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Management of Crops in Water-Logged 
Soil 

Rafi Qamar, Atique-ur-Rehman, Saad Shafaat, 
and Hafiz Muhammad Rashad Javeed 

Abstract 

Excessively water saturates the soil pores and creates waterlogging when there is 
indeed no or very thin coating of water present on the soil. Waterlogging typi-
cally causes changes in gene expression that affect a plant’s physiology, metabo-
lism, and anatomy. Crops respond to and adapt to waterlogging stress in a variety 
of ways, including the development of aerenchyma, adventitious root develop-
ment, metabolism of energy, and plant-hormone signaling. One of the most dam-
aging abiotic stresses that annually destroys 17 million km2 of land, along with 
drought, is floods. Recent studies have found that increased extreme weather 
events, like flooding and soil waterlogging, brought on by climate change are 
having a substantial influence on agricultural productivity. Because of this, it is 
essential to understand how crops are impacted by flooding stresses and to 
develop better production methods that boost cropping systems’ resistance and 
ability to endure extreme climate events. Potential management strategies that 
can be utilized to alleviate the stress brought on by soil waterlogging include the 
adoption of waterlogging-tolerant varieties, altering administration practices, 
improving permeability, and putting adaptive nutritional monitoring systems into 
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place. These management approaches, which may be crop- or site-specific, 
should be assessed for their commercial feasibility before developing future 
implementation strategies that enable sustainable agricultural output from water-
logged soils. 

Keywords 

Soil waterlogging · Abiotic stress · Physiological response · Agronomic practices ·  
Bio drainage 

1  Introduction 

Water facilitates plant development and functions, making it essential to a plant’s 
life. However, plants are put in danger by flooding or waterlogging (Normile 2008). 
As seen in Fig. 1, the condition known as “waterlogging” occurs when a whole or a 
plant portion is completely under water (Bailey-Serres et al. 2012). As a result, air 
pockets in the earth are simply filled, leading to wet conditions. In many plant com-
munities around the world, soil waterlogging is an abiotic (non-living) stress which 
impacts species composition as well as its production (Jackson and Colmer 2005). 
Seasonal precipitation as a whole, as well as the differences between and among 
seasonal precipitation events, have changed due to climatic variations. Extremes in 
the availability of water have grown more severe globally in farming areas during 
the past 50 years (Aderonmu 2015; Bailey-Serres et al. 2012). The main causes of 
waterlogging in Pakistan include inadequate irrigation management techniques, a 
scarcity of suitable infrastructure for drainage of soils, and the use of low-quality 
water for irrigation purposes (Hossain 2010). Due to the threat to food security, it is 

Fig. 1 Water logged condition illustration. [Source: Engineer Moid (2021), https://www.civil-
click.com/waterlogging/ (source)]  
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urgent to find low-cost, ecologically friendly ways for managing and reclaiming 
these soils (Qadir and Oster 2002).  

Flooding has a devastating effect on society and the environment. As terrestrial 
plant species including cultivated crops are susceptible to flood conditions, there is 
a decline in biodiversity of plants, natural species distribution, and production of 
food worldwide (Normile 2008). Each year, flooding damages about 17 million km2 
of land worldwide, resulting in losses in crop production and serious damage to 
plants (Voesenek and Sasidharan 2013). Waterlogging or serious soil drainage 
issues harm between 10% and 12% of the world’s agricultural land (Shabala 2011). 
The projected annual cost of damage from severe floods that occur all over the 
world is much more than $74 billion (www.dartmouth.edu/∼floods/ 
Archives/2005sum.htm). According to existing fluctuations in changing climate 
globally, showing harsh climatic events, the National Aeronautics and Space 
Administration (NASA) simulation models estimated losses worth $3 billion annu-
ally in food production by 2030 (Rosenzweig et al. 2002). Pakistan has experienced 
exceptional monsoon conditions since June 2022, this month alone received rainfall 
which was 67% above average levels. As of August 27, the nation had received 2.9- 
fold as much rain as the 30-year average. A total of two million acres of crops and 
orchards have also been damaged at this point, including 1.54 million acres in 
Sindh, Baluchistan is 304,475 acres, and 178,186 acres in Punjab (OCHA 2022). 
Anatomical, physiological, and metabolic alterations are typically reported as plant 
responses to wet and flooding situations (Voesenek et al. 2006). Water diffusion, a 
mode of transportation in a biological system, is thought to be very low for terres-
trial plants’ survival for a long duration, which is why flooding causes damage. 
Essential nutrient deficits and toxicities from micronutrients like Copper (Cu), Iron 
(Fe), and Manganese (Mn) have an impact on plants (Setter et al. 2006). The pri-
mary source of potential energy for plant roots to absorb nutrients is aerobic respira-
tion (Ferreira et al. 2008). These waterlogging effected roots resort to an ineffective 
anaerobic fermentation, using their present glucose reserves to produce the ATP 
they require to survive and operate. Continued hypoxia or anoxia impairs root 
growth and function due to reduced integrity of the membrane, hunger, and phyto-
toxic chemical diffusion into the root cells (Sauter 2013). Under hypoxic circum-
stances, the functions of shoots are compromised and may show apparent symptoms 
like senescence, wilting, and death because the roots are unable to transfer water 
and nutrients effectively (Sasidharan and Voesenek 2015). In addition, photosynthe-
sis, carbohydrate partitioning, and the production and transport of growth regulators 
are all significantly impacted (Ferrer et al. 2005). Under waterlogged conditions, 
these physiological impedances ultimately result in a decreased crop yield. 

