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Abstract Proper knowledge of spatio-temporal variation of groundwater level are 
very important for efficient planning and management of groundwater level. In 
sparsely monitored basins, levels of groundwater are generally monitored at random 
points which may be far away from each other. Interpolation of groundwater level over 
a region in an accurate manner is a pre-requisite for modeling as well as management 
of water resources that can be achieved by adopting accurate and reliable techniques 
of interpolation of scattered data over a region. In the present study, two deterministic 
interpolation methods, i.e., inverse distance weighted (IDW), radial basis functions 
(RBFs), and three geostatistical interpolation methods, i.e., ordinary kriging (OK), 
simple kriging (SK), and ordinary cokriging (OCK) are evaluated to predict the 
spatial and temporal variation of groundwater levels. Cross-validation procedure is 
adopted to evaluate the prediction performance of adopted interpolation methods. 
Groundwater level data for the year 2019 from 31 sparsely located monitored obser-
vation wells over Sagar district of Madhya Pradesh, India are used to evaluate the 
performance of interpolation methods with respect to different statistical indicators 
of cross-validation. Interpolation maps of estimate groundwater level are produced 
using all five spatial interpolation techniques. Results of the analysis are presented 
and discussed.
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1 Introduction 

Groundwater is one of the most important water sources. Groundwater management 
is important for their sustainable development. Therefore, we need appropriate infor-
mation about the spatio-temporal behavior of the water table in a region. However, 
monitoring groundwater levels is inherently costly and time consuming, especially 
during installation stages that require the drilling of wells and piezometers. As a 
result, the number of surveillance sites available in a particular region is relatively 
small and often does not reflect the actual range of variation that may exist. There-
fore, accurate groundwater level spatial interpolation at unsampled sites is required 
for better groundwater management. 

Among various interpolation methods, there is no clear optimal method, thus 
results need to be compared depending on specific situation [10]. This study presents 
the use of GIS tools to generate the groundwater level surface for a sparsely monitored 
region from groundwater levels monitored at random locations. Geostatistical analyst 
tool in ArcGIS 10.8 is used to explore the spatial variability in groundwater levels 
for the Sagar district region located in Madhya Pradesh, India. 

2 Study Area and Data Source 

2.1 Sagar District 

The Sagar district is located in the north central part of Madhya Pradesh, India, and 
occupies an area of 10,252 km2. The district extends between the latitude of 23° 10,
and 24° 27,N, longitude of 78° 04, and 79° 21,E. Figure 1 shows the index map for 
the Sagar district.

2.2 Data Used 

The pre (April–June) and post-monsoon (Oct–Dec) seasonal groundwater level data 
of 31 central ground water board (CGWB) monitoring wells for 2019 are used. 
The location and groundwater level of observation wells are collected directly from 
the India Water Resources Information System (WRIS). Traditionally, geostatistical 
studies are performed on at least 100 samples [11]. However, the sample size is small 
in this study.
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Fig. 1 Index map of study area

3 Materials and Method 

3.1 Exploratory Analysis 

The datasets are initially visualized in order to identify incorrect coordinate informa-
tion and illogical data points. The screened datasets are then subjected to exploratory 
information evaluation to identify the outliers which can be unfavorable to spatial 
prediction. The variogram, in particular, may be very touchy to outliers due to the 
fact it’s far primarily based totally at the squared differences among information 
[8]. Description of the information values is done through fundamental precis of 
statistics, inclusive of means, medians, variances, and skewness. 

The geostatistical method mainly kriging is taken into consideration the high-
quality unbiased linear prediction (BLUP) if the information meets the situations of 
normality, variance uniformity, and stationarity [7]. However, spatial information, 
specifically weather information, violates those situations. High asymmetries and 
outliers have undesired consequences on variogram shape and kriging estimates [6]. 
For spatio-temporal data that follow a Gaussian distribution, the effects of extremes 
are reduced, and more stable variograms are obtained, making it easier to model 
spatial variability [5]. Data transformations is required prior to kriging to stan-
dardize data distribution, eliminate outliers, and improvise data stationarity [4]. In 
this study, the normality of groundwater level data is visualized using tools such 
as histograms and boxplots, and the mean and median, symmetry (skewness) and
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flattening (kurtosis) coefficients. It is checked numerically by comparing it with the 
normal distribution and also according to the formal statistical Shapiro–Wilk test. 

