
Cryptography Using GPGPU

Swati Jadhav, Uttkarsh Patel, Atharv Natu, Bhavin Patil, and Sneha Palwe

Abstract Today, with an ever-increasing number of computer users, the number
of cyberattacks to steal data and invade privacy is of utmost importance. A group
of applications uses the Advanced Encryption Standard (AES) to encrypt data for
security reasons. This mainly concerns enterprises and businesses, which ultimately
handle user data. But many implementations of the AES algorithm consume large
amounts of CPU horsepower and are not up to the mark in terms of throughput. To
tackle this problem, the proposed system makes use of GPUs, which are targeted for
parallel applications. These enable parallel operations to be performed much faster
than the CPU, ultimately increasing throughput and reducing resource consumption
to some extent. The vital aspect of this approach is the speedup that is achieved
due to massive parallelism. This research aims to implement AES encryption and
decryption using CUDA and benchmark it on various compute devices.

Keywords Cyberattacks · AES · CPU · Throughput · GPUs · SIMD · Parallel ·
Massive parallelism · CUDA · Compute devices

S. Jadhav (B) · U. Patel · A. Natu · B. Patil · S. Palwe
Vishwakarma Institute of Technology, Pune, Maharashtra, India
e-mail: swati.jadhav@vit.edu

U. Patel
e-mail: patel.uttkarsh21@vit.edu

A. Natu
e-mail: atharv.natu21@vit.edu

B. Patil
e-mail: bhavin.patil21@vit.edu

S. Palwe
e-mail: palwe.sneha21@vit.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
G. Rajakumar et al. (eds.), Intelligent Communication Technologies and Virtual Mobile
Networks, Lecture Notes on Data Engineering and Communications Technologies 171,
https://doi.org/10.1007/978-981-99-1767-9_23

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-1767-9_23&domain=pdf
mailto:swati.jadhav@vit.edu
mailto:patel.uttkarsh21@vit.edu
mailto:atharv.natu21@vit.edu
mailto:bhavin.patil21@vit.edu
mailto:palwe.sneha21@vit.edu
https://doi.org/10.1007/978-981-99-1767-9_23

300 S. Jadhav et al.

1 Introduction

Cybersecurity is critical these days, with cybercrime and cyberattacks carried out by
malicious users and hackers on the rise. To protect our data, encryption algorithms
are used, like Advanced Encryption Standard (AES), which was developed to tackle
security problems found in Data Encryption Standard (DES) in 2001 by the National
Institute of Standards and Technology (NIST). AES is a block cipher-based encryp-
tion technique. Even after 21 years, AES still withstands all cyberattacks and is also
considered to be arguably the most used encryption algorithm. The widespread use
of AES led to the development of many optimized implementations for a variety of
CPU architectures.

Traditionally, graphical processing units (GPUs) are used by enthusiasts or devel-
opers for game playing or development, respectively, video rendering, and all oper-
ations that require a considerably large amount of video memory and dedicated
processing. GPU architectures work on single instruction multiple data (SIMD)
which allows them to execute the same instruction on multiple data streams in parallel
fashion. This is also known as “massively accelerated parallelism” [1–5].

The main motive behind adapting this research topic is to enhance data secu-
rity using encryption algorithms that allow for minimal power consumption, high
throughput, and low latency. This includes exploring the field of computation to
extract all the benefits we gain from general-purpose computing. Encrypting large
files on a CPU tends to take a lot of time as they sequentially perform each calcula-
tion, while offloading this computation to a GPU drastically reduces the time taken
as it parallelly performs the same calculations [5–10]. This means that many similar
calculations are performed concurrently, resulting in a faster result. When GPUs are
used to perform general tasks rather than video processing, they are known as general
purpose graphical processing units (GPGPUs). GPGPUs are used for tasks that are
generally performed by CPUs, such as mathematical equations and cryptography, as
well as to create cryptocurrency. These GPGPUs are accessible by making use of
parallel platforms like OpenCL or CUDA [10–15]. The proposed project makes use
of Compute Unified Device Architecture (CUDA). It is a NVIDIA-exclusive tech-
nology that will be available on select NVIDIA compute devices. This compatibility
can be checked on NVIDIA’s official website.

