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Abstract The study aims to present a fuzzy linear programming approach using 
fuzzy technological coefficients for optimal function of a reservoir system. This 
comprises a model that takes into account the water resource system’s inherent uncer-
tainty, which includes lack of adequate data, subjectivity, imprecision, and fuzziness. 
A single objective function, i.e., maximization of irrigation releases, is considered 
to solve the problem. The model is run for 75% dependable inflow into the reservoir 
while using fuzzy linear programming (FLP) approach. Here, uncertainty in reservoir 
operation parameters, including irrigation demand, reservoir storages, and irrigation 
releases, is taken into consideration by considering them as fuzzy sets. Construction 
of membership functions for the objective function and the constraints are included 
in the model development processes. The Khadakwasala reservoir in Maharashtra 
State, India, has been used as a case study to demonstrate the methodology. Opti-
mizing the fuzzy objectives and constraints leads to a compromised solution for the 
suggested FLP model. The resulting degree of truth (λ) for the chosen objective func-
tion is 0.48. Also, the monthly release pattern has been obtained in the command 
area which can be used by the users in the command area. 
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1 Introduction 

The fuzzy logic method can offer a potential option to the techniques considered 
for reservoir operation modeling in fuzzy decision-making problems, according to 
Russell et al. [1]. This approach is further adaptable and allows for the inclusion of 
expert opinions, which may make it more suitable to operators. To determine the 
best reservoir operating strategies for the Karanjwan reservoir in Maharashtra State, 
India, Balve and Patel [2] used fuzzy linear programming (FLP). The obtained truth 
level is 0.5058, and the related optimal irrigation releases are 88.51 Mm3. Compar-
isons between FLP’s reservoir release policy and linear programmings (LPs) are 
presented. Regulwar et al. [3] used three different models to determine the best oper-
ating strategy. By creating three models, i.e., when the resources and technological 
coefficients are fuzzy and when both technological coefficients and resources are 
fuzzy, then fuzzy set theory was utilized to explain ambiguity in a variety of param-
eters. Yeh [4] studied models for reservoir operation and management. Computer 
modeling techniques are necessary for the synchronization of reservoir systems to 
offer information for intelligent management and operational decisions. The most 
recent research on multireservoir system optimization was reviewed by Labadie [5]. 
Panigrahi and Mujumdar [6] advanced a fuzzy rule-based model for the manage-
ment of a single-purpose reservoir. The “if–then” assumption governs how the model 
behaves, with “if” denoting a vector of fuzzy premises and “then” denoting a vector of 
fuzzy consequences. Using genetic algorithms, Oliveira and Loucks [7] established 
operating principles for multireservoir systems. By utilizing fuzzy membership func-
tions, Fontane et al. [8] gave the vague and non-commensurable objectives for plan-
ning reservoir operation and investigated the applicability of the method in dynamic 
programming. According to Shreshtha et al. [9], fuzzy relations could be used to 
represent both the inputs (such as storage, inflows, and demands) and the outputs 
(historical releases) of reservoir operating principles. To get crisp output, these fuzzy 
inputs were combined and defuzzified. The approach for solving the FLP problem 
by utilizing a linear membership function was described by Gasimov et al. [10]. With 
the use of FLP with technology coefficients, FLP with technological coefficient, and 
fuzzy right-side numbers, a FLP problem has been resolved and methodology is 
illustrated through a numerical example. The idea of maximizing and minimizing 
sets was used to propose a novel fuzzy ranking algorithm by Anand Raj et al. [11]. 
The Ranking Fuzzy Weight’s (RANFUWs) approach is easy analytically and simple 
to use. The suggested approach (RANFUW method) was used to solve a planning 
and management issue for a river basin. To determine the most appropriate planning 
for the reservoirs and their related purposes, the technique was used to the Krishna 
River basin. Using three conflicting objectives, Raju and Kumar [12] used the Multi-
Objective Fuzzy Linear Programming (MOFLP) technique in irrigation planning. 
For the Sri Ram Irrigation Project in India, the study was carried out. The degree of 
truth (λ) of the compromised solution for these three objective functions was calcu-
lated to be 0.69. With the use of a multi-objective constrained linear programming 
problem, Thakre et al. [13] presented the solution to a FLP problem where the cost
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coefficients and constraint matrix were both fuzzy. Additionally, they demonstrated 
that the solutions proposed by them were independent of weights. Singh et al. [14] 
developed a LP model to suggest the best cropping strategy for the maximum net 
return at various water availability levels, including 100, 70 and 50% dependability 
levels. It was discovered that the water in the command area may support the best 
cropping strategy for the maximum net return. 

