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Abstract Placement of best management practices (BMPs) is a constructive 
approach to control surface runoff. However, deciding where these BMPs need to be 
placed in practice remains a complex question, often requiring practitioners in the 
field to analyze trade-offs between the financial capital available and physical goals 
such as runoff reduction and pollutant reduction. This work describes a multiobjec-
tive optimization framework applied to Greater Hyderabad Municipal Corporation 
(GHMC), India, for the 2016 flooding event. The fuzzy approach converts a multi-
objective optimization problem to a single objective problem through a membership 
function. Three membership functions, namely, nonlinear, exponential, and hyper-
bolic, were employed. Single Objective Genetic Algorithm (SOGA) is used for 
performing the optimization. Performing the optimization procedure with hyperbolic 
membership function yielded a degree of satisfaction, λ = 0.8796, corresponding 
to a BMP configuration spanning 61.98 km2 of the urban case study area. This 
configuration would have reduced surface runoff by 1.02 × 107 m3 while removing 
73.87 tons of pollutants during this historic extreme rainfall event and arrived at a 
monetary cost of Rs. 1.16 × 1010. Using the exponential membership function with 
125 different sets of parameters yielded solutions with λ ranging from 0.5479 to 
0.6432, and the average value of λ is 0.5950. Similar experiments with a nonlinear 
membership function yielded λ varying from 0.1307 to 0.9601 with an average λ of 
0.5454. 
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1 Introduction 

Best management practices (BMPs) have been widely used for over two decades glob-
ally to manage flood risks, remove pollutants, or reduce sediment in water bodies 
[1–3]. To optimize the placement of BMPs, the present approaches use a range 
of mathematical optimization techniques such as integer programming, nonlinear 
programming, and evolutionary algorithms [4]. Behroozi et al. [5] used multiobjec-
tive particle swarm optimization (PSO) in District 10, Tehran, Iran, to minimize peak 
water flow rate and pollutant concentration. Singh et al. [6] describe a case study 
from Heredia, Costa Rica, where bioretention areas, green roofs, and infiltration 
trenches are placed in an urban setting to control flood risks. They use a nonlinear 
programming technique to optimize and formulate the trade-offs between land use 
and cost. Foomani and Malekmohammadi [7] proposed fuzzy logic and analytic hier-
archy process for identifying optimum locations of BMPs in the northern region of 
Tehran, Iran. Li [8] developed SWMM_FLC, a combination of SWMM, fuzzy logic 
control, and GA, to reduce downstream flooding volume. Zhang et al. [9] applied 
Storm Water Management Model (SWMM) and System for Urban Stormwater Treat-
ment and Analysis Integration (SUSTAIN) to conduct watershed-level optimization 
for Sponge City, China. Annual average runoff volume and total pollutants reduced 
workout to 87.61% and 85%. Dwivedula et al. [10] employed an ensemble of (1) non-
dominated sorting genetic algorithm-III and (2) constrained two-archive evolutionary 
algorithm for optimizing zone-wise BMP placement in GHMC. Studies presented 
here, including that of [10] and elsewhere, have not reported any applications of 
fuzzy optimization in the placement of BMPs. 

2 Study Area and Data Source 

2.1 Greater Hyderabad Municipal Corporation 

In this study, a fuzzy multiobjective approach is used to optimize the placement 
of BMPs for GHMC as a whole (not zone-wise). This section briefly describes the 
following: 

• Case study and process(es) used to identify potential BMP sites. 
• Multiobjective optimization problem, i.e., the decision variables, objectives, and 

constraints. 
• Fuzzy optimization framework and membership functions used. 
• Single Objective Genetic Algorithm (SOGA). 

The fuzzy optimization process allows converting a multiobjective problem to a 
single objective problem, enabling us to use a Single Objective Genetic Algorithm 
(SOGA). Figure 1 presents the study area.
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Fig. 1 Study area of GHMC 

2.2 Data Used 

The present study examines a historic extreme rainfall event of 237.5 mm during 
September 20–28, 2016. We attempt to analyze the impact of BMP placement if 
a similar extreme event was to happen again. Hydrologic Engineering Centre’s-
Hydrologic Modeling System (HEC-HMS) was employed to simulate surface runoff 
[11] and SUSTAIN [12] was used for identifying the potential BMP sites. EPA-
SUSTAIN siting tool identified a total of 5,45,895 possible sites. Nine types of 
BMPs are being considered for placement in the GHMC. 

2.2.1 Multiobjective Optimization Problem 

The three objectives we wish to optimize are maximizing runoff reduction volume 
Z1 (in m3) and pollutant load reduction Z2 (in tons) while minimizing the cost of 
construction Z3 (in Indian Rupees). For an individual BMP for total area Ak , we  
can select (all the areas/a fractional part of an area/none of an area. This choice is 
encapsulated as a decision variable, denoted by Xk (0 ≤ Xk ≤ 1). There is a total of 
K decision variables. The decision variables (X) are related to the objectives (Z) as:  

⎡ 
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Z1 

Z2 

Z3 

⎤ 
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∑
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⎧⎨ 

⎩ 

⎡ 

⎣ 
Rk ∗ ρk 

Sk ∗ ηk 
−1 ∗ dk ∗ ck 

⎤ 

⎦ ∗ Ak ∗ Xk 

⎫⎬ 

⎭∀k ∈ [0, k] (1) 

where R is the rainfall, S is the runoff, ρ is the runoff reduction efficiency of the 
BMP, η is the pollutant reduction efficiency, d is the depth of the BMP, and c is
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the construction cost of the BMP per unit volume. More details about case studies, 
modeling, and data requirements are available from [10]. 