To maintain root activity and plant survival in susceptible genotypes, water-
logged circumstances may induce and initiate crop tolerance traits or adaptation 
features that might enhance aeration and mitigate root hypoxia or anoxia. Plant tis-
sues soaked with water produce ethylene (El-Esawi 2016a, b). The activation of 
genes related to aerenchyma production and adventitious root formation is crucial 
among the well-explained roles that ethylene plays in waterlogged conditions 
(Vidoz et al. 2010; Sasidharan and Voesenek 2015). In the shoot, the transport of 
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auxin is reprogrammed by increased ethylene level in the stem, which causes a flow 
of auxin to be directed toward the submerged stem to start the growth of adventi-
tious roots. Auxin transport inhibition reduces adventitious root development (Vidoz 
et al. 2010). The formation of suberin or lignin barrier, among other things, in roots 
in order to prevent loss of O2, and direct its transportation to the tip of the root, were 
other adaptive traits displayed by resistant crops (Shiono et al. 2011). 

Grain growers employ a wide range of crop management techniques to mitigate 
the impacts of waterlogging. Selection of crops, crop varieties that can withstand 
waterlogging, bio-drainage, and various agronomic techniques, like sowing season, 
nutrient application, engineering methods for surface and subsurface drainage, etc., 
and use of plant growth regulators (PGRs), are among them (Manik et al. 2019). 

2  Causes of Soil Waterlogging 

The oxygen concentration drops quickly in waterlogged soils because in water dif-
fusion of a gas is several times slower than in air, causing a series of events that are 
detrimental to the survival of the majority of plant species (Colmer and Greenway 
2011). In Asia and America, flooding is the main reason for yield losses, and water-
logging is thought to damage between 10% and 16% of the planet’s cultivable soils 
(Yaduvanshi et  al. 2012). In addition, in response to changing climate, flooding 
events are anticipated to occur more frequently and more intensely in every part of 
the planet (Westra et al. 2014). More than 21 Mha of Pakistan’s 79.61 Mha total 
geographic area where agricultural practices take place. Almost 25% of irrigated 
area in Punjab province is seriously under waterlogging, but about 60% in Sindh 
(WAPDA 2007). Soil waterlogging in the plant-rooting zone can be caused by many 
variables, including the amount of water that enters the soil, the amount that flows 
over/through the soil’s surface, and the amount of water that is absorbed by plants 
and other species (Kunkel 2003). Numerous factors, such as soil type, geography, 
meteorological circumstances, lateral ground water flows, and rising/perched water 
tables, can cause waterlogging (Fig. 2).  

2.1  Extreme Precipitation 

The frequency of heavy precipitation events and several rains is a significant factor 
in an increase in waterlogging or flooding (Kunkel 2003). Extremely rainy years are 
distinguished from dry years by the amount, frequency, size, and spacing of precipi-
tation events (Knapp et al. 2015). The Intergovernmental Panel on Climate Change 
(IPCC) predicts that rising emission of greenhouse gas will probably result in more 
instances of extreme precipitation ahead (Cubasch et al. 2001). 
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Fig. 2 Causes of waterlogging (Liu et al. 2020a)  

2.2  Human Alteration in Land Use 

In addition to rising precipitation frequency and severity, human modifications to 
stream channels, and land use are other factors contributing to rises in waterlogging 
(Kunkel 2003). 

