the host
code [8]:

Wmax = 2 × maxRadius = 2|z j | tan
(
sin−1 λ

2p

)
. (10.7)

Figure 10.2 shows an overview of the process of calculating via the S-LUT
method; this overview describes the technique for obtaining the wavefront from
four point light sources at (X,Y ) and the same z j , x j . Dissimilar to the ray-tracing
method, S-LUT requires the sorting of the point light sources in the order, z j and
x j , since Eq. (10.6) shows that the CGH calculation of point light sources with the
same z j , x j can employ the same H(�x, z j ) at every (X,Y ). Therefore, as shown
in Fig. 10.2 and Listing 10.5, V (�y, z j ) is first accumulated from four point light
sources at y = Y , followed by the multiples, H(�x, z j ), at x = X . Finally, the com-
plex wavefront is calculated from the four PLSs at (X,Y ). To obtain CGH from all
the point light sources, the above process should be iterated.



10 Computer-Generated Hologram Calculation … 179

To implement the S-LUT-based method, the structure of point light source is
defined on Lines 14–21 of Listing 10.4, which extends the comparison operator as
point light sources is sorted in the z j , x j order by the thrust::sort() function.

Listing 10.4 Host code for the point-cloud-based CGH calculation employing the S-LUT-based
method.

1 #define _USE_MATH_DEFINES
2 #include <cuda_runtime.h>
3 #include <device_launch_parameters.h>
4 #include <cuda.h>
5 #include <device_functions.h>
6 #include <thrust/host_vector.h>
7 #include <thrust/device_vector.h>
8 #include <thrust/complex.h>
9 #include <thrust/sort.h>
10 #include <cmath>
11

12 using cplx = thrust::complex<float>;
13

14 struct PLS {
15 int x, y, z;
16 bool operator <(const PLS& another) const {
17 if (z != another.z) return z > another.z;
18 if (x != another.x) return x > another.x;
19 if (y != another.y) return y > another.y;
20 }
21 };
22

23 //Prototype Declaration
24 __host__ void ReadPointCloud(const char∗ filename, thrust::host_vector<PLS>& obj);
25 __global__ void pls_CGH_SLUT(PLS∗ pls, const int numPLS, unsigned char∗ dCGH, cplx∗

dSLUT, const int cghWidth, const int lutLen, const int hlutLen);
26

27 int main() {
28

29 //Constants*************************************************
30 const float depth = 0.3F; //reconstruction distance [m]
31 const float pp = 0.000008F; //pixel pitch of display device [m]
32 const float wl = 0.000000532F; //wavelength of incident light [m]
33 const int numPLS = 11646; //num of point cloud
34

35 const int cghWidth = 2048; //width of a CGH [pixel]
36 const int cghHeight = 1024; //height of a CGH [pixel]
37 const int lutLen = 4096; //length of LUT [A.U.]
38 const int hlutLen = 2048; //half length of LUT [A.U.]
39 const int maxDepth = 512; //maximum number of depth layer of Point

Cloud[A.U.]
40 const float pi_p_div_wl = M_PI∗pp/wl;
41

42 //Buffres***************************************************
43 thrust::host_vector<unsigned char> hCGH(cghWidth ∗ cghHeight); //quantized CGH

buffer (host)
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44 thrust::device_vector<unsigned char> dCGH(cghWidth ∗ cghHeight); //quantized CGH
buffer (device)

45 thrust::host_vector<PLS> hPLS(numPLS); //point light sources (host)
46 thrust::device_vector<PLS> dPLS(numPLS); //point light souces (device)
47 thrust::host_vector<cplx> hSLUT(lutLen ∗ maxDepth); //LUT buffer (host)
48 thrust::device_vector<cplx> dSLUT(lutLen ∗ maxDepth); //LUT buffer (device)
49

50 //Create S-LUT************************************************
51 for (int z = 0; z < maxDepth; z++)
52 {
53 //Calculate the depth of layer (normalized by pixelpitch)
54 int curz = round((depth + z ∗ pp) / pp);
55

56 //Calculate the maximum length of LUT using diffraction limit
57 int maxRadius = curz ∗ tan(asin(wl / pp ∗ 0.5));
58

59 //Calcualte LUT values
60 for (int x = 0; x < lutLen; x++)
61 {
62 cplx tmp(0.0, 0.0);
63 if (abs(hlutLen − x) < maxRadius)
64 {
65 float phase = pi_p_div_wl ∗ (curz + pow(x − hlutLen, 2) / curz);
66 tmp = cplx(cos(phase), sin(phase));
67 }
68 hSLUT[x + z ∗ lutLen] = tmp;
69 }
70 }
71

72 //Reading Point-clouds data
73 ReadPointCloud("tyranno11646.3df", hPLS);
74

75 //Sort PLS data
76 thrust::sort(hPLS.begin(), hPLS.end());
77

78 //Send data host to device
79 dPLS = hPLS;
80 dSLUT = hSLUT;
81

82 //Set the grid and block size for a kernel execution
83 dim3 threads(1024, 1, 1);
84 dim3 blocks(cghWidth / threads.x, cghHeight / threads.y, 1);
85

86 pls_CGH_SLUT <<< blocks, threads >>> (
87 thrust::raw_pointer_cast(dPLS.data()),
88 numPLS,
89 thrust::raw_pointer_cast(dCGH.data()),
90 thrust::raw_pointer_cast(dSLUT.data()),
91 cghWidth,
92 lutLen,
93 hlutLen);
94

95 //Obtain CGH data from the device



10 Computer-Generated Hologram Calculation … 181

96 hCGH = dCGH;
97

98 return 0;
99 }

Listing 10.5 Kernel code for the point-cloud-based CGH calculation employing the S-LUT-based
method.

1 #define c128_div_pi 40.743665431525205956f
2 __global__ void pls_CGH_SLUT(PLS∗ pls, const int numPLS, unsigned char∗ dCGH, cplx∗

dSLUT, const int cghWidth, const int lutLen, const int hlutLen)
3 {
4 int x = blockIdx.x ∗ blockDim.x + threadIdx.x;
5 int y = blockIdx.y ∗ blockDim.y + threadIdx.y;
6 int addr = x + y ∗ cghWidth;
7

8 cplx v(0, 0);
9 cplx h(0, 0);
10 cplx tmp(0, 0);
11

12 int prevX = pls[0].x;
13 int prevZ = pls[0].z;
14

15 int LUT_X = hlutLen + x − pls[0].x;
16 h = dSLUT[LUT_X + pls[0].z ∗ lutLen];
17

18 for (int n = 0; n < numPLS; n++)
19 {
20 int xj = pls[n].x;
21 int yj = pls[n].y;
22 int zj = pls[n].z;
23

24 if (prevX != pls[n].x)
25 {
26 tmp += h ∗ v;
27 v = cplx(0.0, 0.0);
28 int LUT_X = hlutLen + x − xj;
29 h = dSLUT[LUT_X + zj ∗ lutLen];
30 }
31

32 int LUT_Y = hlutLen + y − yj;
33 v += dSLUT[LUT_Y + zj ∗ lutLen];
34

35 prevX = pls[n].x;
36 }
37

38 dCGH[addr] = (unsigned char)((int)(c128_div_pi ∗ thrust::arg(tmp)));
39 }
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10.2.3 Performance Comparison

Table10.2 compares the calculation times of the point-cloud-basedCGHcalculations
per introduced framework. Here, the computational environment is thus: CPU (host
PC): AMD Ryzen9 3950X 3.50GHz, Memory: DDR4-3200 64GB, GPU: NVIDIA
Geforce RTX-2080 Super. Further, the computational conditions are thus: number of
point-cloud: 11,646, CGH resolution: 2048 × 1024, pixel pitch of the display device
(p): 8µm, wavelength of the incident light (λ): 532nm.

The theortical highest effect of accelerating the computational algorithm was
obtained via the S-LUT method. However, the table reveals that the highest prac-
tical computational speed was achieved via the Fresnel approximation and fast-
mathematical operations in the ray-tracing method. It is proposed that the utilization
of the fast-mathematical functions is more effective compared with LUT for accel-
erating the point-cloud-based CGH calculation on GPUs. Notably, the degradation
of the image quality of the reconstructed image was within a reasonable range.

Figure10.3 shows an example of the point-cloud model that was employed in this
experiment; the image was numerically reconstructed via the kinoform-type CGH

Table 10.2 Comparison of the performances of the point-cloud-based CGH calculation methods
on GPU

Method Fastmath Memory transfer[ms] Calculation time [ms]

Ray-tracing 0.38 1414

Ray-tracing Used 0.38 1013

Ray-tracing with the
Fresnel approx.

0.38 665.7

Ray-tracing with the
Fresnel approx.

Used 0.36 64.99

S-LUT 2.28 111.6

Fig. 10.3 Numerically reconstructed image of CGH that was created via the Fresnel approximation
employing the fast-math operations: a original point-cloud model, b numerically reconstructed
image, c Kinoform-type CGH
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that was created employing the Fresnel approximation and the fast-math operations.
The numerically reconstructed image includes in- and out-focus point clouds, indi-
cating that the desired 3D image was replayed.

Fundings This work was supported by JSPS KAKENHI Grant Number 22H03616.
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Chapter 11
Computer-Generated Hologram:
Multiview Image Approach

Yasuyuki Ichihashi

Abstract This chapter describes a method for calculating holograms from light-ray
information such as multiview images. Light-ray information is three-dimensional
(3D) information that includes the intensity and direction of light rays, and there are
various formats of light-ray information in accordance with the light field display
method that reproduces a 3D image from light-ray information. In addition, by con-
verting light-ray information into wavefront information, calculations of computer-
generated holograms can be performed. This chapter describes amethod for calculat-
ing computer-generated holograms based on a real-time capture and reconstruction
system with multiple graphics processing units, which the authors constructed in
2012, for a 3D live scene by a generation from integral-photography images.

11.1 Implementation of CGH Based on Light-Ray
Information

In this section, we describe the implementation of a program to generate a holo-
gram based on light-ray information [1]. Examples of light-ray information include
multi-viewpoint images and combinations of two-dimensional (2D) images anddepth
images. Moreover, it is easy to imagine that CGHs can be calculated by constructing
3D model information from light-ray information.

For example, when using a time-of-flight camera, 2D information and depth infor-
mation can be obtained. In general, depth information is often divided into about 256
layers because of the dynamic range of the sensor used, and a three-dimensional
(3D) model can be constructed by mapping 2D information corresponding to each
depth layer. On the other hand, when the viewpoint is changed, there is a problem
that an occlusion hole occurs when there is no 2D information from that viewpoint.
Therefore, this problem can be solved by using multiple-depth cameras. A proposal
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has been made to compress 3D information frommultiple parallax images and depth
information in Ref. [2]. By adopting this proposal, the holograms can be efficiently
produced without considering the problem of occlusion holes of the 3D model.

As another technique, cameras are arranged along the circumference, the subject
at the center of the circumference is shot, and 3D information is constructed from
the entire circumference image. 3Dmodels are estimated from a homography matrix
of each camera by arranging 300 cameras along the circumference [3].

In these methods, 3D information can be obtained in accordance with the charac-
teristics of hardware, such as the performance and number of cameras. On the other
hand, there is a problem that various calculation processes are required before the
calculation of CGH, such as calibration between cameras and image correction after
shooting. There is integral photography (IP) as a method for taking a 3D image
with relatively low preprocessing costs.

IP is a technology that records 3D information on a photographic plate, and it
was invented by Lippmann in 1908 [4]. Figure11.1 shows an overview of IP. A lens
array is placed between a 3D object and a capturing medium such as a photographic
plate. The lens array is made up of many small lenses, which are called elemental
lenses. By placing the photographic plate at the focal points of the elemental lenses,
object beams are captured in elemental images on the photographic plate near each
elemental lens. The size and location of each elemental image are equal to those of
each elemental lens. Since object beamspropagating fromvarious angles are recorded

Fig. 11.1 Overview of integral photography. Reprinted with permission from [1] © The Optical
Society
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in the elemental image, a 3D image can be taken under natural light. Normally, to
reproduce a 3D image from this captured IP image, we should rotate each elemental
image 180 ◦C and observe the 3D object with the lens array located at its original
position. This is because the image is inverted top to bottom and left to right since the
direction used for observing it differs from the direction used when it was captured.

11.2 Converting Light-Ray Information into Wavefront
Information

Next, a method for converting light-ray information acquired by IP into wavefront
information is described. In Fig. 11.1, the IP image is placed at a location separated
from the lens array by a distance equal to the focal length. Similarly, the hologram
is placed on the other side of the lens array. f is the focal length of the lens array
comprising elemental lenses and d is the distance from the lens array to the hologram.
D is the diameter of an elemental image and DH is the diameter of an elemental
hologram.Oneof the elemental holograms is generated by simulating the propagation
of the object light from one of the elemental images. It is evaluated using

g1(x1, y1) =
∫∫ +∞

−∞
g0(x0, y0) · e jk

[
(x1−x0)2+(y1−y0)2

2 f

]
dx0dy0 (11.1)

g2(x2, y2) = g1(x1, y1) · e− jk

(
x1

2+y1
2

2 f

)
(11.2)

g3(x3, y3) =
∫∫ +∞

−∞
g2(x2, y2) · e jk

[
(x3−x2)2+(y3−y2)2

2d

]
dx2dy2 (11.3)

where g0(x0, y0) is the light intensity distribution of the elemental image, g1(x1, y1) is
the light intensity distribution before transmitting object light through the lens array,
g2(x2, y2) is the light intensity distribution after transmitting object light through
the lens array, and g3(x3, y3) is the light intensity distribution of the elemental holo-
gram. Note that Eqs. (11.1) and (11.3) are the Fresnel diffraction and originally have
complex coefficients, but these can be omitted because they do not affect hologram
generation. k is the wave number of the object light and λ is the wavelength of the
object light. Equations (11.1) and (11.3) are Fresnel diffraction integrals. Equation
(11.2) is the phase variation of the object light caused by transmitting the object
light through the lens array. If we assume that f is equal to d, the following Fourier
transform can be derived from Eqs. (11.1)–(11.3):

g3(x3, y3) = −e−2 jk f

λ f

∫∫ +∞

−∞
g0(x0, y0) · e− j2π

[
x3x0+y3 y0

λ f

]
dx0dy0 (11.4)
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Discretizing the variables related to the coordinates, we obtain the following discrete
Fourier transform (DFT) corresponding to Eq. (11.4):

g3(X3�pm,Y3�pn) =
N∑

X0=1

M∑
Y0=1

g0(X0�pm,Y0�pn) · e j2π
{
X3Y0

�pm 2

λ f +X3Y0
�pn2

λ f

}

(11.5)
where M and N are the numbers of pixels in the horizontal and vertical directions,
respectively, in the elemental hologram.�pm and�pn are the horizontal and vertical
pixel pitch of the elemental image, respectively. X0, Y0, X3, and Y3 are discretized
variables, and x0 = X0�pm , y0 = Y0�pn , x3 = X3�pm , and y3 = Y3�pn , respec-
tively. Moreover, g3(x3, y3) is the complex amplitude distribution of the elemental
hologram when the reference light is assumed to be parallel light.

Furthermore, the following equation is derived from Eq. (11.5) when D is equal
to DH and the elemental images and elemental holograms are arranged with no
intervening spaces, as shown in Fig. 11.2.

M�p2m = N�p2n = λ f (11.6)

Equation (11.6) shows that the parameters of the IP camera are determined by M
and N . Since we can determine the values of M and N arbitrarily, fast Fourier
transform (FFT) can be performed efficiently by substituting suitable values for M
and N .Moreover, the calculation of each elemental hologram is performed in parallel
because elemental images correspond one-to-one with elemental holograms.

Fig. 11.2 Generation of elemental holograms from elemental images of IP. Reprinted with permis-
sion from [1] © The Optical Society
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11.3 Implementation of a Program for Generating
Holograms from IP Images

Next, the implementation of a program for generating holograms from IP images is
described. The size of the entire IP image is defined as “WIDTH”, “HEIGHT”, and
the size of the elemental image is defined as “IZE_OF_EIMAGE” as follows.

#define WIDTH (3840) //Width of 4K camera
#define HEIGHT (2160) //Height of 4K camera
#define SIZE_OF_EIMAGE (16) //The size of elemental image

The IP image is an 8-bit grayscale bitmap, and the pointer of the array in which
the bitmap data is stored is “buf”. The pointer of the array for storing the data
after converting the IP image into the wavefront is “I”. These are declared as global
variables for the sake of simplicity.

Listing 11.1 Pointers for an IP image and wavefront.

1 unsigned char ∗buf;//Pointer of IP image
2 fftw_complex ∗I;// Pointer of wavefront plane

Here, it is assumed that FFTW is used as a high-speed calculation library for FFT.
For the variables declared above, each array can be allocated as follows in the main
function.

Listing 11.2 Memory allocation for an IP image and wavefront.

1 buf = (unsigned char ∗) malloc(sizeof(unsigned char) ∗ WIDTH ∗ HEIGHT);
2 I = (fftw_complex ∗) fftw_malloc(sizeof(fftw_complex) ∗ WIDTH ∗ HEIGHT);

Listing 11.3 shows the conversion of all elemental images into wavefronts. The
function “convIPtoWF(int m, int n)” converts a single elemental image into the
corresponding wavefront.

Listing 11.3 Conversion all elemental images into wavefronts.

1 int mmax = WIDTH / SIZE_OF_EIMAGE;
2 int nmax = HEIGHT / SIZE_OF_EIMAGE;
3 for(int n = 0; n < nmax; n++){
4 for(int m = 0; m < mmax; m++){
5 convIPtoWF(m, n);
6 }
7 }

Since the size of the IP image is 3, 840 × 2, 160 pixels, when the size of the ele-
ment image is 16 × 16 pixels, the number of element images is 240 × 135. Therefore,
m and n are set as variables for the loop, and the (m, n)-th elemental image in the
240 × 135 element images is sequentially calculated by the function “convIPtoWF
(intm, int n)”. Since the operation for converting the light-ray information (IP images)
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into the wavefront is independent for each elemental image, the processing of this
function can be sped up by multithreading.

Next, the internal processing of the function “convIPtoWF(int m, int n)” is
described in Listing 11.4.

that converts a single elemental image into the corresponding wavefront.,

Listing 11.4 The function “convIPtoWF(int m

1 int size = SIZE_OF_EIMAGE;
2 int size2 = size ∗ 2;
3 int size2sq = size2 ∗ size2;
4 fftwf_plan fp = fftw_plan_dft_2d( size2, size2, in, out, FFTW_FORWARD,

FFTW_ESTIMATE);

To perform FFT on elemental images, an array in and out of an area twice the size
of the elemental image is defined. The reason for doubling the area is to eliminate the
effects of aliasing based on the sampling theorem. We declare the relevant variables
to create the FFTW plan as a forward FFT.

Next, Listing 11.5 shows the preprocessing for wavefront calculation by FFT.

Listing 11.5 Preprocessing for calculating wavefront.

1 int addr;
2 double theta;
3 for(int j = 0; j < size; j++){
4 for(int i = 0; i < size; i++){
5 addr = m ∗ size + i + (n ∗ size + j) ∗ WIDTH; //For sampling plane
6 theta = (2. ∗ M_PI ∗ rand()) / RAND_MAX;
7 in[(i + size/2) + (j + size/2) ∗ size2][0] = buf[addr] ∗ cos(theta) / size2sq;
8 in[(i + size/2) + (j + size/2) ∗ size2][1] = buf[addr] ∗ sin(theta) / size2sq;
9 }
10 }
11 fftw_execute(fp);

Here, elemental image data is input to the FFT array using loop variables “i” and
“ j”. Since the size of the FFT array is twice as large as the size of the elemental
image, it is necessary to input data only to the central portion of the FFT array. The
index of the FFT array needs to be devised like the program above. A variable for an
address, called “addr”, is declared and used as an index for array “buf” in which IP
image data is stored. Thereby, the pixel (i, j) in the (m, n)-th elemental image can
be extracted.

Furthermore, by applying a random phase to light-ray information, the recon-
structed light is widely diffused and DC light concentration in hologram calculation
can be avoided, which greatly improves the quality of the reconstructed image. The
variable “theta” in the program is a variable for the phase of random phases. Adding
a random phase means including a random initial phase term in a calculation formula
for obtaining CGH and is expressed as the following equation:

Ei (xa, ya) = Ai

rαi
e j (krαi+φi, j ) = Ai

rαi
e jkrαi · e jφi, j (11.7)
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The random phase can be added by multiplying e jφi, j to the CGH formula from
Eq. (11.7). As a result, Eq. (11.7) can be regarded as a spherical wave with each
pixel of the elemental image as a light source. Since the array for FFT is a complex
number, a value obtained by multiplying the pixel value of the elemental image by
a cosine function is input to the real part of the array for FFT, and a value obtained
by multiplying the pixel value of the elemental image by a sine function is input to
the imaginary part of the array for FFT.

For normalization, it is necessary to divide the input value by the number of FFT
elements, that is, the variable “size2sq” After finishing the above processing, FFT is
executed by the function “fftw_execute ()”.

Finally, the processing after FFT is described.

Listing 11.6 Normalization of the FFT results.

1 for(int j = 0; j < size2; j++){
2 for(int i = 0; i < size2; i++){
3 in[i + j ∗ size2][0] = out[(i + size) % size2 + ((j + size) % size2) ∗ size2][0];
4 in[i + j ∗ size2][1] = out[(i + size) % size2 + ((j + size) % size2) ∗ size2][1];
5 }
6 }
7 for(int j = 0; j < size; j++){
8 for(int i = 0; i < size; i++){
9 addr = m ∗ size + i + (n ∗ size + j) ∗ WIDTH; //For sampling plane
10 I[addr][0] = in[(i + size/2) + (j + size/2) ∗ size2][0];
11 I[addr][0] = in[(i + size/2) + (j + size/2) ∗ size2][1];
12 }
13 }

After the FFT, the quadrants must be replaced because the low-frequency region
is at the periphery and the high-frequency region is at the center. This is often called
“FFT Shift”. In this case, the quadrant of “out” after the FFT is changed and input to
“in” again. Then, the result converted to the wavefront is input to array “I”. At this
time, it is necessary to input data with the same care as when reading from the array
“buf”.

The basic calculation process is as described above. The light-ray information
can be created optically using lens arrays and computationally by computer graphics
models. However, when input obtained from an actual camera is used, a technique
such as the extraction of an elemental image is required. In addition, in the case of
the IP image, there is a problem in that the resolution decreases when the object
moves away from the light-ray sampling plane. Therefore, it is possible to calculate
CGH from a photorealistic model with a large depth by regarding the acquisition of
light-ray information by IP as a light-ray sampling plane and propagating the wave-
front converted from light-ray information to the hologram plane. This technique
is referred to as the ray-sampling method [5]. Specifically, wavefront information
g3(X3�pm,Y3�pn) of the light-ray sampling plane in Eq. (11.5) is regarded as
o(xi , yi , zi ), and wavefront propagation is calculated using the following formula:
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O(xα, yα) = o(xα, yα, zα) ∗ g(xα − xi , yα − yi ), (11.8)

g(xα − xi , yα − yi ) = e jk|zi |

jkzi
exp

[
jk

(xα − xi )2 + (yα − yi )2

2|zi |
]

(11.9)

For implementation details of propagation calculation, refer to Chap. 8.
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Chapter 12
Hologram Calculation Using Layer
Methods

Harutaka Shiomi

Abstract Recently,many augmented and virtual reality (AR/VR) deviceswithRGB
cameras and depth cameras have been developed. The combination of these cam-
eras enables us to acquire three-dimensional information. This chapter explains the
fundamental method for calculating holograms from layer images represented by
RGB-D images, and finally, we provide an overview of related methods.

12.1 Introduction

RGB-D images express the three-dimensional (3D) scene with a pair of color and
monochrome images, as shown in Fig. 12.1a, b. RGB and monochrome images
express the color and depth of a 3D scene, respectively. The RGB-D images were
acquired using a depth camera, 3D graphics libraries, and a dataset published on
the Internet [1, 2].

Because RGB-D images represent the color and depth of each pixel in a 3D
scene, we can also treat each pixel as a point light source and calculate the holo-
gram using a point light source-based method. When we treat RGB-D images with
Full-HD (1920 × 1080 pixels) resolution as a set of point light sources, there are
approximately two million object points and results in a time-consuming calcula-
tion. HORN-8 [3, 4], state-of-the-art dedicated processor for hologram calculation,
can calculate a Full-HD hologram at 60 frames per second from 60 thousand object
points. Because the computational complexity of hologram calculation is propor-
tional to the number of object points, the calculation time for a hologram with two

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-981-99-1938-3_12.

H. Shiomi (B)
Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba,
Japan
e-mail: h-shiomi@chiba-u.jp

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
T. Shimobaba and T. Ito (eds.), Hardware Acceleration of Computational Holography,
https://doi.org/10.1007/978-981-99-1938-3_12

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-1938-3_12&domain=pdf
https://doi.org/10.1007/978-981-99-1938-3_12
mailto:h-shiomi@chiba-u.jp
https://doi.org/10.1007/978-981-99-1938-3_12


194 H. Shiomi

(a) (b)

Fig. 12.1 RGB (a) and Depth (b) images

million object points is approximately 30 times longer than that with 60 thousand
object points. Even if we use the HORN-8 processor, we only achieve hologram
calculation from two million object points with two frames per second. However,
this method was unrealistic.

This is a faster hologram calculation method for treating RGB-D images as layer
images parallel to the hologram and calculating the diffraction of each layer image
[5–7]. This method is known as the layer method. Diffraction calculation methods,
such as the angular spectrum method and Fresnel diffraction introduced in Chap.1,
can be used to calculate the object wave on the hologram plane from each layer
image. We can calculate the object wave on the hologram plane from the 3D scene
represented by RGB-D images by summing all the diffractions of the layer images.

Thismethod can calculate holograms faster because the diffraction calculation can
be accelerated by fast Fourier transforms (FFTs). However, because zero padding
is required for linear convolution using FFT, high memory usage is a problem, par-
ticularly when calculating high-resolution holograms. When we observe the recon-
structed image from a hologram calculated by the layer method from another view-
point, incorrect occlusion is also a problem because the RGB-D images are captured
from a certain viewpoint. The layer method can be regarded as a specialized method
for near-eye and head-mounted holographic displays [8–10].

In this section, we first explain the method used to calculate the hologram from
RGB-D images and analyze the computational complexity. Second, we show a pro-
gramming source code written in C++ and the reconstructed image from a hologram
calculated using the code. Finally, we introduce the problems of hologram calcula-
tion using the FFT-based layer method and discuss recent researches to resolve these
problems.

http://dx.doi.org/10.1007/978-981-99-1938-3_1


12 Hologram Calculation Using Layer Methods 195

12.2 Method

We explain themethod used to calculate the hologram from the RGB-D images using
diffraction calculations. The method consists of three steps:

1. Decomposing RGB-D images into layer images
2. Calculating the diffraction calculation of each layer image
3. Converting to the amplitude hologram or phase-only hologram.

We explain each step in the following subsections. In this chapter, we treated the
resolution and pixel pitch of the RGB image, depth image, and hologram as the same
for simplification. The method described in this section was used to calculate the
color hologram.

12.2.1 Decomposing RGB-D Images into Layer Images

As mentioned above, RGB-D images represent the color and distance of each pixel
from the hologram, respectively. For example, the depth image shown in Fig. 12.1
shows that the black pixels are close to, and thewhite pixels are far from the hologram.
The layer images consist of the pixels of the RGB images, which are at the same
distance from the hologram.When the color values of the RGB and depth images are
denotedby Red,Green, Blue, and Depth, respectively, and the i th layer imageof the
RGB color is denoted by Layer Redi , LayerGreeni , and Layer Bluei , respectively,
it is expressed as

Layer Redi (x, y) =
{
Red(x, y) Depth(x, y) = i

0 Depth(x, y) �= i
(12.1)

LayerGreeni (x, y) =
{
Green(x, y) Depth(x, y) = i

0 Depth(x, y) �= i
(12.2)

Layer Bluei (x, y) =
{
Blue(x, y) Depth(x, y) = i

0 Depth(x, y) �= i.
(12.3)

We extracted the layer image of a certain depth from the RGB-D images using the
code in Listing12.1.
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Listing 12.1 The function extracts a layer image at a certain depth from RGB-D images.

1 // The below function extracts the specified layer image from
RGB-D images.

2 // Red, Green, Blue, and Depth are the image whose pixel is
represented by 8-bit.

3 // LayerRed, LayerGreen, and LayerBlue are the list of std::
complex<float> for later calculations.

4 // i is the layer number.
5 // nx and ny are the horizontal and vertical resolutions,

respectively.
6 void extract_layer(const uint8_t∗ Red, const uint8_t∗ Green, const uint8_t∗ Blue,
7 const uint8_t∗ Depth, std::complex<float>∗ LayerRed,
8 std::complex<float>∗ LayerGreen, std::complex<float>∗ LayerBlue,
9 const uint32_t i, const uint32_t ny, const uint32_t nx) {

10

11 for (uint32_t y = 0; y < ny; ++y) {
12 for (uint32_t x = 0; x < nx; ++x) {
13 // Calculation the position in the one dimensional

memory.
14 uint32_t pos = y ∗ nx + x;
15

16 if (Depth[pos] == i) {
17 LayerRed[pos] = std::complex<float>(Red[pos], 0);
18 LayerGreen[pos] = std::complex<float>(Green[pos], 0);
19 LayerBlue[pos] = std::complex<float>(Blue[pos], 0);
20 }
21 else {
22 LayerRed[pos] = std::complex<float>(0, 0);
23 LayerGreen[pos] = std::complex<float>(0, 0);
24 LayerBlue[pos] = std::complex<float>(0, 0);
25 }
26 }
27 }
28 }

12.2.2 Calculating the Diffraction Calculation of Each Layer
Image

We treated each layer image as the sectional images (layers) of a 3D scene and
summed the diffracted results from each layer image to obtain the hologram. In this
calculation, it was necessary to set the initial phase of the optical waves. Random
phases are often used. Another method is called the compensate phase [11], which
sets the phase corresponding to the distance of each layer from the hologram. The
compensating phase optimizes the phase information to improve the image recon-
struction quality [12]. This section shows the code using the random and compensate
phases in Listing12.2.
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Listing 12.2 The function for the random and compensate phases.

1 void random_phase(std::complex<float>∗ LayerRed, std::complex<float>∗ LayerGreen,
2 std::complex<float>∗ LayerBlue, const uint32_t ny, const uint32_t nx) {
3

4 // Initial setting for uniformly distributed random number
5 std::random_device seed_gen;
6 std::mt19937 engine(seed_gen());
7 std::uniform_real_distribution<float> dist(−0.5 ∗ M_PI, 0.5 ∗ M_PI);
8 std::complex<float> ImaginaryUnit(0, 1);
9 for (uint32_t y = 0; y < ny; ++y) {

10 for (uint32_t x = 0; x < nx; ++x) {
11

12 uint32_t pos = y ∗ nx + x;
13 LayerRed[pos] ∗= std::exp(ImaginaryUnit ∗ dist(engine));
14 LayerGreen[pos] ∗= std::exp(ImaginaryUnit ∗ dist(engine));
15 LayerBlue[pos] ∗= std::exp(ImaginaryUnit ∗ dist(engine));
16 }
17 }
18 }
19

20 void compensate_phase(std::complex<float>∗ LayerRed,
21 std::complex<float>∗ LayerGreen, std::complex<float>∗ LayerBlue,
22 const float distance, const float lambda_red, const float lambda_green,
23 const float lambda_blue, const uint32_t ny, const uint32_t nx) {
24

25 // Calculating the wave number.
26 const float wavenumber_red = 2 ∗ M_PI / lambda_red;
27 const float wavenumber_green = 2 ∗ M_PI / lambda_green;
28 const float wavenumber_blue = 2 ∗ M_PI / lambda_blue;
29 std::complex<float> ImaginaryUnit(0, 1);
30 for (uint32_t y = 0; y < ny; ++y) {
31 for (uint32_t x = 0; x < nx; ++x) {
32

33 uint32_t pos = y ∗ nx + x;
34 LayerRed[pos] ∗= std::exp(−ImaginaryUnit
35 ∗ wavenumber_red ∗ distance);
36 LayerGreen[pos] ∗= std::exp(−ImaginaryUnit
37 ∗ wavenumber_green ∗ distance);
38 LayerBlue[pos] ∗= std::exp(−ImaginaryUnit
39 ∗ wavenumber_blue ∗ distance);
40 }
41 }
42 }

As mentioned above, diffraction calculations can be performed using the angular
spectrummethod and Fresnel diffraction. In this study, we used the angular spectrum
method. F [·] and F −1[·] denote the Fourier and its inverse transforms, respectively.
The transfer function for each color of the i th layer image is denoted by Hred

i , Hgreen
i ,

and Hblue
i . The hologram calculation is expressed as
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HologramRed(x, y) =
255∑
i=0

(F −1
[F [Layer Redi ] � Hred

i

])
(12.4)

HologramGreen(x, y) =
255∑
i=0

(F −1
[F [LayerGreeni ] � Hgreen

i

])
(12.5)

HologramBlue(x, y) =
255∑
i=0

(F −1
[F [Layer Bluei ] � Hblue

i

])
, (12.6)

where� denotes theHadamard product. In the computational process,F andF −1 are
performed using the FFT. FFT is themost time-consuming process in this calculation.
We can focus on the linearity of the FFT and change the order of the summation and
IFFT to reduce the number of FFTs for a faster calculation.

HologramRed(x, y) = F −1

[
255∑
i=0

(F [Layer Redi ] � Hred
i )

]
(12.7)

HologramGreen(x, y) = F −1

[
255∑
i=0

F [LayerGreeni ] � Hgreen
i )

]
(12.8)

HologramBlue(x, y) = F −1

[
255∑
i=0

F [Layer Bluei ] � Hblue
i )

]
. (12.9)

We show the implemented code in Listing12.3. In this code, we use the functions
such as zeropadding(), fft(), AsmTransferF(), fftshift(), mult(), multscalar(), ifft(),
and crop() introduced in Chap.8.

Listing 12.3 The function to calculate the hologram from RGB-D images.

1 ï»¿void add_complex(std::complex<float>∗ in1, std::complex<float>∗ in2,
2 std::complex<float>∗ out, int32_t ny, int32_t nx) {
3 for (int32_t n = 0; n < ny; n++) {
4 for (int32_t m = 0; m < nx; m++) {
5 out[m + n ∗ nx] = in1[m + n ∗ nx] + in2[m + n ∗ nx];
6 }
7 }
8 }
9

10 void calculate_hologram(std::complex<float>∗ HologramRed,
11 std::complex<float>∗ HologramGreen, std::complex<float>∗ HologramBlue,
12 const uint8_t∗ Red, const uint8_t∗ Green, const uint8_t∗ Blue,
13 const uint8_t∗ Depth, const float lambda_red, const float lambda_green,
14 const float lambda_blue, const float pitch_y, const float pitch_x,
15 const float zmin, const float dz, const uint32_t ny, const uint32_t nx) {
16

17 // The memory for the layer image.
18 std::complex<float>∗ LayerRed = new std::complex<float>[ny ∗ nx];
19 std::complex<float>∗ LayerGreen = new std::complex<float>[ny ∗ nx];

http://dx.doi.org/10.1007/978-981-99-1938-3_8
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20 std::complex<float>∗ LayerBlue = new std::complex<float>[ny ∗ nx];
21

22 // The memory for the zeropadding data.
23 std::complex<float>∗ LayerRed_pad = new std::complex<float>[2 ∗ ny ∗ 2 ∗ nx];
24 std::complex<float>∗ LayerGreen_pad = new std::complex<float>[2 ∗ ny ∗ 2 ∗ nx];
25 std::complex<float>∗ LayerBlue_pad = new std::complex<float>[2 ∗ ny ∗ 2 ∗ nx];
26

27 // The memory for the transfer function.
28 std::complex<float>∗ H_red = new std::complex<float>[2 ∗ ny ∗ 2 ∗ nx];
29 std::complex<float>∗ H_green = new std::complex<float>[2 ∗ ny ∗ 2 ∗ nx];
30 std::complex<float>∗ H_blue = new std::complex<float>[2 ∗ ny ∗ 2 ∗ nx];
31

32 // The memory for the summation before IFFT.
33 std::complex<float>∗ HologramRed_pad
34 = new std::complex<float>[2 ∗ ny ∗ 2 ∗ nx];
35 std::complex<float>∗ HologramGreen_pad
36 = new std::complex<float>[2 ∗ ny ∗ 2 ∗ nx];
37 std::complex<float>∗ HologramBlue_pad
38 = new std::complex<float>[2 ∗ ny ∗ 2 ∗ nx];
39

40 for (uint32_t i = 0; i < 256; ++i) {
41 std::cout << i << " / " << 255 << "\r";
42

43 // The distance from the i-th layer image and the
hologram.