3.2 Interpolation Methods 

Inverse distance weighting directly works on the assumption that the point closest 
to the predicted position is weighted more heavily, and the weight is reduced as a 
function of distance, hence the name inverse distance weighting. The exact formula 
for this interpolator is 

z(s0) =
∑n 

i=1 
si 
d p i∑n 

i=1 
1 
d p i 

(1) 

where z(s0) is predicted value of unsampled point, n is total no. of sampling points, di 
is separation distance between unsampled point and ith sampled point, and p denotes 
the weighing power. 

Radial basis functions (RBFs) are an exact set of interpolation methods. That 
is, the surface must pass through each measurement sample value. RBF is used to 
generate smooth surfaces from a large number of data points. There are five different 
functions: thin-plate spline (TPS), spline with tension (SPT) [2], fully regularized 
spline (CRS) [2], multiquadric function (MQ), and inverse multiquadric function 
(IMQ) [12]. Each basis function has a different form and has a different interpolation 
plane. 

Kriging belongs to a family of generalized least squares regression methods in 
geostatistics which uses observations sampled in a particular search environment as 
a linear combination to estimate values in unsampled locations [5, 7]. 

Z
Δ

(so) =
∑

α 
ωα Z(sα) (2) 

Z
Δ

(so) is the estimated variable of interest (groundwater level) at the unsampled 
location so, and Z (sα) is the observed values at the sampled locations in the vicinity 
of so. 

OK is most commonly used form of kriging, in which mean is considered unknown 
and fluctuates locally, which makes it possible to maintain stationarity in the local 
neighborhood. 

Simple kriging is mathematically the simplest but the least common. It is assumed 
that the expected value (mean) of the random field is known and depends on the 
covariance function. SK assumes second-order stationary that is constant mean, 
variance, and covariance across the domain or the region of interest [11]. 

The OCK method is a modification of the OK method. The main advantage of 
OCK is that it uses multiple variables in the estimation process. The OCK method
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is used to improve the predictability of the primary variable by using the auxiliary 
variable, assuming that both primary and auxiliary variables are in good correlation 
[7]. This method is especially suitable when the main attributes of interest are sparse, 
but the relevant secondary information is abundant. 

3.3 Variograms (Semivariogram) 

The existence of spatial structures (spatial autocorrelation) in which nearby observa-
tions are more similar than distant observations is a pre-requisite for the application of 
geostatistics [5]. Experimental variograms measure the average dissimilarity between 
unsampled values and nearby data values [4] and can therefore represent autocorre-
lation at various distances. The kriging method requires a model of functions that 
characterize spatial variability, variograms, and key characteristic parameters such as 
nugget effects, thresholds, and ranges [5]. The experimental variogram is calculated 
based on the following formula: 

γ̂ (d) = 1 

2N (d) 

N (d)∑

α=1 

(Z (sα + d) − Z (sα))2 (3) 

with Z (sα) and Z (sα + d) being the values observed at the locations uα and uα 
+ d separated by the distance d and N(d) being the number of such pairs. If the 
value at Z(sα) and Z (sα + d) is autocorrelated, the result of Eq. (3) will be small, 
relative to an uncorrelated pair of points. From an experimental variogram analysis, 
the appropriate model (Gaussian, spherical, etc.) is usually fitted by the weighted 
least squares method, and the parameters (range, threshold, and nugget) are used in 
kriging. Exponential, Gaussian, and spherical are the most commonly used (theoret-
ical) variogram models in hydrological kriging applications [1] and are also used to 
model experimental variograms. 

3.4 Cross-Validation 

The performance of the various interpolation methods (IDW, RBF, SK, OK, and 
OCK) is evaluated through a cross-validation process. Cross-validation is a validation 
technique that removes observations one by one from the dataset and re-estimates 
from the remaining sampled data using the selected model. If the sample size of 
the data is very small, such as when there are only 31 observations, the method 
comparison is done by cross-validation [7]. This is a common way to verify the 
accuracy of the interpolation method [1]. 