2.3  Over Irrigation/Rainfall after Irrigation 

Soil waterlogging or floods may also be caused by over-irrigation or subsequent 
rains (Kirkpatrick et al. 2006). Shallow water table, compaction of soil, insufficient 
internal drainage as well as surface drainage are some of the issues (Kirkpatrick 
et al. 2006), in soils like heavy clay soils, clay pan, or duplex soil with coarse tex-
tured topsoil over compacted clay subsoil (Batey 2009). 
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2.4  Increased Runoff From Slope 

Waterlogging in low-lying areas can result from excessive runoff from steep slope 
topographical regions, especially if soils there are inadequately drained (Singh 
et al. 2016). 

2.5  Soil Compaction 

Waterlogging is caused by poor soil structure resulting from natural processes or 
human activities, like compaction of soil due to puddling or heavy traffic, which 
results in shallow elevated ground water within the top few centimeters of soil or the 
subsurface (Batey 2009). Flooding can occur as a result of soil compaction brought 
on by tractor wheels movement in a field because it reduces water infiltration, per-
meability, and flow through the soil profile. Soil compaction can impact crop emer-
gence, germination of seed, and its growth in addition to making roots more resistant 
to growth. Air movement inside the soil profile is affected by compaction because it 
rearranges soil particles, changes aggregate stability, bulk density, or arrangement, 
and affects the structure of soil (Samad et al. 2001). 

2.6  Claypan 

In situations of heavy precipitation or irrigation, soils with swelling–shrinking clay 
kinds (heavy clay soils) are vulnerable to soil waterlogging. Heavy clay soils with a 
high-water retention capacity and poor drainage may swell as the soil reaches its 
maximum water retention capacity, preventing penetration into the soil profile 
(Blessitt 2007). Constrictive clay subsoil horizons can be found on over 290 million 
ha of soil worldwide (USDA-NRCS 2006). In soils with clay pans, the subsoil hori-
zon often suffers a fast, 100% rise in clay concentration in comparison to the soil 
layers above it over a small vertical distance (Motavalli et al. 2003). Depending on 
the topography, the claypan layer’s depth could range, from 10 cm at the back slope 
locations to 40 cm at the front slope locations (Jiang et al. 2007). 

2.7  Soil Preparation for Rice 

The yield of successive non-rice crops in the rotation is negatively impacted by the 
breakdown of aggregates of soil also the creation of a hardpan during puddling, and 
these crops also demand more effort for land preparation (Kumar and Ladha 2011). 
Additionally, where the field had been puddled for rice, the soil infiltration rates 
during the wheat season are lower than they were whenever the land had been dry- 
drilled or maintained in no (Singh et al. 2011). Preparation of soil for rice (Oryza 
sativa L.) cultivate causes compaction of subsurface, leading to low drainage, as a 
result, waterlogging issues in crops like wheat in Asian countries (Samad et al. 2001). 
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3  Why Did Waterlogging Conditions Develop in Pakistan? 

Pakistan is blessed with an abundance of water sources, including enormous rivers, 
tributaries, rivulets, and hill torrents, as well as significant underground water reser-
voirs that are known for their tall snow- and ice-covered mountain summits. The 
Indus irrigation system utilizes a large river and rainwater, which may help irrigate 
vast amounts of potentially fertile agricultural land (Aslam et al. 2015). Pakistan’s 
economy is largely agrarian just because of that. Major crop yields, however, are 
much lower than any of those attained by other developing nations worldwide. 
Table 1 provides information on crop output (year) deficiency in the Indus Basin. 
Various soil, water, and management techniques, inadequate floods and spoor water 
management procedures, inadequate irrigation inputs of good quality water, and an 
insufficient drainage system could all be to blame for this (Aslam et al. 2015).   

In Pakistan, irrigated agriculture is primarily limited to the Indus plains, where it 
has grown as a result of utilizing the main water resources the nation has to offer. 
Adjoining Indus Basin irrigates a total of 16 million acres. In the 1960, Indus Water 
Treaty, Pakistan has access to 181 × 109 m3 of water, or around 75% of the yearly 
available flow, from the Indus River system (Reinsch and Pearce 2005). Due to the 
rising depth of groundwater levels (>15 m), growers must transition, from tiny tube-
wells operated by diesel to powerful engines run by electricity or diesel. The major-
ity of tubewell was driven by electricity, installations took place in the 1970s and 
1980s, a time when the government offered installation cost incentives. Early in the 
1990s, the government stopped providing subsidies due to rising energy costs, 
which caused the development of electric tubewells to stop and the number of 
diesel- powered tubewells to rise. Recent estimates indicate that tubewells powered 
by electricity are just 13%, with the remaining 85% being powered by diesel engines 
of various sizes (Qureshi et  al. 2003). Fresh groundwater is readily available on 
demand, which has helped farmers attain stable and predictable yields while coping 
with the fluctuations in surface water supply (WAPDA 2003). To prevent a rise in 
the groundwater table in semiarid and arid areas, draining is seen as a complemen-
tary activity to irrigation. However, even though irrigation development has 
advanced significantly, Pakistan has never prioritized the building of drainage infra-
structure. Due to the constant seepage over time from unlined clay canals, a wide 