44 const float z = zmin + i ∗ dz;
45

46 // Extracting the layer image from RGB-D images.
47 extract_layer(Red, Green, Blue, Depth,
48 LayerRed, LayerGreen, LayerBlue, i, ny, nx);
49

50 // Setting the phase information.
51 // In the case of random phase.
52 random_phase(LayerRed, LayerGreen, LayerBlue, ny, nx);
53 // In the case of compensate phase.
54 /* compensate_phase(LayerRed, LayerGreen, LayerBlue, z,
55 lambda_red, lambda_green, lambda_blue, ny, nx); */
56

57 // Zeropadding.
58 zeropadding(LayerRed, LayerRed_pad, ny, nx);
59 zeropadding(LayerGreen, LayerGreen_pad, ny, nx);
60 zeropadding(LayerBlue, LayerBlue_pad, ny, nx);
61

62 // The Fourier transform.
63 fft(LayerRed_pad, LayerRed_pad, 2 ∗ ny, 2 ∗ nx);
64 fft(LayerGreen_pad, LayerGreen_pad, 2 ∗ ny, 2 ∗ nx);
65 fft(LayerBlue_pad, LayerBlue_pad, 2 ∗ ny, 2 ∗ nx);
66

67 // Calculation of the transfer function.
68 const float dv = 1 / (pitch_y ∗ 2 ∗ ny), du = 1 / (pitch_x ∗ 2 ∗ nx);
69 AsmTransferF(H_red, 2 ∗ ny, 2 ∗ nx, dv, du, lambda_red, z);
70 AsmTransferF(H_green, 2 ∗ ny, 2 ∗ nx, dv, du, lambda_green, z);
71 AsmTransferF(H_blue, 2 ∗ ny, 2 ∗ nx, dv, du, lambda_blue, z);
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72

73 fftshift(H_red, 2 ∗ ny, 2 ∗ nx);
74 fftshift(H_green, 2 ∗ ny, 2 ∗ nx);
75 fftshift(H_blue, 2 ∗ ny, 2 ∗ nx);
76

77 // Hadamard products.
78 mult(LayerRed_pad, H_red, LayerRed_pad, 2 ∗ ny, 2 ∗ nx);
79 mult(LayerGreen_pad, H_green, LayerGreen_pad, 2 ∗ ny, 2 ∗ nx);
80 mult(LayerBlue_pad, H_blue, LayerBlue_pad, 2 ∗ ny, 2 ∗ nx);
81

82 // Normalization
83 multscalar(LayerRed_pad, 1.0 / (2 ∗ ny ∗ 2 ∗ nx), 2 ∗ ny, 2 ∗ nx);
84 multscalar(LayerGreen_pad, 1.0 / (2 ∗ ny ∗ 2 ∗ nx), 2 ∗ ny, 2 ∗ nx);
85 multscalar(LayerBlue_pad, 1.0 / (2 ∗ ny ∗ 2 ∗ nx), 2 ∗ ny, 2 ∗ nx);
86

87 // Summation
88 add_complex(HologramRed_pad, LayerRed_pad,
89 HologramRed_pad, 2 ∗ ny, 2 ∗ nx);
90 add_complex(HologramGreen_pad, LayerGreen_pad,
91 HologramGreen_pad, 2 ∗ ny, 2 ∗ nx);
92 add_complex(HologramBlue_pad, LayerBlue_pad,
93 HologramBlue_pad, 2 ∗ ny, 2 ∗ nx);
94 }
95

96 // The inverse Fourier transform
97 ifft(HologramRed_pad, HologramRed_pad, 2 ∗ ny, 2 ∗ nx);
98 ifft(HologramGreen_pad, HologramGreen_pad, 2 ∗ ny, 2 ∗ nx);
99 ifft(HologramBlue_pad, HologramBlue_pad, 2 ∗ ny, 2 ∗ nx);
100

101 // Cropping
102 crop(HologramRed_pad, HologramRed, 2 ∗ ny, 2 ∗ nx);
103 crop(HologramGreen_pad, HologramGreen, 2 ∗ ny, 2 ∗ nx);
104 crop(HologramBlue_pad, HologramBlue, 2 ∗ ny, 2 ∗ nx);
105

106 // Deallocation of the used memory.
107 delete[] LayerRed;
108 delete[] LayerGreen;
109 delete[] LayerBlue;
110 delete[] LayerRed_pad;
111 delete[] LayerGreen_pad;
112 delete[] LayerBlue_pad;
113 delete[] H_red;
114 delete[] H_green;
115 delete[] H_blue;
116 delete[] HologramRed_pad;
117 delete[] HologramGreen_pad;
118 delete[] HologramBlue_pad;
119

120 }
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12.2.3 Converting to an Amplitude Hologram or Phase-Only
Hologram

The object light O calculated above has complex values. Spatial light modulators
(SLM) that can display complex amplitudes are not generally used. The generally
available SLM is amplitude-modulated or phase-modulated SLM. Here, we describe
amethod to convert the complex amplitude of the object light into data that is suitable
for these SLMs.

First, we explain the conversion to an amplitude hologram. When the reference
light is denoted by R, the interference pattern between the object and the reference
light is expressed as

I (x, y) = |O(x, y) + R(x, y)|2. (12.10)

In an inline hologram, the reference light is a plane wave. When its amplitude and
phase are regarded as units, the reference light can be R(x, y) = 1, and the interfer-
ence pattern I is

I (x, y) = |O(x, y) + 1|2 = |O(x, y)|2 + 1 + O(x, y) + O∗(x, y). (12.11)

The first term |O(x, y)|2 + 1 is negligible because it is constant. The remaining term
can be O(x, y) + O∗(x, y) = 2Re[O(x, y)]. The constant coefficient 2 was also
negligible. Therefore, an amplitude hologram can be obtained from the real part of
the complex amplitude.

However, in the case of conversion to the phase-only hologram, all the ampli-
tudes on the hologram are assumed to be equal, and only phase information is used.
Therefore, the phase-only hologram is calculated as tan−1 (Im{O}/Re{O}) where
Re{} and Im{} denote the operators to extract the real and imaginary parts from a
complex value, respectively.

In these three steps, the hologram is calculated from theRGB-D images. Faster cal-
culation of diffractionwith FFT is a good point of the layermethod.We compared the
computational complexity between the point-cloudmethod and the layer method in
the case of a single layer. In the point cloud-basedmethod, each pixel is regarded as an
isolated point-light source. The hologram calculation is the summation of all spher-
ical waves from the point light sources. When the resolution of the layer image and
hologram was H × W , the computational complexity was O(H 2W 2). In the layer
method, diffraction calculations, such as the angular spectrum method and Fresnel
diffraction, are performed using FFT. In this case, a two-dimensional FFT of reso-
lution H × W is performed. The computational complexity is O(HW log(HW )).
Thus, the hologram calculation is much faster with the FFT.
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12.3 Results

We show the holograms and reconstructed images calculated using the aforemen-
tioned method. We calculated the amplitude hologram from the RGB-D images, as
shown in Fig. 12.1. The calculation conditions are as follows: The red, green, and
blue wavelengths are 650, 532, and 450nm, respectively. The pixel pitch is 3.74 mm.
The distance between the hologram and its nearest layer image was 10cm, and the
distance between each layer image was 0.1mm. The resolution of the hologram and
RGB-D images was 2048 × 2048 pixels. We set the phase information of all layer
images to the random phase. Figure12.2 shows the amplitude hologram with the
random phase for each color. We calculated the inverse diffraction from the holo-
grams of each color and showed the reconstructed images at each distance from the
hologram. The reconstructed images in Figs. 12.3 contain the speckle noise. This
was caused by the random phase. Figure12.4 shows the reconstructed images from
the hologram calculated using the compensate phase, which sets the constant phase
corresponding to the distance from the hologram.

We present the reconstructed images from the phase-only hologram under the
same calculation conditions. Figures12.5 and 12.6 show the reconstructed images
from the hologram with random and compensate phases, respectively

Finally, we show the reconstructed images from a complex hologram, which
contains amplitude and phase information, in Figs. 12.7 and 12.8.

Red Green Blue

Fig. 12.2 The amplitude holograms of each color calculated with the random phase

10.00 cm 11.28 cm 12.56 cm

Fig. 12.3 The reconstructed images at each distance from the amplitude hologram calculated with
the random phase
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10.00 cm 11.28 cm 12.56 cm

Fig. 12.4 The reconstructed images at each distance from the amplitude hologram calculated with
the compensate phase

10 cm 11.28 cm 12.56 cm

Fig. 12.5 The reconstructed images at each distance from the phase-only hologram calculated with
the random phase

10.00 cm 11.28 cm 12.56 cm

Fig. 12.6 The reconstructed images at each distance from the phase-only hologram calculated with
the compensate phase

10 cm 11.28 cm 12.56 cm

Fig. 12.7 The reconstructed images at each distance from the complex hologram calculated with
the random phase
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10 cm 11.28 cm 12.56 cm

Fig. 12.8 The reconstructed images at each distance from the complex hologram calculated with
the compensate phase

Using the computational environment of an Intel Core i7-6500U CPU, Windows
10 Home operating system, andMicrosoft Visual C++2019 compiler, the calculation
time was 365s.

12.4 Discussion

The layer method can calculate a hologram from RGB-D images faster because of
the FFT. However, it is not a silver bullet. FFTs are the most time-consuming with
this method. The number of FFTs significantly affects the calculation time. The
number of FFTs depends on the number of layer images. Therefore, the calculation
time was proportional to the number of layer images. When we calculate from three-
dimensional scenes with many layer images, for example, depth images with a deep
bit-depth, the calculation time increases.

FFTs can be accelerated by parallel computation using graphics processing units
(GPUs). In this method, the memory usage should be four times larger than the
original resolution because of zero padding for the linear convolution with the FFT.
When calculating a high-resolution hologram, it may be difficult to use the GPU
because of the limitation of GPU memory. To address this memory usage issue, a
method called implicit convolution has been proposed [13]. This method enables the
calculation of linear convolutions without zero padding.

Finally, the efficiency of the layer method is discussed. When the depth of the
three-dimensional scenes is greater, the layer images tend to be sparse. The calcula-
tion time of FFT does not rely on the sparsity of the data. In the case of sparse data,
this method also calculates the area without light waves, resulting in a decrease in
efficiency. The look-up table (LUT) method [14], which uses LUT, and the wavelet
shrinkage-based superposition (WASABI) [15], which calculates the diffraction in
the wavelet space with the wavelet transform, has been proposed as a fast calcula-
tion method that focuses on the sparsity of the data and decreases memory usage.
Both methods can accelerate the hologram calculation compared to FFT-based layer
methods when 3D scenes are close to the hologram.
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Other methods for calculating a hologram from RGB-D images have been sug-
gested using machine learning [16]. These methods allow for much faster calcula-
tions; however, they must be learned in advance and are limited to near-eye holo-
graphic display systems.
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Chapter 13
Polygon-Based Hologram Calculation
Methods

Fan Wang

Abstract In computer-graphics (CG) technologies, three-dimensional (3D) objects
are generally considered to comprise a set ofmicro-polygons. Therefore, the polygon-
based method is significant in generating holograms. This chapter introduces six
methods of polygon-based holograms implemented in a MATLAB environment.
All these can be classified using numerical-and analytical-based methods. We the-
oretically analyze the differences in each approach comprehensively and compare
their performances on the same calculation platform. This chapter addresses only
computational issues based on triangular meshes, and not rendering issues.

13.1 General Instruction of Polygon-Based Holograms

Unlike the point-based hologram calculation method, a polygon-based hologram
cannot be generated by ray tracing. This is because each light-emitting mesh com-
prises three vertices of an oblique triangle, and the pixels inside the triangle are
continuous rather than discrete. Hence, the critical technique of the polygon-based
method considers the diffraction field distribution calculation of an arbitrarily tilted
triangle in the hologram plane according to three vertices.

In general, the polygon-based method simulates the diffraction process in the fre-
quency domain to obtain spectra in the hologram plane. For a 3D object that includes
N triangles in the global system (x, y, z), as illustrated in Fig. 13.1a, we first calcu-
lated the spectra of the i th triangle to the target plane, defined as FHi ( fx , fy), where
( fx , fy) represent the frequency coordinates corresponding to the global system.
Subsequently, the spectra of all triangles were summed to obtain the spectral and
diffraction field distributions of the entire 3D object, while E(x, y) is solved using
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Fig. 13.1 Overview of polygon-based methods

an inverse fast Fourier transform (FFT), as illustrated in Fig. 13.1b. The following
equation expresses the physical profile of this process:

E(x, y) = F−1

[
N∑
i=1

FHi ( fx , fy)

]
, (13.1)

where operation F−1 denotes the inverse FFT of its argument. Based on the angular
spectrum theory, the spectra on the hologram plane, FHi ( fx , fy), can be calculated
by

FHi ( fx , fy) = F�i ( fx , fy) · Hi ( fx , fy), (13.2)

where F�i ( fx , fy) denotes the frequency spectrumof the i th triangle in the global sys-
tem. Hi ( fx , fy) = e j2π fz z is the transfer function, where j = √−1 and fz( fx , fy) =√
1/λ2 − f 2x − f 2y , and λ is the wavelength.

From Fig. 13.1b, the F�i ( fx , fy) does not exactly match the spectra plane of
the hologram because the triangle is not parallel to the hologram plane. Therefore,
obtaining the spectra of oblique triangles F�i ( fx , fy) corresponding to the frequency
coordinates of the hologram plane, is the main issue of polygon-based holograms.
In this section, the generation methods of polygon-based holograms are classified
into six categories according to different methods of obtaining the tilted spectra,
as illustrated in Fig. 13.2. In the next section, we comprehensively describe each
method’s theory and implementation process, as illustrated in Fig. 13.2.
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Fig. 13.2 A framework for six polygon-based methods

13.2 Overview of Six Methods for Polygon-Based

As illustrated in Fig. 13.3a, an arbitrary�ABC in the global system (x, y, z) is tilted
on the hologram plane. It was assumed that the triangular mesh is a self-luminous
object that emits a uniform plane light wave E0 into the hologram plane. We define

E0 = a0 · e j2π( fx0 x+ fy0 y+ fz0 z) , (13.3)

where a0 is the light amplitude, generally regarded as constant. fx0 = cosα/λ,
fy0 = cosβ/λ and fz0 = fz( fx0 , fy0) are the angular spectrum components of the
light source along the x-, y-, and z-axes, respectively, where α and β denote the
propagation direction angles of E0 along the x- and y- axes, respectively. By build-
ing the local coordinate system with n as the z′ axis, �ABC in the global system
can be rotated to the local system as �A′B′C′, as illustrated in Fig. 13.3, where θ

Fig. 13.3 Arbitrary triangle in the global (a) and in the local (b) coordinates system
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denotes the angle of the normal n to the z-axis, and φ is the angle of the projection
vector of n in the xOy plane to the y-axis. The rotational relationship from �ABC
to �A′B′C′ can be expressed as

[x ′, y′, 0]ᵀ = R[x − xc, y − yc, z − zc]ᵀ, (13.4)

where R =
⎡
⎣cosφ cos θ sin φ cos θ − sin θ

− sin φ cosφ 0
cosφ sin θ sin φ sin θ cos θ

⎤
⎦ denotes the 3D rotation matrix. We

note that R is an orthogonal matrix. (xc, yc, zc) represents the coordinate of the center
of gravity Oc of the �ABC, as illustrated in Fig. 13.3.

In general, the spectrum of �ABC in a global system can be calculated as

F�ABC( fx , fy) =
∫∫

� ABC

E0e
− j2π( fx x+ fy y) dxdy. (13.5)

Suppose that the light emitted from the triangular mesh propagates along the negative
direction of z axis, as illustrated in Fig. 13.3a, α = β = 0, and the light amplitude is
defined as a0 = 1, while Eq. (13.3) is E0 = e j2π z/λ. Therefore, the spectral distribu-
tion of the hologram plane in Eq. (13.2) is

FHi ( fx , fy) =
∫∫

� ABC

e j2π z/λ · e− j2π( fx x+ fy y) dxdy · Hi ( fx , fy)

=
∫∫

� ABC

e− j2π( fx x+ fy y+ fz z−z/λ) dxdy , (13.6)

where Hi ( fx , fy) = e− j2π fz z , and the negative sign in the index indicates a negative
propagation. Based on the rotational relationship given in Eq. (13.4), the equation
above can be rewritten as

FHi ( fx , fy) = Jr E1

∫∫
�A′B′C′

e− j2π( f̂x x ′+ f̂ y y′)dx ′dy′, (13.7)

where
Jr = (cosφ cos θ cosφ + sin φ cos θ sin φ) , (13.8)

is the Jacobian determinant resulting from the coordinate transformation, and

E1 = e− j2π( fx xc+ fy yc+ fz zc−zc/λ) , (13.9)

is a constant factor for the triangular spatial position. f̂x and f̂ y in Eq. (13.7) are the
rotated frequency coordinates, which are determined by
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{
f̂x = R11 fx + R12 fy + R13 fz − R13/λ

f̂ y = R21 fx + R22 fy + R23 fz − R23/λ .
(13.10)

In Eq. (13.7), the integral term
∫∫

�A′B′C′ e− j2π( f̂x x ′+ f̂ y y′)dx ′dy′ can be consid-
ered the frequency spectrum of �A′B′C′ in the local system, which is defined as
F�A′B′C′( f̂x , f̂ y). Therefore, Eq. (13.7) can be simplified to

FHi ( fx , fy) = Jr · E1 · F�A′B′C′( f̂x , f̂ y). (13.11)

This equation indicates that the spectrum of �ABC on the hologram plane depends
primarily on the spectra of �A′B′C′ in the local system.

Hence, the key task is to solve the tilted spectrum F�A′B′C′( f̂x , f̂ y). All of the
above 3D rotations can be considered as preparation for obtaining the value of
F�A′B′C′( f̂x , f̂ y). Matsushima et al. [1], Kim et al. [2], Ahrenberg et al. [3], Zhang
et al. [4], Liu et al. [5] and Pan et al. [6] proposed various methods for solving this
problem. All these are introduced in the next subsection.

Listing 13.1 provides aMATLAB program for implementing from Eqs. (13.1) to
(13.10). A graphic processing unit was used to accelerate the calculations.

Listing 13.1 Common codes used in the 3D rotation.

1 %% Basic parameters definition: /All the physical units are
millimeter

2 dp=0.008; % hologram pixel size
3 lambda=532e-6; k=2*pi/lambda; % wavelength and wave number
4 Nx=1920; Ny=1080; % hologram sampling numbers
5 Lx=Nx*dp; Ly=Ny*dp; % hologram plane size in physics
6 %% frequency coordinates in the global system
7 fx=linspace(-1/dp/2,1/dp/2-1/Lx,Nx);
8 fy=linspace(1/dp/2,-1/dp/2+1/Ly,Ny);
9 [fx,fy]=meshgrid(fx,fy’);
10 fx=gpuArray(fx);
11 fy=gpuArray(fy); % import data into GPU
12 fz=@(fx,fy)1/lambda-lambda/2.*(fx.^2+fy.^2);
13 %% light source from the triangle mesh
14 fx0=0; fy0=0;
15 a0=1;
16 %% triangle ABC in the global system
17 A=[5,2,286]’; B=[3,-1,308]’; C=[-4,-3,334]’;
18 V=[A B C];
19 center=mean(V,2); % center of gravity
20 xc=center(1); yc=center(2); zc=center(3);
21 AB=[B(1)-A(1) B(2)-A(2) B(3)-A(3)];
22 BC=[C(1)-B(1) C(2)-B(2) C(3)-B(3)];
23 n=cross(AB,BC)’; % normal vector: n(nx,ny,nz)
24 %% 3D rotation transformtion
25 if abs(n(3))>=cosd(89.9) % Remove extremely tilted triangles
26 R=eye(3) ;

27 phi=0; theta=0; % predefine rotation parameters
28 if n(1)~=0 || n(2)~=0
29 ez=[0,0,1];
30 if n(2)<0
31 n=-n; % Counterclockwise rotation
32 end
33 theta=acos(ez*n/norm(n));
34 ex=[1,0];
35 phi=acos(ex*[n(1);n(2)]/norm([n(1);n(2)]));
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36 R=[cos(phi)*cos(theta) cos(theta)*sin(phi) -sin(theta);
37 -sin(phi) cos(phi) 0 ;

38 cos(phi)*sin(theta) sin(phi)*sin(theta) cos(theta)];
39 end
40 end
41 Vr=R*(V-center); % A’B’C’ in the local system
42 Jr=R(1,1)*R(2,2)-R(1,2)*R(2,1); % Rotation Jacobbian factor
43 E1=exp(-1j*2*pi*(xc*fx+yc*fy-zc*fz(fx,fy)+zc/lambda));
44 fx_hat=R(1,1)*fx+R(1,2)*fy+R(1,3)*fz(fx,fy)-R(1,3)/lambda;% fx’
45 fy_hat=R(2,1)*fx+R(2,2)*fy+R(2,3)*fz(fx,fy)-R(2,3)/lambda;% fy’

13.2.1 Numerical-Based Method

In 2003, Matsushima [1] proposed an numerical-based method for calculating the
tilted spectrum,which comprised three steps: drawing a rasterized triangle, FFToper-
ation, and interpolating the spectrum. Listing 13.2 presents Matsushima’s method.

Step 1: drawing. Based on the introduction in Sect. 13.2, the tilted �ABC shown in
Fig. 13.4a is rotated into the�A′B′C′, where the vertexes coordinates of the�A′B′C′
are obtained by thematrix R expressed byEq. (13.4).�A′B′C′ is rasterized anddrawn
on a two-dimensional (2D) canvas sampled at the same interval as the hologram. For
simplicity, we assigned each pixel inside the triangle to “1” and outside to “0”, as
presented in Fig. 13.4b. Figure13.4c presents an extended sampling window via zero
padding to avoid convolution errors (see chap. 8) triggered by the angular spectrum
propagation. The rasterized triangle �A′B′C′ is generated by calling a subfunction
called @plot_tri(vertex,pitch) in the program, shown in line 1 of Listing
13.2.

Step 2: performing FFT. The spectrum of �A′B′C′ can be calculated easily by
performing an FFT operation on the image of �A′B′C′. However, note that the
origin O ′ of the local system (x ′, y′) in Fig. 13.4c does not generally coincide with

the center of gravity Oc of �A′B′C′, and we define this offset as the vector
−−−→
OcO ′, as

shown in Fig. 13.4c. Therefore, the spectrum of �A′B′C′ in the local system can be
represented as:

F�A′B′C′( f ′
x , f ′

y) = F(�A′B′C′) exp
(
j2π

−−−→
OcO

′ · f ′
)

, (13.12)

where F denotes the Fourier transformation, f ′
x and f ′

y represent the regular sam-
pling grids of the 2D canvas in the frequency domain, as shown in the black area
in Fig. 13.5a, and the vector f ′ = [ f ′

x , f ′
y]. Line 7 of Listing 13.2 implements this

operation.

Step 3: interpolation. Equation (13.12) gives the spectrum of �A′B′C′, F�A′B′C′( f ′
x ,

f ′
y), which is sampled with regular grids ( f ′

x , f ′
y), and we expect to obtain the spec-

trum F�A′B′C′( f̂x , f̂ y) shown in Eq. (13.11), which is sampled with irregular grids



13 Polygon-Based Hologram Calculation Methods 213

Fig. 13.4 a Schematic diagram of the tilted �ABC in the global system. b Rasterized �A′B′C′
drawn on the 2D canvas of the local system. c Extended sampling window by zero-padding, O ′ is
the origin of the local system and Oc is the center of gravity of the �A′B′C′

( f̂x , f̂ y) given in Eq. (13.10). Therefore, the interpolation method is used to obtain
F�A′B′C′( f̂x , f̂ y) based on F�A′B′C′( f ′

x , f ′
y), which is represented as

F�A′B′C′( f̂x , f̂ y) = Interpolate
(
F�A′B′C′( f ′

x , f ′
y)

)
, (13.13)

where Interpolate(·) denotes an interpolation operation. As shown in Fig. 13.5a, the
black area ( f ′

x , f ′
y) is a regular rectangle with equal sampling intervals, whereas

the red area ( f̂x , f̂ y) is an irregular quadrilateral with variable sampling intervals.
Figure13.5b shows an enlarged view of the specific portion, indicating that the red
circles are addressed by interpolation based on the black dots. Commonly used
interpolation methods include linear interpolation, spline interpolation, and cubic
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Fig. 13.5 Schematic of the spectrum interpolation. a The black area represents the spectral region
of ( f ′

x , f ′
y) and the red area represents that of ( f̂x , f̂ y). b The enlarged view of the specific portion

of (a), where “black dots” are the regular samples with equal intervals and “red circle” are the target
samples with irregular intervals obtained by interpolation

interpolation, etc. These methods cause differences in accuracy and computational
effort.

With the three steps above, we solved the tilted spectrum F�A′B′C′( f̂x , f̂ y), so that
the hologram can be obtained using Eqs. (13.11) and (13.1), as shown in lines 9–10 of
Listing 13.2. This method allows the flexible rendering of objects, such as applying
random phases and textures, because the surface information of each triangle can be
customized in the step 1 (drawing).

Listing 13.2 Matsushima’s method: FFT solution.

1 [tri0,L_p,N_p,sft]=plot_tri(Vr,dp); % draw a rasterized triangle
2 tri=padarray(tri0,[N_p(2)/2 N_p(1)/2],0,’both’); % extended the sampling

window
3 fx_p=linspace(-1/2/dp,1/2/dp-1/L_p(1)/2,N_p(1)*2);
4 fy_p=linspace(1/2/dp,-1/2/dp+1/L_p(2)/2,N_p(2)*2);
5 [fx_p,fy_p]=meshgrid(fx_p,fy_p); % the regular sampling grid
6 F_p=fftshift(fft2(fftshift(tri)));
7 F_p=F_p.*exp(1j*2*pi*(sft(1)*fx_p+sft(2)*fy_p)); % FFT: Eq. (1.12)
8 F_hat=interp2(fx_p,fy_p,F_p,fx_hat,fy_hat,’spline’,0); % interpolate:

Eq. (1.13)
9 FH=Jr.*E1.*F_hat; % spectrum: eq.(1.11)
10 E=fftshift(ifft2(FH)); % hologram: eq.(1.1)
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13.2.2 2D Rotation-Based Method

In 2008, Kim et al. [2] proposed an analytical method based on a 2D rotation in a
local system to solve the tilted spectra, which was implemented in Listing 13.3.

As illustrated in Fig. 13.3b, the point D′(xp, yp) is the perpendicular foot of the
side A′B′. The subfunction @pft(vertex) in line 2 of Listing 13.3 is used to
solve the perpendicular foot D′. We translated D′(xp, yp) to the origin of the local
system, thus becoming D′′(0, 0), as shown in Fig. 13.6a. Then, we rotated the angle
ψ counterclockwise around the point D′′, so that the point C′ falls on the y-axis
and becomes the point C′′, defining the new �A′′B′′C′′, as shown in Fig. 13.6b. The
vertices of the �A′′B′′C′′ are A′′(a, 0), B′′(b, 0), and C′′(0, c), respectively. The
program in Listing 13.3 provides an approach to obtaining the values of a, b and c
(see lines 15–17).

Furthermore, the frequency spectrum of the �A′′B′′C′′ can be derived relatively
easily as an analytical expression. A sub-function named @F_kim was built in line
22 of Listing 13.3 to calculate the analytical spectrum, defined as F�A′′B′′C′′( f

′′
x , f

′′
y ),

where ( f
′′
x , f

′′
y ) are the frequency coordinates used to sample�A′′B′′C′′. From the 2D

rotated relationship, the frequency sampling coordinates ( f
′′
x , f

′′
y ) can be expressed

as follows: {
f

′′
x = cosψ f̂x − sinψ f̂ y ,

f
′′
y = sinψ f̂x + cosψ f̂ y

(13.14)

where ( f̂x , f̂x ) is expressed by Eq. (13.10). Therefore, the tilted spectra of �A′B′C′
can be calculated as:

F�A′B′C′( f̂x , f̂ y) = E2 · F�A′′B′′C′′( f
′′
x , f

′′
y ) , (13.15)

Fig. 13.6 a Translating the perpendicular foot D′ to the origin of the local system, defined as D′′.
b Rotating the �A′B′C′ around the point D′′, so that A′′B′′ coincides with x ′-axis, defined as the
new �A′′B′′C′′
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where E2 = e− j2π( f̂x x p+ f̂ y yp) is a compensation factor resulting from the translation
and analytical solution of F�A′′B′′C′′( f

′′
x , f

′′
y ) can be obtained using Eq. (A4) of Ref.

[2].
It is also worth noting that F�A′′B′′C′′( f

′′
x , f

′′
y ) also depends on the values of a, b,

and c, because each �ABC corresponds to a different �A′′B′′C′′. This differs from
the method of obtaining the tilted spectra using a 2D affine, which will be introduced
in the next subsection.

Listing 13.3 Kim’s method: 2D rotation solution analytically.

1 %% solve perpendicular foot
2 pft= pft(Vr); % sub-function
3 xp=pft(1); yp=pft(2); % D ’ (x ’ ,y’)
4 %% 2D rotation: angle-->\psi
5 DC=[Vr(1,3)−xp,Vr(2,3)−yp];
6 if DC(1)<0
7 DC=−DC; % counterclockwise rotation
8 end
9 ey=[0,1];
10 psi=acos(ey∗DC’/norm(DC)); % rotation angle
11 Tr2=[cos(psi) −sin(psi) 0;
12 sin(psi) cos(psi) 0;
13 0 0 1] ;
14 Vr2=Tr2∗(Vr−[xp,yp,−1]’);
15 a=Vr2(1,1);
16 b=Vr2(1,2);
17 c=Vr2(2,3);
18 fx_2p=fx_p∗cos(psi)−fy_p∗sin(psi);%fx’’
19 fy_2p=fx_p∗sin(psi)+fy_p∗cos(psi);%fy’’
20 %% spectrum calculation
21 E2=exp(−1j∗2∗pi∗(fx_p∗xp+fy_p∗yp));
22 F_hat=E2.∗F_kim(fx_2p,fy_2p,a,b,c); % Spectra of A’B’C’
23 FH=Jr.∗E1.∗F_hat; % Spectra: eq.(1.11)
24 E=fftshift(ifft2(FH)); % Hologram: eq.(1.1)

13.2.3 2D Affine Transformation-Based Method

In 2008, Ahrenberg et al. [3] proposed another analytical method based on a 2D
affine transformation [7], which was implemented in Listing 13.4.

Affine theory states that there must be a mapping relationship between two trian-
gles containing translation, rotation, and scaling information. As shown in Fig. 13.7,
the fixed primitive triangle �uvw is located in the local coordinate system with the
vertex coordinates (0, 0), (1, 0), and (1, 1). Then, �A′B′C′ can be mapped as �uvw
using an affine matrix [Ta]2×3, which is
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Fig. 13.7 2D affine transformation in the local system from �A′B′C′ to the primitive triangle
�uvw

[
x ′
1 x ′

2 x ′
3

y′
1 y′

2 y′
3

]
=

[
Ta11 Ta12 Ta13
Ta21 Ta22 Ta23

] ⎡
⎣0 1 1
0 0 1
1 1 1

⎤
⎦ . (13.16)

From the above equation, the matrix Ta is determined by the vertex values of
�A′B′C′, as shown in lines 3–4 of Listing 13.4. In contrast to Kim’s method [2] in
Sect. 13.2.2, the vertex coordinates of�uvw are constant, and its frequency spectrum
can be solved analytically, defined as F�uvw( fu, fv), where ( fu, fv) are the frequency
coordinates used to sample�uvw.Theprogram inListing13.4 invokes a sub-function
named @F_pri to calculate F�uvw( fu, fv), whose analytical expression is given in
Eq. (14) of Ref. [3].

From the 2D affine relationship, the frequency sampling coordinates ( fu, fv) can
be expressed as {

fu = Ta11 f̂x + Ta21 f̂ y
fv = Ta12 f̂x + Ta22 f̂ y .

(13.17)
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Therefore, the tilted spectra of �A′B′C′ can be calculated as:

F�A′B′C′( f̂x , f̂ y) = Ja · E2 · F�uvw( fu, fv) , (13.18)

where Ja = Ta11 · Ta22 − Ta12 · Ta21 is the Jacobian factor and E2 =
e− j2π(Ta13 f̂x+Ta23 f̂ y).

Listing 13.4 Ahrenberg’s method: 2D affine transformation solution analytically.

1 %% 2D affine transformation
2 xr=Vr(1,:); yr=Vr(2,:);
3 Ta=[xr(2)−xr(1) xr(3)−xr(2) xr(1);
4 yr(2)−yr(1) yr(3)−yr(2) yr(1)];
5 Ja=Ta(1,1)∗Ta(2,2)−Ta(1,2)∗Ta(2,1);
6 %% affine frequency coordinates
7 fu=Ta(1,1)∗fx_hat+Ta(2,1)∗fy_hat;
8 fv=Ta(1,2)∗fx_hat+Ta(2,2)∗fy_hat;
9 E2=exp(−1j∗2∗pi∗(fx_hat∗Ta(1,3)+fy_hat∗Ta(2,3)));
10 F_hat=Ja∗E2.∗F_pri(fu,fv);
11 FH=Jr.∗E1.∗F_hat;
12 E=fftshift(ifft2(FH)); % Hologram

13.2.4 2D Affine Transformation-Based Method
with Translation

In 2018, Zhang et al. [4] proposed an affine analytical method similar to Ahrenberg’s
method [3]; however, it was implemented in the same global system and required
translation. Listing 13.5 provides a program for this method.

As illustrated in Fig. 13.8, the original triangle�ABC is rotated around the center
of gravity to be�A′B′C′ that is in the gravity plane (z = zc). Therefore, the rotational
relationship in Eq. (13.4) can be rewritten as

[x ′, y′, z′]ᵀ = R[x − xc, y − yc, z − zc]ᵀ + [xc, yc, zc]ᵀ . (13.19)

Substituting the above equation into Eq. (13.6), the hologram spectra FHi ( fx , fy)
of Eq. (13.11) are expressed as follows:

FHi ( fx , fy) = Jr · E1 · E ′
1 · F�A′B′C′( f̂x , f̂ y) . (13.20)

where E
′
1 = e j2π( f̂x xc+ f̂ y yc) which is the translational factor resulting from the 3D

rotation, as shown in line 1 of Listing 13.5.
Furthermore, primitive �uvw with constant vertices (0, 0, zc), (1, 0, zc) and

(1, 1, zc) in Fig. 13.8 is located in the gravity plane. There is a 2D affine transforma-
tion relationship between �A′B′C′ and �uvw given by Eq. (13.16). The difference
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Fig. 13.8 2D affine transformation in the global system including translation

is that �A′B′C′ is not in the local system but the z = zc plane of the global system.
The tilted spectra of �A′B′C′ can still be calculated using Eqs. (13.17), and (13.18).

Listing 13.5 Zhang’s method: 2D affine transformation solution analytically with a translation.

1 %% 2D affine transformation
2 E1_p=exp(1j∗2∗pi∗(fx_hat.∗xc+fy_hat.∗yc)); % E1’
3 Vr=Vr+center; % translate to the gravity plane
4 xr=Vr(1,:); yr=Vr(2,:);
5 Ta=[xr(2)−xr(1) xr(3)−xr(2) xr(1);
6 yr(2)−yr(1) yr(3)−yr(2) yr(1)];
7 Ja=Ta(1,1)∗Ta(2,2)−Ta(1,2)∗Ta(2,1);
8 %% affine frequency coordinates
9 fu=Ta(1,1)∗fx_hat+Ta(2,1)∗fy_hat;
10 fv=Ta(1,2)∗fx_hat+Ta(2,2)∗fy_hat;
11 E2=exp(−1j∗2∗pi∗(fx_hat∗Ta(1,3)+fy_hat∗Ta(2,3)));
12 F_hat=Ja∗E2.∗F_pri(fu,fv);
13 FH=Jr.∗E1.∗E1_p.∗F_hat;
14 E=fftshift(ifft2(FH)); % Hologram
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13.2.5 2D Affine Transformation-Based Method
in the Spatial Domain

In 2010, Liu et al. proposed an analytical method implemented in the spatial domain,
which is like Ahrenberg’s method, but eliminates the inverse Fourier transform in
Eq. (13.1). Listing 13.6 provides a program for this method.

In Fig. 13.3a, the light wave emitted from the �ABC mesh is set to propagate
along the negative direction of z-axis, then E0 = e j 2π

λ
z . Scalar diffraction theory

indicates that the light field in a hologram is

E(xh, yh) = 1

jλ

∫∫
�ABC

a0E0
e− j 2π

λ
r

r
dxdy

= a0
jλr

∫∫
�ABC

e j 2π
λ

(z−r)dxdy , (13.21)

where (xh, yh) is the coordinate of the hologram pixel and theminus sign in thewave-

front e− j 2π
λ

r

r indicates negative propagation, where r =√
(xh−x)2+(yh−y)2+z2 is

the distance between points (x, y, z) within �ABC and pixels (xh, yh, 0). The 3D
rotational relationship between �ABC and �A′B′C′ is given by Eq. (13.4); thus, by
replacing (x, y, z) in Eq. (13.21) with (x ′, y′), (z − r) can be expanded as

z − r ≈ (zc − r0) − x ′2 + y′2

2r0
− x̂h x ′ + ŷh y′

r0
, (13.22)

where r0=√
(xh−xc)2+(yh−yc)2+z2c is the distance between the center of gravity

of �ABC and hologram pixel. The new coordinates resulting from the 3D rotation
are {

x̂h = R11(xc−xh)+R12(yc−yh)+R13zc − R13r0
ŷh = R21(xc−xh)+R22(yc−yh)+R23zc − R23r0 ,

(13.23)

where Ri j denotes an element of the rotational matrix given in Eq. (13.4).
Therefore, E(xh, yh) in Eqs. (13.21) is

E(xh, yh) = Jr
a0e j 2π

λ
(zc−r0)

jλr0

∫∫
�A′B′C′

e− j2π(
ˆxh

λr0
x ′+ ŷh

λr0
y′)dx ′dy′ , (13.24)

where Jr denotes the rotational Jacobian factor given by Eq. (13.8). Note that the

equation above omits the quadratic phase factor e− j 2π
λ

x ′2+y′2
2r0 because it does not con-

tribute to hologram reconstruction. The integral term above can be considered as the
frequency of �A′B′C′:

F�A′B′C′( f̂x , f̂ y) =
∫∫

�A′B′C′
e− j2π(

ˆxh
λr0

x ′+ ŷh
λr0

y′)dx ′dy′ , (13.25)
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where f̂x = x̂h
λr0

and f̂ y = ŷh
λr0

. Furthermore, similar to Ahrenberg’s method [3],

F�A′B′C′( f̂x , f̂ y) can be calculated by solving F�uvw( fu, fv) which is the spectrum
of the primitive �uvw, as stated from Eqs. (13.16) to (13.18) according to the 2D
affine transformation. Line 17 of Listing 13.6 uses the same sub-function @F_pri
to calculate Eq. (13.25).

Unlike other methods, this method calculates the hologram directly from
Eq. (13.24) without inverse FFT, as shown in line 19 of Listing 13.6.

Listing 13.6 Liu’s method: 2D affine transformation solution analytically in the spatial domain.

1 %% 3D rotation coordinates transformation
2 xh=−dp/2−(Nx/2−1)∗dp:dp:dp/2+(Nx/2−1)∗dp;
3 yh=dp/2+(Ny/2−1)∗dp:−dp:−dp/2−(Ny/2−1)∗dp;
4 [xh,yh]=meshgrid(xh,yh);
5 r0=sqrt((xh−xc).^2+(yh−yc).^2+zc^2);
6 xh_hat=R(1,1)∗(xc−xh)+R(1,2)∗(yc−yh)+R(1,3)∗zc−R(1,3)∗r0; %xh’
7 yh_hat=R(2,1)∗(xc−xh)+R(2,2)∗(yc−yh)+R(2,3)∗zc−R(2,3)∗r0; %yh’
8 %% 2D affine
9 xr=Vr(1,:); yr=Vr(2,:);
10 Ta=[xr(2)−xr(1),xr(3)−xr(2),xr(1);
11 yr(2)−yr(1),yr(3)−yr(2),yr(1)];
12 Ja=Ta(2,2)∗Ta(1,1)−Ta(1,2)∗Ta(2,1);
13 %% affine frequency coordinates
14 fu=(Ta(1,1)∗xh_hat+Ta(2,1)∗yh_hat)./lambda./r0;
15 fv=(Ta(1,2)∗xh_hat+Ta(2,2)∗yh_hat)./lambda./r0;
16 E2=exp(−1j∗2∗pi∗(Ta(1,3)∗xh_hat+Ta(2,3)∗yh_hat)/lambda./r0);
17 F_hat=Ja∗E2.∗F_pri(fu,fv);
18 E1=exp(1j∗k∗(−r0+zc))./(1j∗lambda∗r0);
19 E=Jr.∗E1.∗F_hat; % hologram, Eq. (24)

13.2.6 3D Affine Transformation-Based Method

In 2014, Pan et al. proposed an analytical method based on 3D affine transforma-
tion, which successfully avoided all processes, such as 3D rotation, 2D affine, or
translation. Listing 13.7 provides a program for this method. Here, we adopted a
new approach to derive the 3D affine method.