The proposed study seeks to show the potential speedup and advantage of using a
GPU to encrypt files using the AES algorithm. Despite making a significant improve-
ment in performance, this speedup is not directly beneficial to end users. Large
corporations can truly harness this power as they have to continuously encrypt a
large number of files while being confined by time. As a consequence, end users
benefit indirectly since it takes less time to respond to their requests. This technique
not only saves a lot of time, but also power if the resources are used efficiently. This
will save money not only by lowering electricity consumption but also by lowering
the cost of cooling the machines. The applications of using GPUs for general-purpose
workloads are limitless; encryption is just one of the many others.

Cryptography Using GPGPU 301

2 Related Work

Survey of related works is shown in Table 1.

3 Proposed Work

(A) AES Algorithm

The AES block cipher works with 128 bits, or 16 bytes, of input data at a time.
The substitution-permutation network principle is used in AES, which is an iterative
algorithm (Fig. 1). The total number of rounds needed for the encryption or decryption
process is determined by the size of the cryptographic key employed. AES’s key
length and number of rounds is shown in Table 2.

The input is represented as a 4 × 4 bytes grid or matrix in a column major
arrangement, in contrast to traditional row major arrangement followed in system
programming. The below equation shows the AES 16-byte matrix of 4 rows and 4
columns, which will be mapped as an array for converting plaintext to ciphertext.

⎡

⎢⎢⎣

b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15

⎤

⎥⎥⎦

Round is composed of several processing steps, including substitution, transpo-
sition, and mixing of the input plain text to generate the final output of cipher text.
Each round is divided into 4 steps—

(1) SubBytes—Input 16 bytes are substituted by looking up the S-Box.
(2) ShiftRows—Each of the four rows of the matrix is shifted to the left.
(3) MixColumns—Each column of four bytes is transformed using a special

mathematical function. This operation is not performed for the last round.
(4) Add Round Key—The 128 bits of the matrix are XORed to the 128 bits of the

round key. If the current round is the last, then the output is the ciphertext.

(B) CUDA Implementation

The proposed project consists of a parallel implementation for

• AES-128-bit encryption
• AES-192-bit encryption
• AES-256-bit encryption.

The proposed implementation is developed using Compute Unified Device Archi-
tecture (CUDA). It is a parallel computing platform and programming model created
by NVIDIA for general computing on NVIDIA GPUs only. CUDA is not just an API,

302 S. Jadhav et al.

Table 1 Literature survey

Authors Year Parallel platform Research

Tezcan [16] 2021 CUDA • Aims to use a single GPU as a cryptographic
coprocessor, with optimizations that can help
with cryptanalysis

• Optimized version of AES providing way
faster and higher throughput levels than that
of CPU AES instructions

• Benchmarked on multiple devices, from one
of the entry-level GPUs (NVIDIA GeForce
MX 250) to one of the most powerful GPUs
(NVIDIA GeForce RTX 2070)

Sanida et al. [17] 2020 OpenCL • Demonstrate the AES algorithm’s
implementation in the CTR and XTS parallel
operating modes

• Portable implementation with key length
options of AES-128, AES-192, and AES-256

• File encryption and decryption from range of
sizes starting with 512B to 8 MB

• Throughput achieved is 12.53 and 14.71
Gbps for XTS and CTR, respectively

Bharadwaj et al. [18] 2021 CUDA • GPU-accelerated implementation of an image
encryption algorithm

• To encrypt and decrypt the images, a
customized XOR cipher was used with an
encryption pad generated using the shared
secret key and initialization vectors

Wang and Chu [19] 2019 CUDA • Benchmarking approach for the GPU-based
AES algorithm