The overall performance of the interpolation methods for groundwater level esti-
mation is conducted using correlation and error-based measures. The correlation
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includes the coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient 
(E), and Willmott agreement index (d), whereas the error measures include the mean 
relative error (MRE), the root mean square error (RMSE), and the mean error (ME). 

4 Results and Discussion 

4.1 Exploratory Data Analysis 

Seasonal groundwater data from 31 observation wells are examined to understand 
the pattern in the data. Histogram (Fig. 2) and standard statistics (Table 1) are used 
to describe the data. 

The histogram shows symmetry indicating normality of distribution. In fact, 
seasonal groundwater elevation data have mean and median close enough and skew-
ness value close to zero, thus suggesting this distribution as symmetrical distribution. 
Finally, the Shapiro–Wilk test confirms the normality of the original data (p = 0.83 
> 0.05, p = 0.71 > 0.05). Since original data follow a normal distribution hence, it 
is decided to work on original data without transformation.

Fig. 2 Histogram of seasonal groundwater levels (amsl). Curve represents the fitting of a normal 
distribution 

Table 1 Descriptive statistics for seasonal groundwater elevation level (m) data 

Season Min Max Mean SE Median Q1 Q3 SD CV Skew Kurt SW 

Pre-monsoon 348.9 586.1 455.3 10.2 460.1 416.1 490.9 57.1 12.53 0.10 − 
0.64 

0.83 

Post-monsoon 368.4 592.9 461.7 10.1 464.0 420.1 496.6 56.2 12.17 0.13 − 
0.61 

0.71 

Min. minimum, Max. maximum, SE. standard error, Q1 1st quartile, Q3 3rd quartile, SD standard devi-
ation, Skew. skewness, Kurt. kurtosis, CV coefficient of variation, SW probability corresponding to the 
Shapiro–Wilk test of normality 



Comparison of Spatial Interpolation Methods for Mapping Seasonal … 229

4.2 Spatial Analysis of Groundwater Level Data 

The spatial variation of seasonal groundwater elevation is considered to be isotropic 
ignoring the separation direction because the size of the sample (31) is limited and 
would not possibly detect anisotropy [7]. 

Table 3 and Figs. 3 and 4 show the variogram model and its parameters tuned 
for seasonal groundwater levels. The nugget effect to nugget to threshold ratio is 
used to classify the spatial dependence of the variable [3]. Variables have strong 
spatial dependence when the nugget-threshold ratio is less than 0.25, and moderate 
spatial dependence when the ratio is 0.25 to 0.75 [8]. Otherwise, the variables are 
less spatially dependent. Therefore, in our case, the groundwater level was strongly 
spatially correlated (Table 2). 

Elevation, as auxiliary information, has decreased semi-variances. It may be 
visible that the sill is higher for OK and SK (4507.4 m2 and 4,295.7 m2) than  for OCK  
(3713.8 m2 and 3577 m2). This is predicted due to the fact the covariate, elevation 
which become taken into consideration for OCK, however, now no longer for OK 
and SK variogram, in part explains the variability of the groundwater level data.

Fig. 3 Experimental (points) and fitted theoretical (curve) variograms of pre-monsoon (left) and 
post-monsoon (right) groundwater levels for OK and SK 

Fig. 4 Experimental (points) and fitted theoretical (curve) variograms of pre-monsoon (left) and 
post-monsoon (right) groundwater levels for OCK
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Table 2 Summary of semivariogram parameters of best-fitted theoretical model to predict seasonal 
groundwater level (amsl) 

Interpolation Season Best-fit model Nugget (m) Sill (m) Range (km) Nugget/Sill 

OK & SK Pre-monsoon Gaussian 449.5 4507.4 60 0.1 

Post-monsoon Gaussian 465.0 4,295.7 60 0.11 

OCK Pre-monsoon Spherical 0 3713.8 56 0 

Post-monsoon Spherical 0 3577 56 0 

Table 3 Summary of descriptive statistics for observed and predicted pre-monsoon groundwater 
level 