As illustrated in Fig. 13.9, an arbitrary �ABC is located in the global coordinates
system (x, y, z). We establish a local Cartesian system: (x ′, y′, z′) using the normal
�ABC as the z′-axis, and a primitive triangle with vertices u(0, 0, 0), v(1, 0, 0), and
w(1, 1, 0) is defined in the local system. Then, there must be an affine relationship
between �ABC and �uvw, which is expressed as:

[x, y, z]ᵀ = T [x ′, y′, z′, 1]ᵀ , (13.26)

where T is a matrix with 3 × 4 representing the 3D affine transformation, and the
superscript ᵀ denotes the transposition of the matrix. T can be solved by
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Fig. 13.9 3D affine transformation. �ABC is the arbitrary triangle in the global system; �uvw is
the primitive triangle in the local system

T = [x, y, z]ᵀ[x ′, y′, z′, 1]ᵀ†
, (13.27)

where [·]† denotes the pseudo-inverse matrix of the argument. [x ′, y′, z′, 1]ᵀ is a
singular matrix, owing to z′ ≡ 0.

According to the mapping relationship between (x, y, z) and (x ′, y′, z′) in
Eq. (13.27), the frequency spectrum of �ABC mentioned in Eq. (13.6) can be
expressed as follows:

FHi ( fx , fy) = J · E1

∫∫
�uvw

e− j2π( f̂x x ′+ f̂ y y′)dx ′dy′

= J · E1 · F�uvw( f̂x , f̂ y) , (13.28)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
J = T11T22 − T12T21
E1 = e− j2π( fx T14+ fy T24− fz T34+T34/λ)

f̂x = T11 fx + T21 fy − T31 fz + T31/λ .

f̂ y = T12 fx + T22 fy − T32 fz + T32/λ

(13.29)

F�uvw( f̂x , f̂ y) in Eq. (13.28) is the spectrum of primitive �uvw, which can be solved
analytically as F�uvw( fu, fv) in Eq. (13.18).
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The 3D affine method does not adopt the standard codes given in Listing 13.1
because no 3D rotation step is described in the initial part of Sect. 1.2. Instead, the
3D affine method program is the most concise, as shown in Listing 13.7.

Listing 13.7 Pan’s method: 3D affine transformation solution analytically.

1 V=[A B C];
2 P=[0 1 1;0 0 1;0 0 0;1,1,1]; %primitive triangle
3 T=V∗pinv(P); % 3D affine matrix
4 %% affine frequency coordinates
5 fx_hat=T(1,1)∗fx+T(2,1)∗fy−T(3,1)∗fz(fx,fy)+T(3,1)/lambda;%fx’
6 fy_hat=T(1,2)∗fx+T(2,2)∗fy−T(3,2)∗fz(fx,fy)+T(3,2)/lambda;%fy’
7 F_hat=F_pri(fx_hat,fy_hat); % Spectra of triangle uvw
8 J=T(1,1).∗T(2,2)−T(1,2).∗T(2,1);
9 E1=exp(−1j∗2∗pi∗(T(1,4)∗fx+T(2,4)∗fy−T(3,4)∗fz(fx,fy)+T(3,4)/lambda));
10 FH=J.∗E1.∗F_hat;
11 E=fftshift(ifft2(FH)); % Hologram

13.3 Results for all Methods

In summary, the main issue in calculating the hologram of a 3D object composed of
triangles is obtaining the frequency spectrum of the tilted triangle on the hologram
plane. The six methods introduced in this chapter were used to solve this issue
using various approaches. We analyzed the theory and implemented steps of every
method, pointed out the similarities and differences between them, and listed the
main program to implement them in MATLAB.

The holograms of a single triangle based on each method were reconstructed at
vertex A, as shown in Fig. 13.10. They all show the same reconstructed images, indi-

Fig. 13.10 Reconstructed images of the single triangle hologram based on six polygon methods
introduced above
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Fig. 13.11 Reconstructed images of the teapot consisting of 1902 triangles. All holograms with
1000 × 1000 pixels are sampled at 8µm intervals and reconstructed at the plane of the spout of
teapot

cating that all methods can be considered computationally identical. However, there
must be some differences in the computational performance owing to different ways
of solving the spectra of the tilted triangles. Pan’s method [6] presents a more concise
program than the former five methods because it directly calculates the hologram
spectrum from the analytical spectrum expression of the primitive triangle without
3D rotation. The former five methods first need to rotate the triangle from the global
system to the local system and then obtain the hologram spectrum by rotating the
frequency spectrum in the local system. Among them, Matsushima’s method [1]
addresses the frequency spectrum in the local system using FFT; however, it faces
limitations in computational efficiency owing to the requirements for interpolation
and an additional FFT in solving the local spectrum of a triangle. Kim’s method [2] is
more efficient than Matsushima’s in solving the frequency spectrum by an analytical
expression rather than FFT, but it still needs to perform a 2D rotation once again.
Ahrenberg’s [3], Zhang’s [4] andLiu’s [5]methods show similar calculational perfor-
mance but are more efficient than Kim’s method because a 2D affine transformation
instead of 2D rotation is used to solve the analytical spectrum expression.

Using the six methods, a 3D object of a teapot consisting of 1902 triangles was
used to generate holograms. Figure13.11 shows the reconstructions of each method.
Backface culling [8] was performed on the object by determining the triangular
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Table 13.1 The calculation time required for the teapot using different methods

Methods Matsushima’s Kim’s Ahrenberg’s Zhang’s Liu’s Pan’s

Time (s) 11.56 14.31 7.62 7.53 4.09 5.34

Table 13.2 Calculation parameters used

Total triangles Backface culling Holograms Pixel size Distance

1908 1028 1000 × 1000 8 µm 200 ± 3 mm

normal before calculating the hologram. However, occlusion culling was not consid-
ered here; therefore, the reconstruction shown in Fig. 13.11 shows some particularly
bright parts due to overlap, such as the lid and spout of the teapot. The teapot’s
spout was focused and clear, whereas the handle was blurred. Kim’s, Ahrenberg’s,
Zhang’s, and Pan’s methods perform consistently because they all compute holo-
grams in the frequency domain and use analytical spectral equations. Because Liu’s
method is computed in the spatial domain, the pixel size varies with the reconstruc-
tion distance. The gaps between adjacent triangles are shown in Fig. 13.11, which are
caused by the different scaling of each triangle when it is reconstructed on a certain
plane. This problem can be solved using smaller triangles until they are less notice-
able. Matsushima’s method first requires drawing a rasterized triangle, which causes
the edges of adjacent triangles not to match exactly in the pixels. The non-uniform
amplitudes shown in the reconstruction of Matsushima’s method in Fig. 13.11 reflect
these non-matching edges. This problem can be mitigated by reducing the hologram
pixel size.

Table 13.1 shows the computational timeof the teapot hologramwith eachmethod,
and the calculation environments are as follows: CPU: AMD Ryzen 5-3600, GPU:
NVIDIA GeForce RTX 3070, and MATLAB (2021a). The hologram parameters
are presented in Table 13.2. The number of triangles used for the calculation after
backface culling was 1028, and the holograms were 1000×1000 pixels. To avoid
ringing errors caused by circular convolution in the frequency domain, in the actual
computation, all methods except the Liu’s method are calculated for the 2000×2000
pixel domain. In contrast, the Liu’s method calculates the same pixel domain as the
hologram because it performs the diffraction process in the spatial domain. This is
why Liu’s method is relatively faster.

In conclusion, all methods for generating holograms have rigorous theoretical
derivations and similar grounds; however, they differ in their performance in terms
of computational efficiency and reconstruction results. Pan’s method generally gen-
erates the best holograms most efficiently and concisely. In contrast, Matsushima’s
method compensates for the former’s shortcomings in rendering (e.g., textures and
shading) at the expense of efficiency.
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Chapter 14
Real-Time Electroholography Based
on Multi-GPU Cluster

Naoki Takada

Abstract The calculation of a computer-generated hologram (CGH) has become
computationally prohibitive. A high-performance computational power is indis-
pensable for realizing a three-dimensional (3D) television using electroholography.
A graphic processing unit provides a high-performance computational power for
floating-point calculation at a low cost. The parallel calculations of large-pixel-
count CGHs are suitable for a multiple-graphics processing unit (multi-GPU) cluster
system. However, a multi-GPU cluster system cannot easily accomplish fast CGH
calculations when CGH transfers among personal computers (PCs) are required.
Consequently, the CGH transfer among PCs becomes a bottleneck. This problem
usually occurs in multi-GPU cluster systems with a single spatial light modulator.
To overcome this problem, we propose herein a simple method using the Infini-
Band network. The computational speed of the proposed method using 13 GPUs
(NVIDIA GeForce GTX TITAN X) is more than 3000 times faster than that of a
central processing unit (Intel Core i7 4770) when the number of 3D object points
exceeds 20,480. In practice, the effective performance of the proposed system is
approximately 45 TFLOPS when the number of 3D object points exceeds 40,960.
The proposed method can reconstruct a real-time video of a 3D object comprising
approximately 100,000 points.

14.1 Introduction

The calculation of a computer-generated hologram (CGH) has become compu-
tationally prohibitive. Real-time electroholography must calculate and display at
least 30 CGHs on a spatial light modulator (SLM) within a second. Thus, a high-
performance computational power is indispensable for realizing a three-dimensional
(3D) television based on real-time electroholography. A graphic processing unit
(GPU) provides a high-performance computational power for floating-point calcu-
lation at a low cost.
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A personal computer (PC) equipped with several GPUs, which is referred to as
a multiple-GPU (multi-GPU) PC, is treated in the CGH calculation [1–3]. A PC
cluster is a set of multiple PCs connected to a network, which performs parallel
and distributed processing. Each PC constituting a PC cluster is referred to as a
node. The PC cluster comprising many multi-GPU PCs is specially referred to as a
multi-GPU cluster. A fast computation of a 20-megapixel CGH using a multi-GPU
cluster system with 12 GPUs and 12 SLMs has been reported [4]. The results of Ref.
[4] showed that a multi-GPU cluster could achieve high scalability in large-pixel
count CGH calculations. Thus, multi-GPU clusters have been adopted in various
approaches for the accelerated calculation of large-pixel count CGHs [5–8].

A multi-GPU cluster system with multiple SLMs is very expensive and large to
be practical. Calculated CGH transfers among the nodes of the multi-GPU cluster
system are required when a system with a single SLM is used. The calculated CGH
transfers are a bottleneck in the parallel computation using this system [8].

To overcome this problem, this study proposes a multi-GPU cluster system with
a single SLM and an InfiniBand network [9]. This chapter introduces real-time elec-
troholography using the proposed system. The final section of this chapter introduces
the latest study on high-speed CGH calculation based on the proposed method using
a multi-GPU cluster system.

14.2 Computer-Generated Hologram

The following formula acquired by Fresnel approximation is used in the CGH
calculation of a 3D object expressed by a point cloud:

I (xh, yh, 0) =
Np∑

j=1

A j cos

{
π

λz j

[
(xh − x j )

2 + (yh − y j )
2
]}

, (14.1)

where I (xh, yh, 0) denotes a CGH pixel (xh, yh, 0); (x j , y j , z j ) and A j are the coor-
dinate and the amplitude of the j th object point on a 3D object comprising Np points,
respectively; and λ is the reconstructing light wavelength.

The value calculated from Eq. (14.1) for each point on the CGH is binarized by
a threshold value of 0. The binary CGH is generated by the binarized value for
each point on the CGH. The resolution of the binary CGH displayed on SLM is
H × W , where H andW are the CGH height and width, respectively. The computa-
tional complexity of Eq. (14.1) is O(NpHW ). Thus, the CGH calculation becomes
prohibitively large.
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14.3 Multiple-GPU Cluster System with a Single Spatial
Light Modulator

Figure14.1 shows multi-GPU cluster system with a single SLM. The multi-GPU
cluster system is composed of a CGH display node (PC 0) connected to a single
SLM and N CGH calculation nodes (PCs 1-N). Each node of multi-GPU cluster
system has a CPU. The CGH display node and each N CGH calculation node have
a GPU and three GPUs, respectively. As shown in Fig. 14.1, the multi-GPU cluster
system has 3N + 1 GPUs.

The CGH calculation nodes calculate the CGHs for all frames in a 3D video using
pipeline processing. The calculatedCGHs are then sent to theCGHdisplay node via a
network of the multi-GPU cluster system. The CGH display node receives the calcu-
latedCGHs from theCGHcalculation nodes and displays theCGHs on a single SLM.
The 3D object points for all frames in the 3D video are stored in the CGH display
node, which also plays the role of the network file system (NFS) server. Section14.4
describes in detail the pipeline processing for real-time electroholography using the
multi-GPU cluster system.

In Fig. 14.1, each CGH calculation node has three GPUs. However, the proposed
method can be applied to any number of GPUs on the respective CGH calculation
nodes.

Fig. 14.1 Multi-GPU cluster systemwith a single SLM.H.Niwase, N. Takada, H. Araki, Y.Maeda,
M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, T. Ito, “Real-time electroholography using
a multiple-graphics processing unit cluster system with a single spatial light modulator and the
InfiniBand network,” Optical Engineering, Vol. 55, Issue 9, 093108 (2016)
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14.4 Pipeline Processing for Real-Time Electroholography
Using Multiple-GPU Cluster System with a Single
SLM

Figure14.2 shows the pipeline processing for real-time electroholography using the
multi-GPU cluster system with a single SLM. The pipeline processing proceeds as
follows:

Step 1 GPUs 1–3 on PC 1 calculate the CGHs for frames 1–3, respectively, in the
original 3D video. The GPUs (GPUs 4-3N) on the other CGH calculation
nodes calculate the CGHs for frames 4 to 3N in the same manner as the
CGH calculations using the GPUs (GPUs 1–3) on PC 1.

Step 2 After the CGH for Frame 1 is calculated using GPU 1 on PC 1, PC 1 sends
the calculated CGH for Frame 1 to the CGH display node (PC 0). Similarly,
the CGH calculation nodes send the calculated CGHs for the frames from
frames 2 to 3N to PC 0 one by one.

Step 3 PC0 receives the calculatedCGH for Frame 1 fromPC1within the constant
time interval T (i.e., display time interval). GPU 0 displays the CGH on the
SLM for a constant time T . Similarly, PC 0 receives the calculated CGHs
from the CGH calculation nodes. GPU 0 on PC 0 displays the received
CGHs for the frames from frames 2 to 3N on the SLM for a constant
time T .

After Step 3, the CGHs for frames 3N + 1 to 6N are calculated using the GPUs
from GPUs 1 to 3N and are sent to PC 0. PC 0 receives the calculated CGHs from

Fig. 14.2 Pipeline processing of real-time electroholography using the multi-GPU cluster system
with a single SLM. H. Niwase, N. Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T.
Kakue, T. Shimobaba, T. Ito, “Real-time electroholography using a multiple-graphics processing
unit cluster system with a single spatial light modulator and the InfiniBand network,” Optical
Engineering, Vol. 55, Issue 9, 093108 (2016)
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the CGH calculation nodes. GPU 0 then displays the received CGHs for frames 3N +
1 to 6N on the SLM for a constant time T . The pipeline processing is repeated until
the last frame of the original 3D video is reached. The computation time for a single
GPU is 3N × T , but the CGH updates can be reduced to T by pipeline processing
using multiple GPUs.

14.5 Implementation

Figure14.3 shows the block diagram of the CGH computation using the proposed
method. We used the message passing interface (MPI)[10] to implement the
pipeline processing shown in Fig. 14.2 in a multi-GPU cluster system. The MPI
is a well-known communication protocol for parallel and distributed programming
on a PC cluster.MPI processes are units of processes executed on the respective nodes
of a PC cluster by the MPI program that independently use separate CPU resources
and memory space. The identification numbers of MPI processes are called ranks.
Ranks are expressed as integer 0–1 less than the number of MPI processes.

In Fig. 14.3, “RANK i” depicts the rank with the identification number i . CPU 0
and GPU 0 show a CPU and a GPU on the CGH display node, respectively. Rank
0 is executed on the CGH display node and concentrates on displaying the CGH
calculated by the CGH calculation nodes. Each CGH calculation node (PCs 0-N)
has a CPU. In each CGH calculation node, a CPU executes three processes allocated
to three GPUs. Thus, the total number of ranks is equal to the total number of GPUs.

Ranks 1–3 are executed on the CGH calculation node PC 1. Rank 1 calculates the
CGH data as follows using GPU 1.

Step 1 Initialize for the GPU computation.
Step 2 The 3D object data are loaded from the NFS server through the network.

Here, the 3D object data are binary data stored in the hard disk of the NFS
server in advance.

Step 3 The 3D object data are sent to the global memory on GPU 1.
Step 4 The kernel for the CGH calculation based on Eq. (14.1) is invoked. In GPU

1, the 3D object data stored in the global memory are moved to the shared
memory to realize high-speed memory access. GPU 1 calculates Eq. (14.1)
using the 3D object data stored in the shared memory. The calculated CGH
data are then stored in the global memory on GPU 1.

Step 5 Rank 1 copies the calculated CGH data stored in the global memory to the
main memory on PC 1 and sends the calculated CGH data to Rank 0.

Here, “MPI_Send” is used to send the CGH data to Rank 0. “MPI_Send” per-
forms the blocking send operation in the point-to-point communication (Table 14.1)
and waits until the message is received by Rank 0. After the CGH data transfer is
completed, Rank 1 begins to generate the next frame CGH data.
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Fig. 14.3 Block diagram of the CGH computation using the proposed method. H. Niwase, N.
Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, T. Ito, “Real-
time electroholography using amultiple-graphics processing unit cluster systemwith a single spatial
light modulator and the InfiniBand network,” Optical Engineering, Vol. 55, Issue 9, 093108 (2016)
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Table 14.1 MPI_Send function—performs a standard-mode blocking send

Name: MPI_Send

Synopsis:

int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest, int tag,

MPI_Comm comm)

Input parameters:

buf Initial address of send buffer

count Number of elements in send buffer

datatype Datatype of each send buffer element

dest Rank of destination

tag Message tag

comm Communicator

Table 14.2 MPI_Recv function—performs a standard-mode blocking receive

Name: MPI_Recv

Synopsis:

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag,

MPI_Comm comm, MPI_Status *status)

Input parameters:

buf Initial address of receive buffer

count Maximum number of elements in receive buffer

datatype Datatype of each receive buffer element

source Rank of source

tag Message tag

comm Communicator

Rank 0 receives the CGH data from Rank 1 and copies the CGH data to the
global memory on GPU 0. Here, “MPI_Recv” is used to receive the CGH data from
Rank 1. “MPI_Recv” performs the blocking receive operation in the point-to-point
communication (Table 14.2) and waits until the message is sent from Rank 1. Rank
0 invokes the kernel to create a CGH image from the received CGH data. GPU 0
creates the CGH image and displays the CGH image on the SLM connected to GPU
0 for the constant time interval T .

Ranks 2 to 3N are performed similarly. In displaying the calculated CGH, double
buffering is used to reduce the graphic flicker. Figure14.4 shows the double buffer-
ing outline. It requires two buffers: front and back buffers. At Frame N, buffers 1 and
2 play the roles of the front and back buffers, respectively. The CGH of Frame N is
stored in the front buffer (Buffer 1) and displayed on an SLM. The GPU draws the
CGH of Frame N + 1 on the back buffer (Buffer 2). Buffers 1 and 2 are swapped after
the GPU finishes drawing the CGH of Frame N + 1. At Frame N + 1, buffers 2 and 1
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Fig. 14.4 Double buffering

play the roles of the front and back buffers, respectively. The CGH of Frame N + 1
is stored in the front buffer (Buffer 2) and displayed on an SLM. The GPU draws the
CGH of Frame N + 2 on the back buffer (Buffer 1). Buffers 1 and 2 are swapped after
the GPU finishes drawing the CGH of Frame N + 2. The buffer swap is repeated
until the last frame of the original video is reached. The constant time interval T
is equal to the periodic time interval of the vertical synchronizing signal when the
swap buffer shown in Fig. 14.3 is synchronized with the vertical blanking interval
[11]. The synchronization can be performed by the MPI functions “MPI_Send” and
“MPI_Recv” and the setting tool of the GPU (e.g., NVIDIA X Server Settings) [12].

To achieve real-time electroholography, at least 30 CGHs must be displayed on
the SLM within a second. Both CGH calculation and display must be performed
within 33 ms. A CGH image is expressed with 32 bits per pixel, such that the
proposed method can be easily applied to phase-only, color, and binary CGHs. Thus,
the transferred data of a CGH image are 32(bits/px) × 1920(px) × 1024(px) ≈
62.9(Mbits) when the CGH image resolution is 1920(px) × 1024(px). The CGH
transfer time between the CGH display node and each CGH calculation node is 62.9
ms if a gigabit Ethernet is used as a network in the multi-GPU cluster shown in
Fig. 14.1. The CGH transfer time is over 33 ms and becomes a bottleneck. A simple
method of overcoming this bottleneck is using a high-speed network instead of a
gigabit Ethernet. In this section, the InfiniBand quad data rate (QDR) (40 Gbps) is
used as the high-speed network.
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14.6 Results and Discussion

A five-node multi-GPU cluster system comprising a CGH display node and four
CGH calculation nodes was used. The CGH display node had a GPU. Each CGH
calculation node had three GPUs. Therefore, the multi-GPU cluster system had 13
GPUs. In each node of the multi-GPU cluster system, the PCwas equipped with Intel
Core i7 4770 (clock speed: 3.4 GHz, quad-core) and Linux (Cent OS 7.1) operating
system. In the system, NVIDIA GeForce GTX TITAN X and InfiniBand QDR (40
Gbps) were used as the GPU and the network, respectively. The programwas written
in C language using the CUDA 7.0 software development kit and the Open GL 4.5.0
and Open MPI v1.8.7 libraries.

A green semiconductor laser with 535 nmwavelengthwas used as the reconstruct-
ing light. In the original 3D video, the 3D object was located 1.5 m from the CGH.
The liquid crystal display (LCD) panel extracted from a projector (EMP-TW1000,
L3C07U series, Epson Inc.) was used as the SLM. The LCD panel specifications
were a pixel interval of 8.5 µm, a resolution of 1920 × 1080, and a size of 16 mm ×
9 mm. In this study, 1920 × 1024 pixel CGH was used to apply the optimized CGH
calculation algorithm to the multi-GPU cluster system.

Table 14.3 shows the display time interval T of the calculated CGH in the recon-
structed 3D video using the multi-GPU cluster system against the number of 3D
object points. The number of the GPUs shows the total number of the GPUs of the
CGH calculation nodes. The synchronization between the swapping buffer on a GPU
board and the vertical blanking interval of the SLM was not used herein because the
display time interval T was not equal to the periodic time interval of the vertical
synchronizing signal. In the program for executing pipeline processing on the multi-
GPU cluster system, the sleep function was used to adjust the CGH display timing
instead of the synchronization between the swapping buffer and the vertical blanking

Table 14.3 Display time interval T of electroholography using the multi-GPU cluster system. H.
Niwase, N. Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, T.
Ito, “Real-time electroholography using a multiple-graphics processing unit cluster system with a
single spatial light modulator and the InfiniBand network,” Optical Engineering, Vol. 55, Issue 9,
093108 (2016)

Object Display time interval T [ms]

points 1 GPU 3 GPUs 6 GPUs 9 GPUs 12 GPUs

10,240 39.4 14.6 7.6 6.4 4.3

20,480 78.5 28.6 14.6 10.1 7.3

40,960 153.8 56.7 29.1 19.3 14.4

61,440 232.4 84.6 43.7 28.7 21.6

81,920 309.0 111.5 58.1 38.9 28.6

102,400 385.0 138.2 72.3 47.8 35.5
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Fig. 14.5 Block diagram of the CGH computation using the proposed method when the sleep
function is used to adjust the CGH display timing instead of the synchronization between the
swapping buffer and the vertical blanking interval. H. Niwase, N. Takada, H. Araki, Y. Maeda,
M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, T. Ito, “Real-time electroholography using
a multiple-graphics processing unit cluster system with a single spatial light modulator and the
InfiniBand network,” Optical Engineering, Vol. 55, Issue 9, 093108 (2016)

interval (Fig. 14.5). The suspension time of the sleep function was obtained by the
experimental rule based on the CGH calculation time using a single GPU.
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Table 14.4 Frame rate of electroholography using the multi-GPU cluster system. H. Niwase, N.
Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, T. Ito, “Real-
time electroholography using amultiple-graphics processing unit cluster systemwith a single spatial
light modulator and the InfiniBand network,” Optical Engineering, Vol. 55, Issue 9, 093108 (2016)

Object Frame rate [fps]

points 1 GPU 3 GPUs 6 GPUs 9 GPUs 12 GPUs

10,240 25.4 68.5 131.6 156.3 232.6

20,480 12.7 35.0 68.5 99.0 137.0

40,960 6.5 17.6 34.4 51.8 69.4

61,440 4.3 11.8 22.9 34.8 46.3

81,920 3.2 9.0 17.2 25.7 35.0

102,400 2.6 7.2 13.8 20.9 28.2

Table 14.5 Effective performance of electroholography using the multi-GPU cluster system

Object Effective performance [TFLOPS]

points 1 GPU 3 GPUs 6 GPUs 9 GPUs 12 GPUs

10,240 4.1 11.0 21.1 25.0 37.2

20,480 4.1 11.2 22.0 32.0 44.0

40,960 4.2 11.4 22.2 33.3 44.7

61,440 4.2 11.4 22.1 33.6 44.7

81,920 4.2 11.6 22.2 33.1 45.1

102,400 4.2 11.7 22.3 33.7 45.4

Table 14.4 shows the frame rate of the CGH calculated using the multi-GPU
cluster system. The frame rates shown in Table 14.4 were derived from the display
time intervals T shown in Table 14.3. The multi-GPU cluster system, in which the
CGH calculation nodes had 12 GPUs, achieved approximately 30 fps when the
number of object points was 102,400.

Table 14.5 shows the effective performance of the CGH calculation using multi-
GPU cluster system. In the CGH calculation of Eq. (14.1), all coefficients π/λz j for
the 3D object data are precalculated. The intensity of the object point A j is also set to
1.0. Equation (14.1) consists of one addition, two subtractions, three multiplications,
one cosine function, and one summation. In calculating Eq. (14.1) using the GPU,
addition, subtraction,multiplication, and cosine functions are counted as onefloating-
point operation [12]. The number of the floating-point operations of Eq. (14.1) is 7 ×
Np + (Np − 1). Here, Np − 1 is the number of floating operations derived from the
summation in Eq. (14.1). In the H × W pixel CGH, the total number of the floating-
point operations becomes (7 × Np + (Np − 1)) × H × W . Therefore, the number
of floating-point operations per second (FLOPS) is estimated as (7 × Np + (Np −
1)) × H × W/T , where T is the display time interval. The effective performance of
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Table 14.6 Comparison of the performances of the multi-GPU cluster system and a CPU (i.e., Intel
Core i7 4770). H. Niwase, N. Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T. Kakue, T.
Shimobaba, T. Ito, “Real-time electroholography using a multiple-graphics processing unit cluster
system with a single spatial light modulator and the InfiniBand network,” Optical Engineering, Vol.
55, Issue 9, 093108 (2016)

Object Calculation
time [ms]

Speed-up (1 CPU / N GPUs)

points 1 CPU 1 GPU 3 GPUs 6 GPUs 9 GPUs 12 GPUs

10,240 12,483 317 855 1,643 1,950 2,903

20,480 23,228 296 812 1,591 2,300 3,182

40,960 44,569 290 786 1,532 2,309 3,095

61,440 66,537 286 786 1,523 2,318 3,080

81,920 88,602 287 795 1,525 2,278 3,098

102,400 107,707 280 779 1,490 2,253 3,034

the proposed system was approximately 45 TFLOPS when the number of 3D object
points exceeded 40,960.

Table 14.6 shows the performance of the multi-GPU cluster system compared
with that of a CPU (Intel Core i7 4770). The speed-up was estimated to be the CGH
calculation time using the CPU divided by the display time interval T shown in
Table 14.3. The CPU code for the CGH computation was written in C language and
OpenMP and compiled using Intel C compiler version 15.0.3 with the -openmp -O3
options. Eight threads were used in the CGH computation. The computational speed
of the multi-GPU cluster system was more than 3000 times faster than that of the
CPU when the number of the 3D object points exceeded 20,480.

14.7 Related Work

This section briefly introduces the latest study of real-time electroholography using
multi-GPU cluster system. In 2017, our research group proposed fast time-division
color electroholographyusing amulti-GPUcluster systembasedon the systemshown
in this chapter, with an SLM and a controller to switch the color of the reconstructing
light [13]. The controller comprised a universal serial bus module to drive the liquid
crystal optical shutters. The Infiniband QDR (40 Gbps) and NVIDIA GeForce GTX
TITANXwere used as the high-speed network and the GPU, respectively. Using the
controller, the CGH display node of the multi-GPU cluster system synchronized the
display of the CGH with the color switching of the reconstructing light. Fast time-
division color electroholography at 20 fps was realized for a 3D object comprising
21,000 points per color when 13 GPUs are used in a multi-GPU cluster system. In
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2019, real-time color electroholography was realized for a 3D color object compris-
ing approximately 21,000 points per color using this multi-GPU cluster and three
SLMs corresponding to the respective red-, green-, and blue-colored reconstructing
lights [14]. Also in 2019, real-time electroholography was realized for a 3D video
presenting a point-cloud 3D object composed of approximately 200,000 points using
a multi-GPU cluster system with 13 GPUs (NVIDIA GeForce 1080 Ti) and a cost-
effective gigabit Ethernet network [15].

In 2014, we proposed spatiotemporal division multiplexing electroholography
utilizing the persistence of vision to accelerate the CGH calculation using a single
GPU [16]. The method is very simple and easy to handle. In 2019, we implemented
the spatiotemporal division multiplexing method on a cluster system with 13 GPUs
(NVIDIAGeForce 1080Ti) connectedby agigabit Ethernet network. In summary,we
realized herein a real-time holographic video of a 3D object comprising≈ 1,200,000
object points using the system [17].
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Chapter 15
GPU Acceleration of Compressive
Holography

Yutaka Endo

Abstract Compressive holography is an application of compressed sensing to
digital holography to reconstruct three-dimensional scattering density from a single
two-dimensional hologram. Although the method can effectively remove unwanted
out-of-focus objects, twin images, and autocorrelation terms in the reconstructed
images, its computational cost is high. This section describes the acceleration of sig-
nal reconstruction for compressive holography using a graphics processing unit. We
outlined compressed sensing and compressive holography and describe its imple-
mentation based on the fast iterative shrinkage-thresholding method with �1 norm
and total variation.

15.1 Introduction

Compressed sensing (CS) is a signal acquisition framework that enables the recovery
of sparse signals using far fewer samples than conventional methods based on the
Nyquist–Shannon sampling theorem [6, 10, 13]. Since its establishment, CS has
been applied in many fields such as magnetic resonance imaging [20, 21], radar
imaging [11] and optical imaging [22]. CS has been used in many applications in
holography [4, 19, 24, 26, 27].

An application is compressive holography, which is used to reconstruct three-
dimensional (3D) scattering density (i.e., image slices) from a single 2D hologram
[4]. In holographic 3D imaging, image slices obtained from the conventional back-
propagation technique suffer from out-of-focus objects, twin images, and autocorre-
lation terms, while compressive holography can remove these unwanted terms.
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The high computational cost of signal reconstruction is a concern in compressive
holography. The data size to be reconstructed in compressive holography is con-
siderable. For example, assuming that we have a hologram with 1000 × 1000 pixels
and attempt to reconstruct a 3D scattering density with 10 depths, the reconstructed
signal has 10million variables. CS reconstruction is performed using an optimization
problem (e.g., �1-norm minimization), and a large-scale optimization problem with
10 million variables is solved, which incurs a high computational cost.

In this section, we describe fast signal reconstruction for compressive holography
by using a graphics processing unit (GPU) [15]. GPUs are parallel computing
devices that are suitable for data-parallel computing; the same program is executed
on many data elements in parallel. GPU computing is suitable for CS reconstruction
because it can be efficiently computed using a data-parallel model. We describe
compressive holography, signal reconstruction, and its implementation on GPUs.
We implemented the fast iterative shrinkage-thresholding algorithm [2, 3] with �1
norm and total variation [25] regularization. Our evaluation revealed that GPU-based
implementation is more than ten times faster than CPU-based implementation.

15.2 Compressed Sensing

CS is a sampling paradigm that enables the acquisition and recovery of sparse signals
from far fewer samples than conventional methods based on the Nyquist–Shannon
sampling theorem do [6, 10, 13]. A sparse signal is a signal whose most components
are zero, and many natural signals (e.g., audio, images, and videos) are sparse or
have a sparse representation after appropriate transformation. Therefore, CS can be
effectively applied to numerous natural signals. In the following section, we outline
the CS framework. For a detailed description of CS, please refer to [1, 7, 12, 16].

Consider a signal of interest x ∈ C
N that has N discrete values acquired by a linear

measurement, and the measured data y ∈ C
M with M discrete values are obtained.

The linear measurement process can be expressed as follows:

y = �x, (15.1)

where � ∈ C
M×N is the sensing matrix, which is a linear measurement model. The

reconstruction of signal x is an inverse problem. For M ≥ N , a least-square solution
is easily obtained, but, for M < N , the inverse problem is ill-posed and does not
achieve a unique solution. CS theory shows the conditions under which the signal
x is perfectly reconstructed, even if M < N . Such ill-posed problems can be solved
through signal sparsity and incoherent sensing.

The assumption of the target signals x for CS reconstruction is that it is sparse.
Formally, the signal is S-sparse if it has at most S nonzero components. Many natural
signals are sparse or compressible such that they are well approximated by a sparse
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representation z ∈ C
N that has a few nonzero components in the proper basis � ∈

C
N×N such as x = �z. Using the representation basis, Eq. (15.1) can be expressed

as follows:
y = ��z = Az,

where A ∈ C
M×N .

A popular method for sparse-signal reconstruction in the CS framework is
�1-minimization.

min
z

‖z‖1 subject to Az = y, (15.2)

where ‖ · ‖p denotes �p norm. �1 norm promotes the sparsity of the solution and can
be easily computed by efficient algorithms. For many image processing applications,
instead of solving the problem Eq. (15.2), �1 regularization, which is the Lagrangian
relaxation of �1-minimization, is typically used

min
z

1

2
‖Az − y‖22 + λ‖z‖1, (15.3)

where λ is a regularization parameter that balances the first and second terms (i.e.,
data fidelity and sparsity).

The sensing matrix � affects the success probability of signal reconstruction.
Incoherence is one of the requirements for the sensing matrix to recover a sparse
vector, which is measured by mutual coherence [14]. The mutual coherence μ

between two orthonormal bases � and � for CN×N is defined by

μ(�,�) := max
1≤i, j≤N

|〈φi ,ψ j 〉|,

where 〈·, ·〉 denotes the inner product, and φi andψ i are the i-th column vectors of�
and�, respectively. Mutual coherence is bounded by 1/

√
N ≤ μ(�,�) ≤ 1.When

mutual coherence is low (i.e., incoherent), the number of measurements M required
to reconstruct a sparse vector is also low [5, 7]. Another condition is the restricted
isometry property (RIP) [6]. Matrix A ∈ C

M×N holds the RIP if the condition

(1 − δS)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δS)‖x‖22
is satisfied for all S-sparse vectors xwith small δS . Thus,matrixA approximately pre-
serves the Euclidean length of any S-sparse vectors. IfA holds RIP, �1-minimization
can accurately recover any S-sparse vectors [8]. Random matrices hold the RIP. For
example, an M × N i.i.d. Gaussian random matrix can be shown to have a high
probability of RIP if M ≥ C · S ln(N/S), where C is a small constant. This result
allows us to recover S-sparse vectors from M ≥ C · S ln(N/S) random Gaussian
measurements.
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15.3 Compressive Holography

The first application of CS to holography is compressive holography, which enables
the reconstruction of image slices from a single Gabor hologram [4]. In holo-
graphic imaging, reconstructed image slices suffer from out-of-focus objects, twin
images, and autocorrelation terms, whereas compressive holography can remove
these unwanted terms through sparse optimization. In this section, we describe com-
pressive holography. For details, please refer to [4].

Figure15.1 shows a schematic of compressive holography. The 3D object is illu-
minated by a plane wave, and the Gabor hologram is recorded by an image sensor.
The hologram is an interference pattern between the light scattered by an object
and the unscattered light that serves as the reference beam [18]. Let (x, y, z) be the
coordinates and z be the distance from the image sensor (i.e., z = 0 is at the image
sensor plane). The scattered field on the image sensor is expressed as follows:

O(x, y) =
∫

h ∗ s(x, y; z)dz, (15.4)

where s(x, y, z) is the scattering density of the 3D object, ∗ denotes convolution,
and h(x, y; z) is the convolution kernel of diffraction for distance z [17]. The Gabor
hologram is the intensity of the sum of the scattered field O(x, y) and uniform
reference wave R on the image:

g(x, y) = |R + O(x, y)|2 = 2Re{R∗O(x, y)} + |R|2 + |O(x, y)|2,

Gabor
hologram

Image sensorScattering density

Object beam

Reference
beam

Fig. 15.1 Schematic of Gabor holography
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where Re{·} is an operator that takes the real part. This measurement model has a
constant term |R|2 and nonlinear term |O(x, y)|2. To rewrite this model as a linear
model, we make two assumptions. First, the constant term can be removed from the
hologram using Fourier filtering. The constant-term-removed hologram is expressed
as follows:

ḡ(x, y) = 2Re{O(x, y)} + |O(x, y)|2, (15.5)

where we assume R = 1 for simplicity. The second assumption is that the nonlinear
term is a model error e(x, y) that should be eliminated through the reconstruction
process (for more details, see [4], Sect. 5). Thus, we obtain the following linear
model:

ḡ(x, y) = 2Re{O(x, y)} + e = 2Re

{∫
h ∗ s(x, y; z)dz

}
+ e. (15.6)

We discretize this model to obtain the matrix–vector form. Let the image sensor have
Nx × Ny pixels, and assume that the object consists of Nz image slices with Nx × Ny

pixels. The matrix–vector form of Eq. (15.6) is expressed as follows:

ḡ = 2Re{Hs} + e,

where ḡ ∈ R
Nx Ny , s ∈ C

Nx Ny Nz and e ∈ R
Nx Ny are the vector forms of ḡ, s, and e, and

H ∈ C
Nx Ny×Nx Ny Nz is thematrix for computing Eq. (15.4), respectively. s is expressed

as s = [sT1 , sT2 , · · · , sTNz
]T where sk is the kth slice.