• Adapts the electronic code book (ECB)
cipher mode for cryptographic transformation
and the T-box scheme for the purpose of fast
lookups

• Follows a single thread per state granularity
that basically means that every thread is
mapped to an AES state for scheduling
threads on the GPU

• Makes efficient use of GPU hardware in
terms of memory allocation and register
allocations to increase the overall efficiency
and throughput of the operation

Inampudi et al. [20] 2018 OpenCL • Parallel OpenCL implementation of
AES-256-bit algorithm

• By using 256 work items, which
simultaneously assign the elements to various
threads and GPU cores for execution, data
parallelism is achieved

• Testing done on AMD Radeon 8550 M and
8570G GPU

• Compared to sequential implementation,
1024 work items were sped up by 99.8%

Cryptography Using GPGPU 303

Fig. 1 AES algorithm

Table 2 AES’s key length
and number of rounds

Key length Number of rounds

AES-128 10

AES-192 12

AES-256 14

304 S. Jadhav et al.

programming language, or SDK. It is mainly a hardware component, allowing drivers
and libraries to run on top of it.

The AES algorithm is divided into two parts: one that runs on the CPU and another
that runs on the GPU. The calculations performed in AES are performed on the GPU
side, and the results are stored back in system memory. The CPU handles reading
binary data from images and videos and creating new binary streams after encryption
and decryption by the GPU.

Figure 2 presents the NVIDIA CUDA Compiler (NVCC) trajectory. It includes
transformations from source to executable that are executed on the compute device.
As a result, the.cu source will be divided into host and guest parts and execute
on different hardware. This is called hybrid code, which then implements parallel
working. We make use of CUDA specifiers like __global, which denote that the code
runs on the device and is called from the host. The next specifier used is __device,
which runs and calls on the device itself. Along with this, there is another specifier
known as __host, which runs and makes calls on host, just like other library APIs or
user-defined functions are called.

The key for encryption and decryption will be stored in a text file and can be 128,
192, or 256 bits in length. The binary data, key, and number of threads are passed as
command line arguments to the program. The binary data can be a text file, a video,
or an image to be encrypted given as a relative path. Number of threads is considered
for benchmarking the performance of GPUs to measure their potential. After the
execution starts, the data stored in the form of blocks and the key will be copied from
system memory, i.e., RAM to the GPU Video RAM (VRAM), using arrays. The
operations will be performed based on the number of rounds which is determined by
the key length. After encryption and decryption operations are completed in VRAM,
the results will be copied back to RAM, and the time required for the calculation will
be displayed.

Figure 3 depicts a sample code snippet using CUDA specifiers. It includes the byte
substitution process, which replaces the state array with the respective S-Box values
and addition of a round key which comprises Binary XOR operation. In this manner,
all the AES encryption and decryption operations are implemented as C language
functions with modified extensibility using CUDA to implement parallelism.

4 Result Analysis

(A) Evaluation Environment

For the purpose of evaluating the performance of our proposed algorithm, we have
used a set of hardware and software components specified in Table 3.

Figure 4 demonstrates the use of our implementation. All of the samples are
bitmap images having.bmp file extension. After the program has finished the execu-
tion, in the root directory of the application, 2 bitmap images will be generated,
EncryptedImage.bmp and DecryptedImage.bmp. Above figure is a screenshot

Cryptography Using GPGPU 305

Fig. 2 NVCC trajectory

which combines both the specified files. It has two parts, the left part of the image
contains the encrypted file, which the default image application is unable to open,
and on the right side you can see the decrypted image.