Pre-monsoon Mean Max Min Median C5 C25 C75 C95 SD CV 

Observed 455.31 586.18 348.93 460.15 369.9 416.15 490.9 539.44 57.09 12.53 

IDW 459.20 524.98 389.37 454.86 408.47 426.34 493.52 505.80 36.82 8.02 

RBF 455.96 531.87 355.74 463.84 383.73 419.81 491.70 524.13 46.29 10.15 

OK 456.16 525.41 367.55 452.66 383.88 424.14 493.96 520.94 43.97 9.64 

SK 456.34 526.9 373.19 452.65 384.13 426.06 494.13 521.84 43.90 9.62 

OCK 456.10 573.65 369.1 464.45 382.38 414.46 491.36 528.43 51.58 11.31

For IDW method, an optimal power value (p) as well as the number of the closest 
neighbors to include are determined, whereas for RBF method, the choice of radial 
basis function, their kernel parameter, and number of the closest neighbors to include 
are determined by minimizing the root mean square error (RMSE) statistics obtained 
from a cross-validation procedure. In this study, for IDW method, the optimizing 
parameter of the weight function (p) is taken as 2.0, whereas for RBF method, 
multiquadric radial basis function is found to be optimal among all the functions. 

4.3 Groundwater Mapping 

Tables 3 and 4 show various descriptive statistical parameters for the measured 
seasons (before and after the monsoon) and the parameters predicted by two 
deterministic and three geostatistical interpolation methods.

One of the hallmarks of geostatistical methods is smoothing, as predicted 
values are less variable than measured values. In other words, the 
minimum expected value is greater than the measured value, and the maximum 
expected value is less than the measured value [9]. This smoothing phenomenon is 
least for OCK while it is the most accentuated for SK which has 373.19, 376.34 m 
as minimal and 526.9, 533.14 m as maximal values compared to 348.93, 368.43 m 
as minimal and 586.18, 592.98 m as maximal for the measured groundwater values 
during pre- and post-monsoon periods, respectively.
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Table 4 Summary of descriptive statistic for observed and predicted post-monsoon groundwater 
level 

Post-monsoon Mean Max Min Median C5 C25 C75 C95 SD CV 

Observed 461.68 592.98 368.43 464.05 373.57 420.1 496.65 547.28 56.18 12.17 

IDW 465.25 531.62 390.41 460.35 417.72 431.36 500.74 513.31 37.29 8.01 

RBF 461.87 538.51 358.2 468.28 394.93 426.49 497.84 529.61 45.84 9.92 

OK 462.21 525.41 367.55 454.70 395.24 429.62 499.88 527.09 43.78 9.47 

SK 462.51 533.14 376.34 454.70 395.56 431.98 500.88 528.03 43.60 9.42 

OCK 462.14 580.27 377.8 469.88 384.66 420.20 497.92 535.21 51.61 11.16 

Min. Minimum, Max. maximum, C5 5th centile, C25 25th centile or 1st quartile, C75 75th centile or 
3rd quartile, C95 95th centile, SD standard deviation, CV coefficient of variation, OK ordinary kriging, 
SK simple kriging, OCK ordinary cokriging

This phenomenon is confirmed by the standard deviation, especially the decrease 
in the estimated variance for the measured data variance of 43, 39.7% of SK; 40.6, 
39.2% for OK; 18.4, 15.6% for OCK during pre- and post-monsoon periods, respec-
tively, and also by the coefficient of variation which is minimal for SK (9.62, 9.42%) 
followed by OK (9.64,9.47) and OCK (11.31,11.16%) compared to measured values 
(12.53, 12.17%) for pre- and post-monsoon periods. 

Smoothing phenomenon among deterministic methods is least for RBF and most 
accentuated for IDW which has 389.37, 390.41 m as minimal and 524.98, 531.62 m 
as maximal values compared to 348.93, 368.43 m as minimal and 586.18, 592.98 m 
as maximal for the measured groundwater values during pre- and post-monsoon 
periods, respectively. 

In geostatistical methods, estimates of SK are higher than those of OCK and 
OK with SK, OK, and OCK mean values of 456.34, 462.51 m; 456.16, 462.21 m; 
456.10, 462.14 m for pre- and post-monsoon periods, respectively. Similar results 
can be seen in minimal values and for different percentiles. Similar analysis is carried 
out for deterministic interpolation methods, and overall estimates of IDW are found 
to be higher among all five interpolation methods used in this study. 