The reconstruction of object s from hologram ḡ is an ill-posed inverse problem
that does not have a unique solution. However, CS can solve this problem if the
desired solutions are sparse in a certain space. We use the following regularization
to infer image slices:

min
x

1

2
‖2Re{Hx} − ḡ‖22 + τG(x), (15.7)

whereG is a regularizer that promotes the sparsity of the estimated value, and τ is the
regularization parameter of G. This formula is the generalization of Eq. (15.3). If the
object is spatially sparse,we can select �1 norm as a regularizer. For piecewise smooth
objects, total variation (TV) is typically used for regularizers [25]. Assuming u is
a 2D image with M × N pixels, the isotropic TV is defined as follows:

‖u‖TV := ‖∇u‖2 =
∑
i, j

√
(∇1u)2i, j + (∇2u)2i, j .

Here, ∇u := (∇1u,∇2u) is the discrete gradient of u defined by

(∇1u)i, j := ui, j − ui, j (1 ≤ i ≤ M − 1),

(∇2u)i, j := ui, j − ui, j (1 ≤ j ≤ N − 1),
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(a)

z = 0 mm z = 10 mm z = 20 mm z = 30 mm z = 40 mm

(b)

(c)

Fig. 15.2 a Three-dimensional object and reconstructed images by b backpropagation and c com-
pressive holography

where ui, j denotes an element in the i th row and j th column. For objects composed
of Nz slices, as x = [xT1 , xT2 , · · · , xTNz

]T where xk is the kth slice, the TV-based

regularizer can be G(x) = ∑Nz

k=1 ‖xk‖TV. By solving this regularized optimization
problem, image slices can be reconstructed from the Gabor hologram.

An illustrative example of compressive holography was presented using simula-
tion. Figure15.2a shows the 3D object used in the simulation. The 3D object space
consists of Nx × Ny × Nz = 512 × 512 × 5with 10.0μm lateral pitch and 10.0mm
axial pitch, and characters (1, 2, 3, and 4) are at various distances along z axis. A
Gabor hologram was obtained using a plane wave with a 632.8-nm wavelength, and
the constant term was eliminated, as shown in Eq. (15.5). Zero pixels were padded
around the hologram and an Nx × Ny = 1024 × 1024 image was created to avoid
circular convolution. Figure15.2b, c show reconstructed images by backpropaga-
tion and compressive holography, respectively. Here, the z = 0 plane was included
for reconstruction to remove model error e, which tends to concentrate on the z = 0
plane. Although out-of-focus images, twin images, and autocorrelation fields exist in
the reconstructed images by backpropagation, compressive holography can suppress
these unwanted images from the reconstructed images. The results of compressive
holography were obtained using TV regularization, which required 181.4 s on the
CPU and 4.2 s on the GPU (see Sect. 15.4 and Table 15.1 for the implementation
details and evaluation environment).
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15.4 GPU-Accelerated Compressive Holography

15.4.1 Signal Reconstruction Algorithm

The optimization problem (15.7) is generalized as follows:

min
x

F(x) + G(x) (15.8)

where F and G are differentiable and nondifferentiable functions, respectively. The
basic gradient descent methods cannot be applied to this problem because the objec-
tive function has a nondifferentiable term. A basic algorithm for solving problem
(15.8) is the proximal gradient method [23]. In this algorithm, the proximal operator
associated with the nondifferentiable functionG is used, which is defined as follows:

proxG(v) := argmin
x

G(x) + 1

2
‖x − v‖22.

This operation is seen as a generalization of Euclidian projection. The proximal
gradient method can be easily implemented when the proximal operator can easily
be computed. The algorithm iteratively updates the approximate solution at the kth
step, xk as follows:

xk+1 = proxt kG
(
xk − t k∇F(xk)

)
,

where ∇F is the gradient of F , and t k > 0 is the step size. When ∇F is Lipschitz
continuous with constant L , this method converges at a rate of O(1/k) when a fixed
step size t k = t ∈ (0, 1/L] is used.

An accelerated version of the proximal gradient method, called the fast iterative
shrinkage-thresholding algorithm (FISTA) [3], is used to solve problem (15.8),
which improves the convergence rate using the last two iterations at each iteration
step. The algorithm is described in Algorithm 1. FISTA incurs a small additional
computational cost for the proximal gradient method but improves the convergence
rate to O(1/k2).

Algorithm 1 Fast iterative-shrinkage thresholding algorithm.
1: for k = 1 to K do
2: xk+1 = proxtG

(
zk − t∇F(zk)

)
3: ak+1 = 1+

√
1+4(ak )2

2

4: zk+1 = xk+1 + ak

ak+1

(
xk+1 − xk

)
5: end for
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In the optimization steps of the proximal gradient method, the gradient of F is
first computed. Our differentiable cost function is F(x) = 1

2‖2Re{Hx} − ḡ‖22, and
according to Wirtinger derivative [9], its complex gradient is computed by

∇F(x) = 2H∗ (2Re{Hx} − ḡ)

where H∗ denotes the adjoint of H. Because matrix multiplication with H and H∗ is
expressed as convolution, the gradient can be efficiently computed using fast Fourier
transforms (FFTs).

We selected �1 norm or TV as a nondifferentiable regularizer G. The proximal
operator for �1 norm is explicitly expressed as follows:

proxτ‖·‖1(x)i = sgn(xi )max{|xi | − τ, 0},

where sgn denotes the sign function. This operation is called soft thresholding and
can be easily computed element by element.

The proximal operator for TV ismore difficult to compute than that for the �1 norm
because it does not have an explicit form. Therefore, the subminimization problem
should be solved numerically at each iteration as follows:

proxτ‖·‖TV(v) = min
x

τ‖x‖TV + 1

2
‖x − v‖22.

This subproblem is solved by formulating its dual problem and solving it using
gradient projection [2]. Algorithm 2 shows the algorithm, where the divergence
operator is defined as follows:

∇ · (p,q) := pi, j − pi−1, j + qi, j − qi, j−1 (1 ≤ i ≤ M, 1 ≤ j ≤ N ),

where we assume p0, j = pM, j = qi,0 = qi,N = 0. The operator P is defined as fol-
lows:

P(p,q),

⎛
⎜⎝ pi, j

max
{
1,

√
p2i, j + q2

i, j

} ,
qi, j

max
{
1,

√
p2i, j + q2

i, j

}
⎞
⎟⎠ ,

which is the projection onto a set of 2D image pairs, {(p,q) | p2i, j + q2
i, j = 1}.

Algorithm 2 Gradient-projection-based TV denoising.
1: for k = 1 to V do
2: (pk+1,qk+1) = P

{
(pk ,qk) + 1

8τ ∇xk
}

3: xk+1 = v − τ∇ · (pk+1,qk+1)

4: end for
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Fig. 15.3 Overview of GPU-accelerated compressive holography implementation

15.4.2 GPU Implementation

We implemented a FISTA-based signal reconstruction using a GPU. Our code is
available on the book site and at GitHub.1 Our implementation is based on CUDA,
a parallel computing platform and programming model invented by NVIDIA. It
allows developers to use a CUDA-enabled GPU for general-purpose processing. In
the CUDA programming model, the computing system consists of a host, CPU, and
one or more devices, GPUs. We write a function called kernel that describes the
work of a single thread on a device and invokes it with numerous threads from a
host. These threads are executed in parallel on thousands of cores on a GPU. This
programming model fits data-parallel computing and supports developers in using
GPUs as a massively parallel computing device.

Figure15.3 illustrates an overview of GPU-accelerated reconstruction. The host
first sends the hologram data to the device as input data. Subsequently, the device iter-
atively computes FISTA, which consists of gradient descent, proximal operator, and
variable update, until a stopping condition is satisfied. A fixed number of iterations
was used as the stopping condition. After the FISTA step, the device transferred the
reconstructed results to the host. Kernels for FISTA are easily parallelized because
most operations in those kernels are vector operations, where each element can be
processed independently by a single thread.

The evaluation of the forward model and its adjoint (i.e., the matrix–vector mul-
tiplication with H and H∗) is the most computationally intensive in FISTA. We
implemented these operations using 2D FFTs, as the forward and adjoint models
can be expressed as the sum of 2D convolutions, as shown in Eq. (15.4). The cuFFT
library was used to execute 2D-FFTs on the GPU.

1 https://github.com/ytkend/compressive-holography-cuda.

https://github.com/ytkend/compressive-holography-cuda
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15.4.3 Performance Evaluation

We evaluated the performance of the GPU-based compressive holography imple-
mentation. Table 15.1 shows the evaluation environment. The CPU and GPU were
AMD Ryzen 7 2700X and NVIDIA Geforce RTX 2080Ti, respectively. We com-
pared the CPU-based implementation, in which FFTW is used for an FFT library,
and OpenMP is used for multithreading.

Table 15.2 presents the computation times of the CPU and GPU-based implemen-
tations for �1 and TV regularizations. The number of slices Nz = 10 was fixed, and
the hologram size Nx × Ny was changed. The number of iterations of FISTA was
300, which produced moderate reconstruction results in our cases. The total com-
putation time of our implementations increased almost linearly with the number of
iterations. For TV regularization, the number of iterations to solve the subminimiza-
tion problem byAlgorithm 2was set to 10. The computation times are the averages of
10 runs on the GPU and CPU. The results revealed that GPU-based implementation
is more than ten times faster than CPU-based implementation.

Table 15.1 Evaluation environment

CPU AMD Ryzen 7 2700X

(8 cores, 16 threads, and 3.7 GHz base clock)

Memory DDR4 2667 MHz 32 GB

GPU NVIDIA Geforce RTX 2080 Ti

(4352 cores, 1350 MHz base clock, 11 GB GDDR6 RAM)

C++ compiler GCC 9.4.0

CUDA 11.8

Table 15.2 Computation time of compressive holography using FISTA with 300 iterations

Hologram size �1 regularization TV regularization

Nx × Ny CPU (s) GPU (s) CPU (s) GPU (s)

256 × 256 4.963 0.217 7.764 0.788

512 × 512 23.36 0.510 35.91 2.449

768 × 768 40.48 0.950 68.53 5.111

1024 × 1024 152.4 1.517 224.5 7.806
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Chapter 16
Sparse CGH and the Acceleration
of Phase-Added Stereograms

David Blinder

Abstract Sparse CGH algorithms encode the wavefield in a certain transform space
where the holographic signals to be computed are “sparse”, i.e., require a small num-
ber of coefficient updates to be accurate. This principle can be leveraged to achieve
high-speed CGH needing only a fraction of the calculations that are used in con-
ventional CGH. We detail several examples and focus on Phase-Added Stereograms
(PAS) in this chapter. Thereafter, we elaborate on a cache-friendly data structure
consisting of “lozenge” cells, which can speed up PAS CGH by another order of
magnitude.

16.1 Sparsity

Sparsity is a notion in signal processing, where some class of signals can be accu-
rately represented by a small number of coefficients in a well-chosen transform basis.
This property is useful for many different applications, such as data compression,
filtering, compressed sensing, and accelerated calculations.

We will illustrate this with a few examples. Natural images and photographs
predominantly consist of low frequencies and have local features such as edges. This
makes multi-resolution wavelets a good candidate for efficiently encoding images,
and is, e.g., why they serve as the basis for the JPEG 2000 image compression
standard [1].

When transforming an exemplary image using the Cohen-Daubechies-Feauveau
wavelet with a 4-level Mallat decomposition (cf. Fig. 16.1), we can observe that
most coefficients are near-zero. Smooth features will be captured by the lowpass
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Fig. 16.1 Illustration of the relationship between sparsity and compression. By wavelet-
transforming a typical photographic image and keeping only 5% of the most significant coefficients,
most of the important details are preserved. This is akin to compression and is also the core idea
behind sparse CGH

band, while edges will be captured by a few high-pass band coefficients. By only
keeping 5% of the most significant coefficients, i.e., those with the highest absolute
value, we obtain a distorted version still having 31.0 dB PSNR. This is the basic
principle behind compression.

Another useful application is removing noise from signals, i.e., denoising. Noise
is per definition random and thus uncorrelated to any set of signals, so its energy will
be spread out over all coefficients no matter the chosen transform basis. This means
that if we choose the right basis, large coefficients will likely chiefly be part of the
signal and small coefficients will likely mostly correspond to noise. Significant parts
of the noise can thus be removed through thresholding algorithms, cf. Fig. 16.2. In
[2], an adaptive soft-thresholding technique is used for this purpose.

Sparsity is highly useful in CGH as well. This is what will be covered in the
remainder of this chapter.
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Fig. 16.2 Illustration of denoising images with wavelets. Because noise is uncorrelated with linear
transforms, one can isolate a lot of its energy in the otherwise near-zero coefficients of a sparsifying
transform. After an adaptive soft-thresholding operation, the PSNR is improved by 5 dB

16.1.1 Sparse CGH

In general, due to the nature of wave-based diffraction, all pixels of the hologram can
be affected by every scene element. This is apparent from the Huygens–Fresnel prin-
ciple, where luminous points create spherical waves, emitting light in all directions.
But by expressing the holographic signal in the right basis, we can compute only
a small fraction of the total number of transform coefficients, thereby considerably
speeding up calculations over the default CGH calculation in the spatial/hologram
domain. Consider a collection of N elements E j (x, y),∀ j ∈ {1, .., N }. These E j

can represent any kind of objects such as point emitters, polygons, line or curve seg-
ments, surface pieces, etc. For a chosen transform T , a linear combination of these
E j can be expressed as

H(x, y) = T −1
{
T {H(x, y)}} = T −1

{ N∑

j=1

T {E j (x, y)}
}
. (16.1)

The different T {E j (x, y)} can directly be computed or copied from a precomputed
look-up table rather than evaluated in the spatial domain, which we refer to as sparse
CGH [3].

However, several conditions need to be met for sparse CGH to be effective, i.e.,
significantly faster than the conventional spatial domain computation. These are [3]:
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1. High sparsity; the ratio of needed transform coefficients to total hologram pixel
count must be small so that the target signal can be accurately approximated with
only a few coefficient updates.

2. Efficient computation or insertion of the coefficient values. It should be com-
putationally efficient to compute and/or copy the coefficients for the different
elements T {E j (x, y)} directly in transform space. It should not be significantly
more costly than evaluating E j (x, y) values in the hologram plane; otherwise,
acceleration will not be possible.

3. Efficient inverse transform T −1. The computational complexity should be rela-
tively low compared to having a non-sparse CGH algorithm. This condition is
often met if N is sufficiently large.

Note that although the individual E j should be sparse in T , their sum does not have to
be sparse. Moreover, the transform T can be applied multiple times, even combining
different transforms, so long as the previously mentioned constraints are satisfied.

Several different candidates have been proposed for the transform space T . In [4,
5], parts of the object were computed in selected batches to affect a limited number of
coefficients in virtual planes, making them sparse as inputs for the subsequent FFT
needed for calculating the light propagation. Using the “sparse FFT”, significant
acceleration was achieved.

Another approach is to use coefficient shrinking, whereby only some fraction of
the most significant coefficients of the transformed E j are kept, whereas the rest of
the coefficients with values below some chosen threshold are set to 0. This thresh-
old can be set depending on the quality and speed requirements. It is a trade-off
between accuracy and calculation speed. The WAvelet ShrinkAge-Based superpo-
sitIon (WASABI) method [6] uses this approach with the Daubechies-4 wavelet
transform for T , cf. Fig. 16.3a. The thresholded coefficients are pre-computed, and
applied in wavelet space for every transformed point-spread function T {E j (x, y)}.

= DWT

−1

(a) WASABI

ASM

−1

(b) WRP

= STFT

−1

(c) PAS

Fig. 16.3 Examples of sparse CGH methods. a A point-spread function and its corresponding
sparse 2-level Daubechies-4 wavelet transform [6]. b The blue 3D curve and point are close to
the WRP, only affecting nearby coefficients delineated in the red regions. This contrasts with the
hologram plane H , where all pixels are affected. cAccurate PAS on 16 × 16 coefficient blocks with
redundancy 2. (Based on [3], Fig. 16.6)



16 Sparse CGH and the Acceleration of Phase-Added Stereograms 257

This method was shown to be about 30 times faster than the reference point-cloud
CGH method while retaining acceptable visual quality. Later, a similar shrinkage
methodwas proposed using the short-timeFourier transform (STFT) forT instead
of wavelets. Because of higher average sparsity and frequency symmetry, a 2 dB
PSNR quality gain was achieved over wavelet-based methods, with better off-axis
view quality [7]. This method was further accelerated by analytically computing
coefficients [8] rather than using precomputed values from look-up tables.

We can also use a convolutional diffraction operator for T , such as the Fresnel
transform or the angular spectrum method (cf. Chap. 1). By backpropagating the
hologram close to the virtual objects in the 3D scene, the energy of the point-spread
functions will be spatially concentrated. This will make them spatially sparse in T ,
which is the principle leveraged inwavefront recording planes [9] (WRP): thanks of
the proximity of scene elements to theWRP plane, the T {E j (x, y)} can be calculated
using only a small number of pixels close to the virtual objects, cf. Fig. 16.3b.

In this chapter, we will focus on a specific sparse CGH method called “Phase-
added stereograms” (PAS). The sparsifying transform T is also the STFT, where
the hologram is subdivided into small spatial regions such as blocks, which are
called hogels. But these techniques will only update a single coefficient per hogel
per element E j , see Fig. 16.3c; we will elaborate on this method in the section
hereinbelow.

16.2 The Phase-Added Stereogram (PAS)

Holographic stereograms perform hologram calculations by approximating them
byadiscrete light field.Lightfields canbe representedby a four-dimensionalplenop-
tic function L(x, y, θ, φ) on some surface, describing the radiance in every point
(x, y) of that surface emitted along angles (θ, φ) w.r.t. to the surface normal. This
principle is illustrated in Fig. 16.4a. These light fields can be sampled along every
dimension, resulting in a discrete light field utilized e.g. in light field cameras and
displays.

These discrete light fields canbemapped to hologramsby associating a small plane
wave segment to each light field sample, cf. Fig. 16.4b. The center of the plane wave
segment will coincide with the sample position (x, y), and its frequency components
are proportional to the incidence angle (θ, φ), given by the grating equation

sin(θ) = λν (16.2)

where λ is the hologram wavelength and ν is the spatial frequency. This collection of
plane wave segments can be modeled in general by a short-time Fourier transform
(STFT) for T . The two-dimensional STFT transform is formally defined as a family
of apodized functions S with different combinations of spatial translations (τ, υ) and
frequency modulations (ω, η), namely
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L(x,y ,0, ) 

(a) Light field (b) Holographic stereogram

Fig. 16.4 Mapping between light field rays and stereogram plane wave segments. a the light field
L is parameterized by a surface S and ray angles (θ, φ), with two exemplary rays shown in red and
green, respectively. b The corresponding stereogram is shown on the right, subdivided into blocks,
where plane wave segments are associated with the exemplary rays. Their diffraction angles are
proportional to their frequencies

STFT{H(x, y)}(τ, υ, ω, η)

≡ S(τ, υ, ω, η) =
∫∫ ∞

−∞
H(x, y)w(x − τ, y − υ)e−i(ωx+ηy) dx dy (16.3)

where w is a window function. Typically, a rectangular window function w is used
for stereogram CGH, but it can also be a smooth shape, such as the Hamming
window, the Gaussian window, or the Hann window used, e.g., in [12]. Once the
plane wave coefficients have been computed from the light field samples, we can
invert the STFT process, and obtain the CGH from the inverse-STFT-transformed
coefficients.

16.2.1 Point Cloud CGH

The way plane wave coefficients are determined depends on the CGH algorithm.
We will focus on the “phase-added stereogram” (PAS) method, which computes the
CGH from point cloud data. Point clouds approximate objects by a discrete set of
points in 3D space. In point-based CGH, every point with coordinates (δ, ε, ζ ) will
create a diffraction pattern called a “point spread function” (PSF) or “zone plate”,
given by

P(x, y) = a · exp
(π i

λζ

[
(x − δ)2 + (y − ε)2

])
(16.4)
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where i is the imaginary unit and a ∈ C is the point amplitude. This expression
can be used to calculate a hologram H by summing over a collection of Q PSFs
Pj , j ∈ {1, ..., Q}, each with their respective coordinates (δ j , ε j , ζ j ) and amplitudes
a j :

H(x, y) =
Q∑

j=1

Pj (x, y) =
Q∑

j=1

a j · exp
( π i

λz j

[
(x − δ j )

2 + (y − ε j )
2
])

. (16.5)

This expression can be evaluated directly, but this is highly computationally demand-
ing because every hologram pixel needs to be updated Q times. That is why we use
the STFT as a sparse transform for PAS.

16.2.2 Optimizing PAS Coefficients

In phase-added stereograms, we subdivide holograms into blocks of B × B pixels,
matching the plane wave segment sizes. Rather than calculating the plane wave
coefficients directly in the spatial domain, we express them in Fourier space so that
we only have to update a single coefficient per plane wave segment. This principle
is illustrated in Fig. 16.5.

Every block is represented by a S × S coefficient in FFT space, corresponding
to plane wave pieces with different frequencies. As we choose larger values for S,
we sample Fourier space more finely, providing higher precision for specifying the
carrier frequency, i.e., propagation angle of each plane wave segment. Whenever
S > B, we have a variant of PAS which is also called the “accurate PAS” method
[11].

(a) Reference PSF (b) Full PAS (c) Accurate PAS

FFTIFFT

Fig. 16.5 Real part of the computed PSF signal for different CGH algorithms: a the reference
ray-tracing equation (using (16.4)), b the fully computed PAS and the c Accurate PAS. The lat-
ter subdivides the holograms into small blocks and assigns a plane wave piece with a quantized
frequency per block. A zoomed-in example of such a block is shown next to it, and its associated
discrete Fourier transform. There is only one non-zero FFT coefficient per block for every PSF.
This is a reprint of Fig. 16.1 from [13]
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For a given PSF, how do we find out what coefficients we should update with
what value in each block? This problem amounts tominimizing the energy difference
between the target PSF (16.4) and the planar wave segment found within the block
boundaries [−A,+A], where A = Bp

2 [10]. Formally, we have

argmin
m,n,ϕ

∫∫ +A

−A
|exp

(
π i

λζ

[
(x − δ)2 + (y − ε)2

])

exp (2π i(mx + ny + ϕ))|2dxdy (16.6)

solving for the best frequencies m, n and phase delay ϕ.
This expression can be simplified by using the identities

|exp(iφ1) − exp(iφ2)|2 = sin (φ1 − φ2)
2 + (1 − cos (φ1 − φ2))

2

= 2 (1 − cos (φ1 − φ2)) (16.7)

making (16.6) equivalent to

argmin
ϕx

∫∫ +A

−A
1 − cos

( π

λζ

[
(x − δ)2 + (y − ε)2

]

−2π(mx + ny + ϕ)
)

dxdy. (16.8)

To solve this expression, we will make use of the following ansatz; when m, n are
chosen to closely match the local frequency of the PSF within the purview of the
block, we can assume that the phase difference between the plane wave and the target
PSF chirp will be small. We can therefore useTaylor approximation cos t ≈ 1 − t2

2
valid for small values of |t |. This makes (16.8) equivalent to solving

∂

∂ϕ

∫∫ +A

−A

(
π

λζ

[
(x − δ)2 + (y − ε)2

] − 2π(mx + ny + ϕ)

)2

dxdy = 0 (16.9)

resulting in the sought phase delay

ϕ = 1

2λζ

(
2

3
A2 + δ2 + ε2

)
(16.10)

where the term containing A2 can be ignored, because it will cause the same phase
delay across all blocks. For a general block centered at coordinates (Mx , My), we
get
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m =
⌊

(Mx − δ)pS

λζ

⌉
(16.11)

n =
⌊

(My − ε)pS

λζ

⌉
(16.12)

ϕ = (Mx − δ)2 + (My − ε)2

2λζ
− B

2S
(m + n) (16.13)

where �·� is the rounding operator.

16.2.3 Example Code

This section includes exemplary code for computing Fresnel PAS in Python. The
Hologram_Settings helper object describes the hologram and PAS properties,
the accurate_fresnel_stereogram procedure calculates the STFT coeffi-
cients for a given point cloud, and the inverse_stft procedures computes the
inverse STFT transform, returning the resulting CGH.

Listing 16.1 Core code for computing Fresnel accurate phase-added stereograms in Python.

1 import math
2 import numpy as np
3
4 # Hologram settings object
5 class Hologram_Settings:
6 def __init__(self, res, pp, wlen, B, F):
7 self.res = res # hologram resolution (in pixels)
8 self.pp = pp # pixel pitch (in m)
9 self.wlen = wlen # wavelength (in m)
10 self.B = B # block size
11 self.F = F # scaling factor
12
13 def pas_dimensions(self):
14 blockdim = (self.res[0]/self.B, self.res[1]/self.B) # block

dimensions
15 assert blockdim[0].is_integer() and blockdim[1].is_integer()
16 SS = self.B * self.F # segment size
17 return (int(blockdim[0]), int(blockdim[1]), SS, SS) #

coefficient tensor dimension
18
19 # computes exp(1j*phase), for a real-valued input ’phase’
20 def expi(phase):
21 return np.complex(np.math.cos(phase), np.math.sin(phase))
22
23 def accurate_fresnel_stereogram(hs, pcloud, ampl = None):
24 """
25 Returns the coefficients of the accurate phase-added

stereogram
26 quadratic Fresnel approximation in a 4D tensor.
27 INPUTS:
28 hs (Hologram_Settings)
29 pcloud (Nx3): point list of N points in (x, y, z)

coordinates
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30 ampl (Nx1): array of amplitudes [optional, default: all
amplitudes = 1]

31 """
32 SS = hs.B * hs.F # segment size
33 cdim = hs.pas_dimensions() # coefficient tensor dimension
34 wk = 2/hs.wlen # double reciprocal of the wavelength
35
36 # PAS coefficient matrix
37 C = np.empty(cdim, np.complex64)
38
39 # block center coordinates
40 block_centers = lambda i: (np.arange(0, hs.res[i], hs.B, dtype=np.

float32) + hs.B/2)*hs.pp
41 ucenters = block_centers(0)
42 vcenters = block_centers(1)
43
44 # iterate over every block
45 for u in range(cdim[0]):
46 for v in range(cdim[1]):
47 blockdata = np.zeros((SS, SS), np.complex64)
48 center = np.array([ucenters[u], vcenters[v]]);
49
50 # iterate over every point
51 for p in range(np.shape(pcloud)[0]):
52 pos = center - pcloud[p, 0:2]
53 f = pos / (pcloud[p,2]*hs.wlen)
54 fi = np.rint(f*hs.pp*SS).astype(int)
55 fr = fi + SS//2
56
57 # are the target Fourier coefficient coordinates

within block bounds?
58 if np.all(fr>=0) and np.all(fr<SS):
59 coeff = expi(math.pi * (wk * pcloud[p,2] + np.sum(f*pos)

- fi.sum()/hs.F))
60 if ampl is not None: coeff *= ampl[p]
61 blockdata[fr[0],fr[1]] += coeff
62
63 # assign computed block to tensor
64 C[u,v,:,:] = blockdata
65 # result
66 return C
67
68 # Inverse STFT of PAS coefficients, with optional FFT cropping
69 def inverse_stft(C, B = None):
70 cdim = np.shape(C)
71
72 # inverse Fourier transform, slice
73 C = np.fft.ifft2(np.fft.ifftshift(C, (2,3)))
74
75 # crop frequency blocks, if applicable
76 if B: C = C[:, :, 0:B, 0:B]
77 else: B = cdim[2]
78
79 # output hologram
80 H = np.empty(np.array(cdim[0:2])*B, np.complex64)
81
82 # reorder samples into hologram
83 for u in range(cdim[0]):
84 for v in range(cdim[1]):
85 H[B*u:B*(u+1), B*v:B*(v+1)] = C[u,v,:,:]
86 #result
87 return H
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To run it, another code snippet is provided below, computing the PAS for a toy
example made out of three points. The resulting hologram is shown in Fig. 16.6.

Listing 16.2 Example code on how to calculate a PAS.

1 import pascode as pas
2 import matplotlib.pyplot as plt
3 import numpy as np
4

5 # Hologram settings, with typical parameter values
6 hs = pas.Hologram_Settings((2048, 2048), 4e−6, 633e−9, 32, 2)
7

8 # Point cloud data; toy example consisting of 3 points.
9 pcloud = np.array([
10 [6e−3, 4e−3, 7e−2],
11 [3e−3, 3e−3, 8e−2],
12 [2e−3, 6e−3, 9e−2],
13 ], dtype = np.float32)
14

15 ## Compute Phase-added stereogram
16 H = pas.accurate_fresnel_stereogram(hs, pcloud)
17 H = pas.inverse_stft(H, hs.B)
18

19 ## Display results (real part of the hologram)
20 fig, ax = plt.subplots()
21 plt.imshow(np.real(H), cmap=’gray’)
22 ax.set_title(’Computed PAS’)
23 plt.show()

16.3 Acceleration Structures for PAS

The sparsity of the PAS algorithm is quite high, since we only update a single
coefficient per block and per point. The sparsity is equal to B−2; so for a typical
block size of B = 32, this amount to less than 0.1%. Despite this fact, when PAS are
implemented on a GPU, the calculation time reduction w.r.t. reference point-based
CGH method is more limited than what may be expected solely from the sparsity.
Rather than a 1000-fold speedup, the GPU implementation was only about 3 times
faster.

What explains this discrepancy? The main reason is due to memory caching
limitations. Computation times are not only determined by the execution time of the
mathematical instructions but also by memory access patterns. For a N × N pixel
hologram, we need to store S2

B2N 2 FFT coefficients in memory, which can in principle
all be accessed depending on the different positions of the point cloud elements. This
is not conducive to caching, as these data structures do not fit in local memory.
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Fig. 16.6 Resulting CGH from the PAS algorithm by running the Python code in Listing 16.2 (real
part)

16.3.1 Lozenge Cell Lattices

To address this problem, we should find a way to access the same small number of
coefficients in every block.We start from the following observation: suppose we take
a small K × K sub-block of FFT coefficients within a single S × S PAS block. These
coefficients correspond to a restricted set of acceptance angles in which points will
only affect selected the K × K coefficients, cf. Fig. 16.7. However, acceptable points
should not only lie in the acceptance angles of one PAS block but also of all PAS
blocks simultaneously. The trick is to carefully choose different K × K sub-blocks
in every PAS block to have a non-empty intersection in space, as shown in Fig. 16.8.

Because these cell shapes resemble a rhombus, we call them “lozenge cells”. We
need to usemultiple of these cells to fully cover space.This canbedone systematically
with the following construction; we start with the full hologram bandwidth, that
will dictate the allowed acceptance angles of the incoming light rays as large cone.
Incidence angles beyond that limit cannot be resolved as they will cause frequency
aliasing; this is illustrated with the “aliasing-free cone” [14]. Given the subset of
frequencies F = K

S , we can partition the cone into a fan of smaller adjacent cones.
By carefully choosing their offsets at every point, we can make them intersect to
form a lozenge cell lattice. This is illustrated in Fig. 16.9a, where the fans are drawn
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(a) Angle bundle (low frequencies) (b) Angle bundle (high frequencies)

Fig. 16.7 Diagram showing how frequency bandsmap to angle bundles in 3D space. In both figures,
the left parts represent the S × S Fourier coefficients of a PAS block, where only a K × K sub-block
is highlighted in red. The right parts show the corresponding (blue) PAS block located in space,
with a (red) pyramid covering the spatial region whose points would only affect the designated
sub-block of FFT coefficients. The actual pyramid region extends infinitely far away from the block
center. a For low frequencies, the covered angles are close to the hologram plane normal, b while
the high frequencies will cover more oblique angles. This is a reprint of Fig. 16.2 from [13]

(a) Lozenge cell geometry (2D) (b) Lozenge cell
geometry (3D)

(c) Lozenge cell shape

Fig. 16.8 Diagram of lozenge cell shapes. a For well-chosen active sub-blocks in every PAS block,
all cones intersect into a lozenge cell. b This principle is extended to 3D, showing the resulting cell
at the center. c It’s shaped as a distorted octahedron, which cannot be used to tile 3D space without
overlaps. Adapted with permission from [10] ©The Optical Society

for the extremities of the hologram in 2D. The colored regions correspond to the
cell volumes where points can be present, while the white region is forbidden, lying
outside of the aliasing-free cone.

Unfortunately, we cannot extend this principle directly to 3D space because it is
mathematically impossible to seamlessly tile space with octahedrons. This means
there will inevitably be some redundancy, where cells overlap, if we want to cover
the entirety of the aliasing-free cone. We could take the Cartesian product of all cell
combinations in the x − −z and y − −z planes, respectively, as shown in Figs. 16.9a
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Fig. 16.9 Diagram of the 3D point cloud cell partitioning by combining two 2D lozenge cell
lattices. Every cell in the x–z plane is characterized by its coordinates ix and jx (a). The row index
is given by the sum of the coordinates, as shown for the orange cells for the example rx = 2. Every
lozenge cell in (a) can have an intersection with a cell in (b), so long as they have an overlap along
z, as shown by the green cells. Reprinted with permission from [10] ©The Optical Society

and 16.9b. However, this would be wasteful, as many of the intersections would be
empty.

Instead, we only select the non-empty combinations based on their depths. As
shown in Fig. 16.9a, we have two fans of cones at each extremity consisting of F
components each, indexed by ix and jx , respectively. These lozenge cells are stacked
in rows, whose index is given by rx = ix + jx , consisting of rx + 1 cells per row.
The cells within a row are bounded in z by the array entries d[rx ] and d[rx + 2],
respectively, given by

d[rx ] = p2N

λ(1 − rx F)
. (16.14)

provided that rx F < 1. Because of (16.14), one can deduce that every 2D lozenge
cell in the x − z plane extruded along the y-axis will only intersect three rows in the
y − z plane (assuming that the same construction is used for both planes). This can
also be observed in Fig. 16.9 for the exemplary cells marked in green.

This concept can be used to partition the input point cloud. Any point with coor-
dinates (δ, ε, ζ ) can be assigned lozenge cell coordinates

ix = f (δ); iy = f (ε); jx = f (N p − δ); jy = f (N p − ε). (16.15)

using the mapping f : t 	→
⌊

1
2F − tp

Fλζ

⌋
, where �·� is the floor operator. This can

be used to linearize every valid tuple (ix , iy, jx , jy) uniquely into a single index

� = rx · (r2x + rx + 1) + 3ix · (rx + 1) + 1
2ry · (ry + 1) + iy (16.16)
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where rx = ix + jx and ry = iy + jy are the lozenge cell row indices. This simplifies
the point storage structure into a linear array of point lists, which can be processed
sequentially using a small amount ofmemory, benefiting computational performance.
More details on the concrete implementation follow in the remainder of this chapter.

16.3.2 Implementation and Results

The proposed algorithm lends itself to massively parallel processors, such as GPUs,
FPGAs, or ASICs. In this section, we will focus on a concrete implementation for
NVIDIA GPUs using CUDA.

In the CUDA programming model, as for most architectures, it is important to
distinguish between the different types of memory. As covered in Chap.6, the main
GPU memory is called “global memory”, which typically consists of several giga-
bytes. This off-chip memory is relatively slow compared to the other parts of the
CUDA memory hierarchy. On the other hand, the CUDA multiprocessor consists
of many cores which each have their own very fast registers, and share a common
on-chip cache called “local memory”, which is partitioned into L1 cache and shared
memory. Since the PAS algorithms are much more memory-bound than compute-
bound, it is beneficial for performance to minimize memory usage and to prioritize
faster memory whenever possible.

For the base reference PAS algorithm, we allocate one thread per PAS block,
as they can operate independently. Each thread loops over the entire point cloud,
independently updating a single coefficient as described earlier in this chapter. The
amount of memory per thread is relatively large: S2 coefficients per block, each
taking up 8 bytes when represented by complex-valued single-precision floating-
point numbers. For a typical value of S = 64, this amounts to 32KB per thread,
which is too large for local memory. Therefore, all updates should happen in global
memory instead.

This memory bottleneck will hamper computational performance. This can be
partially addressed in CUDA by using some optimizations. We can allocate multiple
threads per block if we use atomic additions; these ensure that when two or more
threads operate concurrently on the same variable, they do not incorrectly overwrite
each other’s results. Atomic additions are treated as completing in a single step w.r.t.
other threads; though they tend to perform slower than regular additions. This can be
combined with a randomization of the input point cloud pressing order, to reduce the
probability of coincident access to the same coefficients by different threads. More
details on these optimizations, their parameterizations, and effects are found in [13].

Despite these optimizations, the referencemethodwill still be several times slower
than the proposed algorithm.Moreover, supporting these optimizations requiresmore
complex hardware and parameter tuning. This overhead will make FPGA or ASIC
implementations difficult.

For the proposed algorithm, we first bin all the points in the point cloud into
the different cells based on (16.15) and (16.16). We process each cell one by one,
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(a) left view, front focus (b) right view, front focus

(c) left view, back focus (d) right view, back focus

Fig. 16.10 Several numerical reconstructions of the hologram calculated with the PAS algorithm,
showing left and right views, each refocused at the front and back of the plane model. This is a
reprint of Fig. 16.8 from [13]

guaranteeing that only the coefficients in a known sub-stereogram will be affected
for every PAS block. This ensures that they all fit in the local memory for every
thread. For the typical case of K = 4, we need only 16 8-byte coefficients or 128
bytes in total per thread. Like in the base reference algorithm version, one thread is
allocated per PAS block, ensuring that the threads do not mutually interfere. When
all points in a lozenge cell are processed, the resulting coefficients are transferred to
global memory, making room for the next (non-empty) lozenge cell to be processed.
Since these global transfers only happen once per lozenge cell, the needed amount
of global memory transfers is much smaller (Fig. 16.10).

To test the algorithm, we used a gray-scale version of the “Bi-plane” point cloud,
consisting of 1 million points with associated intensities for the point color. The
virtual plane objectwas axially placed at 20cm from the hologramplane, and laterally
centered to match the hologram’s optical axis. The hologram was calculated with
a wavelength of λ = 633 nm and a pixel pitch of p = 2μm along both the x and y
axes. Its resolution was 16384 × 16384 pixels, totalling to 228 ≈ 2.56 · 108 pixels.
The PAS algorithm was parameterized using B = 32 for the hologram subdivision
block size, PAS block coefficient size of S = 64, and sub-stereogram block size of
K = 4.