Table 1 Water resource draft report for the strategy study vol. 1. Islamabad (ADB 2002) 

Crops Demand Yield Shortage 
Vegetables 14.3 9 5.3 
Fruits 16.1 9 7.1 
Cotton (lint) 3.5 2.7 0.8 
Pulses 1.9 1.4 0.5 
Sugarcane 82 46.4 35.4 
Oilseed 3.3 1.5 1.8 
Food-grain 50 31.5 18.5 
Total 171 102.8 69.4 
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number of distributing channels, irrigated fields infiltration losses, groundwater lev-
els are rising in most of the canal command regions as a result of this carelessness. 
In large irrigated regions, the groundwater table quickly increased within about 
1.5 m of the surface of the soil (WAPDA 2007). 

4  Waterlogging Stress: Physiological and Metabolic 
Processes in Plants 

Waterlogging has been related to the number of responses shown by plants that are 
frequently speculative (Parent et al. 2008; Shaw et al. 2013). Oxygen transport rate 
in root tissues is significantly slowed down (104 times) by waterlogging in meso-
phytes. Ethylene, which is produced from its precursor ACC transferred from roots, 
regulates apoptosis induction in specific tissues and cells, nodal adventitious root 
formation, the creation of air chambers, metabolic variations during anaerobesis, 
also several other tasks (Subbaiah and Sachs 2003). 

4.1  Oxygen Deprivation 

Lack of oxygen caused by excessive water negatively impacts root and shoot devel-
opment, photosynthesis, hydraulic conductivity, and nutrient uptake. The flow of 
oxygen to the soil, roughly 3 lac 20 thousand folds lesser pore spaces filled with 
water when compared to one filled with gas, and in water the oxygen diffusion rate 
compared to air is about 1/10,000th (Armstrong and Drew 2002; Colmer and 
Flowers 2008). Compared to air, gas diffusion in water is 104 folds slower, and O2 
deprivation is a primary barrier to waterlogging stress (Bailey-Serres and Voesenek 
2008). Reduced O2 availability slows down plant respiration and ATP synthesis, 
which inhibits root development (Bailey-Serres and Voesenek 2010). Decreased 
respiration and Adenosine Tri Phosphate production loss in wet roots are the causes 
of plant wilting (Sairam et al. 2008). Glycolysis uses glucose as its main fuel to 
provide energy for plant reproduction and growth through downstream processes 
including respiration (Galant et  al. 2015). During respiration, glucose enters the 
pathway of glycolysis to create two molecules of ATP and pyruvate. Then, as a 
component of the TCA cycle (tricarboxylic acid), pyruvate burns to produce CO2 
and H2O and high energy (36 ATP) in the mitochondria. Figure 3 illustrates the 
formation of ethanol on cytoplasm from pyruvate under hypoxic conditions, gener-
ating two ATP molecules (Sauter 2013). Waterlogged maize, rice, wheat, and barley 
showed energy deficiency-related restriction of root development. A study on barley 
and wheat for 11 days (waterlogged treatment) indicated that the growth of roots 
and shoots considerably decreased (Steffens et al. 2005). In comparison to plants 
with good drainage, wet shoots, and roots had significantly lower dry weights and 
root/shoot ratios (Araki et al. 2012). Waterlogging in maize slowed root senescence, 
which significantly reduced the roots and shoots dry weight (Ren et al. 2016a, b, c). 
In addition, both lowland and highland rice types’ dry weight and root elongation 
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Fig. 3 Fermentation occurring in waterlogged plant roots. (Source: Poulisw 2011. Available at: 
http://biomhs.blogspot.com/2011/04/anaerobic- respiration- fermentation.html)  

were reduced by hypoxia (Liu et al. 2020b). Waterlogged plants’ poor root develop-
ment also reduced their ability to absorb water and nutrients (Ren et al. 2016a, b, c).  