Figures 5 and 6 represent the groundwater maps obtained from five methods of 
spatial interpolation (IDW, RBF, SK OK, and OCK) for pre- and post-monsoon 
periods for the year 2019.

4.4 Performance Evaluation Study 

To deepen the comparative study of spatial interpolation, the performance indicators 
for cross-validation are shown in Figs. 7 and 5. The boxplot of groundwater level 
prediction error (Fig. 7) shows that interpolation generally corrects the predicted 
groundwater level of 31 observation wells. The perfect match between the predicted 
and measured values is represented by 0 in the Fig. 7. Comparing the five methods, 
the residual (error) between the measured and predicted groundwater levels of OCK
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Fig. 5 Maps of pre-monsoon groundwater level (m) amsl estimated by IDW, RBF, SK, OK, and 
OCK 

Fig. 6 Maps of post-monsoon groundwater level (m) amsl estimated by IDW, RBF, SK, OK, and 
OCK
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Fig. 7 Boxplots of seasonal groundwater level prediction errors using IDW, RBF, SK, OK, OCK 

is significantly reduced. This shows that OCK is the best interpolator, though there 
exists small underestimation and overestimation. 

Because aim of this study was to compare various methods, first the impact of 
various interpolation method on accuracy was considered. The 3 kriging methods 
performed better than the deterministic approach to estimate groundwater levels for 
each season. Performance measures of interpolation methods are summarized in 
Table 5. High values of coefficients of determination, Nash–Sutcliffe efficiency, and 
Willmott agreement index suggested an amazing fit among measured and predicted 
water level depth. Of the five interpolation methods, OCK had the best overall perfor-
mance, with OK, SK, and RBF significantly superior to IDW. Not only the perfor-
mance indicators of the model, but also the errors confirmed the above facts. The low 
RMSE and ME of all interpolation methods showed applicability to the prediction 
of groundwater level, and the superiority of OCK over all other methods was fully 
demonstrated by its minimum error value.

The second approach to assess the accuracy of a method is done by adopting 
regression coefficients (intercept and slope). The best model performance is repre-
sented by small intercept and large gradient. Among the five interpolation methods, 
the OCK, method which considered elevation as an auxiliary variable for predicting 
groundwater levels, showed best results. 

5 Conclusions 

The following conclusions are derived from the foregoing study:

• Introduction of elevation information improved the performance of covariate 
kriging method, OCK in particular, in sparsely monitored region.
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Table 5 Performance evaluation of interpolation methods to predict groundwater levels 

Interpolation Season Efficiency Error Intercept Slope 

R2 E d RMSE ME MRE 

IDW Pre-monsoon 0.62 0.60 0.83 35.51 3.88 0.14 226.73 0.51 

Post-monsoon 0.63 0.61 0.84 34.49 3.56 0.15 221.66 0.52 

RBF Pre-monsoon 0.72 0.72 0.90 29.44 0.65 0.12 141.14 0.69 

Post-monsoon 0.72 0.72 0.90 29.20 0.18 0.13 141.82 0.69 

SK Pre-monsoon 0.75 0.74 0.91 28.58 1.02 0.12 152.95 0.66 

Post-monsoon 0.75 0.74 0.91 28.01 0.83 0.12 151.89 0.67 

OK Pre-monsoon 0.77 0.76 0.92 27.56 0.85 0.11 148.23 0.67 

Post-monsoon 0.76 0.76 0.92 27.17 0.52 0.12 146.98 0.68 

OCK Pre-monsoon 0.98 0.98 0.99 5.82 0.25 0.02 49.587 0.89 

Post-monsoon 0.99 0.99 0.99 4.79 − 0.01 0.02 42.536 0.90

• Smoothing phenomenon in geostatistical method is least for OCK while it is the 
most accentuated for SK whereas smoothing phenomenon among deterministic 
methods is least for RBF and most accentuated for IDW. 

• In geostatistical methods, estimates of SK were higher than OCK and OK, whereas 
overall estimates of IDW are found to be higher among all five interpolation 
methods. 

• Geostatistical methods performed better than the deterministic methods for 
predicting groundwater levels. 
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