The algorithm was tested on a machine configured as described in Table 16.1.
The reference base PAS implementation took 711.7 s, while the proposed solution
only took 20.6 s, resulting in a 34.5-fold speedup. Although the proposed algorithm
also requires some overhead for distributing the points in the various lozenge cells,
the impact is negligible, as it required only about 29ms. Its impact may be reduced
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Table 16.1 Implementation environment. Adapted from [10]

OS Windows 10 Pro

CPU Intel Xeon E5-2687W v4

Memory 256 GB

Programming language C++17 with CUDA 10.1

Compiler Visual studio 2019

GPU NVIDIA TITAN RTX

further still by pipelining. Since the proposed algorithm is a more memory-efficient
version of the reference base PAS algorithm, they both essentially produce identical
and thus have no difference in quality.

16.4 Conclusions

The complete process is summarized in Fig. 16.11. The PAS algorithm is a sparse
CGH technique, requiring only one coefficient update per B × B block and per
point. To further enhance computational performance, we first partition the object
point cloud into different lozenge cells, which are then processed on a cell-per-cell
basis. Because all points within the same cell will only affect a known small subset
of the total coefficients, the memory requirement is significantly reduced, which is
conducive to memory caching. Only when a cell is completely processed, are the
results copied to the larger but slower global memory. After computing a final IFFT
for every PAS block, we obtain the final hologram wavefield, which can be used for
a holographic display.

David Blinder

Point cloud Lozenge cell partition
Solve sub-stereogram faster

in small memory cache Large video memory

For every
point

For every
lozenge cell

Copy final
result

To
display

Fig. 16.11 Graphical summary of the PAS algorithm pipeline
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PAS calculations can be sped up by a factor of about 30, or are about 100 times
faster than the reference point-based CGH algorithm. The algorithm is especially
suited for customized hardware solutions such as FPGA or ASIC because of its
much lower memory requirements and dependencies, and could potentially realize
even higher CGH speeds.

Sparse CGH is a versatile algorithmic principle, which may be key in realizing
high-resolution real-time video holographic display.

Fundings The Research Foundation—Flanders (FWO), Senior postdoctoral fellow-
ship (12ZQ223N); the Japan Society for the Promotion of Science (JSPS), Interna-
tional research fellowship (P22752).
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Chapter 17
Efficient and Correct Numerical
Reconstructions

Tobias Birnbaum

Abstract This chapter concerns itself with visual quality assessment and the numer-
ical reconstruction of holograms. Both topics are essential when designing, tuning, or
evaluating any component in the signal processing chain of a holographic 3D imag-
ing system. The chapter will cover the fundamental requirements, best practices, and
considerations for a correct and efficient implementation.

17.1 Introduction

Digital holography has many applications in metrology as well as 3D imaging [1].
However, certainly, 3D imaging applications are more attractive to the mainstream as
only holography holds the promise of being able to provide the ultimate 3D viewing
experience. Because a hologram can reproduce the amplitude and phase of the light
field over a given surface, ideal 3D holograms are visually indistinguishable from
reality.

In practice, however, artifacts from the recording or display setups and the vari-
ous processing steps render even the best holograms still discernible from reality at
present.Conceptually, the end-to-endpipeline canbevisualized as shown inFig. 17.1.
To improve over the state of the art and approach ultimate realism in 3D imaging, it
is mandatory to assess and quantify the quality of the final reconstructed hologram.
This means also assessing the effects and potential implications of any of the sig-
nal processing components. In particular, when designing a new algorithm for any
component of the pipeline—unless it is guaranteed to be lossless, for example, loss-
less compression—then the various design choices and parametrizations have to be
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Fig. 17.1 Simplified signal processing pipeline for digital holography for 3D imaging

weighed against each other. In this chapter, some of the intricacies of this weighing
will be discussed.

Ideally, any given algorithm tries tomaximize the perceived visual quality under a
given hardware resource, real-time, and various other constraints. Visually perceived
quality is subjective and non-numeric. It is comparatively difficult to obtain sufficient
statistical significance. Thus, oftenmathematical functions are used to yield objective
scores which approximate a score of the perceived visual quality. These functions
have of course to be tuned beforehand to best model subjective quality and are
most frequently used during the design stage of signal processing components. For
final evaluation of the design choices, subjective quality with a strong statistical
basis remains as the ultimate criterion. The research domain of visual objective and
subjective quality assessment is called visual quality assessment (VQA). It is part
of the bigger field of quality assessment, which itself is a branch of signal processing
rooted in the mathematical field of measures.

A natural question for VQA in the context of holography is, what data shall be
used as the basis for the assessments? In a perfect world, holograms would always
be consumed on an ideal holographic display modality and subjective quality scores
would be immediately accessible. In practice, holographic displays remain limited in
resolution. Currently, spatial light modulators—the essential component in any true
holographic display—have resolutions of∼ 8mega-pixel. They severely lack behind
the resolutions of high-quality holograms, which have several hundred mega-pixel
to hundreds of giga-pixel [1]. Because subjective quality assessments (with statisti-
cal significance) can not be obtained without delays, objective quality assessment is
often a mandatory aid. Digital holograms are frequently numerically reconstructed
by reversing the direction of propagation in the common diffraction propagation
kernels. Numerical reconstructions are used for quality assessment as well as for
the actual consumption of high-quality holograms on provisional display solutions
such as regular 2D, volumetric, or light field displays [2, 3]. Various methods exist
for reconstructing digital holograms. But, attention needs to be paid to the efficient
implementation of the reconstructionmethods, as well as their correctness and poten-
tial further constraints due to VQA best practices or file formats, etc. In Sect. 17.3,
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several numerical reconstructionmethods alongwith theirmentioned areas of special
attention will be discussed.

A concise overview of key concepts relevant to holograms will be presented in
Sect. 17.2.

17.2 Visual Quality Assessment

Visual quality assessment (VQA) can be classified as either subjective or objective.
This section will provide an overview of both types and largely follow the best
practices outlined in the common test conditions [4] specified within the scope of
JPEG Pleno Holography [5, 6]. JPEG Pleno Holography is the first international
standardization effort for the compression of holographic content and contains the
most recent consensus from multiple leading teams in the domain on the VQA of
holographic content.

The reason why VQA for holograms differs from well-understood modalities
such as classic images and video is deeply connected to the signal characteristics of
holograms [7]. The key difficulties are:

Non-locality The non-locality of information in the hologram plane makes it
difficult to compare the visual content of any two holograms directly without
reconstructions. In addition, the non-locality also changes fundamentally the sig-
nal characteristics and the sensitivity of holograms on various distortions. For
example, a low-pass filtered image is still well recognizable, while a low-pass
filtered Fresnel hologram is missing higher viewing angles; or while missing
information in an image is lost, missing information in the hologram plane is
usually recoverable upon reconstruction. See, for example, Fig. 17.2.

Plenoptic data The fact that each hologram supports a continuous spectrum of
viewpoints (gaze angles, foci) and the fact that there exist distortion types, which
affect the set of supported viewpoints not equally, means that per hologram, in

(a) Natural image (b) Lossy image (c) Hologram rec. (d) Lossy hologram rec.

Fig. 17.2 In contrast to a natural image, (a), the reconstructed hologram from a diffuse surface
with the same texture (c) shows speckle noise. However, information loss in the image can not be
recovered for images, but the same loss in the hologram plane is barely impacting the reconstructed
hologram, see (b) versus (d)
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theory, an infinite set of scores would be required. Thus, a sampling of the view-
point space and a subsequent pooling of scores are required to draw meaningful
conclusions. This problem is shared among all plenoptic imaging modalities,
such as light-field displays and volumetric displays, but it is the most severe for
holography.

Speckle noise Reconstructed holograms typically suffer from a multiplicative,
signal-dependent noise called speckle noise. It is due to the reconstruction of
scene objects with a natural surface roughness using coherent illumination. This
leads to point-wise constructive and destructive interferences in the reconstruc-
tion. In practice, this makes any reconstruction appear to be polluted by a salt-and-
pepper type of noise, compare (Fig. 17.2a) versus (Fig. 17.2c). This is a problem
both for subjective VQA as well as for objective metrics.

Display/Printing limitations Because of limitations of current holographic dis-
plays (e.g., limited resolution, large pixel pitch, and slow response time, …) no
direct rendering of a large number of high-quality holograms is possible. Trade-
offs on holographic printers, holographic display devices, or alternative displays
have to be made. Each modality places additional constraints on the VQA. For
example, printing of holograms is currently limited to real-valued holograms and
expensive/time-intensive. Thus, printing all holograms contained in a test dataset
is not feasible due to the large numbers even for small studies. Alternative display
modalities, such as 2D, volumetric, or light field displays enforce restrictions on
the explorable degrees of freedom, supported bitdepth, and in part resolution, too.

To better understand how these problems are tackled, we will describe next the
essence of subjective VQA and thereafter of objective VQA.

17.2.1 Subjective Visual Quality Assessment

AsubjectiveVQAexperiment consists of data preparation, a surveyover a sufficiently
large pool of participants, and a statistical analysis of the results.

17.2.1.1 Data Preparation

Typically, the data preparation involves an expert curating aversatile and large enough
dataset to be subsequently evaluated by test subjects. Thereby, it is important that
meaningful levels of distortion are selected and the display constraints are accounted
for. That is provided a selected display modality, the distortions should be neither
exclusively indistinguishable nor exclusively extremely poor. The size of the dataset
has to be chosen with care. A large dataset implies the need for a large group of test
subjects and/or long test sessions, to draw statistically relevant conclusions from the
results. A small dataset on the other hand may not be representative of all content
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scenarios considered. Thus, the dataset and the question(s) to be answered by a
specific survey need to be defined as a function of one another.

17.2.1.2 Survey Design

For the survey itself, a large list of possible design choices exists. As mentioned
already before the display modality represents one choice. In [3], the VQA perfor-
mance and the comparability of holographic displays were compared with the same
content shown on a light field and a conventional 2D display for the first time. As a
result of that study, regular displays were found to be the most sensitive to artifacts.
Based on this finding and for reasons of limited availability of high-end holographic
display setups, subsequent studies were thus far conducted using conventional dis-
plays.

Another design choice is the precise form of the survey. Decisions need to be taken
on, for example, how long subjects may inspect the content; how long does each test
session run; if and how test subjects are to be trained beforehand; is a reference
presented, if so when; how is the scoring implemented, e.g., discrete or continuous
numeric scores or discrete classes. For regular 2D displays, multiple well-established
experimental VQA designs exist. For example, single, sequential double, or simul-
taneous double stimulus experiments with a binary, discrete, or continuous scoring
per image can be studied. Most of the current studies on holographic VQA, see [3,
4, 8] and references therein used a simultaneous double stimulus for continuous
evaluation as per ITU-R BT.500 recommendation. Irrespective of which test design
is ultimately selected, care needs to be taken to make the study as independent from
local test environment constraints as possible and ensure reproducibility. For this
reason, any subjective survey is typically conducted in at least 2 independent test
labs.

For the JPEG Pleno Holography-related experiments, one more component was
essential in the experimental design, which is the diffraction-limited reconstruc-
tion of perspective reconstructions [10, 11]. It allows for the reconstruction of
holograms at their true intrinsic resolution. For example, the direct reconstruc-
tion from the “Dices16K” hologram from the b<>com dataset (https://hologram-
repository.labs.b-com.com) using a 2048 × 2048 px spatial aperture has a resolu-
tion of 16384 × 16384 px. It can be shown [11] using phase space arguments and
ab initio considerations that the diffraction-limited resolution, in that case, would
be only 1680 × 1680 px. This differs from naive downsampling strategies, such
as bilinear downsampling, which provides no such guarantees or guides on which
downsampling factors are acceptable and may thus not be used for VQA but only
for scene previews. Figure17.3 shows an example of a region of interest crop of size
2048 × 2048 px from the high-resolution reconstruction, whose intrinsic resolution
is solely 210 × 210 px. The bilinear resized and diffraction-limited reconstruction
of sizes 2048 × 2048 px and 1680 × 1680 px, respectively, are shown as well.

https://hologram-repository.labs.b-com.com
https://hologram-repository.labs.b-com.com
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(a) Crop (b) Bilinear downsampling (c) Diff. Lim. Rec.

Fig. 17.3 Reconstruction of “Dices16K” using a 2048 × 2048 px square aperture. Shown are a
a 2048 × 2048 px region-of-interest crop; b a reconstruction bilinearly downsampled to 2048 ×
2048 px; c a diffraction-limited perspective reconstruction of resolution 1680 × 1680 px obtained
from a 2048 × 2048 px spatial aperture applied in the hologram plane before propagation

17.2.1.3 Statistical Analysis

For the statistical analysis, mean-pooling across the set of test participants yields
the so-called mean-opinion scores. Further pooling such as overall viewpoints per
hologram or a subset thereof depends on the question of interest and no general rule
of thumb can be provided here. Though the “best” assignment of a unique score
(vector) for all viewpoints per distorted hologram is still an open research question
and positive synergies can be expected in the interactionwith VQAof other plenoptic
imaging modalities.

17.2.1.4 Best Practices

In practice, subjective test surveys on regular 2D screens with holographic content
and as published in [3, 4, 8] thus took the following form: in a test environment
according to ITU-RBT.500-11 recommendations a color and contrast calibrated TX-
65AX800e display of resolution 3840 × 2160 px was used to display the reference
and a distorted hologram side-by-side. Test proponents had to pass a short training
session showcasing the extremes under supervision. Thereafter, they had to rate each
hologram reconstruction on a discrete scale of 1–5 in sessions of 20−40 min with a
limited viewing time per image and from a fixed viewing position.

Another survey type that was evaluated was dynamic VQA [9] in the form of
3D pseudo-video sequences generated from viewpoint tours through a single static
hologram.Unfortunately, video tours are thus far ill-suited for double stimulus exper-
iments, due to the informational overload. Another complication of pseudo-video
tours is that view-dependent noise may not be sufficiently weighted in the final
score and a strong dependence on the viewpoint path design exists. Furthermore, it
was found that sensitivity to artifacts is lowered due to the informational overload
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in speckle noise-polluted video sequences. The removal of speckle noise through
numerical filtering on the other hand, although practical, is generally ill-advised.
Again there is a risk that targeted artifacts could be removed by chance.

17.2.1.5 Subjective VQA Summary

To summarize, it is important to note that albeit its obstacles only subjective quality
assessment can serve as an ultimate judge of 3D imaging quality. Especially, because
only digital holography holds the promise of providing the ultimate 3D imaging
experience. Therefore, it will always remain important in the final design steps of
any potentially lossy/proximal component of the signal processing pipeline involved
in the holographic display of 3D scenes. But exactly because of its biggest drawback,
the test duration approximated VQA in terms of mathematical functions is highly
sought after and an active research field. We will discuss the current state of the art
on objective quality assessment in the following section.

17.2.2 Objective Visual Quality Assessment

Objective VQA includes any method that provided a distorted hologram returns one
or multiple numerical scores which relate to the visual quality of any/all viewpoint
reconstructions of the hologram. Common are reference-based methods, but few
no-reference exist as well.

An ideal method yields accurate quality predictions based on calculations in the
hologram domain directly, instead of requiring costly reconstructions at ambiguously
sampled viewpoints. Naturally, such amethod needs to account for the general signal
characteristics of digital holograms, which are oscillatory patterns that are, in the
most general case, signed, complex-valued, and of unbound dynamic range. This is
in contrast to non-negative intensity recordings with natural image characteristics.
Any suitable metric will also need to account for the specific regime/display setup
geometry a given hologram was acquired/created for. Solely consider the signal
differences in Fresnel, Fourier, and image-plane holograms.

17.2.2.1 Classic Image Metrics

Before, any new metrics were designed multiple studies compared the suitabil-
ity of existing quality metrics (potentially with minor modifications). For exam-
ple, compression-related distortions were studied in [12–14]. Especially notable is
thereby [13]whichpresents oneof themost comprehensive studies of 11 conventional
metrics as well as 2 holography-aware metrics, including a summary of the under-
lying principles and the utilized parametrizations. The underlying dataset was a mix
of computer-generated and optically captured Fourier holograms of ≈ 2k × 16k px
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Table 17.1 Objective visual quality assessment metric recommendations reproduced from [13]
and extended by current recommendations within JPEG Pleno Holography for VQA [15]. Legend:
Positive, if use is advised; Zero, if the study results are inconclusive; Negative, if use is discouraged;
Starred, if currently used within JPEG Pleno Holography. Italic metrics were not studied in [13]

Quality metric Fourier hologram
plane

Fresnel hologram
plane

Reconstruction Speckle denoised
reconstruction

SNR * * * —

Renormalized
SSIM

* * — —

MSE 0 0 1 1

NMSE 1 0 1 1

PSNR 0 0 0* 0

SSRM −1 −1 1 1

SSRMt −1 −1 0 0

SSIM 1* 1* −1* −1

IWSSIM 0 0 0 0

MS-SSIM 0 0 −1 −1

UQI −1 0 −1 −1

GMSD 1 0 0 0

FSIM −1 −1 −1 0

NLPD 0 0 0 −1

VIFp −1 1 −1* −1

resolution. The metrics were evaluated in the hologram plane of a Fourier and a Fres-
nel representation, as well as after numerical reconstruction and after reconstruction
and speckle denoising. A recommendation table reproduced in Table17.1 is the out-
come of that study. The table was extended with the current recommendations from
the common test conditions ver. 9 [15] and quality assessment pipeline developed for
JPEG Pleno Holography [4]. Specifically, the implemented metrics of the common
test conditions software ver. 7 and recommendedwere used. Formore information on
the metrics and implementation details, we refer to [13, 15] and references therein.

Other metrics that are used in the scope of deep neural networks are often regu-
larized combinations of �2-norm and �1-norm errors, see for example, [19].

One additionalmetric requires explicit introduction as it is the de facto standard for
comparing any two compression schemes, also within the holography context. The
Bjøntegaard-Delta peak signal-to-noise ratio (BD-PSNR) [20] is computed froma
series of PSNR scores obtained from a single hologram compressed at different rates.
The scores are proportional to the signed area between two log(bitrate)-distortion
curves over a chosen bitrate range, see Fig. 17.4. This accounts for PSNR scores for
lowbitrates beingmore important than for higher bitrates. Given the bitrate-distortion
points of two methods, the BD-PSNR is evaluated as follows:
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Fig. 17.4 Geometric
meaning of BD-PSNR of
method 1 versus method 2

Method 1 Method 2

BD-PSNR

log(bitrate)

PS
N

R

1. Performa cubic interpolation of the PSNRscores as a function of the log(bitrate).
2. Calculate the area under the interpolated curve for each method.
3. The BD-PSNR equals the area of method 1 minus the area of method 2.

Note, by convention, the natural logarithm is used for bitrates. Furthermore, if
method 1 is better performing than method 2, it can be a negative number. Although
not broadly used yet, whenever the PSNR is not available the SNR may be used to
express the gains. It functions the same way as the BD-PSNR; however, the range is
scaled and therefore only comparisons between one error measurement type, either
SNR or PSNR, are possible.

17.2.2.2 Holography-Aware Metrics

Going beyond classic image quality metrics, the versatile similarity metric (VSM)
[13, 16] and the sparseness significance ranking measure (SSRM) [13, 17, 18]
were proposed and tested. See also Table17.1. Starting with SSRM, new research
on holographic VQA targets some abstract transform domain for quality evaluation.
Another example is the latent space of a neural network which was shown as a proof
of concept for defocused 2D images in [21]. But more research is needed here.

The dynamic focal stack is yet another metric, that was demonstrated successfully
for smooth phase holograms [22].

17.2.2.3 Remarks on Speed

If objective VQA should be used in a parameter search or algorithmic optimiza-
tion with many iterations, simple metrics, such as (P)SNR, (N)MSE, applied to the
hologram plane are preferable over, e.g., SSIM. Unfortunately though, (P)SNR and
(N)MSE are extremely sensitive to some errors like pixel shifts or different instanti-
ations of random parts of the algorithms. Therefore, metrics such as SSIM applied
to the hologram plane or even focal stack analyses and viewpoint sampling are not
always avoidable.
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17.2.2.4 Remarks on Objective Quality Metrics in the Hologram Plane

Typically, the following modifications are required to use conventional metrics on
unbound, complex-valued digital holograms: averaging scores from real and imagi-
nary parts, consistent rescaling, and ideally skipping any quantization.Whenutilizing
conventional visual quality metrics on holograms two important facts should be kept
in mind. First, the behavior of those metrics such as score ranges will be differing
substantially from other modalities and any prior knowledge from those modalities
should not be used during evaluation. Second, scores are rarely meaningful as abso-
lute numbers. Often only relative scores within a dataset or even only per hologram
for varying distortion levels bear meaning.

17.2.2.5 Remarks on Objective Quality Metrics for Numerical
Reconstructions

When evaluating quality metrics on the numerical reconstructions of digital holo-
grams multiple choices exist. Metrics may be applied to the absolute values of the
reconstructed wavefields, i.e., typically to floating point precision data, or to 8 bit,
16 bit quantized data. The metrics behavior may differ considerably provided the
large dynamic range of digital hologram reconstructions sourced in the presence of
speckle noise. For VQAwithin a standardization process, speckle denoisingmethods
are currently not permitted. Therefore, rescaling and clipping of the dynamic range
at fixed thresholds (obtained from a “ground truth”) before quantization to 16 bit is
recommended by JPEG Pleno Holography [4, 15]. Despite any efforts to reduce the
dynamic range of the reconstructions, most of the remarks valid for metrics evalu-
ated in the hologram plane remain applicable. One degree of freedom that has been
neglected in VQA research thus far is the effect of any camera model on numerical
reconstructions. Starting from the simple perspective or orthographic reconstruc-
tions, [11] also more complete camera models approaching the human eye model
have been proposed [23, 24] but remain yet to be analyzed in the context of VQA.

17.2.2.6 Objective VQA Summary

Up until now, modified classic image metrics are the de-facto standard in VQA
for holograms. Only few new proposals have been presented in literature and more
research in their performance over a wide range of holographic content as well as
research on alternative methods is urgently needed. Fortunately, because research on
deep neural networks inmany contexts of holography is picking up, more researchers
focus on the construction of a proximal visual objective loss function while process-
ing vast amounts of data. These are perfect conditions of the creation of newmetrics.

Nonetheless, until convincing newmetrics have reachedwide acceptance themost
common and the best-interpretable, albeit slow way of objective VQA will remain
the evaluation of classic imagemetrics on numerical reconstructions. In the following
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section, we discuss therefore among others the effects of various camera models on
numerical reconstructions.

17.3 Numerical Reconstructions from Digital Holograms

When digital holograms can or shall not be optically reconstructed, the diffraction
of light can be reversed numerically. For this, the respective propagation kernels
(e.g., in part I, Chap. 1) are conjugated thereby reversing the sense of the complex
phase exponentials. The back-propagation of light is then facilitated by an applica-
tion of the conjugated kernels to the hologram, and part III, Chap. 8. In this section,
we will first discuss several ways of performing numerical reconstructions, which
may be used in visual quality assessment. We will use a basic form of the angu-
lar spectrum method for these discussions. Thereafter, we provide some remarks
on memory efficient implementation, correctness, and close by providing a more
complete implementation example of the angular spectrum method.

17.3.1 Types

Provided a specific choice of display setup, multiple ways of reconstructing a digital
hologram exist. Here, we will discuss five scenarios in decreasing popularity before
comparing them in termsof computational complexity aswell as geometric and signal
characteristics. For the convenience of the notation, we will base the discussion on a
complex-valued,monochrome, on-axis Fresnel hologramwith planar referencewave
exp(0π i) = 1 and with an even number of rows N and columns M . All MATLAB
code samples will make use of the angular-spectrum method described in earlier
chapters. For convenience, it will be briefly re-introduced again below.

17.3.1.1 Full-Field

Themost commonand trivial reconstruction type is achieved byback-propagating the
entire hologram from its hologram plane to some in-focus image plane located in the
scene. This is also referred to as full-field propagation. Any suitable propagation
kernel may be used. Without loss of generality, we will use the angular spectrum
method Listing 17.1 for the discussion.

Listing 17.1 Simple angular spectrum method.

1 function X = asm(X,p,z,wlen)
2 % function X = asm(X,p,z,wlen)
3 %
4 % Returns the angular spectrum propagated wavefield
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5 % with distance z, pixel pitch p, and wavelength wlen.
6 %
7 % INPUT:
8 % X@numeric(N, M)... digital hologram at z’
9 % p@numeric(1,2)... pixel pitch in meters
10 % z@numeric(1)... propagation distance in meters
11 % (z<0 for back-propagation)
12 % wlen@numeric(1)... wavelength in meters
13 %
14 % OUTPUT:
15 % X@numeric(N, M)... digital hologram at z’+z
16

17 % Early exit
18 if(z == 0), return; end
19

20 if(isscalar(p)), p = p ∗ [1,1]; end
21 res = size(X);
22 pad = max(res/2);
23

24 % Zero-padding in the spatial domain
25 X = padarray(X, [pad, pad]);
26 resPad = size(X);
27 X = fft2(X);
28 [x, y] = meshgrid( (wlen/p(2)∗(−resPad(2)/2:resPad(2)/2−1)/resPad(2)), ...
29 (wlen/p(1)∗(−resPad(1)/2:resPad(1)/2−1)/resPad(1)));
30 X = X .∗ ifftshift(exp(2i∗pi∗real(sqrt(1 − x.^2 − y.^2))∗z/wlen));
31 X = ifft2(X);
32

33 % Undo zero-padding through center cropping
34 X = centercrop(X, res);
35 end

The function “centercrop” is defined in Listing 17.2.

Listing 17.2 Centercrop.

1 function X = centercrop(X, S)
2 % function Y = centercrop(X, S)
3 %
4 % Crops at the center of image X (i.e. first 2 dims) with size

S. If the image
5 % is nD array, shape will be preserved, apart from cropping

the first two dimensions.
6

7 s = size(X);
8 col_beg = max(floor((s(2)−S(2))/2), 0); % Correct also for odd numbers
9 row_beg =max(floor((s(1)−S(1))/2), 0);
10 row_end = min(s(1), row_beg+S(1));
11 col_end = min(s(2), col_beg+S(2));
12 s(1:2) = [S(1), S(2)];
13 X = reshape(X( row_beg+1:row_end, col_beg+1:col_end, :), s);
14 end
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Fig. 17.5 Full-field
reconstruction of the diffuse
earth

A full-field reconstruction from a hologram X a distance z away from the scene
can then be obtained simply as:

Listing 17.3 Full-field reconstruction.

1 X = abs(asm(X, p, −z, wlen));

An advantage of this propagation type is that it preserves the maximum amount
of information from the hologram. Thus, any quality impairments of the hologram
will also be contained in the full-field reconstruction. However, due to the non-local
nature of diffraction most artifacts will appear as a global increase in speckle noise
and therefore a lower global SNR.

As the full-field reconstruction does not constrict the limiting aperture of the
hologram any further, the depth of field will be minimal. The depth range of scene
parts in focus is roughly inversely proportional to the aperture size given by the
physical extent of the hologram. This is put to the extreme with an ideal pinhole
camera which has an infinite depth of field. The preservation of the maximal spatial
aperture also results in a minimal speckle grain size, see e.g., [25].

The associated camera model with this type of propagation depends solely on the
chosen propagation kernel and the reference wave shape. In the case of the angular
spectrum method and a planar reference wave, it is orthographic. This means all
camera rays cast toward the scene are parallel to the optical axis. An exemplary
reconstruction of the diffuse earth of resolution 8192 × 8192, a pixel pitch of 1μm,
and a wavelength of 633 nm reconstructed at 1.2 cm is shown in Fig. 17.5. The
hologram is publically available as part of the Interfere-II dataset at http://erc-
interfere.eu.

The full-field propagation is often used to explore a given hologram with respect
to its scene depth, e.g., while producing scene focal stacks. To explore the parallax
present in a hologram any of the following four propagation types may be used.

http://erc-interfere.eu
http://erc-interfere.eu
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17.3.1.2 Perspective

The most common way to obtain perspective reconstructions from a digital holo-
gram using a perspective camera model with view frustum, see for example, [11],
is the so-called “perspective reconstruction”. Conceptually, it corresponds to the
application of a spatial filter in the hologram plane before reconstruction. Much like
peeking through a key-hole dramatically increases the number of different observ-
able perspectives of the inside of a room, as opposed to viewing the room through
an open door. It may be implemented as in Listing 17.4.

Listing 17.4 Perspective reconstruction.

1 X = apply_aperture(X, hpos, vpos, apsize);
2 X = abs(asm(X, p, −z, wlen));

The function “apply_aperture” is defined in Listing 17.5.

Listing 17.5 Aperture application.

1 function Y = apply_aperture(X, hpos, vpos, apsize)
2 % function Y = apply_aperture(X, hpos, vpos, apsize)
3 %
4 % Applies an aperture of size apsize at the relative positions
5 % hpos, vpos from [-1, 1].
6 %
7 % INPUT:
8 % X@numeric(N, M)... digital hologram
9 % hpos@numeric(1)... normalized position within the hologram

horizontally
10 % vpos@numeric(1)... normalized position within the hologram

vertically
11 % apsize@numeric(1,2)... aperture size in pixel
12 %
13 % OUTPUT:
14 % Y@numeric(N, M)... digital hologram with applied aperture
15

16

17 [N, M]=size(X);
18 vpos = −vpos;
19

20 % Calculate aperture corners in pixel
21 N_beg = max(1, round(N/2 + (N/2 − apsize(1)/2 ) ∗ vpos − apsize(1)/2) + 1);
22 N_end = min(N, round(N/2 + (N/2 − apsize(1)/2 ) ∗ vpos + apsize(1)/2 ) );
23

24 M_beg=max(1, round(M/2 + (M/2 − apsize(2)/2 ) ∗ hpos − apsize(2)/2 ) + 1);
25 M_end= min(M, round(M/2 + (M/2 − apsize(2)/2 ) ∗ hpos + apsize(2)/2 ) );
26

27 Y = zeros(N, M);
28 Y(N_beg:N_end, M_beg:M_end) = X(N_beg:N_end, M_beg:M_end);
29 end

To better understand the effects of this and the following propagation types, we
utilize visualizations of the phase space of our practical example the diffuse earth.
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Phase space is a concept widely used in signal processing and vital to understand
holograms, see [26] and references therein. For our purposes, it is sufficient to under-
stand that the phase space of static holograms is spanned by the dimensions space
and spatial frequencies. Since a hologram is two-dimensional, its full phase space has
four dimensions. To develop an understanding, it is often sufficient to consider one-
dimensional cross sections of the hologram, resulting in a two-dimensional phase
space. For the visualizations in this section, a row through the center of the aperture
was evaluated as representative.

Before we continue with the analysis of the perspective propagation type, let us
shortly develop a basic intuition about phase space. Let us start by considering two
edge cases: a pure plane wave along a line and a single (in-focus) point on a line.
A plane wave will be represented by a horizontal line whose vertical offset is given
by its inclination angle in proportion to the maximal diffraction angle given by the
grating equation (17.1).

sin(�) = λ

2p
, (17.1)

where� is the diffraction angle,λ is thewavelength, and p is the pixel pitch or grating
period, respectively. For a sub-half wavelength pixel pitch, a spatial frequency of±1
thus corresponds to ±90◦, respectively. A single non-zero in focus point on a one-
dimensional hologram cross-sectional results in a horizontal line in phase space. The
pixel position is indicated by the sample index within the digital hologram.

We conclude the intuition building about phase space with the following few
statements. For a Fresnel hologram, typically, a parallelogram is obtained in 2Dphase
space for any 1D hologram cross section. Any subsequent processing, such as Fourier
transforms, translations, aperture application, modulations, and multiplications with
propagation kernels results in shifts, shearing, rotations, filtering,…of the signal. For
the highest information content in the reconstruction, typically as much as possible
of the phase space should be filled with signal, provided that no form of white noise
is introduced, e.g., through interpolation or quantization errors.

And now, let us continue with the analysis of each processing step of a perspective
reconstruction up to the absolute value calculation. In Fig. 17.6, it is shown how
the input hologram is first filtered by the spatial aperture and then sheared by the
propagation operator. Note that the final processing step of computing the absolute
value was omitted as it is highly non-linear and not educational. As can be seen,
the spatial aperture applied in the hologram plane preserves all frequencies for a
part of a hologram. Because spatial frequencies are linked to gaze angles by the
grating equation, see [26], the following conclusion can be drawn. The described
reconstruction corresponds to a perspective camera model with the limiting aperture
applied in the hologram plane and camera rays diverging towards the scene as all
diffraction angles are potentially still contained.

Because this type of reconstruction relies on the application of a spatially limiting
aperture, the depth of field and speckle grain size are increased compared to the full-
field reconstruction. This means that aside from being able to explore the parallax of
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Fig. 17.6 Conceptual visualization of the phase space of the steps a hologram undergoes upon
perspective reconstruction with an aperture of half the hologram resolution at high-gaze angle

(a) hpos=vpos=0 (b) hpos=vpos=0.5 (c) hpos=vpos=1

Fig. 17.7 Perspective reconstructions of the diffuse earth with increasing gaze angle

the hologram, more of the scene can also be explored in focus at once. A series of
reconstructions with increasing gaze angle is shown in Fig. 17.7.

17.3.1.3 Orthographic

The second most common view-dependent reconstruction type is the orthographic
view reconstruction. It always uses the orthographic camera model after propaga-
tion. That means, in the case of spherical wavefronts and/or, for example, a Fresnel
propagation based on a single Fourier transform, which both can introduce perspec-
tive distortions upon propagation, the (perspectively distorted) propagated scenemay
be only analyzed orthographically, or approximately so. The implementation is triv-
ial. As was explained for the perspective reconstruction, viewing angles correspond
to spatial frequencies. Therefore, it should come as no surprise that a selection of
only a few spatial frequencies via aperture application onto the back-propagated
wavefield yields orthographic views. In MATLAB, we have Listing 17.6.
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Fig. 17.8 Conceptual visualization of the phase space of the steps a hologram undergoes upon
orthographic reconstruction with an aperture of half the hologram resolution at high-gaze angle

(a) hpos=vpos=0 (b) hpos=vpos=0.5 (c) hpos=vpos=1

Fig. 17.9 Orthographic reconstructions of the diffuse earth with increasing gaze angle

Listing 17.6 Orthographic reconstruction

1 X = asm(X, p, −z, wlen);
2 X = ifftshift( fft2( fftshift(X)));
3 X = apply_aperture(X, hpos, vpos, apsize);
4 X = ifftshift( ifft2( fftshift(X)));
5 X = abs(X);

Figure17.8 shows the processing steps again in phase space. What can also be
seen well is the effect of a Fourier transform and its inverse, which correspond to
±90◦ rotations in phase space—as samples aremapped to frequencies and vice versa.
Another imminent observation from the phase space footprints is that there is no
further constriction of the limiting spatial aperture of the hologram. Comparing the
second and the fifth step, both can be seen to cover the same range of samples. Also,
comparing the fifth step of Fig. 17.8 with the third step of Fig. 17.6, which shows
that although the same aperture sizes were used, the results are different.

An exemplary reconstruction is shown in Fig. 17.9. Because orthographic recon-
structions do not narrow the aperture of a digital hologram, the speckle grain sizes and
depth of field remain the same as in the full-field reconstruction. When compared
directly to perspective reconstructions, orthographic reconstructions appear often
less speckle-noise polluted because of their smaller speckle grain sizes. Another fea-
ture of orthographic reconstructions is, that any additional gazing angle comes at
the price of just one- or two two-dimensional fast Fourier transforms with only one
propagation. In contrast, a perspective reconstruction always requires a propagation,



288 T. Birnbaum

(a) Spatial domain (b) Frequency domain

Fig. 17.10 Spatial domain of the hologram plane and Fourier domain of the back-propagated wave-
field. Outlined in red are the applied apertures in the perspective and orthographic reconstruction
case, respectively. Figures copied from [11]

which is typically more expensive. One drawback of orthographic reconstructions,
especially for VQA, is that the average intensity within a reconstruction is often
view-dependent. This is because, similar to natural images, the intensity distribution
of back-propagated wavefields is often non-homogeneous, see Fig. 17.10. Thus, the
application of a fixed aperture in the Fourier domain of the back-propagated wave-
field leads to the drift of mean intensity in the reconstructions. This, too, is unlike
perspective reconstructions which are based on spatial windows in the hologram
plane. This is especially pronounced for shallow scenes.

17.3.1.4 Spherical Lensing

Another, though not (yet) widely used, way of obtaining a view-dependent recon-
struction from a hologram is conceptually the application of a windowed, focusing
Fresnel-zone plate (that is an ideal spherical lens) in the hologram plane. This is
exemplary for the application of any focusing lens in or imaged into the hologram
plane. The focusing distance of the lens may be used to select a scene depth of inter-
est. Subsequent aperture application selects a gaze angle and the propagation to the
far field of the lens can be modeled by a Fourier transform—see Listing 17.7.

Listing 17.7 Spherical lensing reconstruction.

1 X = spherical_demodulate(X, p, z, wlen);
2 X = apply_aperture(X, hpos, vpos, apsize);
3 X = fftshift( fft2( ifftshift(X)));
4 X = abs(X);
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The function “spherical_demodulate” is defined in Listing 17.8.

Listing 17.8 Spherical lens application.

1 function X = spherical_demodulate(X, p, z, wlen)
2 % function X = spherical_demodulate(X, p, z, wlen)
3 %
4 % Applies an ideal spherical lens, as a focusing point-spread

function
5 % to a hologram. Applies lasting zero-padding to avoid

aliasing.
6 %
7 % INPUT:
8 % X@numeric(N, M)... digital hologram
9 % p@numeric(1,2)... pixel pitch in meters
10 % z@numeric(1)... propagation distance in meters
11 % (z<0 for back-propagation)
12 % wlen@numeric(1)... wavelength in meters
13 %
14 % OUTPUT:
15 % X@numeric(NN, MM)... demodulated and padded hologram
16

17 [N, M] = size(X);
18 % Compute maximal padding frequencies
19 tanpsf = max([N, M].∗p/2/z);
20 fratio = 2∗max(p)∗tanpsf/wlen/sqrt(tanpsf^2+1);
21

22 % Sinc-interpolation of the hologram with a new pixel pitch
23 % == Padding in Fourier domain
24 H = ifft2(ifftshift( padarray(fftshift(fft2(X)), ceil(fratio∗[N, M]/2)) ));
25 p_new = p./(1+fratio);
26

27 % Multiplication with point-spread function in the spatial
domain

28 res = size(X);
29 [x, y] = meshgrid( p_new(2)∗(−res(2)/2:res(2)/2−1), ...
30 p_new(1)∗(−res(1)/2:res(1)/2−1));
31 r = sqrt(z.^2 + x.^2 + y.^2);
32 X = X .∗ exp(−2i∗pi/wlen ∗ r)./r;
33 end

The processing and ordering of steps become obvious when studying the prop-
agation for a high-gaze angle in phase space as shown in1 Fig. 17.11. The idea of
using a focusing point-spread function is similar to using a de-magnifying spher-
ical reference wave, as used frequently in Fourier holography. It is also similar to
the compact space-bandwidth representation explained in [27] as it produces a very
space-bandwidth efficient representation first before applying the aperture.