4.2  Photosynthesis Rate 

Waterlogging stress on crops reduces their photosynthetic rate because of closure of 
stomata, the conductance of mesophyll, degradation of chlorophyll, disruption to 
photosystem II, also decreased activity of photosynthetic enzymes (Ploschuk et al. 
2018). Photosynthetic enzyme activity is further decreased with a prolonged water-
logging duration. Reduction in photosynthesis during flooding circumstances was 
shown to be caused by stomatal closure, which was found to be associated with the 
CO2 exchange rate and transpiration (Irfan et al. 2010). Chlorophyll fluorescence 
metrics can be used to determine the various photosynthesis activities that took 
place in PS II including light absorption, photochemical reactions, and energy trans-
fer (Ashraf et al. 2011). Normal leaf photosynthesis depends on the function of the 
chloroplast structure in mesophyll cells, which has been discovered to be damaged 
in waterlogged maize (Ren et al. 2016a, b, c). This damage persistently prevents 
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photosynthetic electron transport (Yordanova and Popova 2007). After 6 h of water-
logging treatment, the photosynthesis rate of barley plants (waterlogged) initially 
fell by 40% (Ploschuk et al. 2018).Waterlogged treatment for 5 days, a substantial 
reduction of photosynthetic rate occurred and RuBisCo activity (ribulose- 1.5- 
bisphosphate carboxylase) in barley (Yordanova and Popova 2001). Although rice is 
a crop that can withstand flooding, it also showed a 50% reduction in the rate of 
photosynthesis following an anoxic treatment of four days (Mustroph and Albrecht 
2003). Flooding stress decreased soybean chlorophyll concentration by 18–34%. 
(Mutava et al. 2015). The maize leaf area index decreased as the period of waterlog-
ging increased (Liu et al. 2013). Respiratory activity of wheat roots, photosynthetic 
rate, leaf greenness (SPAD reading), transpiration rate, grain production, number of 
grains per spike, stomatal conductance, and weight of 1000 grain significantly 
decreased due to flooding during the post-anthesis stage. Yet, the intercellular 
amount of CO2 rose (Wu et al. 2012). In addition, flooded maize plants had lower 
chlorophyll (a  +  b) content and were around 20% smaller than control plants 
(Yordanova and Popova 2007). During the treatment for waterlogging, RuBisCo 
activity decreased in maize plants by 20–30% (Yordanova and Popova 2007). 

4.3  Root Hydraulic Conductance 

Wilting, which results from decreased root water intake and decreased root hydrau-
lic conductance (Lp), is a frequent reaction against waterlogging stress (Herzog 
et al. 2016). Water absorption capacity is determined by Lp, which is connected 
with transpiration rate (Tan et al. 2018). Under prolonged waterlogged conditions, 
the death of root cells decreases Lp through erecting barriers (physical) to the flow 
of water (Bramley et al. 2010). Aquaporin gating and anaerobic respiration caused 
by a lack of oxygen are additional causes of a large shift in Lp (Tournaire-Roux 
et al. 2003). Energy production and cytosolic pH control aquaporin, an essential 
protein of membrane allowing uptake of water by the development of proteinaceous 
membrane pores (Aroca et al. 2012). Cellular acidosis, which is brought on by CO2 
buildup through respiration and ATP depletion, and aquaporin phosphorylation, 
which results from these processes, control the reduction of aquaporin gating of wet 
plant roots (Aroca et al. 2012; Tan et al. 2018). Low-ambient oxygen and waterlog-
ging diminish Lp in plants, but species-specific responses differ based on the water 
transport channel (Bramley et al. 2010). 

There are three methods for transporting water:

 1. Apoplastic method that is around the protoplasts. 
 2. Synthetic method that is by plasmodesmata. 
 3. Transmembrane/across the membranes.   

The transmembrane system is regulated by aquaporins, whereas the apoplastic 
pathway depends on the structure of the root and the characteristics of the cell wall 
(Maurel et al. 2015). Under hypoxic conditions, lower hydraulic conductance was 
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discovered in Arabidopsis, maize, and wheat as cellular acidosis impairs the activity 
of aquaporin (Tan et al. 2018). However, the primary route in other species is apo-
plastic, thus root Lp is not significantly affected by the decrease in the activity of 
aquaporin in flooding stress (Tournaire-Roux et al. 2003; Bramley et al. 2010). In 
addition, morphological modifications in Oryza sativa (rice), like the creation of 
barriers that prevent O2 transport through roots, may have a deleterious impact on 
roots’ hydraulic systems (Aroca et al. 2012). 