In the current study, the formulation of a FLP model is used to apply the fuzzy 
set theory to a water resources system in order to maximize reservoir release rates. 
Here, the LP model’s technological coefficients are considered as having a fuzzy 
nature. The Khadakwasala reservoir in Pune, Maharashtra State, India, is used as a 
case study to demonstrate the methodology. LINGO 19 is used to develop and solve 
the FLP model. 

2 Methodology 

In this model, the technological coefficients are fuzzy numbers and resources are 
crisp in nature. A membership function represents the level of truth (λ) of a certain 
value of the parameter within the fuzzy set. Figure 1 shows the flowchart for solving 
LP problem with fuzzy technological coefficients. Formulation of FLP model is 
explained as discussed in following sub-sections: 

2.1 LP Problems with Fuzzy Technological Coefficients 

A LP problem with fuzzy technological coefficients is given as [3]

max 
n∑

j=1 

c j x j

With LP solutions, develop payoff matrix and hence upper and lower bound for the objective 
function 

Obtain LP Solutions formulated with fuzzy technological coefficient as Z1 (Eq. (3) and Z2 Eq. (4)) under the sets of 
constraints 

Obtain LP solution with fuzzy technological coefficients under sets of 
constraints, Eqs. (8) to get the value of 

Fig. 1 Flowchart for development of LP solution with fuzzy technological coefficient 



506 S. V. Pawar et al.

s.t. 
n∑

j=1 

ai j  x j ≤ bi 1 ≤ i ≤ m 

where, x j ≥ 0, 1 ≤ i ≤ n (1)

2.2 Assumptions 

Assumption 1. aij is a fuzzy number and consider the following linear membership 
function: 

μai j  (x) = 

⎧ 
⎨ 

⎩ 

1 if  x < ai j  
(ai j  + di j  − x)/di j  if ai j  ≤ x ≤ ai j  + di j  , 
0 if  x ≥ ai j  + di j  , 

(2) 

where x ε R and dij > 0. Initially, fuzzify the objective function in order to defuzzify 
this problem. This is accomplished by first determining the optimal values’ minimum 
and maximum bounds. Solving the basic LP problem gives the best values, Zl and 
Zu. 

z1 = max 
n∑

j=1 

c j x j 

s.t. 
n∑

j=1 

ai j  x j ≤ bi , i = 1, . . . ,  m, 

x j ≥ 0, j = 1, . . . ,  n, (3) 

and 

z2 = max 
n∑

j=1 

c j x j 

s.t. 
n∑

j=1 

(ai j  + di j  ) x j ≤ bi , i = 1 . . .  m, 

x j ≥ 0, j = 1 . . .  n, (4) 

The objective function takes values between Z1 and Z2 
, while technological coef-

ficients vary between aij and aij + dij, where Zl = min (Z1, Z2) and Zu = max (Z1, 
Z2). Then, Zl and Zu are called the minimum and maximum bounds of the optimal 
values, respectively.
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Assumption 2 The solutions to the linear crisp problems are finite. The fuzzy set of 
optimum values in this situation, G, which is a subset of Rn, is defined as. 