Because of the included lensing function, this reconstruction type is only in parts
perspectively distorted, see Fig. 17.12 versus Fig. 17.7. In addition, the lens enlarges
the effective aperture at the cost of spatial resolution. Therefore, the depth of field
is even shallower than in the full-field reconstruction but the lateral resolution is the
lowest. See also entendue trade-offs as described, for example, in [28].
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Fig. 17.11 Conceptual visualization of the phase space of the steps a hologram undergoes upon
view-dependent reconstructionwith spherical lensing and an aperture of half the hologram resolution
at high-gaze angle

(a) hpos=vpos=0 (b) hpos=vpos=0.5 (c) hpos=vpos=1

Fig. 17.12 View-dependent reconstructions with spherical lensing of the diffuse earth with increas-
ing gaze angle

The camera model is that of a lens superposed to the hologram and with a limiting
spatial aperture. But it may as well be extended to more complete camera models
approaching the human eye model [23, 24]. Though a study of those is beyond the
scope of this short overview. Ultimately, the full modeling of the optical system is
however the only way to build an accurate simulator for any experimental results.

Note that spherical lensing can be potentially implemented very efficiently by
cropping the demodulated hologram before the final Fourier transform instead of
only applying the aperture. And different gaze angles can be achieved simply by,
cropping in different spatial positions after demodulation.

17.3.1.5 Hologram Rotation

Afinal, thoughmore theoretical than practical, way to extract views from a hologram
is obtained by tilting the hologram plane before propagation. While the exact com-
putation of a tilted hologram is possible in theory, see Chap.13 in [23]; in practice,
several errors degrade the quality at angles larger than 30 − −60◦. Furthermore, the
computational complexity is significant. This method is an example, that intuition
can be a false friend. We also illustrate the use of phase space representations to
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analyze this problematic situation. To begin with, the “best” implementation can be
written as follows:

Listing 17.9 Hologram plane rotation and reconstruction.

1 res = size(X);
2

3 % FT because tilt expects the FT domain
4 X = fftshift(fft2(fftshift(X)));
5 % Zeropad
6 X = padarray(X, res(1:2)/2);
7 X = rot_2d(X, p, wlen, rotx, roty);
8 % Undo zeropad & inverse FT
9 X = centercrop(X, res);
10 X = ifftshift(ifft2(ifftshift(X)));
11

12 X = abs(asm(X, p, −z, wlen));

The function “rot_2d” is defined in Listing 17.10.

Listing 17.10 Two-dimensional hologram plane rotation.

1 function X = rot_2d(X, p, wlen, rotx, roty)
2 % function X = rot_2d(X, p, z, wlen)
3 %
4 % Rotates a hologram around its two lateral axes: x and y.
5 %
6 % INPUT:
7 % X@numeric(N, M)... digital hologram
8 % p@numeric(1,2)... pixel pitch in meters
9 % wlen@numeric(1)... wavelength in meters
10 % rotx@numeric(1)... rotation angle around x-axis in radian
11 % roty@numeric(1)... rotation angle around y-axis in radian
12 %
13 % Note: z-axis is the optical axis.
14 %
15 % OUTPUT:
16 % X@numeric(N, M)... rotated hologram
17

18 [N, M] = size(X);
19 L = N∗p(1); K = M∗p(2);
20

21 % Early exit
22 if((rotx == 0) && (roty == 0)); return; end
23

24 % Assemble 3D rotation matrix
25 RotZ = [1 0 0 ; 0 1 0 ; 0 0 1 ]; %Rz
26 RotY = [cos(roty) 0 sin(roty); 0 1 0 ; −sin(roty) 0 cos(roty)]; %Ry
27 RotX = [ 1 0 0 ; 0 cos(rotx) −sin(rotx); 0 sin(rotx) cos(rotx)]; %Rx
28 R = RotZ∗RotY∗RotX;
29

30 % Prepare rotation
31 [V,U] = meshgrid([−M/2 : M/2−1] / K, [−N/2 : N/2−1] / L); % Re-sampled

frequencies
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32 D = round([R(7)/wlen, R(8)/wlen]);
33 W = real(sqrt(wlen^(−2) − (U+D(1)).^2 − (V+D(2)).^2)); % z-component k-vector
34 J = ((roty∗R(6)−R(3)∗R(5))∗(U+D(1)) + (R(3)∗R(4)−rotx∗R(6))∗(V+D(2))) ./W + (rotx∗R

(5)−roty∗R(4)); % Jacobian
35 J(isinf(J)) = 0; % Sanitize Jacobian
36

37 % Resample frequencies
38 X = sqrt(J).∗interp2(U,V,X, R(1)∗(U+D(1))+R(2)∗(V+D(2))+R(3)∗W, R(4)∗(U+D(1))+R

(5)∗(V+D(2))+R(6)∗W, ’cubic’,0);
39 end

For Fig. 17.13, the chosen maximal diffraction angles were given as half of the
supported field of view as 0.5 sin−1( λ

2p ) rad.
Intuitively, one might expect that this method has a higher quality than the per-

spective or orthographic reconstructions, as no windowing is applied. Instead, the
direction of propagation and the wavefield are manipulated. As can be seen, the qual-
ity degrades quite fast with increasing gaze angle, see 17.14. How is that? To answer
this question we turn to phase space representations—in this case the S-method
see [26, 29]. Careful, study of the last sub-figure in Fig. 17.14 reveals the reason.
Due to interpolation errors, in-focus scene points (e.g., the brightest lines contained

(a) hpos=vpos=0 (b) hpos=vpos=0.5 (c) hpos=vpos=1

(d) hpos=vpos=1; No padding (e) hpos=vpos=1; Spat. padding

Fig. 17.13 View-dependent reconstructions through rotation of the diffuse earth hologram with
increasing gaze angle (using Fourier domain padding). Also included are high-gaze angle recon-
structions without zero-padding or padding only in the spatial domain, respectively
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(a) Fourier domain padding

(b) No padding (c) Spatial padding

Fig. 17.14 Conceptual visualization of the phase space of the steps a hologram undergoes upon
view-dependent reconstruction with prior hologram rotation at high-gaze angle. Also included are
the last steps without zero-padding or padding only in the spatial domain, respectively

within the signals footprint) are not taking the shape of a vertical straight line but
remain curved. This means, that their signal is smeared over a small area, which gives
the reconstruction its fuzzy appearance at large gaze angles. This can be verified,
by studying padding in the spatial instead of the Fourier domain thus increasing the
dependence on the correctness of the spatial frequency re-sampling and interpola-
tion. In the bottom of Figs. 17.13 and 17.14, the resulting worse reconstruction at the
highest gaze angle and its phase space footprints are shown, respectively, next to the
same information for reconstructions without any padding.

17.3.2 Comparison

We have discussed several types of numerical holographic reconstructions. Their
differences with respect to effective limiting aperture size, computational complexity
as well as geometric aspects are listed and summarized in Table17.2.
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Table 17.2 Summary of various computational and geometric characteristics of the discussed
reconstruction methods

Full-field Perspective Orthographic Hologram rotation Spherical lensing

Effective
aperture spatial
size

Large Small Large Large Medium

Logic P A→P P→FT→A→IFT FT→Pad→Rot
→Unpad→IFT→P

Demod→A→FT

Computational
complexity

Low Medium Medium High Lowest

Reuse possible
for multiple
gaze angles?

n/a No Yes No Yes

Depth-of-field Small Large Small Variable Smallest

Speckle grain
size

Small Large Small Small Small

Lateral
resolution

High Medium High Medium-High Low

Intensity view-
dependent?

n/a No Yes No No

Geometric
deformation?

No Yes No No Yes

Legend: P = Propagation;A =Aperture application;Rot =Hologram rotation along X, Y;Demod =
Spherical lens demodulation. Note that spherical lensing can be implemented even more efficiently
by cropping the demodulated hologram before the final Fourier transform instead of only applying
the aperture

17.3.3 Efficient Implementation

To reduce the computational complexity for any of the presented reconstruction
methods with an arbitrary, fixed propagation kernel, any zero-padding should be as
small as possible; a pre-assembled kernel, or parts thereof, should be kept in memory
to avoid re-computation; and a cheaper propagation kernel should be used otherwise.

For a more memory-efficient implementation of numerical reconstructions, how-
ever, the following measures exist:

1. First and foremost, it should be ensured, that the implementation does not have
any redundant copies of the data and large matrices have a lifetime limited to their
actual use instead of the entire program.

2. Use minimal amounts of zero-padding. Provided a specific signal, often the
amount of zero-padding can be lowered based on its and the propagation ker-
nels bandwidth.

3. In case of multiple color frames, avoid storing unused color channels in memory
during computation. Compute one color for all frames first, to avoid repeated
computation of kernels. With this strategy, also only one color channel needs to
be ever accessed in memory at any time.
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4. Limit the numerical precision to floating point precision or even integer precision.
But be aware of the extremely sensitive modulo operations in the exponential of
most propagation kernels, because of z/λ. Eventually, the recurrence algorithm
part I, Sect. 2.3, should be used.

5. If the padded hologram is too big to fit in memory, the two-dimensional fast
Fourier transforms may be decomposed and applied to single rows/columns or
groups thereof at a time, while most of the data stays out of the random access
memory on a storage disk, see [30]. For kernel multiplication, the recomputation
of blocks or even per element are good strategies to lower memory consumption.
Unfortunately, both techniques are impairing substantially also the computation
speed.

We will show some of these concepts in application in the end of the next subsec-
tion, after discussing some aspects for ensuring the correctness and comparability
of the numerical reconstructions. Those are especially important in the context of
VQA.

17.3.4 Correctness

Aside from numerical errors of under-/overflow, evanescent frequencies or aliasing
are obvious candidates that require corrections of the simple propagation methods.
An exemplary corrected and optimized implementation of Listing 17.1 is given in
Listing 17.11. It is meant for memory-efficient processing of color holograms.

Listing 17.11 Optimized angular spectrum method.

1 function X = asm_full(X,p,z,wlen,pad_)
2 % function X = asm_full(X,p,z,wlen,pad_)
3 %
4 % Returns the angular spectrum propagated wavefield
5 % with distance z, pixel pitch p, and wavelength wlen
6 % and zero-padding of size ~min(min(size(X)/2), pad).
7 %
8 % INPUT:
9 % X@numeric(N, M)... digital hologram at z’
10 % p@numeric(1,2)... pixel pitch in meters
11 % z@numeric(1)... propagation distance in meters
12 % (z<0 for back-propagation)
13 % wlen@numeric(1)... wavelength in meters
14 % pad@numeric(1)... preferred one-sided padding size per

dimension in px
15 %
16 % OUTPUT:
17 % X@numeric(N, M)... digital hologram at z’+z
18

19 % Early exit
20 if(z == 0), return; end
21
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22 % Initialization
23 if(isscalar(p)), p = p ∗ [1,1]; end
24 size_X_ = size(X(:,:,1));
25 ncolors_ = numel(wlen);
26 if(ncolors_ ~= size(X,3))
27 error(’asm_full:Channel mismatch between hologram and wlen.’);
28 end
29

30 % Prepare zero-padding
31 if(nargin < 5)
32 thetaX = real( asin(max(wlen)∗size_X_(1)/(2∗size_X_(1)∗p(1))) );
33 pad_ = abs(round(abs(tan(thetaX)∗z)/p(1)));
34 pad_ = double(pad_−mod(pad_,16)+16);
35 pad_ = min([pad_, size_X_(1:2)/2]); % , (2.^ceil(log2(res)+1)-res)/2
36 end
37

38 disp([’Pad by: ’ num2str(pad_)])
39

40 % Loop over color channels
41 for color_id_ = 1:ncolors_
42 X(:,:,color_id_) = subfun(X(:,:,color_id_), p, z, wlen(color_id_), pad_);
43 end
44

45 function Y = subfun(Y, p, z, wlen, pad_)
46 % Zero-padding in the spatial domain
47 Y = padarray(Y, [pad_, pad_]);
48

49 % Initialize
50 si_y = size(Y);
51 rhalf = ceil(si_y(1)/2);
52 chalf = ceil(si_y(2)/2);
53 rquart = ceil(rhalf/2);
54 cquart = ceil(chalf/2);
55

56 % Operation: Fourier transform
57 % X = fft2(X);
58 for cBlk = 1:4
59 Y(:, (cBlk−1)∗cquart+1:min((cBlk)∗cquart, si_y(2))) = fft(Y(:, (cBlk−1)∗cquart+1:

min((cBlk)∗cquart, si_y(2))));
60 end
61 Y = transpose(Y);
62 for rBlk = 1:4
63 Y(:, (rBlk−1)∗rquart+1:min((rBlk)∗rquart, si_y(1))) = fft(Y(:, (rBlk−1)∗rquart+1:

min((rBlk)∗rquart, si_y(1))));
64 end
65 Y = transpose(Y);
66

67 % Operation: FFTshift
68 Y = fftshift(Y);
69

70 % Operation: Prepare quadrant of spatial frequency grid
71 % [x, y] = meshgrid( (wlen/p(1)*(-size(X,2)/2:size(X,2)/2-1)

/size(X,2)).^2, ...
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72 % (wlen/p(2)*(-size(X,1)/2:size(X,1)/2-1)/size(X,1)).^2);
73 [xhalf, yhalf] = meshgrid( double(wlen/p(2)∗[0:chalf]/(2∗chalf)).^2, ...
74 double(wlen/p(1)∗[0:rhalf]/(2∗rhalf)).^2);
75

76 % Apply Kernel: TopLeft [-N/2:1:1], [N/2:-1:-1]
77 x = flipud(yhalf(2:rhalf+1,2:chalf+1)) + fliplr(xhalf(2:rhalf+1,2:chalf+1));
78 x = get_kernel(x);
79 Y(1:rhalf,1:chalf) = Y(1:rhalf,1:chalf) .∗ x;
80

81 % Apply Kernel: BottomLeft [0:1:N/2-1], [N/2:-1:-1]
82 x = yhalf(1:rhalf,2:chalf+1) + fliplr(xhalf(2:rhalf+1,2:chalf+1));
83 x = get_kernel(x);
84 Y(rhalf+1:min(2∗rhalf, si_y(1)),1:chalf) = Y(rhalf+1:min(2∗rhalf, si_y(1)),1:chalf) .∗ x;
85

86 % Apply Kernel: TopRight [N/2:-1:-1], [0:1:N/2-1]
87 x = flipud(yhalf(2:rhalf+1,2:chalf+1)) + xhalf(2:rhalf+1,1:chalf);
88 x = get_kernel(x);
89 Y(1:rhalf,chalf+1:min(2∗chalf, si_y(2))) = Y(1:rhalf,chalf+1:min(2∗chalf, si_y(2))) .∗ x;
90

91 % Apply Kernel: BottomRight [0:1:N/2-1], [0:1:N/2-1]
92 x = yhalf(1:rhalf,2:chalf+1) + xhalf(2:rhalf+1,1:chalf);
93 x = get_kernel(x);
94 Y(rhalf+1:min(2∗rhalf, si_y(1)),chalf+1:min(2∗chalf, si_y(2))) = Y(rhalf+1:min(2∗rhalf,

si_y(1)),chalf+1:min(2∗chalf, si_y(2))) .∗ x;
95

96 % Operation: Clean up
97 clear x xhalf yhalf;
98

99 % Operation: Inverse FFTshift
100 Y = ifftshift(Y);
101

102 % Operation: Inverse Fourier transform
103 % X = ifft2(X);
104 Y = transpose(Y);
105 for rBlk = 1:4
106 Y(:, (rBlk−1)∗rquart+1:min((rBlk)∗rquart, si_y(1))) = ifft(Y(:, (rBlk−1)∗rquart+1:

min((rBlk)∗rquart, si_y(1))));
107 end
108 Y = transpose(Y);
109 for cBlk = 1:4
110 Y(:, (cBlk−1)∗cquart+1:min((cBlk)∗cquart, si_y(2))) = ifft(Y(:, (cBlk−1)∗cquart+1:

min((cBlk)∗cquart, si_y(2))));
111 end
112

113 % Operation: Undo zero-padding through center cropping
114 Y = centercrop(Y, size_X_);
115

116 %% Auxiliary functions
117 function Y = transpose(Y)
118 % Performs block-wise transposition if the data is square
119 % otherwise full transposition from Matlab is used.s
120 if(rhalf==chalf) % if square
121 Y(1:rhalf,1:chalf) = Y(1:rhalf,1:chalf).’;
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122 x = Y(rhalf+1:min(2∗rhalf, si_y(1)),1:chalf).’;
123 Y(rhalf+1:min(2∗rhalf, si_y(1)),1:chalf) = Y(1:rhalf,chalf+1:min(2∗chalf, si_y(2))

).’;
124 Y(1:rhalf,chalf+1:min(2∗rhalf, si_y(1))) = x;
125 Y(rhalf+1:min(2∗rhalf, si_y(1)),chalf+1:min(2∗chalf, si_y(2))) = Y(rhalf+1:min

(2∗rhalf, si_y(1)),chalf+1:min(2∗chalf, si_y(2))).’;
126 else
127 Y = Y.’;
128 end
129 end
130

131 function x = get_kernel(x)
132 % Unrolled propagation, avoid having multiple temporary

copies in
133 % memory
134 x = real(sqrt(1 − x));
135 x = 2i∗pi/wlen∗z∗x;
136 x = exp(x);
137 x = cast(x, ’like’, Y); % Convert to single eventually % Peak

usage
138 end
139 end
140 end

Beyond the numerical correctness and anti-aliasing measures, the visual correct-
ness of numerical reconstructions is also a sensitive topic — especially for VQA. It
should always be consideredwhen conclusions are drawn fromnumerical reconstruc-
tions. Potential pitfalls are the treatment of the large dynamic range, the consideration
of amplitudes versus intensities, accidental artifact removal through post-processing
steps, or ringing from applied apertures.

The large dynamic range of the absolute value of a reconstructed hologram is very
unequally used. This is shown in Fig. 17.15a where a uniform 8 bit quantization was
assumed. The first 18 bins contain more than 50% of the non-zero pixels, leading to
a low contrast upon direct quantization. Therefore, clipping the dynamic range, e.g.,
at the 99%-quantile is advised. The effect of such a clipping is shown in Fig. 17.15c.
Clipping each image individually is not a good idea either as this can lead to or amplify
mean drift and reduce the comparability of results considerably. Therefore, it is rec-
ommended to calculate per hologram—eventually also per viewpoint—an absolute
clipping threshold using a quantile from the respective reference reconstruction and
re-use this clipping threshold for all subsequent reconstructions.

As explained in part I, recorded holograms and captured images from a holo-
graphic display setup, are in the visible light regime always intensity-based. An
understandable question is: if either amplitude or intensity should be considered
for evaluating numerical reconstructions. Surprisingly, the answer is that amplitude
reconstructions should beused for 2Dor light-field displays. The reason is the implicit
gamma correction in all modern 2D display devices, which are based on the sRGB
color space. The gamma correction factor that is applied to any given pixel value is
about 2.2. Therefore, an amplitude distribution before gamma correction is approx-
imately a distribution of intensities after gamma correction. For volumetric displays
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Fig. 17.15 The histogram of the full-field reconstruction shown in Fig. 17.5 computed for 255 bins,
shows that bin counts differ by more than 105 without clipping. With clipping at the 99% quantile
only a difference of about 10 exists between all bins ≥ 0 + ε with small ε

and other displays that may use a linear color space, the intensity should be explicitly
signaled.

The accidental removal of artifacts was already mentioned in the previous section
on VQA. More generally, if the characteristics of the potential artifacts from a pro-
cessing step are unclear a sensitivity analysis should be conducted first to assess the
ability of the VQA rendering pipeline to show those artifacts.

If apertures are applied in any domain before using a(n inverse) Fourier transform,
the aperture profiles should not follow the rectangle function. Because the Fourier
transform of a rectangle function leads to massive signal ringing (sinc-function) in
its Fourier domain. Therefore, better-behaving window functions should be used to
improve the SNR considerably at the expense of a slightly smaller footprint of the
window being significantly larger than zero. The Hann window is a popular choice
as its side lobes fall off very fast while providing still a decent window size. See also
the excellent reference for more information [31].

In general, also the order of processing steps and parametrizations should bemain-
tained for the comparability of results. Because currently most researchers working
on digital holography have created their own rendering pipeline and comparability
is rarely guaranteed. For this reason, JPEG Pleno Holography created the numerical
reconstruction software for holograms v. 11 [11, 32], which is publically available
as wg1n100417-098-PCQ-Numerical_Reconstruction_Software_for_Holography_v11_0.zip at:
https://ds.jpeg.org/documents/jpegpleno. It provides the most recent consensus of leading
experts in the field andwas validated within the scope of the JPEGPleno standardiza-
tion effort which aims at the development of a first compression standard for digital
holograms [5, 6].

https://ds.jpeg.org/documents/jpegpleno
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Chapter 18
Digital Holography Techniques
and Systems for Acceleration
of Measurement

Tatsuki Tahara

Abstract Digital holography (DH) [1, 2] is a 3D image sensing technique for con-
ducting single-shot holographic 3D measurement with an image sensor. An image
sensor records a digital hologram that contains the 3D information of a measured
object, and a computer reconstructs a holographic 3D image through an image
reconstruction algorithm. High-speed recording and image reconstruction are highly
required to accelerate the measurement in DH, and single-shot holographic measure-
ment is essential for high-speed recording. The developments of an algorithm and a
hardware architecture are the keys to achieve high-speed image reconstruction. This
chapter presents techniques for high-speed recording and image reconstruction in
DH and spatially incoherent digital holography [3–9].

18.1 Acceleration of Measurement in Single-Shot
Full-Color Digital Holography with Spatial
Frequency-Division Multiplexing [16, 17]

Classically, holography and DH adopt an off-axis configuration [10] to conduct
single-shot 3D imaging. The single-shot recording of a full-color analog/digital holo-
gram has been conducted with off-axis analog/digital holography to conduct single-
shot full-color 3D imaging even in the case where a monochrome image sensor is
used to record a full-color hologram [11–14]. On the other hand, the acceleration of
image reconstruction procedures is important for real-time full-color 3D measure-
ment. An algorithm and the use of a graphical processing unit (GPU) system for the
acceleration of holographic image reconstruction are introduced.
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18.1.1 Principle of Advanced Image-Reconstruction
Algorithm

Figure18.1 schematically illustrates the recording geometries of the conventional
[11–15] and advanced [16] algorithms in single-shot full-color off-axis DH with
spatial frequency-division multiplexing. Figure18.1a indicates that holograms at
different wavelengths are multiplexed in the space domain and a multiplexed holo-
gram is recorded. The spatial frequency modulation of a hologram at a wavelength
is conducted by tilting the optical axis of a reference wave against that of an object
wave [11–13]. Another approach is to use the difference in wavelength to generate a
different type of spatial frequencymodulation [14]. Object-wave spectra at respective
wavelengths are separated in the spatial frequency domain by setting different optical
axes for different reference waves. Therefore, as shown in Fig. 18.1b, object-wave
information at multiple wavelengths is selectively extracted using the Fourier trans-
form (FT) method [15] (see Chap.3). FT and inverse FT (IFT) are usually required,
as shown in Fig. 18.1b, to reconstruct object waves from the multiplexed hologram.
The computational cost in time for the conventional image reconstruction algorithm
is O(N log N ), where N is the number of pixels. This is because 2D FT and IFT are
required.

In contrast, the advanced algorithm [16] shown in Fig. 18.1c does not require
FT or IFT when extracting the desired complex amplitude information separately
from the multiplexed hologram. Let H(x, y) be a recorded image, Im(x, y) be an
intensity distribution containing a complex amplitude distribution Uom(x, y) and a
reference amplitude distribution Urm(x, y), where m as an integer from 1 to M (M
as the number of wavelengths measured), A be the amplitude, φ be the phase, i be
the imaginary unit, and ∗ be the complex conjugate, a spatially multiplexed image
H(x, y) is expressed as

H(x, y) =
M∑

m=1

Im(x, y) (18.1)

Im(x, y) = |Uom(x, y)|2 + |Urm(x, y)|2 +Uom(x, y)Urm(x, y)∗

+Uom(x, y)∗Urm(x, y), (m = 1, . . . , M)
(18.2)

U (x, y) = A(x, y) exp[iφ(x, y)]. (18.3)

In DH, the spatial frequency of each object wave is modulated by introducing
different spatial carrier frequencies. The spatial carrier frequency depends on the
angle between the object and the reference wave [11–13], and the wavelength is used
for recording λ [14]. When Eq.18.2 is multiplied by exp[iφrm(x, y)], to remove the
spatial carrier frequency from the third term on the right-hand side of Eq.18.2, only
Uom(x, y) is localized in the low-spatial-frequency region. In the samemanner, when
exp[iφr1(x, y)], exp[iφr2(x, y)], and exp[iφr3(x, y)] are multiplied by Eq.18.1 to
remove each spatial carrier generated by each reference beam,Uo1(x, y),Uo2(x, y),
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and Uo3(x, y) are respectively moved to the low-spatial-frequency region. Then, a
smoothing process, such as mean filtering or smoothing based on the sinc function, is
applied to each multiplexed image with the removed spatial carrier. As a result, only
the desired information, Uo1(x, y), Uo2(x, y), and Uo3(x, y), on the image sensor
plane is selectively extracted in the space domain by smoothing. The order of the
advanced algorithm is estimated as O(N ) for the multiplexed hologram.

A single smoothing procedure is performed to extract the desired information
from the multiplexed image after the removal of the spatial carrier. Figure18.1d
illustrates its principle. We use zero points in the spatial frequency domain, which
are generated by smoothing in the space domain. When we use p × q mean filtering,
zero points appear at the spatial frequencies fx = ±K/(pd), fy = ±K/(qd), where
d denotes the pixel pitch of an image sensor, K is an arbitrary nonzero integer, and
−1/(2d) ≤ K/(pd), K/(qd) ≤ 1/(2d). Therefore, by setting the distance between
the complex amplitude images, the conjugate ones, and the summation of zero-order
diffraction ones as ±1/(3d) on the x- and y-axes in the spatial frequency domain,
a single 3 × 3 mean filtering procedure enables the extraction of the desired image
from the multiplexed image. Note that there is a trade-off between the filter size
and the available spatial bandwidth for a complex amplitude image. The advanced
algorithm can also freely arrange the object-wave spectra in the spatial frequency
domain by mean filtering iteratively [17]. Furthermore, measurement accuracy is
improved by filtering several times at an increased calculation cost.

18.1.2 Numerical Simulation

The validity of the advanced algorithm has been investigated by numerical simula-
tion [16, 17]. In the numerical simulation, image DH was assumed, and the wave-
lengths of the light sources were λ1 = 671 nm, λ2 = 532 nm, and λ3 = 473 nm.
The pixel pitch d and the number of pixels of the monochrome image sensor were
assumed to be 2.2 µm and 2048 × 2048, respectively. The intensity distributions at
the three wavelengths and the phase information of the object assumed are shown
in Fig. 18.2a–e. Reference beams at the three wavelengths illuminate the sensor
from different directions simultaneously, and a monochrome image sensor records
a spatially multiplexed hologram shown in Fig. 18.2f. The multiplexed hologram
has the spatial frequency distribution in Fig. 18.2g. The spatial carrier frequencies
were set as fx = 1/(3d) and fy = 0 at λ1, fx = 1/(6d) and fy = 1/(3d) at λ2, and
fx = 1/(6d) and fy = −1/(3d) at λ3. 3 × 3 mean filtering was carried out to selec-
tively extract an object wave at the desired wavelength from the image hologram.
Figure18.3 shows the results of the numerical simulation. Figure18.3c–g indicate
the following. Faithfully reproduced object images are successfully obtained at the
different wavelengths by the advanced algorithm. Figure18.3f shows that a clear
color object image was reconstructed owing to the strong suppression of undesired
waves by smoothing. The root-mean-square errors (RMSEs), signal-to-noise ratios
(SNRs), and cross-correlation coefficients (CCs) were calculated to clarify the image
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�Fig. 18.1 Schematic of off-axis digital holography with spatial frequency-division multiplexing. a
Geometry for recording amultiplexed hologram.bConventional [15] and c advanced [16, 17] image
reconstruction algorithms. d Spatial spectra arranged for the advanced algorithm and the extraction
of the desired object-wave spectra by a single smoothing procedure. In the figure, p = q = 3 is
used as an example. Reprinted with permission from [16] © The Optical Society

Fig. 18.2 Complex amplitude distribution of the object used for the numerical simulation and its
numerically generated hologram. a Color-synthesized image and its intensity distributions at b λ1,
c λ2, and d λ3. e Phase distribution of the object. f Multiplexed hologram of the object and g its
spatial frequency distribution. Adapted from Reprinted with permission from [16] © The Optical
Society

Fig. 18.3 Numerical results. a Color-synthesized intensity and b phase images reconstructed with
the calculations of spatial carrier removal, diffraction integrals, and no smoothing. Intensity images
at c λ1, d λ2, and e λ3 retrieved by the advanced algorithm. f Color reconstructed image obtained
from (c)–(e) and (g) reconstructed phase image. Reprintedwith permission from [16]©TheOptical
Society

Table 18.1 RMSEs, SNRs, and CCs of the reconstructed images. Reprinted with permission from
[16] © The Optical Society

Red Green Blue Phase

RMSE 2.85 3.31 2.34 0.118 rad

SNR 32.6 31.8 34.6 27.2

CC 0.999 0.999 1.00 0.996

quality quantitatively. Table18.1 shows the small RMSEs and high SNRs and CCs
of the amplitude and phase images reconstructed by the advanced algorithm. The
relationship between the quality of the reconstructed image and the iterative use of
mean filtering was investigated in [17]. Numerical and experimental comparisons
between the conventional and advanced algorithms were reported in [16, 17].
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18.1.3 Acceleration of Image Reconstruction with Advanced
Algorithm and GPU System

The degree of acceleration has been investigated quantitatively [16, 17].Although the
image quality is slightly lower than that for the FT method, as reported in [17], high-
speed image reconstruction is the main feature of the advanced algorithm. Further
acceleration can be achieved by using a GPU in DH [18]. Three different proce-
dures were compared: the advanced algorithms with 3 × 3 mean filtering and 5 × 5
mean filtering, and a conventional algorithm [15]. To investigate the time required to
reconstruct images, 5122, 10242, 20482, and 40962 were set as the numbers of pixels.
A three-wavelength-multiplexed image hologram was assumed, and no diffraction
integral was calculated. These object waves were repeatedly reconstructed at least
100 times for each number of pixels, and the average times were regarded as the
calculation times.

Table18.2 shows the implementation environment used for the calculation time
measurement. A fast FT library (Fastest FT in the West; FFTW [19]) was used
for the calculation of 2D FTs in the conventional algorithm. Tables18.3 and 18.4
indicate the calculation times to reconstruct three-wavelength object waves from the
multiplexed hologram with a central processing unit (CPU) and a GPU, respectively.
Table18.3 shows that the advanced algorithm markedly accelerated multiple image
reconstructions as the number of pixels, N , increased when using a commercially
available computerwith aCPU.A throughput of 10 times that of theFTmethod can be
achieved when using a CPU and an image sensor with 4 megapixels. This is because
the order of the advanced algorithm is O(N ) for a 2D image, whereas a 2D FFT
algorithm has an order of O(N log N ). Table18.3 shows the results supporting these
theoretical estimations. Furthermore, Table18.4 clarifies that threefold acceleration
compared with the FT method is possible when a GPU is used. For the GPU, the
acceleration for multiple image reconstructions did not change with the number of
pixels, N , because of its architecture.However, the threefold acceleration and the data
in Table18.4 imply that the advanced algorithm can achieve real-time, multicolor,
and holographic motion-picture image reconstruction with 16 megapixels, which
was not possible with the FT method.

An image reconstruction acceleration for single-shot full-color DH with spatial
frequency-division multiplexing was introduced. Acceleration can be achieved with
a high-performance processor for general DH [18]. The degree of acceleration has

Table 18.2 Implementation
environment. Reprinted with
permission from [16] © The
Optical Society

OS Windows 7 Professional 64 bit

CPU Intel Core i5-4690

Memory 8GB

Compiler Visual Studio 2015

GPU GeForce GTX960
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Table 18.3 Calculation time to reconstruct three waves with a CPU. Reprinted with permission
from [16] © The Optical Society

Proposed algorithm [ms]

Number of pixels 3 × 3 mean filter 5 × 5 mean filter FT method [ms]

5122 5.90 18.0 23.8

10242 23.7 73.0 151

20482 94.5 294 958

40962 381 1,257 5,481

Table 18.4 Calculation time to reconstruct three waves with a GPU. Reprinted with permission
from [16] © The Optical Society

Proposed algorithm [ms]

Number of pixels 3 × 3 mean filter 5 × 5 mean filter FT method [ms]

5122 0.319 0.368 0.852

10242 1.10 1.38 3.19

20482 4.19 4.78 12.4

40962 17.3 19.4 49.3

been investigated and reviewed [20, 21]. The results presented in this section were
derived with a GPU system produced more than three years ago [16]. Therefore,
higher performance is expected with the use of state-of-the-art processors.

18.2 Incoherent Digital Holography Techniques
for Acceleration of Measurement by Simultaneous
Recording of Multiple Holograms

The acceleration of image reconstruction in DH has been realized by introducing
a high-performance processing system such as a GPU system, as presented in the
previous section. The acceleration of the recording of a digital hologram is another
important factor that increases the measurement speed. Off-axis [15] and single-shot
phase-shifting (SSPS) [22–24] configurations for single-shot 3Dmeasurement with
DH have been researched. In incoherent digital holography (IDH) [25–29], off-
axis [30, 31] and SSPS [32–36] configurations have also been adopted. Most single-
shot IDH systems have been combined with in-line SSPS configurations because
coherence length is critically small in many IDH systems. Therefore, an in-line
configuration is essential for high-speed 3Dmeasurement. In this section, single-shot
IDH systems that adopt SSPS are presented. In addition, a methodology [37–39] for
accelerating the measurement of spectroscopic information of a 3D object using IDH
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[40–46] is introduced. Furthermore, the quantitative phase information of transparent
specimens is obtained with self-reference DH (SRDH). The combination of SSPS
and SRDH is described.

18.2.1 Single-Shot Phase-Shifting Incoherent Digital
Holography [32–36]

Figure18.4 illustrates a schematic of single-shot phase-shifting incoherent digi-
tal holography (SSPS-IDH) [32–36], which is a combination of SSPS and IDH.
Figure18.4 indicates that an SSPS-IDH system consists of an SSPS interferometry
system and an IDH system. A digital hologram of a 3D object illuminated with spa-
tially incoherent light is generated on the basis of IDH. Self-interference is frequently
utilized to generate an incoherent digital hologram. Multiple phase-shifted incoher-
ent holograms are simultaneously recorded with a single-shot exposure of an image
sensor by the space-division multiplexing of incoherent holograms. Various types of
configurations, which are briefly summarized in [25–29], have been proposed. Today,
one can construct an SSPS-IDH systemwith commercially available optical elements

Fig. 18.4 Schematic of SSPS-IDH
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Fig. 18.5 Polarization transition of the SSPS-IDH system in Fig. 18.4

and image sensors [32–36]. Figure18.5 shows an implementation of SSPS-IDH. A
polarizer is initially set to align the polarization direction of an incoherent object
wave. Then, a birefringent dual-focus lens, such as a crystal lens, and a birefringent
plate are set to generate two incoherent object waves with different wavefront curva-
ture radii and polarization directions [46]. A quarter-wave plate is then set to induce
the circular polarization of the two object waves, whose rotation directions are mutu-
ally orthogonal. Each polarizer in a polarization image sensor aligns the polarization
directions of the two object waves. The phase difference between the two object
waves differs along the transmission axis of each polarizer. Using the implementa-
tion setup in Fig. 18.5, four phase-shifted holograms with phase shifts of 0◦, 90◦,
180◦, and 270◦ are simultaneously recorded by the polarization image sensor in the
case where the transmission axes of the four polarizers are 0◦, 45◦, 90◦, and 135◦
relative to the horizontal direction. An incoherent 3D image of the measured object
is reconstructed from the recorded image that contains four phase-shifted holograms
by applying an image reconstruction algorithm of SSPS. The main point resulting in
the acceleration of the measurement with SSPS-IDH is the single-shot recording of
multiple phase-shifted incoherent holograms. The multiple phase-shifted incoherent
holograms are sequentially recorded with sequential changes in the phase of one
of the two object waves in ordinary phase-shifting IDH [7, 26, 47]. The synchro-
nization of the exposure of an image sensor and the movement of a phase shifter is
complicated, and the movement of a phase shifter is generally time-consuming. In
contrast, the recording speed of SSPS-IDH is equal to the frame rate of the image
sensor owing to the single-shot acquisition of multiple phase-shifted holograms. As
a result, the recording speed of SSPS-IDH is more than four times higher than that
of phase-shifting IDH. For example, the 3D motion-picture recording of incoherent
holograms at a rate of more than 100 fps has been experimentally performed in holo-
graphic fluorescence microscopy with SSPS-IDH [25]. Research on the downsizing
of SSPS-IDH systems has also been conducted, and portable [25] and finger-sized
[48] optical systems have been proposed.
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18.2.2 Multidimensional IDH

SSPS-IDH as a single-shot incoherent 3D imaging technique is presented in the
previous section. Single-shot incoherent full-color 3D imaging is also achieved
by introducing a color polarization image sensor [36]. This is because full-color
and 3D information is obtained with a color-filter array and SSPS with a microp-
olarizer array. However, both spectroscopic information and 3D information are
recorded on a monochrome image sensor and retrieved from the recorded mul-
tiplexed image(s) through a phase-encoding scheme, termed the computational
coherent superposition (CCS) scheme [37–39], andmultidimension-multiplexed
full-phase-encoding holography (MPH) [46]. The CCS scheme is also combined
with SSPS-IDH to conduct single-shot measurement [43]. These spectroscopic IDH
techniques are introduced.