4.4  Nutrient Absorption 

Leaf chlorosis is a frequent symptom of waterlogging stress, which encourages 
early senescence in the leaf to remobilize N (nitrogen) to new leaves. Reduced 
nitrogen uptake and transport from roots results in the lower nutritional content of 
waterlogged shoots (Herzog et al. 2016). It accomplishes this by reduced surface, 
compromised function, decreased PMF (proton motive force), decreased potential 
of the membrane also decreased loading of xylem (Steffens et al. 2005). Particularly, 
wheat and barley under waterlogging stress have significantly lower amounts of 
magnesium (Mg), copper (Cu), phosphorous (P), potassium (K), zinc (Zn), nitrogen 
(N), and manganese (Mn) (Steffens et al. 2005). When compared to aerated circum-
stances, wheat seminal roots took up fewer nutrients from stagnant solutions 
(Wiengweera and Greenway 2004). Within a few minutes, the hypoxia in the barley 
roots’ mature zone reduced net K+ uptake (Shabala and Pottosin 2014). At various 
phases of maize growth, Nitrogen assimilation, as well as metabolism, is reduced 
due to flooding stress (Ren et  al. 2017). A physical barrier is created in rice in 
response to flooding stress in order to prevent O2 passage form the roots, which 
might reduce roots nutrition absorption capacity, in contrast to waterlogging vulner-
able barley, wheat, and maize that exhibited a significant loss in nutrient content 
(Rubinigg et al. 2002). For roots to absorb nutrients, there are three possible routes 
(Reichardt and Timm 2012):

 1. Interception of roots’ haphazard expansion into new soil areas in search of 
nutrients. 

 2. Mass flow, which represents water movement caused by evaporation and transpi-
ration together with ion transfer to the root surface. 

 3. Diffusion, which is the gradient in chemical potential that encourages the flow of 
nutrients.   

By reducing nutrient interception, in waterlogging stress reduction of growth of 
roots drastically reduced the potential intake of nutrients (Mancuso and Shabala 
2010). The majority of roots of maize (apart from adventitious roots) were not able 
to take nutrients from ambient soil under waterlogging treatment for 6 days (Qiu 
et al. 2007). The majority of nutritional absorption relies on diffusion and is fueled 
by proton motive force and membrane potential, both of which are suppressed dur-
ing conditions of waterlogging stress. Limited ATP supply resulted in a depolarized 
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plasma membrane, reduced proton motive force, and impaired activity of the plasma 
membrane proton-pumping ATPase, all of which lowered the cytoplasmic 
pH. (Mancuso and Shabala 2010). With the help of plasma membrane H + -ATPase, 
ions that the roots have taken up are transferred to the shoot through the xylem. 
Waterlogged situations, inhibit xylem transport due to a decrease in H + - ATPase in 
the parenchyma of the xylem, which constantly lowers the shoot’s nutritional con-
tent in waterlogged plants (Colmer and Greenway 2011). 

5  Anatomical Adaptation 

5.1  Formation of Aerenchyma 

An air tissue in some plants’ adventitious roots creates gaps between cells and does 
gaseous transportation between roots and shoots, a typical adaptive characteristic 
linked to the ability to withstand waterlogging (Colmer 2003). Two distinct forms 
of aerenchyma, schizogenous, and lysigenous, are produced when cells are sepa-
rated and then lysed, respectively. The cortex of roots of the majority of cereal 
crops, such as wheat, maize, barley, and rice develops lysigenous aerenchyma 
(Yamauchi et  al. 2013). Lysigenous aerenchyma for wetland plant rice develops 
constitutively including well soil conditions and rises in wet situations. However, 
the aerenchyma production in barley, maize, wheat, and other terrestrial plants is 
only brought on due to moisture stress (Yamauchi et al. 2011). Following 7 days of 
flood treatment, aerenchyma was found in mature root zones of barley in the toler-
ant cultivars at a distance of around 6 cm from the root apex (Zhang et al. 2015). 
According to a study on maize, under conditions of waterlogging, cell death began 
at 10 mm from the tips and was fully developed at 30–40 mm from the tips (Evans 
2004). Higher root porosity and the production of aerenchyma are significant adap-
tive features that contribute to the ability to withstand waterlogging (Setter and 
Waters 2003). By starting planned death in cells of particular cell types, ROS abbre-
viated as reactive oxygen species and the phytohormone ethylene in gaseous form 
are associated with lysigenous aerenchyma formation. Due to obstruction of gas 
transport to the rhizosphere and the increased ethylene production caused by water-
logging stress, ethylene builds up in roots (Yamauchi et al. 2018). In response to the 
stress of waterlogging, antioxidant defense systems are used to combat the harmful 
consequences of ROS build up (Ashraf et al. 2011). 