μG (x) = 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

0 if  
n∑
j=1 

ci x j < z1 

( 
n∑
j=1 

ci x j zl )/(zu − zl ) if zl ≤ 
n∑
j=1 

ci x j < zu, 

1 if  
n∑
j=1 

ci x j ≥ zu 

(5) 

The fuzzy set of the ith constraint, Ci, which is a subset of Rm, is defined by, 

μci (x) = 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

0, bi < 
n∑
j=1 

ai j  x j 

(bi − 
n∑
j=1 

ai j  x j )/ 
n∑
j=1 

di j  x j , 
n∑
j=1 

ai j  x j ≤ bi < 
n∑
j=1

(
ai j  + di j

)
x j 

1, bi ≥ 
n∑
j=1

(
ai j  + di j

)
x j 

(6) 

Accordingly, the problem (1) becomes to the subsequent optimization problem 

max λ 
μG (x) ≥ λ 
μCi (x) ≥ λ, 1 ≤ i ≤ m 
x ≥ 0, 0 ≤ λ ≤ 1 

(7) 

By using (5) and (6), the problem (7) can be written as 

max λ 

λ(z1 − z2) − 
n∑

j=1 

c j x j + z2 ≤ 0, 

n∑

j=1 

(ai j  + λ di j  ) x j − bi ≤ 0, 1 ≤ i ≤ m 

x j ≥ 0, 1, . . .  n, 0 ≤ λ ≤ 1. 

(8)
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3 Case Study 

In the Pune region of Maharashtra State, India, a dam was built across the Mula-
Mutha River to form the Khadakwasala reservoir, a multipurpose project considered 
as a study area. The reservoir has an 86 Mm3 total storage capacity, 56 Mm3 of live 
storage, and a 62,146 Ha irrigable command area. The index map of the Khadak-
wasala command area is shown in Fig. 2. Table 1 presents the reservoir’s monthly 
75% dependable inflows. 

Fig. 2 Index map of Khadakwasala command area
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Table 1 Monthly inflows of 
Khadakwasala reservoir Month Inflows 

in Mm3 
Month Inflows 

in Mm3 

June 82.48 December 56.82 

July 156.25 January 145.51 

August 190.48 February 63.47 

September 178.52 March 123.87 

October 65.82 April 131.17 

November 143.03 May 106.95 

4 Fuzzy Linear Programming Model 

The FLP model is developed for the reservoir’s monthly operation. Here, the 
constraints are considered as crisp, or non-fuzzy, and the objective functions as fuzzy. 
Assuming stationary inflows throughout the course of a water year, the following 
generalized LP model is developed for monthly operation of the reservoir. The 
following generalized LP model incorporates FLP formulations as described in the 
methodology. 

4.1 Objective Function 

Maximization of irrigation releases has been considered as an objective function with 
a relevant set of constraints. 

The objective considered in the model is 

Max Z = 
12∑

t=1 

RIr (9) 

4.2 Constraints 

Industrial release constraint 
Releases for industry in each month (RInt) should be less than the maximum industrial 
releases (RInt(max)). Releases in each month also should be greater than the minimum 
industrial releases (RInt(min)). 

RI  nt < RI  nt (max) ∀ t = 1 to 12, (10)
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RI  nt > RI  nt (min) ∀ t = 1 to 12. (11) 

Irrigation release constraint 
Irrigation releases in each month (RIrt) should be less than maximum irrigation 
demand (IrDt(max)). Irrigation releases also should be greater than minimum irrigation 
demand (IrDt(min)). 

RIrt < I r  Dt (max) ∀ t = 1 to 12, (12) 

RIrt > I r  Dt (min) ∀ t = 1 to 12. (13) 

Domestic water supply constraint 
Releases for domestic in each month (RDwt) should be less than maximum domestic 
water demand (RDwt(max)). Releases for domestic also should be greater than 
minimum domestic water demand (RDwt(min)). 

RDwt < RDwt (max) ∀ t = 1 to 12, (14) 

RDwt > RDwt(min) ∀ t = 1 to 12. (15) 

Reservoir storage constraints 
Reservoir storage in each month should be less than maximum reservoir storage. 
Reservoir storage also should be greater than minimum reservoir storage. 