Figure 5 describes the CUDA information about the computer system you are
using to run the program. This uses the APIs from cuda.h, which includes cudaGet-
DeviceCount() and cudaGetDeviceProperties(). The summary lists out different
parameters like—

306 S. Jadhav et al.

Fig. 3 Sample code

Table 3 Hardware and software technical specifications

Component Description Name

Hardware CPU AMD Ryzen 5 5600H

Intel i7-12700 K

GPU NVIDIA GeForce MX 450 Mobile

NVIDIA GeForce GTX 1650 Mobile

NVIDIA GeForce GTX 1660 Super

NVIDIA GeForce RTX 3060

Operating system Microsoft Windows 11 64-bit

Manjaro 22.0 KDE Plasma

Kubuntu 22.04 LTS

Drivers Nvidia Game Ready Driver 528.24

Software Toolkit CUDA Toolkit Version 12.0

IDE/text editor Microsoft Visual Studio 2022, Microsoft Visual Studio Code

Compiler Microsoft CL, GNU GCC

Library Helper Timer by Nvidia

(1) Total Number of CUDA Supporting GPU Device/Devices on the System
(2) CUDA Driver and Runtime Information

a. CUDA Driver Version
b. CUDA Runtime Version

(3) GPU Device General Information

a. GPU Device Number
b. GPU Device Name
c. GPU Device Compute Capability
d. GPU Device Clock Rate
e. GPU Device Type—Integrated or Discrete

(4) GPU Device Memory Information

a. GPU Device Total Memory

Cryptography Using GPGPU 307

Fig. 4 Image encryption and decryption

Fig. 5 CUDA device properties

308 S. Jadhav et al.

b. GPU Device Constant Memory
c. GPU Device Shared Memory per SMProcessor

(5) GPU Device Multiprocessor Information

a. GPU Device Number of SMProcessors
b. GPU Device Number of Registers per SMProcessor

(6) GPU Device Thread Information

a. GPU Device Maximum Number of Threads Per SMProcessor
b. GPU Device Maximum Number of Threads Per Block
c. GPU Device Threads in Warp
d. GPU Device Maximum Thread Dimensions
e. GPU Device Maximum Grid Dimensions

(7) GPU Device Driver Information

a. Error Correcting Code (ECC) Support—Enabled/Disabled
b. GPU Device CUDA Driver Mode—Tesla Compute Cluster(TCC)/Windows

Display Driver Model (WDDM).

(B) Evaluation Result

While comparing results with existing implementations, the proposed system
includes 2 different performance benchmarks, one which compares the performance
obtained on different CPUs and GPUs, thus specifying the need to use parallel
computing and the second compares compute capability of different GPUs.

The calculation of the time taken for performing operations on the binary data is
done using the “helper_timer” library offered by NVIDIA. This is achieved using
the set of APIs—

a. sdkCreateTimer()—To create a timer pointer of type StopWatchInterface
b. sdkStartTimer()—To start the timer
c. sdkStopTimer()—To stop the timer
d. sdkGetTimerValue()—To get the timer value after the timer is stopped
e. sdkDeleteTimer()—To free the timer pointer.

Figure 6 depicts the program results obtained using 2048 threads. The time
required to encrypt and decrypt the images is calculated and displayed in seconds. The
number of threads passed to the application is modifiable and is passed as command
line arguments to the program.

Fig. 6 Program execution using 2048 threads

Cryptography Using GPGPU 309

Table 4 CPU and GPU
performance comparison

Device Sample size Encryption
time

Decryption
time

AMD Ryzen 5
5600H

800 Kb 0.093 0.149

3 Mb 0.373 0.588

7 Mb 0.841 1.312

50 Mb 6.185 9.847

100 Mb 11.072 16.378

Intel i7-12700 K 800 Kb 0.071 0.097

3 Mb 0.274 0.387

7 Mb 0.598 0.876

50 Mb 4.319 6.364

100 Mb 7.542 11.1

Nvidia GeForce
GTX 1650

800 Kb 0.0019 0.0053

3 Mb 0.0018 0.0043

7 Mb 0.0018 0.0042

50 Mb 0.0017 0.0039

100 Mb 0.0016 0.0036

Nvidia GeForce
RTX 3060

800 Kb 0.0012 0.0044

3 Mb 0.0012 0.0036

7 Mb 0.0011 0.0035

50 Mb 0.0011 0.0033

100 Mb 0.0009 0.0029

Table 4 shows the different time values required to perform the encryption and
decryption on various CPUs and GPUs.

a. Column 1—Represents the device on which the program is tested.
b. Column 2—Specifies the sample size. Samples are the bitmap images used for

testing.
c. Column 3—Time required to encrypt the data, represented in seconds.
d. Column 4—Time required to decrypt the data, represented in seconds.