5.2  Adventitious Root Growth 

Seminal root growth is inhibited in wet plants, which results in a lower root/shoot 
ratio. There are two main plant root types: seminal roots and adventitious roots. 
Comparatively to seminal roots, which only have a fully developed main root axis, 
adventitious roots have much more core metaxylem and cortical cell layers (Knipfer 
and Fricke 2011). As seen in Fig.  4, waterlogged plants frequently respond by 
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Fig. 4 Aerenchyma cells and adventitious root formation in waterlogged condition. [Kaur et al. 
2020(source) (modified)]  

forming adventitious roots, which can substitute the damaged seminal roots and 
produce more aerenchyma to increase the capacity for inner O2 delivery. In trials 
conducted in greenhouses, seedlings of Zea mays ssp. huehuetenangensis displayed 
higher adaptation toward submersion with adventitious root formation (Mano et al. 
2005). The number of adventitious roots in barley genotypes (tolerant) after 21 days 
of waterlogging treatment was significantly higher than that in genotypes that were 
sensitive (Luan et  al. 2018a, b). Aerenchyma was found to occupy 20–22% and 
19%, respectively, of adventitious roots of wheat and barley (Ploschuk et al. 2018). 
A study on rice discovered that the hormone auxin gradient in root tips determines 
the adventitious root growth direction (Lin and Sauter 2019). Adventitious roots 
extend upward to get closer to the oxygen-rich water surface to help with water and 
nutrient absorption from the top layer of the moist soil (Jia et al. 2021; Steffens and 
Rasmussen 2016). Additionally, as it develops at the stem nodes, adventitious roots 
can shorten the distance that oxygen is transported between shoots and roots 
(Steffens and Sauter 2009). Epidermal cell death induced by ROS and ethylene 
promotes the formation of adventitious roots from the epidermis of the node 
(Nguyen et al. 2018a, b).  
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5.3  Radial Oxygen Loss (ROL) Barrier 

Radial Oxygen Loss barrier, yet some other crucial response characteristic in order 
to deal with stresses like waterlogging in addition to aerenchyma formation. An 
apoplastic barrier called the ROL barrier, which is found in the outer root cell layer 
stops oxygen from escaping into the anaerobic environment (Yamauchi et al. 2018). 
In general, rice generates ROL barriers in waterlogged or stagnant conditions, 
whereas flooding-sensitive cereals like barley, wheat, and maize don’t (Ejiri et al. 
2021). Under hypoxic soil, the ROL barrier enables a plant to maintain high quanti-
ties of oxygen at the tips of its roots (Abiko et al. 2012). The development of ligni-
fied sclerenchyma and suberized hypodermis in roots regulates ROL (Watanabe 
et al. 2013). Light ROL barrier development was stimulated for flooding-resistant 
Zea nicaraguensis (wild maize), and lignin and suberin, found in inner and outer 
layers, orderly (Watanabe et al. 2017). Rice roots’ basal region can be shown to have 
both suberized and lignified cells after two to three weeks of waterlogging (Soukup 
et al. 2007). Figure Microarray analysis on rice adventitious roots showed during 
the construction of the ROL barrier, numerous putative genes connected to suberin 
biosynthesis were highly elevated, while only a small number of genes related to 
lignin production were induced (Shiono et al. 2011). Malic acid and long-chain fatty 
acids are connected to the production of suberin, according to metabolite analyses 

Fig. 5 Rice roots grown in both wet and drained soil exhibit different trends of radial O2 loss 
(ROL) and lysigenous aerenchyma development. “Ex” stands for exodermis; “Sc” for scleren-
chyma; “Co” for cortex; and “En” for endodermis. (Nishiuchi et al. 2012)  
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of rice adventitious roots. Malic acid and long-chain fatty acids accumulated during 
ROL growth (Kulichikhin et al. 2014). Lysigenous aerenchyma is continuously pro-
duced under drained soil conditions, but barriers to ROL are not established, which 
lowers O2 diffusion towards the apical portion. On the other hand, lysigenous aeren-
chyma development is accelerated, and the construction of the barrier to ROL is 
stimulated in wet soil conditions, which promotes longitudinal O2 diffusion to the 
root apex. Figure 5 shows how the basal region of the roots constitutively produces 
lysigenous aerenchyma (a) under drained circumstances of soil, typically not pro-
duced at the apical root part (b). At the basal region, lysigenous aerenchyma is 
formed (c) and the apical part (d) of roots in wet soil conditions. The roots’ basal (a, 
c) compared to its apical portion, the lysigenous aerenchyma is much more devel-
oped (b, d). The O2 availability is shown by the thickness of the arrow. In barley 
waterlogging tolerant cultivars, lignin deposition under waterlogging stressors 
greatly increased the activity of the enzyme caffeic acid o-methyltransferase 
(COMT), which is associated with the formation of lignin (Luan et al. 2018a).  