St < St (max) ∀ t = 1 to 12, (16) 

St > St(min) ∀ t = 1 to 12. (17) 

Reservoir storage continuity constraint 
Reservoir storage, inflows, irrigation releases, industrial releases, domestic water 
supply, evaporation losses from the reservoir during the time period t for all months 
are considered in volume units, and overflows are all subjected to this constraint. 

St + It − RIrt − RI  nt − RDwt − Et − Ot = St+1 ∀ t = 1 to 12. (18) 

Overflow Constraint 

Ot > St + It − RIrt − RI  nt − RDwt − Et − St (max) ∀ t = 1 to 12. (19)
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5 Results and Discussions 

In the present study, model of FLP has studied and it has applied to Khadakwasala 
reservoir. Data used (inflow, irrigation, domestic and industrial water requirement, 
evaporation) to formulate aforementioned methodology have been procured form 
the Sinchan Bhavan, Pune. The objective considered in FLP model is maximization 
of irrigation releases (RIr). As stated in the methodology, the model initially takes 
into account the uncertainty associated with resources (bi), i.e., irrigation demands 
and reservoir storage in any time period t are considered to be fuzzy resources, while 
technological coefficients are considered to be crisp in nature. For fuzzy technological 
coefficients, such as irrigation releases, the FLP model is solved (RIr). In this model 
using Eqs. (3) and (4), the model is solved for upper and lower bounds of irrigation 
releases, and maximum value of the objective is considered as upper bound (Zu) and 
minimum value is considered as lower bound (Zl) for the objective function. These 
values are given in Table 2. Equations (5) and (6) have been used to establish a linear 
membership function for the objective and constraints. Finally, a model is solved 
using Eq. (8) to maximize the truth level (λ). Table 3 displays the release policy for 
the maximized value of degree of truth (λ). 

Table 3 presents optimal operating policies for the FLP model as described in 
the methodology section. When the uncertainty in the technological coefficients of 
the model is taken into account, the annual release for irrigation obtained is 515.63 
Mm3, and the degree of truth (λ) is 0.48. 

By this model, in the month of June—90.84%, July—87.76%, October— 
38.54%, November—62.31%, January—4.41%, February—84.92%, March— 
40.15%, April—43.14%, May—44.85%, the releases in terms of percentage demand 
are satisfied, and in the months of August, September, and December, the releases

Table 2 Maximum and 
minimum bounds of the 
objective function for bi 

Objective function 

Bounds Irrigation releases in Mm3 

Upper 593.495 

Lower 578.42 

Table 3 Release strategy for 
fuzzy technological 
coefficients (aij) 

Months Irrigation releases 
(Mm3) 

Months Irrigation releases 
(Mm3) 

June 3.51 December 73.17 

July 11.91 January 45.21 

August 12.57 February 77.86 

September 66.59 March 38.83 

October 54.72 April 43.96 

November 48.69 May 38.61 
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Fig. 3 Irrigation releases 

in terms of percentage demand satisfied are 91.29%. As a result, it is observed that 
the best operating strategy derived by the current methodology taking into account 
the fuzziness involved in technological coefficients provides more precise results 
(Fig. 3). 

6 Conclusions 

The optimal reservoir operation with fuzzy technological coefficients is described as a 
fuzzy linear programming problem with a single objective. With respect to determine 
the optimal monthly operation strategy, this model is used for the case study of the 
Khadakwasala reservoir, which is located on the Mutha River in Maharashtra State, 
India. Maximizing irrigation releases is the objective function taken into considera-
tion. Within a context of linear modeling, this methodology addresses uncertainty in 
demands, storages, and releases. The modeling process verified that how uncertainty 
in different parameters of reservoir operation model can be included progressively in 
resources, in technological coefficients of the model with fuzzy objective. The key 
findings of the present study are: 

(i) The fuzzy logic model has the benefit that its computations are simple and its 
structure makes it simple for the operator to understand. 

(ii) The model achieves an overall truth level (λ) of 0.48; however, it is up to the 
operations’ manager to understand the sensitivity of the optimal results. 
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