Figures 7 and 8 portray the time required for encryption and decryption on CPU
and GPU for different sample sizes. According to the results specified in Table 4, as
the size of input data increases the GPU takes less time to perform AES operations.

Table 5 depicts the different time values required to perform the encryption and
decryption on various GPUs with variable threads. First column represents the name
of the GPU, second column specifies the number of threads tested on that GPU.
The third and fourth columns state the time required for encryption and decryption
measured in seconds, respectively. This data is dynamic as the values can change over
different runs. But overall, it gives the idea of performance capabilities of different
NVIDIA GPUs.

310 S. Jadhav et al.

Fig. 7 CPU performance comparison

Fig. 8 GPU performance comparison

Table 5 GPU benchmarks GPU Threads Encryption time Decryption time

MX 450 1024 0.029 0.0284

2048 0.0022 0.0124

4096 0.0021 0.0095

GTX 1650 1024 0.0222 0.0122

2048 0.0024 0.0056

4096 0.0021 0.0053

GTX 1660
SUPER

1024 0.0145 0.0121

2048 0.0015 0.0046

4096 0.0014 0.0045

RTX 3060 1024 0.0115 0.0101

2048 0.0008 0.003

4096 0.0007 0.0028

Cryptography Using GPGPU 311

Fig. 9 GPU benchmarks

Figure 9 is used to represent the time and speedup factor by visualizing it. From
the results, we can clearly see that, the more powerful the GPU, the less time
required to complete the task. Here, the number of threads is also a crucial factor
while determining the best GPU. For our testing, NVIDIA RTX 3060 was the best
performer.

From the results, we can say that using CUDA extensively saves time and increases
the throughput. This can be useful in hash algorithms as well, which can then be
implemented in blockchain technology which will compute the hash of the block
a lot faster. CUDA can also be used to conserve the amount of energy and power
required to maintain the blockchain network. Basically, it will save time, resources
and computational cost will be reduced to a great extent.

5 Conclusion

We proposed a method to parallelize the encryption and decryption processes in order
to overcome the issue of high resource consumption in the traditional implementa-
tion of AES that would run on the CPU. We designed and implemented the AES
encryption and decryption algorithm, which works on 128-bit, 192-bit, and 256-bit
key sizes, to run on GPUs using CUDA, thereby reducing power consumption and
increasing efficiency. This method provided a significant speedup over the CPU,
providing high speed. This may change the way traditional resources are used, as
these implementations can be used to encrypt binary data in all forms, including
images and videos, as well as full disk encryption like Microsoft BitLocker. This
process would require extreme fine-tuning to make such implementations a standard
for other security techniques.

312 S. Jadhav et al.

6 Future Scope

Currently, the proposed system presents a parallel implementation of the AES algo-
rithm that can only be run on NVIDIA GPUs, as the presented research uses CUDA.
This limits portability of testing and deploying to infrastructure using AMD or Intel
GPUs, may it be integrated or discrete. To overcome this issue, we would need to
develop a codebase using OpenCL that would allow us to cover every GPU and CPU
device. But there are various parameters that are yet to be considered to optimize
the algorithm to make proper and efficient use of the GPU to save energy and still
produce similar results.