18.2.2.1 Multiwavelength-Multiplexed Incoherent Digital Holography
with Computational Coherent Superposition Scheme

Figure18.6 shows a schematic of CCS [37–39]. Holograms at two wavelengths are
multiplexed and simultaneously recorded when a monochrome image sensor is used.
An image sensor with a color-filter array is frequently used to capture a multiwave-
length image. A color filter introduces wavelength-dependent intensity modulation,
and wavelength information is separated by the modulation. In holography, phase-
shift information affects the intensity distribution of an interference fringe image.

Fig. 18.6 Schematic of CCS
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It is straightforward to introduce different phase shifts to holograms at differentwave-
lengths as illustrated in Fig. 18.6. Optical implementations of two-wavelength phase-
shifting DH and IDH are applicable as examples. Wavelength-dependent intensity
modulation is derived fromwavelength-dependent phase shifts generated by amirror
with a piezo actuator [37–39] or a liquid crystal phase modulator (LC-PM) [46,
49].Wavelength-multiplexedphase-shifted holograms are obtainedwithwavelength-
dependent phase shifts. Suchmodulation results in the encoding of wavelength infor-
mation through phase shifts. Object waves at multiple wavelengths are selectively
extracted from the recorded wavelength-multiplexed phase-shifted holograms using
the phase-shift information and the principle of phase-shifting interferometry (PSI)
[37–39, 46, 50, 51]. As a result, spectroscopic 3D information is retrieved only using
phase-shift information. CCS was initially demonstrated for laser DH [37–39, 49]
and then applied to IDH [41–45]. Then, the concept of CCS was extended to both
obtain multidimensional information and identify the variety of light from spatially
and temporally incoherent holograms. The extended concept is termed MPH [46].

Figure18.7 illustrates an example of experiments with CCS-IDH adopting
Fresnel incoherent correlation holography (FINCH), termed multiwavelength-
multiplexed phase-shifting incoherent color digital holography (MP-ICDH).
FINCH is a well-known IDH technique applicable for 3D imaging with an LED
[7, 26]. Exploiting the principle of FINCH, a liquid crystal on a silicon spatial
light modulator (LCoS-SLM) works as both a polarization-sensitive dual-focus lens

Fig. 18.7 Experimental results. a Schematic of the constructed setup of MP-ICDH for transparent
color objects. b One of the wavelength-multiplexed phase-shifted incoherent holograms. c and d
Images reconstructed by MP-ICDH. The depth difference between c and d was 36mm. Reprinted
with permission from [41] © The Optical Society
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and a wavelength-dependent phase shifter. A simple, compact, and single-path self-
interference interferometer was constructed using FINCH, as shown in Fig. 18.7a.
FINCH with polarization multiplexing [26] was adopted to MP-ICDH in [41]. An
LCoS-SLM (X10468-01, fabricated by Hamamatsu Photonics K.K.) to generate
wavelength-dependent phase shifts is set and a wide phase-modulation range is
obtained. The phase-modulation range of this model of the SLM was extended
twofold, then both a diffractive lens and phase shifts were simultaneously generated.
The nominal wavelengths of the LEDs used as light sources were λ1 = 625 and λ2 =
530 nm, and the full widths at halfmaximum (FWHMs) of these LEDswere 18 and
33nm, respectively. The LCoS-SLM set phase shifts at the wavelengths of (λ1, λ2) as
(−100π/123,−100π/99), (−40π/123,−40π/99), (0, 0), (−40π/123,−40π,

99), and (−100π/123,−100π/99). A monochrome sCMOS image sensor of 6.5
µmpixel size and 12 bits recorded five wavelength-multiplexed in-line phase-shifted
incoherent holograms with 2048 × 2048 pixels. A lens was set in front of the image
sensor to collect wavelength-multiplexed light.

Color objects were prepared using transparent films and a color inkjet printer, and
set in the optical path of the single-path interferometer. A green ‘T’, a red ‘H’, and
a black background were drawn on the films using a color inkjet printer. Each char-
acter was 7 pt. Rectangular transparent areas were set to these objects as shown in
Fig. 18.7a. Two colored objects were 36mm apart from each other in the depth direc-
tion. An image reconstruction algorithm [39] was applied to the recorded holograms
and two-wavelength object waves were retrieved. Two-wavelength focused images
of objects were reconstructed by calculating diffraction integrals. Figure18.7b–d
show the experimental results. Color object images were clearly and successfully
reconstructed by MP-ICDH, as shown in Fig. 18.7c and d. Thus, it has been clarified
that MP-ICDH can perform color 3D imaging without an imaging lens or crosstalk
between object waves at multiple wavelengths.

Using MPH, which is an extension of the CCS scheme, varieties of light waves
whose spectral bandwidths are different are distinguished.MPHexploits the temporal
coherence difference between different varieties of light waves and separates these
waveswith PSI and the attenuation of fringes owing to temporal coherency,which can
be termed coherence multiplexing. An experiment to demonstrate the simultaneous
3D sensing of self-luminous light and diffraction light of illumination light was
conducted.

Figure18.8a illustrates a schematic of the experimental setup. In this experiment,
the case where the wavelength bandwidths of the two varieties of light overlap was
examined. A self-luminous object was illuminated with an ultraviolet LED whose
centralwavelengthwas 365nm to generate blue fluorescence light, and another object
was illuminated with a blue LED to obtain the blue transmission light of a 1mm aper-
ture used as another object. A block of tin halide perovskite nanocrystal containing
metal complex molecules was set as the blue luminescent material.

The spectral intensity distribution of its fluorescence light was obtained with a
spectrometer in advance and is shown in Fig. 18.8b. The peak wavelength of the
material was 451nm. The FWHM of the luminescence was 65nm and the lumi-
nescence wavelength ranged from 401 to 521nm; at these two values, the inten-



18 Digital Holography Techniques and Systems for Acceleration of Measurement 315

Fig. 18.8 Experimental results for light-multiplexed 3D imaging with the developed hologram
recorder. a Schematic of experimental setup. b Spectral intensity of the self-luminous object. c One
of the recorded holograms. Left and right Gabor zone plate patterns were generated with LED light
and fluorescence light, respectively. d, e Images reconstructed by commonly applied four-step PSI.
The depth difference between d and e corresponded to 35mm in the object plane. f LED light and
g fluorescence light images of the objects. The numerical propagation distances of (f) and (g) were
the same as those of (d) and (e), respectively. Reprinted with permission from [46] © The Optical
Society
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sity was one-tenth of that at 451nm, giving a luminescence wavelength width of
120nm. A blue LED with a nominal wavelength of 455nm, which was mounted in
a four-wavelength LED head (LED4D201, Thorlabs), was used as the illumination
light source. The peak wavelength of the LED was between 450 and 455nm and
the FWHM was 18nm. A bandpass filter whose transmission bandwidth was 446–
468nm was inserted between the blue LED and the aperture to improve the tem-
poral coherency of the illumination light. Each variety of light contained the same
wavelength, and the wavelength bandwidth of the LED light was fully overlapped
with that of the fluorescence light. Furthermore, the difference between their peak
wavelengths was within 5nm. The self-interference multiplexed hologram shown in
Fig. 18.8c was recorded, and then multiple phase shifts and recordings were repeated
to obtain the 3D information of each variety of light and to distinguish them. In this
experiment, eight exposures were used to perform MPH.

Figure18.8d–g show the experimental results. The 3D information of each variety
of light was retrieved with the commonly used four-step PSI technique, as shown
in Fig. 18.8d and e. PSI can also be applied to the recorded single image, and then
complex amplitude distributions at multiple wavelengths are retrieved using a CCS
algorithm [39, 46]. A multiwavelength 3D image is reconstructed by calculating
diffraction integrals (Fig. 18.9).

A WPP array was developed to combine the two IDH techniques. Figure18.10
shows a schematic of the WPP array and a photograph of the image sensor with

Fig. 18.9 Schematic of SS-CCS holography
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Fig. 18.10 Developed WPP array and image sensor. a Schematic of the designed WPP array and
b photograph of the CCD image sensor developed with the WPP array. Adapted with permission
from [43] ©AIP Publishing

the WPP array. Each WPP cell is composed of a photonic crystal, and a photonic
crystal array is fabricated by the self-cloning technique [52]. The phase shifts of
cells A, C, D, and E at a wavelength of 532nm are 240◦, 107◦, 213◦, and 320◦,
respectively. Thewavelength dependence of the phase shift of the fabricated photonic
crystal is used for the CCS algorithm. The developed image sensor is described in
more detail in [43]. An SS-CCS holographic microscopy system, which comprised a
fluorescence microscope, a CCS-IDH system, and the image sensor, was constructed
to experimentally show its validity. The experimental conditions are described in
detail in [43]. The experimental results shown in Fig. 18.11 indicate that fluorescence
object waves in different wavelength bands are selectively extracted and that the
3D information in the respective wavelength bands is reconstructed successfully.
Different types of fluorescence particle are identified from wavelength separations
using the CCS scheme. The experimental results show that SS-CCS IDHM enables
the color 3D imaging of fluorescence light from a single wavelength-multiplexed
hologram. Improvements of the image quality and frame rate are ongoing, and the
color 3D motion-picture recording of incoherent holograms with more than 70 fps
and 4 megapixels has been performed [53].
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Fig. 18.11 Experimental results. a Recorded hologram and b wavelength-multiplexed hologram
de-mosaicked from (a). c Intensity and d phase images of the object wave on the image sensor plane
at a wavelength of 618nm. e Intensity and f phase images on the image sensor plane at 545nm.
Color-synthesized images focused at depths of g 20.7 µm, h 23.7 µm, i 26.6 µm, and j 29.6 µm in
the object plane. k 618nm and l 545nm components of (g).m 618nm and n 545nm components of
(j). Blue circles highlight focused complex molecules. Adapted with permission from [43] ©AIP
Publishing

18.2.3 Single-Shot Quantitative Phase Imaging
with Single-Shot Phase-Shifting Digital Holography
and Light-Emitting Diode

IDH generally adopts a self-interference interferometer to obtain a digital hologram.
SSPS-IDH enables single-shot 3D imaging with natural light. However, it remains
difficult to obtain a digital hologram of a transparent object with a self-interference
interferometer. On the other hand, self-reference DH (SRDH) generates a reference
wave from an object wave [54–58] and can be used for the quantitative phase
imaging (QPI) of a transparent specimen with a commonly used light source such
as a halogen lamp [55–57] or an LED [58]. The main difference of SRDH from
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Fig. 18.12 Schematic of the SSPS-SRDH system

self-interference DH is in the generation of a reference wave whose wave vector is
unique. The reference wave acts as a spatially or partially coherent light wave on
the image sensor plane in SRDH. A self-reference holography system enables the
measurement of the quantitative phase information of a transparent specimenwith an
incoherent light source and the generated reference wave, and it is utilized for QPM
[54–58]. SRDH has been combined with SSPS to conduct single-shot QPI with an
LED [59].

Figure18.12 illustrates a schematic of the SSPS-SRDH system. An incoherent
light source such as a halogen lamp or an LED is applicable, as demonstrated by
Fourier phase microscopy with white light [56]. An object wave of a transparent
specimen O(x, y) passes through a polarizer to generate linear polarization from the
random polarization of the object wave. After passing through the polarizer, the FT of
the object wave FT[O(x, y)] is optically performed using a lens, where FT[] denotes
the FT. The FT pattern of the magnified image is formed on the back focal plane of
the lens, and a spatial light phase modulator is set on the plane. The transmittance
axis of the polarizer and the working axis of the spatial light phase modulator have
an angle of 45 ◦C between them. On the FT plane, the plane-wave component of the
magnified image is collected on a spot, and the component is utilized as a reference
wave. Its mathematical expression is as follows:

FT[O(x, y)] exp[ jδ( fx , fy)] = a( fx , fy)FT[O(x, y)] exp( jδ1)
+b( fx , fy)FT[O(x, y)] exp( jδ2), (18.4)
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where

a( fx , fy) =
{
1 when f 2x + f 2y > r2 ,

0 when f 2x + f 2y ≤ r2
(18.5)

b( fx , fy) =
{
1 when f 2x + f 2y > r2 ,

0 when f 2x + f 2y ≤ r2
(18.6)

fx and fy are the horizontal and vertical axes in the FT plane, respectively, and r is
the radius of b( fx , fy). Moreover, δ1 and δ2 are the phase shifts of the object and
generated reference waves, respectively. b( fx , fy) is the aperture for the reference
wave generated from the object wave, based on SRDH [54–58]. The spatial light
phase modulator sets values of δ1 = 0 and δ2 = π for the object and reference wave
components, respectively, to set them as linearly polarized light waves with opposite
directions. Another lens optically enables an inverse FT of these light waves. After
that, a quarter-wave plate converts these linear polarizations to circularly polarized
light waves with opposite handedness. As a result, the phase shifts between the
two waves depend on the polarization directions. A polarization-imaging camera
records an image I (x, y), which is expressed as follows:

I (x, y) = ∣∣IFT[a( fx , fy)FT[O(x, y)]] exp[ j (δ1 − θ)] (18.7)

+IFT[b( fx , fy)FT[O(x, y)]] exp[ j (δ2 + θ)]∣∣2

= ∣∣IFT[a( fx , fy)FT[O(x, y)]]∣∣2 + ∣∣IFT[b( fx , fy)FT[O(x, y)]]∣∣2
+ 2

∣∣IFT[a( fx , fy)FT[O(x, y)]]∣∣ ∣∣IFT[b( fx , fy)FT[O(x, y)]]∣∣ ·
cos{arg[O(x, t)] − [(δ1 − δ2) − 2θ ]} × γ (�L)

Here, IFT[] denotes the inverse FT, θ is the transmission axis of themicropolarizer
in the polarization-imaging camera, γ (≤ 1, γ (0) = 1) is a function related to the vis-
ibility of the interference fringes and the temporal coherency of light, and �L is the
optical-path-length difference between the two light waves. Equation (18.7) indi-
cates that intensity ratio is modulated by adjusting r . IFT[b( fx , fy)FT[O(x, y)]]
becomes a plane wave when b(ξ, η) is the delta function. The spot size is based
on the diffraction limit in the case where a coherent plane wave generated from
a laser is subjected to FT. However, the spot size is enlarged on the FT plane
using a spatially low-coherence light such as an LED. The intensity distribution
of IFT[b( fx , fy)FT[O(x, y)]] is too low to generate a digital hologram clearly when
r is small. Therefore, r should be adjusted to obtain a suitable spot size of the light
source on the FT plane. When the intensity ratio of IFT[a( fx , fy)FT[O(x, y)]] to
IFT[b( fx , fy)FT[O(x, y)]] is small, r is not a small value, and the phase distribution
of IFT[b( fx , fy)FT[O(x, y)]] becomes a quasi-plane wave.

Next, note that the intensity of the second term on the right-hand side of Eq.
(18.7) decreases as the optical-path-length difference increases between the two
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Fig. 18.13 Schematic of the constructed QPM system

waves in DH, as discussed in detail in [46]. The polarization-imaging camera has
four transmission axes, θ = 0, π/4, π/2, and 3π/4, with a polarizer array that is
composed of four types of linear micro-polarizers. Therefore, four phase-shifted
incoherent digital holograms are simultaneously obtained.

The experimental results obtained using HeLa cells to demonstrate the QPI of
transparent objects [58] is presented. The QPM system was constructed on the basis
of SSPS-SRDH as shown in Fig. 18.13. A stage on which specimens were placed, a
magnification system, and a mirror were the components of the commercially avail-
able inverted optical microscope (IX-73, Olympus). An oil-immersion microscope
objective whose magnification and numerical aperture were 60 and 1.42, respec-
tively, was included in the setup. A red LED with a nominal wavelength of 625nm
was used as the spatially and temporally low-coherence light source, which was
mounted in a four-wavelength LED head (LED4D201, Thorlabs). A polarizer was
set as illustrated in Fig. 18.13. A magnified image of the specimens was introduced
to an SSPS-SRDH system through the output port of the microscope. Lenses whose
focal lengths were 180 and 360mm were selected to obtain two magnifications in
the SSPS-SRDH system, and the total magnification of the QPM system was 120.
An LCoS-SLM (X10468-01, Hamamatsu Photonics K.K.) was used and r was set
as 300 µm (Fig. 18.14).

In summary, I have introduced IDH techniques and their optical systems for the
acceleration of measurement. It has been reported that any variety of light including
sunlight can be recorded as a digital hologram by IDH [47]. Many review articles
on IDH have been published and can be freely downloaded [25–29, 60, 61]. These
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Fig. 18.14 QPI results for transparent objects. Multiple phase-shifted holograms with phase shifts
of a 0, b π/2, c π , and 3π/2 obtained from a recorded single image. Intensity distributions of the
reconstructed images in which the numerical propagation distances for the magnified specimens
are e 7 and f 30mm. Quantitative phase images in which the numerical propagation distances are
g 7 and h 30mm. Nucleoli are focused in (e) and (g). A particle is focused in (f) and (h). Blue and
red arrows indicate the nucleoli and particle, respectively. White (255) and black (0) in the phase
images denote 1.26 and 0 rad, respectively. Reprinted with permission from [59] © The Optical
Society

review articles will help readers study IDH in greater depth. Developments of a
hardware architecture and algorithms for acceleration of image reconstruction have
also been conducted in IDH [62–64]. In addition, a theoretical discussion of how the
temporal coherency of light affects IDH is given in [46].
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Part IV
FPGA-Based Acceleration

for Computational Holography

Part IV consists of two chapters: hardware accelerators for computational holography
typically use CPUs and GPUs, while Part IV presents examples of hologram and
diffraction calculations implemented using FPGAs.



Chapter 19
FPGA Accelerator
for Computer-Generated Hologram

Yota Yamamoto

Abstract Aspecial-purpose computer for computer-generated hologram (CGH) has
been built using an FPGA [1–13]. By constructing a special-purpose computation
pipeline for CGH computations on FPGAs, faster computations than on CPUs can be
attained. In this chapter, we present the fundamental principle of the special-purpose
computer.

19.1 A Special-Purpose Computer for CGH Using FPGA

Efforts are beingmade to accelerateCGH computations with dedicated FPGA-based
computing circuits. Holographic reconstruction (HORN) is a special-purpose
computer for holography’s high-speed computation [1–13]. HORN-1 [1], developed
in 1993, comprises 26 IC chips on a universal board, with each IC being hand-wired
(Fig. 19.1).

HORN-3 [3] was built with a programmable logic device (PLD), HORN-4 [4] was
integrated using anFPGA, and the latestHORN-8 (Fig. 19.2), built using FPGAs,was
1,000 times faster than a conventional PC [8–10]. The construction of special-purpose
computers using FPGAs has the benefit of removing the necessity for manual wiring
between discrete ICs and the ability to redesign the circuit without rewiring. The
reconfigurability of FPGAs allows the construction of circuits to be more effective.
HORN-8 is an eight-FPGA dedicated board connected to a PC motherboard by PCI
Express to communicate with a CPU.

The Xilinx Zynq series, which has an embedded CPU and FPGA on a single chip,
has been built for the construction of CGH computers [11, 12]. Although Zynq is
small, it is possible to implement HORN-8 similar to computing circuitry on this
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Fig. 19.1 Special-purpose computer for holography (HORN-1)

Fig. 19.2 HORN-8 board
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single chip. In the future, Zynq could be used for holographic head-mounted display
applications. In the following sections, we present the construction of a special-
purpose computer based on Zynq.

19.2 Algorithm for CGH Special-Purpose Computer

This section explains how to implement the CGH computation using Eq. (19.1) in
FPGA:

I (xa, ya) =
M−1∑

j=0

A j cos

[
π

λz j

{(
xa − x j

)2 + (
ya − y j

)2}
]
, (19.1)

where (xa, ya) represents the coordinate on the CGH plane,
(
x j , y j , z j

)
denotes the

point cloud’s coordinate, and A j represents the point cloud’s amplitude. Here, A j is
fixed to 1 to simplify the design.M denotes the point clouds’ number and λ represents
the reference light’s wavelength.

When Eq. (19.1) is implemented in FPGAs, it is known that a recurrence algo-
rithm can construct circuits with fewer arithmetic units [14]. However, for ease of
understanding, Eq. (19.1) is implemented directly in FPGAs here.

Equation (19.1) includes division. In general, division in FPGAs necessitatesmore
resources (LUTs) and lowers the operating frequency. Thus, we define a new variable
as

ρ j = π

2λz j
, (19.2)

ρ j can be precomputed by a CPU. Using ρ j , Eq. (19.1) is redefined as

I (xα, yα) =
M−1∑

j=0

cos
[
ρ j

{(
xa − x j

)2 + (
ya − y j

)2} ]
. (19.3)

TheFPGAconductsEq. (19.3) in a pipeline fashion. Furthermore, data parallelization
for each pixel is achievable. High speed can be predicted using a special computation
circuit. For more details, please refer to Chap.7.

19.3 Overview of CGH Special-Purpose Computer Using
Xilinx Zynq

Figure19.3 shows a block diagram of a CGH-specific computer using Xilinx
Zynq [15, 16]. In the Xilinx FPGA construction, we employed Vivado Design Suite
(hereafter, Vivado) [17] as a construction tool. The design’s basic flow is to define the

http://dx.doi.org/10.1007/978-981-99-1938-3_7
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circuit structure using register transfer level (RTL) description, compile the circuit
using Vivado, and then download the circuit configuration data to the FPGA to cre-
ate the special-purpose computer. Figure19.3 shows that in Vivado, the intellectual
property (IP) integrator [18] offers an aid to visually connect IP blocks.

In Fig. 19.3, the block labeled “ZYNQ UltraSCALE+” is the ARM CPU IP
block, and the CGH computation block labeled “cgh_calculation_accelerator_v1_0”
is implemented in the FPGA component. These blocks are connected through
“AXI Interconnect,” a block for AXI communication (see Chap.7). The Zynq-based
special-purpose computer employs the ARM CPU for pre- and post-computations
(e.g., the computation of ρ j in Eq. (19.3), object rotation processing, etc.) and the
FPGA part’s control.

Figure19.4 reveals a block diagram of the CGH computation block
(cgh_calculation_acceleator_v1_0) in the FPGA component. This block stimulates
CGH computation through two parallelization methods (data and pipeline paral-
lelization). Figure19.4 shows that in the upper diagram, Eq. (19.3) is conducted
using pipeline parallelization (see Chap.7).

The shaded value in Fig. 19.4 illustrates the bit width; all operations inside the
FPGA are in fixed-point numbers. Thus, the CGH coordinates and object point coor-
dinates in Eq. (19.3) are normalized using the SLM’s pixel pitch. CGH coordinates
xa and ya are 12 bits, x j , y j , z j of the point, cloud coordinates are 12 bits, and ρ is
set to 32 bit width.

The bit width of the internal circuitry is measured by considering the digits’
overflow. The notation [a: b] in the figure indicates that the signal line from the a-th
to the b-th bit is handled. The adder’s output bit width is increased by one bit from the
maximum bit width of the input data. The output bit width of the multiplier denotes
the sum of the bit widths of the two input data. The cosine function is processed
using a look-up table (LUT). Bit 31–26 is the cos table’s address; the LUT’s output
is empirically set to 6 bits. When computing the binary amplitude CGH, the most
significant bit of the pipeline output is the computation finding.

Figure19.5 shows the top-level block diagram of the CGH computation block
(cgh_calculation_acceleator_v1_0). “cgh_c” is the unit that computes the CGH of
a single pixel. “pcl_ram” is the memory for storing the point cloud. “controller”
golds the point clouds’ number and the CGH’s size and regulates the whole circuit.
The information for the point cloud is sent from the ARM CPU through the AXI
connection. The transferred data are transiently stored in the FPGA memory and
broadcast to the “cgh_c” units. Multiple “cgh_c” units compute several CGH pixels,
which is data parallelization.

Zynq is equipped with a display controller. The CGH pixel data computed by the
FPGA arewritten to the displaymemory throughAXI, allowingCGH to be displayed
on a display panel. Writing CGH pixels to display memory with an embedded CPU
is slow; with direct memory access (DMA), enormous amounts of data can be read
and written at a fast speed, permitting the development of very efficient dedicated
computers.

http://dx.doi.org/10.1007/978-981-99-1938-3_7
http://dx.doi.org/10.1007/978-981-99-1938-3_7
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Fig. 19.3 Block diagram of the entire system
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Fig. 19.5 Top-level block diagram

19.4 Implementation of CGH Special-Purpose Computer

Listing 19.1 reveals the source code for the “cgh_c” unit, which computes a sin-
gle pixel on the CGH using Eq. (19.3) in a pipeline fashion. SystemVerilog was
employed as the programming language. In Listing 19.1, the cosine computation is
conducted using the LUT approach that stores the cosine function’s computation
finding in a read-only memory (ROM) ahead and obtains cosine values at high speed
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by referring to the ROM address. Here, we employed the LUTwith 6-bit input and 6-
bit output. Listing 19.2 shows the source code of the cos table, which is implemented
in RAM64X8SW [19] (a small amount of memory) in the FPGA.

In the source code of “cgh_c,” “clk” is a clock signal, which synchronizes to
operate the circuit, “resetn” is an initialization signal for the circuit, “valid_in” is
set to 1 when valid point cloud data are input, and “last_in” is set to 0 when the
last point cloud data are input. The signals “x_a_in,” “x_j_in,” “y_a_in,” “y_j_in,”
and “rho_j_in” correspond to xa , x j , ya , y j , and ρ j in Eq. (19.3). The summing unit
denotes the unit that conducts the summation computation. The “sum” unit for the
accumulation in Eq. (19.3) accumulates the cosine table’s output.

Listing 19.1 Source code of the “c_cgh” unit.

1 module cgh_c #(
2 parameter int
3 XY_I_WIDTH = 12,
4 Z_DELTA_WIDTH = 32,
5 Z_DELTA_FIXED_POINT = 32,
6 THETA_WIDTH = 6,
7 SUM_BUFFER_WIDTH = 18,
8 INTENSITY_OUT_WIDTH = 8,
9 SUB_XY_WIDTH = XY_I_WIDTH + 1,
10 POW_2_XY_WIDTH = SUB_XY_WIDTH ∗ 2,
11 ADD_XY_WIDTH = POW_2_XY_WIDTH + 1,
12 MULT_XYZ_WIDTH = ADD_XY_WIDTH + Z_DELTA_WIDTH,
13 THETA_SHIFT = Z_DELTA_FIXED_POINT − THETA_WIDTH
14 )(
15 input wire clk,
16 input wire resetn,
17 input wire valid_in,
18 input wire last_in,
19 input wire [XY_I_WIDTH−1:0] x_a_in,
20 input wire [XY_I_WIDTH−1:0] x_j_in,
21 input wire [XY_I_WIDTH−1:0] y_a_in,
22 input wire [XY_I_WIDTH−1:0] y_j_in,
23 input wire [Z_DELTA_WIDTH−1:0] rho_j_in,
24 output wire intensity_valid_out,
25 output wire [INTENSITY_OUT_WIDTH−1:0] intensity_out
26 );
27 /* controll signal */
28 logic valid[0:4], last[0:4];
29

30 /* caluculation pipline reg */
31 logic signed [SUB_XY_WIDTH−1:0] sub_x_ans, sub_y_ans;
32 logic signed [POW_2_XY_WIDTH−1:0] pow2_x_ans, pow2_y_ans;
33 logic signed [ADD_XY_WIDTH−1:0] add_x_y_ans;
34 logic signed [MULT_XYZ_WIDTH−1:0] mult_xy_z_ans;
35 logic signed [Z_DELTA_WIDTH−1:0] rho_j_deley [0:2];
36

37 /* cos signal */
38 logic signed [THETA_WIDTH−1:0] cos_out;
39 logic signed [THETA_WIDTH−1:0] theta;
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40

41 /* sum signal */
42 logic signed [SUM_BUFFER_WIDTH−1:0] cos_sum;
43 logic cos_sum_valid;
44

45 assign intensity_out = (cos_sum[SUM_BUFFER_WIDTH−1])?’d255:’d0;
46 assign intensity_valid_out = cos_sum_valid;
47 assign theta = mult_xy_z_ans[THETA_SHIFT+:THETA_WIDTH];
48

49 cos_table #(
50 .THETA_WIDTH (THETA_WIDTH)
51 ) cos_table_u (
52 .clk (clk),
53 .theta_in (theta),
54 .cos_out (cos_out)
55 );
56

57 sum #(
58 .IN_WIDTH (THETA_WIDTH),
59 .SUM_BUFFER_WIDTH (SUM_BUFFER_WIDTH),
60 .SUM_OUT_WIDTH (SUM_BUFFER_WIDTH)
61 ) cos_sum_u (
62 .clk (clk),
63 .resetn (resetn),
64 .valid_in (valid[4]),
65 .last_in (last[4]),
66 .val_in (cos_out),
67 .sum_valid (cos_sum_valid),
68 .sum_out (cos_sum)
69 );
70

71 always_ff @(posedge clk) begin
72 if(!resetn) begin
73 for (int i=0; i<5; i++) begin
74 valid[i] <= ’b0;
75 last[i] <= ’b0;
76 end
77 end else begin
78 // 1st stage
79 valid[0] <= valid_in;
80 last[0] <= last_in;
81

82 // 2nd stage
83 valid[1] <= valid[0];
84 last[1] <= last[0];
85

86 // 3rd stage
87 valid[2] <= valid[1];
88 last[2] <= last[1];
89

90 // 4th stage
91 valid[3] <= valid[2];
92 last[3] <= last[2];
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93

94 // 5th stage
95 valid[4] <= valid[3];
96 last[4] <= last[3];
97 end
98 end
99

100 always_ff @(posedge clk) begin
101 /* 1st stage */
102 sub_x_ans <= $signed(x_j_in) − $signed(x_a_in);
103 sub_y_ans <= $signed(y_j_in) − $signed(y_a_in);
104 rho_j_deley[0] <= rho_j_in;
105

106 /* 2nd stage */
107 pow2_x_ans <= sub_x_ans ∗∗ 2;
108 pow2_y_ans <= sub_y_ans ∗∗ 2;
109 rho_j_deley[1] <= rho_j_deley[0];
110

111 /* 3rd stage */
112 add_x_y_ans <= pow2_x_ans + pow2_y_ans;
113 rho_j_deley[2] <= rho_j_deley[1];
114

115 /* 4th stage */
116 mult_xy_z_ans <= add_x_y_ans ∗ rho_j_deley[2];
117

118 /* 5th stage */
119 // cos table
120 end
121 endmodule

Listing 19.2 Source code of the cosine table.

1 module cos_table#(
2 parameter
3 THETA_WIDTH = 6,
4 TABLE_LEN = (1’b1 << THETA_WIDTH)
5 )(
6 input wire clk,
7 input wire [THETA_WIDTH−1:0] theta_in,
8 output logic signed [THETA_WIDTH−1:0] cos_out
9 );
10 logic signed [THETA_WIDTH−1:0] theta;
11

12 always_ff @(posedge clk) begin
13 theta <= theta_in;
14 end
15

16 RAM64X8SW #(
17 .INIT_A(’b00000000_00000000_11111111_11111111_\
18 11111111_11111110_00000000_00000000),
19 .INIT_B(’b00000000_00000000_11111111_11111111_\
20 11111111_11111110_00000000_00000000),
21 .INIT_C(’b00000000_00000000_11111111_11111111_\
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22 11111111_11111110_00000000_00000000),
23 .INIT_D(’b11111111_11000000_11111000_00000000_\
24 00000000_00111110_00000111_11111111),
25 .INIT_E(’b11111100_00111000_11100111_10000000_\
26 00000011_11001110_00111000_01111111),
27 .INIT_F(’b11110011_00100100_10010110_01110000_\
28 00011100_11010010_01001001_10011111),
29 .INIT_G(’b11001010_10110110_01001101_01001110_\
30 11100101_01100100_11011010_10100111),
31 .INIT_H(’b00101111_11010010_10010111_11101001_\
32 00101111_11010010_10010111_11101001),
33 .IS_WCLK_INVERTED(’b0) // Optional inversion for WCLK
34 ) RAM64X8SW_inst_cos (
35 .O(cos_out), // 8-bit data output
36 .A(theta), // 6-bit address input
37 .D(’b0), // 1-bit input: Write data input
38 .WCLK(clk), // 1-bit input: Write clock input
39 .WE(’b0), // 1-bit input: Write enable input
40 .WSEL(’b000) // 3-bit write select
41 );
42

43 endmodule

19.5 Control Program for CGH Special-Purpose Computer

Figure19.3 shows the control program for the CGH special-purpose computer, refer-
ring to the program introduced in Chap. 8. In Fig. 19.3, the embedded CPU imple-
ments this program and computes ρ. The computed coordinate information for object
points (x j , y j , ρ j ) is written to /dev/mem to send the data to the special-purpose com-
puter on the FPGA side. Subsequently, the embedded CPU reads the control registers
through /dev/mem and waits in a while loop for the computation to finish. Subse-
quently, the final CGH computation finding is generated from the FPGA side through
/dev/mem.

Listing 19.3 The control program for the CGH special-purpose computer.

1 #include <stdio.h>
2 #include <stdint.h>
3 #include <stdlib.h>
4 #include <unistd.h>
5 #include <fcntl.h>
6 #include <sys/mman.h>
7 #include <math.h>
8

9 #define FPGA_ADDR_START 0x0A0000000
10 #define FPGA_ADDR_SIZE 0x000008000
11 #define FPGA_PIPELINE 810
12 #define PCD_MAX_LEN (1U<<16) // 2^16
13

http://dx.doi.org/10.1007/978-981-99-1938-3_8


19 FPGA Accelerator for Computer-Generated Hologram 339

14 struct point_cloud{
15 float x;
16 float y;
17 float z;
18 };
19

20 struct point_cloud_fixed{
21 int32_t x;
22 int32_t y;
23 int32_t rho;
24 };
25

26 struct point_cloud_fixed pcd_fixed[PCD_MAX_LEN];
27

28 extern struct point_cloud∗ load_point_cloud(const unsigned char∗ path, int∗ numpoint);
29 extern void unload_point_cloud(struct point_cloud∗ ptr);
30

31 int main(int argc, char ∗argv[])
32 {
33

34 // open "/dev/mem"
35 int fd = open("/dev/mem", O_RDWR | O_SYNC);
36 if (fd < 1) {
37 perror("failed to open devfile");
38 return −1;
39 }
40

41 // map FPGA physical address into user space
42 int32_t ∗uio = (int32_t ∗)mmap(NULL, FPGA_ADDR_SIZE, PROT_READ|

PROT_WRITE, MAP_SHARED, fd, FPGA_ADDR_START);
43 if (uio == MAP_FAILED) {
44 perror("failed to mmap");
45 close(fd);
46 return −1;
47 }
48

49 /*
50 * CGH calculation
51 */
52 int ret = 0; // for error
53 {
54 const double lambda = 0.000000532;
55 const double pixel = 0.000008000;
56

57 // cgh memory buffer for display
58 unsigned char ∗cgh_buffer = (unsigned char ∗)calloc(1920∗1080, sizeof(unsigned

char));
59 if (cgh_buffer == NULL) {
60 printf("faild to make cgh buffer");
61 ret = −1;
62 goto FAILD_CALLOC_BUFFER;
63 }
64
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65 // load point-cloud data from file
66 struct point_cloud ∗pcd;
67 int num_point;
68

69 pcd = load_point_cloud(argv[1], &num_point);
70 if (pcd == NULL) {
71 printf("faild to load point-cloud data");
72 ret = −1;
73 goto FAILD_LOAD_POINT_CLOUD;
74 }
75

76 // convert fixed data
77 for (int i = 0; i < num_point; i++) {
78 pcd_fixed[i].x = (int32_t)pcd[i].x;
79 pcd_fixed[i].y = (int32_t)pcd[i].y;
80 pcd_fixed[i].rho = (int32_t)(pow(2.,32.)∗(pixel/(2.∗pcd[i].z)/lambda));
81 }
82

83 // verify that the FPGA is idle
84 if((0x2&uio[0])==0x2){
85 printf("FPGA is not idle");
86 ret = −1;
87 goto FAILD_VERIFY_IDLE;
88 }
89

90 // write point-cloud data from ARM CPU to fpga
91 for (int i = 0; i < num_point; i++){
92 uio[128] = pcd_fixed[i].x;
93 uio[128] = pcd_fixed[i].y;
94 uio[128] = pcd_fixed[i].rho;
95 }
96

97 // calculation start
98 uio[0] = 0x1;
99

100 for (int buffer_i = 0; buffer_i<1920∗1080; buffer_i=buffer_i+FPGA_PIPELINE){
101 // wait for the pipeline to end
102 while (0x2&uio[0]);
103 // read CGH from FPGA to ARM CPU
104 for (int i = 0; i < FPGA_PIPELINE; i++)
105 cgh_buffer[buffer_i+i] = (unsigned char)uio[10+i];
106 }
107 FAILD_VERIFY_IDLE:
108 unload_point_cloud(pcd);
109 FAILD_LOAD_POINT_CLOUD:
110 free(cgh_buffer);
111 }
112

113 FAILD_CALLOC_BUFFER:
114 // cleanup
115 munmap((void∗)FPGA_ADDR_START, FPGA_ADDR_SIZE);
116 close(fd);
117
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118 return ret;
119

120 }

Table 19.1 Comparison of computation time

Hardware Calculation time [s] Acceleration ratio

Zynq ZCU102 0.066 28.1

NVIDIA Jetson TX1 1.294 1.44

Intel Xeon 1.86 1.00

19.6 Comparison of Computation Times

The Zynq UltraScale+MPSoC ZCU102 Evaluation Kit (ZCU102) offered by Xilinx
was used for the implementation. ACPU (Intel XeonCPUE5-2697 v2 2.70GHz) and
integrated graphics processing unit (GPU) of NVIDIA Jetson TX1 were employed
for comparison. Table19.1 reveals the time needed to compute a CGH of 1,920 ×
1,080 pixels from a point cloud of 6,500 points.

The Zynq ZCU102 has 810 pipelines (“cgh_c” units) and a 250MHz operating
frequency. This is 28 times the CPU’s speed and 20 times the integratedGPU’s speed.

19.7 Discussion

For simplicity of explanation, we have described the FPGA implementation of Eq.
(19.3) in this chapter. However, by implementing a more hardware-appropriate com-
putation algorithm, we can further stimulate CGH computation. For more details,
please refer to the references [11, 13].

Funding This work was supported by JSPS KAKENHI Grant Number JP21K21294.
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Chapter 20
Special-Purpose Computer for Digital
Holography

Nobuyuki Masuda and Ikuo Hoshi

Abstract Digital holography is a technique that digitally captures holograms using
an image sensor. Because it can record the three-dimensional (3D) information of
target objects, digital holography can be used for 3D measurement. This chapter
introduces the implementation of a field programmable gate array (FPGA) for accel-
erating digital holography calculation.