2.2.2 Fuzzy Optimization and Membership Functions 

Our problem in optimization is maximizing the objectives (Z). Lower ZL and upper 
limits ZU for goals are shown in Table 1. 

Each objective Z can be represented as a function of the decision variables (X), i.e., 
Zi = f i(X) (Eq.  1). In this work, we define a membership function denoted by μz(X) 
for each objective. We studied hyperbolic, exponential, and nonlinear membership 
functions (refer to Table 2). 

For all three membership functions, Z ≤ ZL is 0 and Z ≥ ZU is 1. 
We notice that the hyperbolic membership function does not have any parameters 

that the decision-maker must choose, unlike nonlinear or exponential membership 
functions. S is a non-zero parameter 0 < S ≤ 1 [13]. β determines the shape of the 
membership function. 

The fuzzy optimization problem (with N objectives) is as follows: 
Maximize λ, subject to constraints: 

μz(X) ≥ λ ∀i ∈ {1, 2,...N} 
0 ≤ λ ≤ 1 
Z1 ≥ 3.5 × 106 m3 and Z2 ≥ 25 tons 

along with other existing constraints and bounds.

Table 1 Lower and upper 
limits of the objective 
functions 

Objective Units ZL ZU 

Runoff reduction (Z1) 107 m3 0 1.547 

Pollutant load reduction (Z2) 1011 mg 0 1.109 

Monetary cost (Z3) 1010 Rs − 3.497 0 

Table 2 Types of 
membership functions and 
corresponding equations for 
ZL < Z < ZU 

Hyperbolic 1 
2 tanh

[(
Z − ZU +ZL 

2

)
6 

ZU −ZL

]
+ 1 2 

Exponential
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Nonlinear
[
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ZU −ZL

]β 
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2.2.3 Single Objective Genetic Algorithms 

SOGA with a population size of 1000, simulated binary cross-over probability of 
0.9 [14], polynomial mutation probability of 0.1 [15], and tournament selection are 
used for optimization. The PyMoo library [16] is employed for implementing the 
optimization functions. 

3 Results and Discussions 

The results of optimization with three membership functions are as follows. All 
source codes used to run these experiments have been open sourced under the MIT 
license and are available online.1 

3.1 Hyperbolic Membership Function 

Performing the optimization procedure with hyperbolic membership function for all 
three objectives yielded a solution of satisfaction λ = 0.8796, corresponding to a 
real-world configuration of BMPs spanning 61.98 km2 of area, which reduce surface 
runoff by 1.02 × 107m3, while removing 73.87 tons of pollutant at a monetary cost 
of Rs. 1.16 × 1010. The progress of SOGA can be visualized by plotting the best-
discovered value of λ against the number of function evaluations as depicted in 
Fig. 2.

3.2 Exponential Membership Function 

Next, we present the results of the exponential membership function. Optimization 
procedure was run with 125 different configurations of the parameter s such that: s1, 
s2, s3 ∈ {0.2, 0.4, 0.6, 0.8, 1}. 

Here, s1, s2, s3 are the parameters for runoff reduction, pollutant load reduction, 
and cost (Z3). Use of exponential membership function with these 125 different sets 
of parameters yielded solutions with λ ranging from 0.5479 to 0.6432. The average 
value of λ is 0.5950. Optimization convergence of all these 125 different sets of 
parameters can be visualized in Fig. 3. Each line in Fig. 3 represents a different 
set of parameters. It is noticed that all the lines follow similar trends, suggesting 
that the optimization process is not very sensitive to changes in parameters s1, s2,

1 Link to code repository: https://github.com/rohitdwivedula/bmp-multiobjective-optimisation 
(https://doi.org/10.5281/zenodo.6676306). 

https://github.com/rohitdwivedula/bmp-multiobjective-optimisation
https://doi.org/10.5281/zenodo.6676306
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Fig. 2 Optimization process with hyperbolic membership function for all three objectives

s3. We also notice that the value of λ begins to plateau for most lines after the 
60th generation (or 60,000 function evaluations), indicating that the optimization 
approach has converged. 

Fig. 3 Optimization process with exponential membership function for all three objectives and 
various values of the parameter
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Fig. 4 Optimization process with nonlinear membership function with varying values of member-
ship function parameter β 

3.3 Nonlinear Membership Function 

Use of nonlinear membership function with 125 different sets of parameters yielded 
solutions with λ ranging from 0.1307 to 0.9601 with a moderate satisfiability of λ 
= 0.5454. The parameters of βi used were: β1, β2, β3 ∈ {0.1, 0.4, 1.0, 3.0, 5.0}. 

Here, β1, β2, and β3 are the parameters for Z1, Z2, and Z3, respectively. Optimiza-
tion convergence for nonlinear membership functions is plotted in Fig. 4, similar to 
the plots in previous sections. One key difference noticed is that solution is suscep-
tible to changes in the parameter β. For example, using (β1, β2, β3) = (5, 5, 5) yields  
the least value of λ = 0.1307, while (β1, β2, β3) = (0.1, 0.1, 0.1) yields the highest 
value of λ = 0.9601. Values of βi will have to be decided based on the relative 
importance of each objective; that is, objectives that are relatively more important 
must have a larger β relative to others. 

4 Conclusions 

A fuzzy optimization approach was applied to optimize BMPs in the GHMC. Experi-
mentation was done with a wide range of parameters to analyze the sensitivity of each 
membership function with its parameters. It is observed that the nonlinear member-
ship function is relatively more sensitive to changes in parameters when compared 
to the exponential membership function. Future work could include experimenta-
tion with more optimization algorithms, extending the analysis for potential future 
rainfall events, and applying this framework to other case studies.
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