References

1. Yuan Y, He Z, Gong Z, Qiu W (2014) Acceleration of AES encryption with OpenCL. In: 2014
Ninth Asia joint conference on information security, pp 64–70

2. Jaiswal M, Kumari R, Singh I (2018) Analysis and implementation of parallel AES algorithm
based on T-table using CUDA on the multicore GPU. IJCRT 6(1). ISSN: 2320-2882

3. Ma J, Chen X, Xu R, Shi J (2017) Implementation and evaluation of different parallel designs of
AES using CUDA. In: 2017 IEEE second international conference on data science in cyberspace
(DSC), pp 606–614

4. Abdelrahman AA, Fouad MM, Dahshan H, Mousa AM (2017) High performance CUDA
AES implementation: a quantitative performance analysis approach. In: 2017 Computing
conference, pp 1077–1085

5. An S, Seo SC (2020) Highly efficient implementation of block ciphers on graphic processing
units for massively large data. NATO Adv Sci Inst Ser E Appl Sci 10(11):3711

6. Biryukov A, Großschädl J (2012) Cryptanalysis of the full AES using GPU-like special-purpose
hardware. Fund Inform 114(3–4):221–237

7. Li Q, Zhong C, Zhao K, Mei X, Chu X (2012) Implementation and analysis of AES encryption
on GPU. In: 2012 IEEE 14th international conference on high performance computing and
communication & 2012 IEEE 9th international conference on embedded software and systems,
pp 843–848

8. Iwai K, Kurokawa T, Nisikawa N (2010) AES encryption implementation on CUDA GPU and
its analysis. In: 2010 First international conference on networking and computing, pp 209–214

9. Mei C, Jiang H, Jenness J (2010) CUDA-based AES parallelization with fine-tuned GPU
memory utilization. In: 2010 IEEE international symposium on parallel & distributed
processing, workshops and Phd forum (IPDPSW), pp 1–7

10. Jadhav S, Vanjale SB, Mane PB (2014) Illegal access point detection using clock skews
method in wireless LAN. In: 2014 International conference on computing for sustainable
global development (INDIACom). https://doi.org/10.1109/indiacom.2014.6828057

11. Stallings W (2022) Cryptography and network security: principles and practice. Pearson.
12. Daemen J, Rijmen V (2013) The design of Rijndael: AES—the advanced encryption standard.

Springer Science & Business Media
13. Sanders J, Kandrot E (2010) CUDA by example: an introduction to general-purpose GPU

programming. Addison-Wesley Professional
14. Wilt N (2020) The Cuda handbook: a comprehensive guide to Gpu Programming. Addison-

Wesley Professional
15. Nguyen H, NVIDIA Corporation (2008) GPU gems 3. Addison-Wesley. https://developer.nvi

dia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryp
tion-gpu

https://doi.org/10.1109/indiacom.2014.6828057
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu

Cryptography Using GPGPU 313

16. Tezcan C (2021) Optimization of advanced encryption standard on graphics processing units.
IEEE Access 9:67315–67326

17. Sanida T, Sideris A, Dasygenis M (2020) Accelerating the AES algorithm using OpenCL. In:
2020 9th International conference on modern circuits and systems technologies (MOCAST),
pp 1–4

18. Bharadwaj B, Saira Banu J, Madiajagan M, Ghalib MR, Castillo O, Shankar A (2021)
GPU-accelerated implementation of a genetically optimized image encryption algorithm. Soft
Comput 25(22):14413–14428

19. Wang C, Chu X (2019) GPU accelerated AES algorithm. arXiv [cs.DC]. arXiv. http://arxiv.
org/abs/1902.05234

20. Inampudi GR, Shyamala K, Ramachandram S (2018) Parallel implementation of cryptographic
algorithm: AES using OpenCL on GPUs. In: 2018 2nd International conference on inventive
systems and control (ICISC), pp 984–988

http://arxiv.org/abs/1902.05234
http://arxiv.org/abs/1902.05234

	 Cryptography Using GPGPU
	1 Introduction
	2 Related Work
	3 Proposed Work
	4 Result Analysis
	5 Conclusion
	6 Future Scope
	References