20.1 Numerical Diffraction Calculation

The wave of diffracted light from a hologram is calculated using Fresnel–Kirchhoff
diffraction:

φ(xi , yi ) = 1

iλ

∫ ∞

−∞

∫ ∞

−∞
Iα
exp(ikrαi )

rαi
dxαdyα, (20.1)

rαi =
√

(xα − xi )2 + (yα − yi )2 + z2i , (20.2)

where i = √−1, φ(xi , yi ) is the complex amplitude of the object light on a plane
(xi , yi ) at a distance zi , λ is the wavelength of the reference light, Iα(xα, yα) denotes
the intensity of the hologram, and k is the wavenumber of the reference light. Fur-
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thermore, using the Fresnel approximation (assuming that the hologram size is
sufficiently small compared with the distance of the zi ), we obtain

φ (xi , yi ) =
∫ ∞

−∞

∫ ∞

−∞
I (xα, yα) g (xi − xα, yi − yα) dxαdyα, (20.3)

where g (xi − xα, yi − yα) is

g(xi − xα, yi − yα) = exp(ikzi )

iλzi
exp

[ ik

2zi
{(xi − xα)2 + (yi − yα)2}

]
. (20.4)

Equation (20.3) can be expressed in the form of a two-dimensional (2D) convo-
lution:

φ (xi , yi ) = F −1

[
F

[
I (xα, yα)

]
G(μ, ν)

]
, (20.5)

where F
[
·
]
and F −1

[
·
]
denote the Fourier and its inverse transforms, respectively,

and G(μ, ν) is the Fourier transform of g(x, y).
Considering a discretized version of Eq. (20.5), the Fourier transforms can be

performed using fast Fourier transforms (FFTs) as well as the sampling periods
�P in the spatial domain and � f = 1/(N�P) in the frequency domain where the
sampling number of N × N , G(μ, ν), can be rewritten as

G(n,m) = exp
[
ikzi − iπλzi

{( n

N�P

)2 +
( m

N�P

)2}]

= exp(ikzi ) exp
{
2π i

( −λzi
2 N 2(�P)2

)
(n2 + m2)

}
, (20.6)

where n and m denote the integer frequency coordinates.
In a case that the 3D reconstruction is reproduced by stacking the intensity images

obtained at different propagation distances, the term exp(ikzi ) can be regarded as a
constant and be omitted. Therefore, Eq. (20.6) can be rewritten as

G(n,m) = exp
{
2π i

( −λzi
2 N 2(�P)2

)
(n2 + m2)

}
. (20.7)

20.2 Special-Purpose Computer System

In digital holographycalculations, the computational load is particularly heavyduring
the FFT. The FFT is a simple calculation that repeats butterfly operations, making
it suitable for hardware. In addition, the faster the camera, the smaller the number
of pixels in the image sensor, so less memory is required during computation. These
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two facts work in favor of implementing a special-purpose computer for digital
holography using a field-programmable gate array (FPGA) [1–4].

In this study, holograms of 128 × 128 pixels were used. In this case, the FPGA
evaluation board used in this study can implement a special-purpose computer for
digital holography using only internal memories. As a result, the overhead observed
when using external memories can be eliminated, and very fast computation can be
implemented. In this section, the special-purpose computer is described.

20.2.1 Calculation Circuit

The special-purpose computer was developed using the Virtex-7 FPGAVC707 Eval-
uation Kit (hereafter VC707) provided by Xilinx. This is an evaluation board with
the high-performance FPGA chip Virtex-7 XC7VX485T-2FFG1761 C. Figure20.1
and Table20.1 show the appearance of VC707 and the specifications of the FPGA
chip, respectively.

Fig. 20.1 Xilinx Virtex-7 FPGA VC707 Evaluation Kit
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Table 20.1 Specifications of the FPGA chip

Evaluation kit VC707

Family name Virtex7

Device XC7VX485T-2FFG1761C

Number of registers 60,720

Number of LUTs 30,360

Number of block RAMs 1,030

Fig. 20.2 Block diagram of the special-purpose computer system

20.2.2 Data Formats

Hologram data is represented in the 8-bit fixed-point format, but for the convenience
of implementing the special-purpose computer, the hologram data is converted to a
complex value with the real and imaginary parts of 16-bit fixed-point formats and
32 bits in total bit width. The calculated results have a total of 32 bits with the real
and imaginary parts.

20.2.3 Overview of Special-Purpose Computer System

A block diagram of the special-purpose computer is shown in Fig. 20.2. This com-
puting system usesPCI Express (hereinafter referred to as PCIe) for communication
between the host PC and VC707. The host PC is a consumer computer with a PCIe
slot. The host PC sends hologram data and parameters necessary for the calcula-
tion to VC707, controls the operations, receives the calculation results, and finally
calculates the light intensity of complex amplitudes
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Fig. 20.3 Block diagram of Calc_Top that calculates the Fresnel diffraction of Eq. (20.5)

In the calculation circuit in the FPGA, the calculation circuit sequentially cal-
culates one reconstructed image per input hologram but performs each step of the
Fresnel diffraction in a pipeline fashion. In addition, the dual port random access
memory (RAM) is implemented for temporary storage to separate the communica-
tion and calculation parts. A reconstructed image is saved in the save RAM and then
sent to the host PC via PCIe. The communication circuit is designed to use burst
transfers of PCIe to increase the communication performance.

The circuit can calculate reconstructed images at any wavelength and depth posi-
tion by appropriately setting the parameters sent to the FPGA. The intensity image
of the reconstructed data (complex values) calculated by the calculation circuit can
be obtained on the host PC.

20.2.4 Overview of Calc_Top

Figure20.3 shows a block diagram of Calc_Top that calculates the Fresnel diffraction
of Eq. (20.5). The numbers on the diagonal lines in the figure represent the word
length of the data, and the data are expressed in fixed-point formats.

First, the calculation flow in the FPGA chip is explained. Hologram data is saved
in “Hologram RAM”. As previously explained, each pixel of the hologram has a
complex amplitude with 32 bits (16-bit real and 16-bit imaginary parts). Since the
hologram has 128 × 128 pixels, 14 bits is sufficient for the address space because
7 bits (=128) × 7 bits (=128). In this circuit, the intellectual property core (IP
core) of “Fast Fourier Transform v7.1” provided by Xilinx is used to perform one-
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Fig. 20.4 Two-dimensional FFT using horizontal and vertical one-dimensional FFTs

dimensional (1D) FFT and inverse FFT (IFFT). For the Fresnel diffraction, it is
necessary to perform a 2D FFT and IFFT. The 2D FFT transform can be calculated
as 1D FFTs in each of the two directions, as shown below:

�(n,m) =
Ny∑
y=1

Nx∑
x=1

φ(x, y) exp

{
−2π i

(
nx

Nx
+ my

Ny

)}

=
Ny∑
y=1

{
Nx∑
x=1

φ(x, y) exp

(−2π inx

Nx

)}
exp

(−2π imy

Ny

)
,

(20.8)

where Nx and Ny represent the numbers of pixels in the horizontal and vertical
directions, respectively. Figure20.4 shows the 2D FFT using horizontal and vertical
1D FFTs. A 2D IFFT can be calculated in the same manner.

In calculations of FFT and IFFT, overflow can occur because the FFT accumulates
complex values, as shown in Eq. (20.8). There are two methods to prevent overflow.
One method is to ensure a sufficient data width to prevent overflow. However, this
method requires more hardware resources. The other method is scaling to prevent the
increase in data width by multiplying the calculation result with a constant less than
one. The scaling technique can effectively save hardware resources. The IP cores
described in this chapter can specify a scaling value and the timing of its multipli-
cation. This is called a scaling schedule. The scaling schedule method was used for
the special-purpose computer introduced in this chapter. The scaling schedule is set
from the host PC.
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Next, the reconstruction calculation method at different depths is explained. The
distance zi between the hologram and the reconstructed plane affects only G(n,m)

in Eq. (20.7). Therefore, the circuit only recalculates G(n,m) at the given distance
zi and multiplies the recalculated G(n,m) with the Fourier transform Î (n,m) of
a hologram. Repeating this process, the circuit outputs stacked reconstructions at
different depths.

The module Calc_Top is controlled by a state machine with four states besides
an idle state (IDLE). The roles of each state are as follows.

• STATE1: Read hologram data from Hologram RAM and perform 1D FFT (hori-
zontal direction). Then, save the result to xfft RAM in the module Calc_Top. At
this time, the scaling schedule is given to the FFT core. Repeat this for 128 rows.
In this state, the initial distance of zi is set.

• STATE2: The FFT result in STATE1 is vertically read from xfft RAM, 1D FFT is
performed in the vertical data, and the results are saved in yfft RAM in the module
Calc_Top. At this time, the scaling schedule is given to the FFT core. Repeat
this for 128 columns. In this state, the interval dz between adjacent reconstructed
planes is read.

• STATE3: The FFT calculation result in STATE2 is read from yfft RAM and mul-
tiplied by G(n,m). Then, 1D IFFT is performed and the result is saved in xfft
RAM in the module Calc_Top. At this time, the scaling schedule is given to the
FFT core. Repeat this for 128 rows.

• STATE4: The FFT calculation result in STATE3 is vertically read from xfft RAM,
1D IFFT is performed on the vertical data, and the result is saved in the result
RAM in the module Calc_Top. At this time, the scaling schedule is given to the
FFT core. Repeat this for 128 columns.

Each state starts after the previous state processing is completed.Within each state,
data for 128× 128 pixels is continuously processed in a pipeline fashion. Listing 20.1
shows the very high-speed integrated circuit (VHSIC) hardware description lan-
guage (VHDL) implementation of the module “Calc_top”.

Listing 20.1 VHDL implementation of Calc_top

1 entity Calc_top is
2 Port ( clk :in STD_LOGIC;
3 rst :in STD_LOGIC;
4 calc_start :in STD_LOGIC;
5 fin_rst :in STD_logic;
6 holo_ram_doutb :in STD_LOGIC_VECTOR (31 downto 0);
7 --Upper16bit:Phi_Im / Lower16bit:Phi_re
8 holo_ram_addrb :out STD_LOGIC_VECTOR (13 downto 0);
9 calc_ram_web :out STD_LOGIC_vector(0 downto 0);
10 calc_ram_addrb :out STD_LOGIC_VECTOR (13 downto 0);
11 calc_ram_dinb :out STD_LOGIC_VECTOR (31 downto 0);
12 --Upper16bit:Phi_Im / Lower16bit:Phi_re
13 calc_fin :out STD_LOGIC;
14 calc_stage :out STD_LOGIC_VECTOR(3 downto 0);
15 fft_ovflo :out STD_LOGIC;
16 ram2_addrb :out STD_LOGIC_VECTOR (13 downto 0);
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17 ram2_doutb :in STD_LOGIC_VECTOR (31 downto 0)
18 );
19 end Calc_top;
20

21 architecture Behavioral of Calc_top is
22

23 --cntrl signal
24 signal s_cnt :std_logic_vector(13+1 downto 0):=(others=>’0’);
25 signal d_cnt :std_logic_vector( 13 downto 0):=(others=>’0’);
26 signal g_cnt :std_logic_vector( 13 downto 0):=(others=>’0’);
27 signal s_cnt2 :std_logic_vector( 13 downto 0):=(others=>’0’);
28 --fft
29 signal fft_scale_sch_sig :STD_LOGIC_VECTOR(31 DOWNTO 0);
30 --(yIFFT/xIFFT/yFFT/xFFT) Bit shifted and used in this

order
31 signal fft_start :std_logic;
32 signal fft_fwd_inv :std_logic;
33 signal fft_xn_re :std_logic_vector (15 downto 0);
34 signal fft_xn_im :std_logic_vector (15 downto 0);
35 signal fft_xk_re :std_logic_vector (15 downto 0);
36 signal fft_xk_im :std_logic_vector (15 downto 0);
37 signal fft_dv :std_logic;
38 --xfft_output
39 signal xfft_ram_addra : STD_LOGIC_VECTOR(13 DOWNTO 0);
40 signal xfft_ram_dina : STD_LOGIC_VECTOR(31 DOWNTO 0);
41 signal xfft_ram_addrb : STD_LOGIC_VECTOR(13 DOWNTO 0);
42 signal xfft_ram_doutb : STD_LOGIC_VECTOR(31 DOWNTO 0);
43 signal xfft_ram_wea : STD_LOGIC_VECTOR (0 downto 0);
44 --yfft_output
45 signal yfft_ram_addra : STD_LOGIC_VECTOR(13 DOWNTO 0);
46 signal yfft_ram_dina : STD_LOGIC_VECTOR(31 DOWNTO 0);
47 signal yfft_ram_addrb : STD_LOGIC_VECTOR(13 DOWNTO 0);
48 signal yfft_ram_doutb : STD_LOGIC_VECTOR(31 DOWNTO 0);
49 signal yfft_ram_wea : STD_LOGIC_VECTOR (0 downto 0);
50 --G
51 signal zparam_sig :STD_LOGIC_VECTOR(31 DOWNTO 0);
52 signal G_re :std_logic_vector (15 downto 0);
53 signal G_im :std_logic_vector (15 downto 0);
54 --cmplx_mult
55 signal cmplx_re :STD_LOGIC_VECTOR(15 downto 0);
56 signal cmplx_im :STD_LOGIC_VECTOR(15 downto 0);
57

58 COMPONENT Calc_G
59 PORT ( clk : in STD_LOGIC;
60 n : in STD_LOGIC_VECTOR (6 downto 0);
61 m : in STD_LOGIC_VECTOR (6 downto 0);
62 zparam : in STD_LOGIC_VECTOR (31 downto 0);
63 G_re : out STD_LOGIC_VECTOR (15 downto 0);
64 G_im : out STD_LOGIC_VECTOR (15 downto 0));
65 END COMPONENT;
66

67 COMPONENT IP_fft_core_128
68 PORT (
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69 clk : IN STD_LOGIC;
70 start : IN STD_LOGIC;
71 xn_re : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
72 xn_im : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
73 fwd_inv : IN STD_LOGIC;
74 fwd_inv_we : IN STD_LOGIC;
75 scale_sch : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
76 scale_sch_we : IN STD_LOGIC;
77 rfd : OUT STD_LOGIC;
78 xn_index : OUT STD_LOGIC_VECTOR(6 DOWNTO 0);
79 busy : OUT STD_LOGIC;
80 edone : OUT STD_LOGIC;
81 done : OUT STD_LOGIC;
82 dv : OUT STD_LOGIC;
83 xk_index : OUT STD_LOGIC_VECTOR(6 DOWNTO 0);
84 xk_re : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
85 xk_im : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
86 ovflo : OUT STD_LOGIC
87 );
88 END COMPONENT;
89

90 COMPONENT IP_RAM_32bit
91 PORT (
92 clka : IN STD_LOGIC;
93 wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
94 addra : IN STD_LOGIC_VECTOR(13 DOWNTO 0);
95 dina : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
96 clkb : IN STD_LOGIC;
97 addrb : IN STD_LOGIC_VECTOR(13 DOWNTO 0);
98 doutb : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)
99 );

100 END COMPONENT;
101

102 COMPONENT IP_cmplx_mult
103 port (
104 ar: in std_logic_vector(15 downto 0);
105 ai: in std_logic_vector(15 downto 0);
106 br: in std_logic_vector(15 downto 0);
107 bi: in std_logic_vector(15 downto 0);
108 clk: in std_logic;
109 pr: out std_logic_vector(15 downto 0);
110 pi: out std_logic_vector(15 downto 0));
111 END COMPONENT;
112

113 --state machine
114 type CALC_STATE is (IDLE,STAGE1,STAGE2,STAGE3,STAGE4);
115 signal NEXT_STAGE : CALC_STATE := IDLE;
116

117 begin
118

119 main:process(clk)
120 begin
121 if(clk’event and clk =’1’)then
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122 case NEXT_STAGE is
123

124 when IDLE =>
125 --init
126 calc_stage <= "0000";
127 s_cnt <= (others=>’0’);--for read
128 d_cnt <= (others=>’0’);
129 g_cnt <= (others=>’0’);--for write
130 s_cnt2 <= (others=>’0’);--for read (xifft)
131 --holo data ram
132 holo_ram_addrb <= (others=>’0’);
133 --calc result ram
134 calc_ram_web <= "0";
135 calc_ram_addrb <= (others=>’0’);
136 --paramater
137 ram2_addrb <= "00000000000000";
138 fft_scale_sch_sig <= ram2_doutb; --Determine the value of FFT

scaling
139 --

--------------------------------------------------

140 --fft ram
141 xfft_ram_wea <= "0";
142 xfft_ram_addra <= (others=>’0’);
143 xfft_ram_addrb <= (others=>’0’);
144 yfft_ram_wea <= "0";
145 yfft_ram_addra <= (others=>’0’);
146 yfft_ram_addrb <= (others=>’0’);
147 --

--------------------------------------------------

148 if(fin_rst=’1’)then
149 calc_fin <= ’0’;
150 elsif(calc_start = ’1’)then
151 NEXT_STAGE <= STAGE1;
152 else
153 NEXT_STAGE <= IDLE;
154 end if;
155 ----------------------------------------STAGE1 start
156 when STAGE1 => --xfft
157 --init
158 calc_stage <= "0001";
159 fft_fwd_inv <= ’1’; --FFT
160 --state count
161 s_cnt <= s_cnt + ’1’;
162 --xfft input
163 holo_ram_addrb <= s_cnt(13 downto 0);
164 fft_xn_re <= holo_ram_doutb(15 downto 0);
165 --Starts with 2 clk delay from read due to the PCIe

RAM.
166 fft_xn_im <= holo_ram_doutb(31 downto 16);
167 --xfft output
168 xfft_ram_addra <= d_cnt;
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169 xfft_ram_dina <= fft_xk_im & fft_xk_re;
170 --fft control
171 if(s_cnt = "011111110000010")then
172 --Stop just before inputting the last 128 hologram

data (to de-assert the dv signal)
173 fft_start <= ’0’;
174 elsif(s_cnt = "00000000000001")then
175 --holo data Delayed start signal because it takes 2

clk to read RAM
176 fft_start <= ’1’;
177 end if;
178 --ram control
179 if(fft_dv=’1’)then
180 xfft_ram_wea <= "1";
181 d_cnt <= d_cnt + ’1’;
182 end if;
183 if(s_cnt = "100000101010100")then --finish write ram
184 s_cnt <= (others=>’0’); --reset before next stage
185 d_cnt <= (others=>’0’);
186 xfft_ram_wea <= "0";
187 xfft_ram_addra <= (others=>’0’);
188 fft_scale_sch_sig(7 downto 0) <= fft_scale_sch_sig(15 downto 8); --

Shift 8 bits to the right to adjust the
scaling value to the yFFT

189 NEXT_STAGE <= STAGE2; --Transition to yfft
calculation

190 end if;
191 ----------------------------------------STAGE1 end
192 ----------------------------------------STAGE2 start
193 when STAGE2 => --yfft
194

195 --init
196 calc_stage <= "0010";
197 --state cnt
198 s_cnt <= s_cnt + ’1’;
199 --yfft input
200 xfft_ram_addrb <= s_cnt(6 downto 0) & s_cnt(13 downto 7); --vertical

reading
201 fft_xn_re <= xfft_ram_doutb(15 downto 0);
202 fft_xn_im <= xfft_ram_doutb(31 downto 16);
203 --yfft output
204 yfft_ram_addra <= d_cnt;
205 yfft_ram_dina <= fft_xk_im & fft_xk_re;
206 --yfft control
207 if(s_cnt = "011111110000001")then
208 --Stop just before entering the last 128 pieces of

data
209 fft_start <= ’0’;
210 elsif(s_cnt = "00000000000000")then
211 fft_start <= ’1’;
212 end if;
213 --ram control
214 if(fft_dv=’1’)then
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215 yfft_ram_wea <= "1";
216 d_cnt <= d_cnt + ’1’;
217 end if;
218 if(s_cnt = "100000101010011")then --finish write ram
219 s_cnt <= (others=>’0’); --reset before next stage
220 d_cnt <= (others=>’0’);
221 yfft_ram_wea <= "0";
222 yfft_ram_addra <= (others=>’0’);
223 fft_scale_sch_sig(7 downto 0) <= fft_scale_sch_sig(23 downto 16); --

Shift 8 bits to the right to adjust the
scaling value to xIFFT

224 NEXT_STAGE <= STAGE3;--Transition to G-
multiplication

225 end if;
226 --zparam control
227 ram2_addrb <= "00000000000001";
228 zparam_sig <= ram2_doutb; --Determine zparam value during

stage2
229 -------------------------------------STAGE2 end
230 -------------------------------------STAGE3 start
231 when STAGE3=> -- mult G and xIFFT
232 --init
233 calc_stage <= "0100";
234 fft_fwd_inv <= ’0’; --IFFT
235 --state cnt
236 s_cnt <= s_cnt + ’1’;
237 s_cnt2 <= s_cnt2 + ’1’;
238 --calc G
239 g_cnt <= g_cnt + ’1’;
240 --cmplx mult input
241 yfft_ram_addrb <= s_cnt2(13 downto 0);
242 if(s_cnt = "0000000000001000")then --1clk before G

calculation output
243 s_cnt2 <= (others=>’0’);
244 end if;
245 --xifft input
246 fft_xn_re <= cmplx_re;
247 fft_xn_im <= cmplx_im;
248 --xifft output
249 xfft_ram_addra <= d_cnt;
250 xfft_ram_dina <= fft_xk_im & fft_xk_re;
251 --xifft control
252 if(s_cnt = "011111110001110")then
253 fft_start <= ’0’; ----xIFFT end
254 elsif(s_cnt = "00000000001101")then --after 3clk from cmplx

start
255 fft_start <= ’1’; ----xIFFT start
256 end if;
257 --ram control
258 if(fft_dv=’1’)then
259 xfft_ram_wea <= "1";
260 d_cnt <= d_cnt + ’1’;
261 end if;
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262

263 if(s_cnt = "100000101100000")then --finish write ram
264 --reset before next stage
265 s_cnt <= (others=>’0’);
266 d_cnt <= (others=>’0’);
267 xfft_ram_wea <= "0";
268 xfft_ram_addra <= (others=>’0’);
269 fft_scale_sch_sig(7 downto 0) <= fft_scale_sch_sig(31 downto 24); --

Shift a bit to adjust the scaling value to
yIFFT

270 NEXT_STAGE <= STAGE4; --Transition to yIFFT
calculation

271 end if;
272 -----------------------------------STAGE3 end
273 -----------------------------------STAGE4 start
274 when STAGE4 => --yIFFT
275 --init
276 calc_stage <= "1000";
277 --state cnt
278 s_cnt <= s_cnt + ’1’;
279 --yifft input
280 xfft_ram_addrb <= s_cnt(6 downto 0) & s_cnt(13 downto 7); --
281 fft_xn_re <= xfft_ram_doutb(15 downto 0);
282 fft_xn_im <= xfft_ram_doutb(31 downto 16);
283 --yifft output
284 calc_ram_addrb <= d_cnt;
285 calc_ram_dinb <= fft_xk_im & fft_xk_re;
286 --yifft control
287 if(s_cnt = "011111110000001")then
288 --Stop just before entering the last 128 pieces of

data
289 fft_start <= ’0’;
290 elsif(s_cnt = "00000000000000")then
291 fft_start <= ’1’;
292 end if;
293 --ram control
294 if(fft_dv=’1’)then
295 calc_ram_web <= "1";
296 d_cnt <= d_cnt + ’1’;
297 end if;
298 if(s_cnt = "100000101010011")then --finish write ram
299 s_cnt <= (others=>’0’); --reset before next stage
300 calc_ram_addrb <= (others=>’0’);
301 calc_ram_web <= "0";
302 calc_fin <= ’1’; --termination flag
303 NEXT_STAGE <= IDLE;--Transition to IDLE
304 end if;
305 ---------------------------------------STAGE4 end
306 when others => null;
307

308 end case ;
309 end if;
310 end process;
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311

312 --inst RAM
313 xfft_ram : IP_RAM_32bit
314 PORT MAP (
315 clka => clk,
316 wea => xfft_ram_wea,
317 addra => xfft_ram_addra,
318 dina => xfft_ram_dina,
319 clkb => clk,
320 addrb => xfft_ram_addrb,
321 doutb => xfft_ram_doutb
322 );
323 yfft_ram : IP_RAM_32bit
324 PORT MAP (
325 clka => clk,
326 wea => yfft_ram_wea,
327 addra => yfft_ram_addra,
328 dina => yfft_ram_dina,
329 clkb => clk,
330 addrb => yfft_ram_addrb,
331 doutb => yfft_ram_doutb
332 );
333

334 --inst xfft
335 inst_FFT : IP_fft_core_128
336 PORT MAP (
337 clk => clk,
338 start => fft_start,
339 xn_re => fft_xn_re,
340 xn_im => fft_xn_im,
341 fwd_inv => fft_fwd_inv,--FFT 1 / IFFT 0
342 fwd_inv_we => fft_start,
343 scale_sch => fft_scale_sch_sig(7 downto 0),
344 scale_sch_we => fft_start,
345 rfd => open,
346 xn_index => open,
347 busy => open,
348 edone => open,
349 done => open,
350 dv => fft_dv,
351 xk_index => open,
352 xk_re => fft_xk_re,
353 xk_im => fft_xk_im,
354 ovflo => fft_ovflo
355 );
356

357 --inst G
358 inst_Calc_G : Calc_G
359 PORT MAP (
360 clk => clk,
361 n => g_cnt(6 downto 0),
362 m => g_cnt(13 downto 7),
363 zparam => zparam_sig,
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364 G_re => G_re,
365 G_im => G_im
366 );
367

368 --cmplx mult (G*2DFFT) ---latency 4 clk
369 inst_cmplx_mult : IP_cmplx_mult
370 port map (
371 ar => yfft_ram_doutb(15 downto 0), --yFFT_RE
372 ai => yfft_ram_doutb(31 downto 16), --yFFT_IM
373 br => G_re,
374 bi => G_im,
375 clk => clk,
376 pr => cmplx_re,
377 pi => cmplx_im
378 );
379

380 end Behavioral;

20.2.5 Overview of Calc_G

Figure20.5 shows a block diagram of Calc_G in Fig. 20.3. This module calculates
Eq. (20.7). The equation is shown again below:

G(n,m) = exp(2π iθ) = exp
{
2π i

( −λzi
2 N 2(�P)2

)
(n2 + m2)

}
. (20.9)

From Euler’s formula exp (2π iθ) = cos 2πθ + i sin 2πθ , the real and imaginary
parts of G(n,m) are calculated using “cos ROM (read only memory)” and “sin
ROM”. sin ROM and cos ROM store the sin 2πθ and cos 2πθ values as tables,
respectively. Because of the periodic nature of trigonometric functions, the integer
part of θ is unnecessary and only its decimal part should be calculated. “zparam”
in Fig. 20.5 is −λzi

2N 2(�P)2
and has only a decimal part of 32-bit width. Since zparam
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Fig. 20.5 Block diagram of Calc_G
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requires complex calculations, zparam is calculated in advance on the host PC and
transferred to the FPGA.

Next, the detailed operation of the circuit is described. The circuit receives n, m,
and zparam, and then squares n and m, respectively. n and m are generated from the
14-bit binary counter in Fig. 20.3. The upper and lower 7 bits are assigned to m and
n, respectively. In the case of 128 × 128, the result obtained by the discrete Fourier
transform is the spectral intensity for −64 to 63 times the fundamental frequency.
Therefore, to match the result of the Fourier transform, the square operation is a
signed calculation in 2’s complement. By this calculation, n and m can be set to
0, 1, 2, . . . , 127 instead of 0, 1, 2, . . . , 63,−64,−63, . . . ,−1. n2 and m2 are added
and then multiplied with zparam. Finally, the cos and sin ROMs are used to obtain
cos 2πθ and sin 2πθ values, respectively. The data width of the input is 12 bits, and
that of the output is 16 bits. The cos 2πθ and sin 2πθ values can be calculated in one
clock cycle. Listing 20.2 shows the VHDL implementation of the module “Calc_G”.

Listing 20.2 VHDL implementation of Calc_G

1 entity Calc_G is
2 port(
3 clk : in std_logic;
4 n : in std_logic_vector( 6 downto 0);
5 m : in std_logic_vector( 6 downto 0);
6 zparam : in std_logic_vector(31 downto 0);
7 G_re : out std_logic_vector(15 downto 0);
8 G_im : out std_logic_vector(15 downto 0)
9 );
10 end Calc_G;
11

12 architecture Behavioral of Calc_G is
13

14 -- Multiplier for n, m squared (signed 7bit x 7bit, latency
= 3 ,ver11.2)

15 component IP_mult_signed_7x7
16 port (
17 clk : in std_logic;
18 a : in std_logic_vector( 6 downto 0);
19 b : in std_logic_vector( 6 downto 0);
20 p : out std_logic_vector(13 downto 0)
21 );
22 end component;
23

24 signal n2, m2 : std_logic_vector(13 downto 0);
25 signal n2_plus_m2 : std_logic_vector(13 downto 0);
26

27 signal zparam_delay1 : std_logic_vector(31 downto 0);
28 signal zparam_delay2 : std_logic_vector(31 downto 0);
29 signal zparam_delay3 : std_logic_vector(31 downto 0);
30

31 -- Multiplier to multiply zparam by (n^2 + m^2)
32 -- (unsigned 32bit x 14bit, latency = 4,ver11.2)
33 component IP_mult_unsigned32x14
34 port (
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35 clk : in std_logic;
36 a : in std_logic_vector(31 downto 0);
37 b : in std_logic_vector(13 downto 0);
38 p : out std_logic_vector(45 downto 0)
39 );
40 end component;
41

42 signal mult_zparam_out : std_logic_vector(45 downto 0);
43 signal theta : std_logic_vector(11 downto 0);
44

45 -- cos ROM (addr 12bit, data 16bit,ver 7.3)
46 component ipcosrom
47 port (
48 clka : in std_logic;
49 addra : in std_logic_vector(11 downto 0);
50 douta : out std_logic_vector(15 downto 0)
51 );
52 end component;
53

54 -- sin ROM (addr 12bit, data 16bit)
55 component ipsinrom
56 port (
57 clka : in std_logic;
58 addra : in std_logic_vector(11 downto 0);
59 douta : out std_logic_vector(15 downto 0)
60 );
61 end component;
62

63

64 begin
65

66 -- n and m squared (clk 1-3)
67 square_n : IP_mult_signed_7x7 port map (
68 clk => clk,
69 a => n,
70 b => n,
71 p => n2
72 );
73

74 square_m : IP_mult_signed_7x7 port map (
75 clk => clk,
76 a => m,
77 b => m,
78 p => m2
79 );
80

81 -- Calculate n^2 + m^2
82 process (clk) begin
83 if (clk’event and clk = ’1’) then
84 n2_plus_m2 <= n2 + m2;--(clk 4)
85 end if;
86 end process;
87
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88 -- Internal delay of zparam
89 process (clk) begin
90 if (clk’event and clk = ’1’) then
91 zparam_delay1 <= zparam;
92 zparam_delay2 <= zparam_delay1;
93 zparam_delay3 <= zparam_delay2;
94 end if;
95 end process;
96

97

98 -- Multiply (n^2 + m^2) by zparam (clk 4-8)
99 --

100 mult_zparam : IP_mult_unsigned32x14 port map (
101 clk => clk,
102 a => zparam_delay3,
103 b => n2_plus_m2,
104 p => mult_zparam_out --clk 8
105 );
106

107

108 -- Rounding in theta (clk 9)
109 process (clk) begin
110 if (clk’event and clk = ’1’) then
111 theta <= mult_zparam_out(31 downto 20) + ("00000000000" &

mult_zparam_out(19)); --(clk9)
112 end if;
113 end process;
114

115

116 -- cos, sin ROM (clk 10)
117 cosrom : ipcosrom port map (
118 clka => clk,
119 addra => theta,
120 douta => G_re
121 );
122

123 sinrom : ipsinrom port map (
124 clka => clk,
125 addra => theta,
126 douta => G_im
127 );
128 end Behavioral;

20.2.6 Performance

In this section, to evaluate the performance of the special-purpose computer, cal-
culations performed on the VC707 computer are compared with those of software
alone, and the results are discussed. The communication interface between the FPGA
evaluation board and the host PC was PCIe with a maximum bandwidth of 4 GB/s.
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Table 20.2 Software
environment

Motherboard msi X995 SLI PLUS

CPU Intel Core i7-5820K
3.30GHz

Memory 16 GB (8 GB 2)

Operating system CentOS Linux 7.1.1503

FPGA design software ISE 14.4

Table 20.3 Summary of the
hardware resource usage.
Numbers in parentheses
indicate hardware resource
utilization

FPGA

FPGA chip Virtex7

Register 6,459 (1%)

LUT 5,325 (1%)

Block RAM 99 (9%)

Max frequency 277.362MHz

Frequency 250MHz

Table20.2 shows the software environment for theFPGAevaluationboard.Table20.3
gives summary of the hardware resource usage for the FPGA chip.

From Table20.3, it can be seen that there is room in circuit resources for the
registers and LUTs. Therefore, the calculation can be accelerated by parallelizing
the calculation circuit since the harware resources are still available.

20.2.7 Calculation Speed

The calculation speeds of the software alone and the computer system were eval-
uated. Each calculation time is shown in Table20.4. The total processing time in
the special-purpose computer, including communication time, was 31 ms, and the
pure calculation time of Eq. (20.5) (excluding communication time) was only 2 ms.
The software alone used FFTTW3.3.4 with six CPU threads, which is an open-
source FFT library. Table20.4 shows that the special-purpose computer was able to

Table 20.4 Calculation times of software alone and special-purpose computer

Processor Calculation time [ms] Acceleration ratio

Software alone 51.0 1.0

Special-purpose computer
(total processing time)

31.0 1.65

Special-purpose computer
(only internal processing time)

2.0 25.5
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calculate Eq. (20.5) 1.65 times faster than the software alone when communication
time was included and 25.5 times faster when communication time was excluded.

20.2.8 Reconstructed Images

Figure20.6 shows the simulated hologram of two point objects. One point object is
at (0.0[m], 0.0[m], 0.10[m]) and other is at (0.0[m], 0.0[m], 0.09[m]). Figures20.7
and 20.8 show the reconstructed images calculated by the special-purpose computer.
Figure20.7 shows the reconstructed image at z = 0.10[m]. Figure20.8 shows the
image at z = 0.09[m]. The special-purpose computer was able to obtain correct
reconstructions.

Fig. 20.6 Simulated hologram of two point objects
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Fig. 20.7 Reconstructed
image at z = 0.9[m]

Fig. 20.8 Reconstructed
image at z = 1.0[m]
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Integer type, 162
Integral photography (IP), 186
Intellectual property core (IP core), 347
Interference, 6
Interpolation, 213

J
Jacobian, 210
JPEG Pleno Holography, 273

K
Kernel, 73
Kernel functions, 72
Kinoform, 29

L
L1 cache, 160
Latency, 53, 101, 154
Layer image, 194
Layer method, 194
Lens array, 186
Light field, 257
Light-ray information, 185
Linear convolution, 120, 194
Liquid crystal phase modulator, 313
Logic synthesis, 98
Look-up table (LUT), 155, 170, 176, 332,

334
Lozenge cell, 264

M
Many-core CPU, 57
MATLAB, 211, 281
Memory caching, 263
Message passing interface (MPI), 231
Multi-core CPU, 57
Multidimension-multiplexed full-phase-

encoding holography (MPH), 312
Multithread, 123, 146
Multiwavelength-multiplexed phase-

shifting incoherent color digital
holography (MP-ICDH), 313

Mutual coherence, 243

N
Node, 228
Non-locality, 273
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No Operation (NOP), 51
Nyquist–Shannon sampling theorem, 241

O
Objective quality assessment, 277
Objective VQA, 277
Object wave, 18
Off-axis holography, 20, 34
OpenCL, 83
Open Computing Language, 83
OpenMP, 123, 145
Orthographic view reconstruction, 286
Overflow, 348

P
Parallel reduction, 79
Paraxial approximation, 11
PC cluster, 228
PCI Express, 346
Perspective reconstruction, 284
Phase-added stereogram (PAS), 257
Phase-only hologram, 29, 201
Phase-shifting digital holography, 38
Phase space, 285
Piezo actuator, 313
Pipeline, 230
Pipeline bubble, 51
Pipeline delay, 50
Pipeline depth, 50
Pipeline parallelization, 102
Pipeline processing, 48
Pipeline stage, 50
Pipeline stall, 51
Plan, 123
Plane wave, 5
Plane wave expansion method, 8
Plenoptic function, 257
Plenoptic imaging, 274
Point cloud, 25, 258
Point-cloud method, 201
Point spread function (PSF), 258
Polarization-imaging camera, 320
Polygon-based hologram, 207
Pragma directive, 146
Programmable shader, 69
Proximal operator, 248
Python, 261

Q
Quantitative phase imaging (QPI), 318

R
Random phase, 196
Rank, 231
Ray-tracing method, 171
Recurrence formula, 27, 151
Reduction, 78, 149
Register, 48
Restricted isometry property (RIP), 243
RGB-D, 193
Rotation matrix, 210
Rounding operator, 261

S
Sampling theorem, 36
Scalar approximation, 3
Scalar computer, 55
Scaling, 348
Sectional image, 196
Self-reference DH (SRDH), 310, 318
Shading language, 69
Shared memory, 231
Shifted and scaled diffraction, 15
Short-time Fourier transform (STFT), 257
Single instruction multiple data (SIMD), 54,

145
Single-shot full-color off-axis DH, 304
Single-shot phase-shifting digital hologra-

phy, 41
Single-shot phase-shifting incoherent digital

holography (SSPS-IDH), 310
Single-shot phase-shifting (SSPS), 309
Soft thresholding, 248
Sommerfeld diffraction, 8
Sparse, 241
Sparse CGH, 255
Sparseness significance ranking measure,

279
Sparsity, 253, 263
Spatial coherence, 5
Spatial frequency, 36
Spatial frequency-division multiplexing,

304
Special-purpose computer, 329, 345
Speckle noise, 274
Spherical wave, 5
Split-LUT (S-LUT), 176
Superscalar computer, 55
Synchronize, 78
SystemVerilog, 99, 334

T
Taylor approximation, 260
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Taylor expansion, 10, 27
Temporal coherence, 5
Thread, 73
3D affine transformation, 221
Throughput, 53, 101
Total variation (TV), 245
Transfer function, 9
Twin-image problem, 34

V
Vector processor, 55
Versatile similarity metric (VSM), 279
VHDL, 99, 349
Visual quality, 272

Visual quality assessment (VQA), 272

W
Wavefront recording plane (WRP), 257
Wave vector, 4, 35
Window function, 258
Wraparound effect, 120

Z
Zero padding, 120, 194, 212
Zeroth-order diffraction, 18
Zone plate, 258
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