6  Signaling and Response to the Stress of Waterlogging 

6.1  Phytohormone Signaling 

Under conditions of waterlogging, ethylene, an essential phytohormone that con-
trols plant development and senescence, was shown to accumulate (Iqbal et  al. 
2017). The development of a plant root barrier that restricts ethylene diffusion leads 
to ethylene buildup (Voesenek and Sasidharan 2013). In addition, it has been dis-
covered that the activity of two enzymes, ACC oxidase, and synthase (1-amino- 
cyclopropane-1-carboxylic acid), increases due to waterlogging stress (Dat et  al. 
2004; Broekaert et  al. 2006;). Ethephon, an agrochemical that releases ethylene, 
increased aerenchyma development at the tips of roots and prevented wilting due to 
waterlogging in barley after pretreatment (Shiono et al. 2019). In order to facilitate 
plants’ movement of O2 from shoots to roots when there is a lack of oxygen, ethyl-
ene controls the creation of gas spaces (aerenchyma) in roots (Steffens and Sauter 
2009). In waterlogged maize and barley roots, a transcription level of XET expres-
sion was shown to be increased (Luan et  al. 2018b). Thus, XET expression and 
cellulase are induced by ethylene and aid in the production of aerenchyma in roots 
by dissolving cell walls. Gibberellin (GA), ethylene, and abscisic acid (ABA), sig-
nificantly play a role in the survival of waterlogged plants by inducing elongation of 
the shoot. Gibberellic acid encourages elongation between nodes through the break-
down of proteins that are growth inhibitory (Hedden and Sponsel 2015), also 
through the breaking of starch, releasing cell walls in order to mobilize dietary 
resources thus enhancing the growth of plants (Else et al. 2009). GA significantly 
boosts the growth of shoots whereas elongation of roots is inhibited by ABA, acting 
as antagonists in plants’ reactions to growth stimuli (Dat et al. 2004). After 3 h of 
the flooded plants receiving the ethylene treatment, GA1 increased four-fold and 
ABA decreased by 75% in deep-water rice (Vaahtera et al. 2014). The stem node 
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ABA content and gene expression level in ABA production were both decreased in 
the adventitious roots of flooded wheat. After 3 weeks of waterlogging treatment, 
ABA content was observed to be reduced in the roots and leaves of varieties of bar-
ley (tolerant & sensitive), with a greater decrease in tolerant species (Luan et al. 
2018a, b). 

6.2  Reactive Oxygen Species Accumulation (ROS) 

For crop stress conditions like droughts, salinity, freezing, and mechanical stress, 
ROS plays a crucial supplementary messenger role, even though they can be harm-
ful to plants because they unrestrictedly oxidize cell components (Mittler 2002; 
Mhamdi and Van Breusegem 2018). Figure  6 illustrates the primary metabolic 
adaptations of flooding tolerance of plants as well as stress responses to 
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Fig. 6 Schematic diagram of the main waterlogging stress responses and metabolic adaptive traits 
for waterlogging tolerance in plants. PDC: pyruvate decarboxylase, ADH: alcohol dehydrogenase, 
RBOH: respiratory burst oxidase homolog, GST: glutathione S transferase, XET: xyloglucan 
endo-transglycosylase, ACO: 1-amino-cyclopropane-1-carboxylic acid oxidase (Tong et al. 2021)  
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waterlogging. Different organelles in plants, such as chloroplasts for photosynthe-
sis, mitochondria for respiration, and peroxisomes for photorespiration, all partici-
pate in the metabolism of ROS (Foyer and Shigeoka 2011). The breakdown in 
mitochondria of the electron transport chain during oxygen deprivation results in 
the production of hydrogen peroxide (H2O2), It acts as a stimulus for epidermal cell 
death to generate aerenchyma, protecting plants from anaerobic environment stress 
(Fukao and Bailey-Serres 2004; Steffens et al. 2011; Rajhi et al. 2011). H2O2 treat-
ment increased lysigenous aerenchyma production by processes of cell death in 
flooded Oryza sativa (rice) (Blokhina et al. 2001). Similarly, under wet conditions, 
H2O2 accumulation was discovered in the roots of wheat and barley (Yamauchi et al. 
2014). ROS accumulation, a trigger for wheat seedlings to respond to waterlogging 
by controlling gene expression, is associated with fermentation of ethanol (ADH 
and PDC) and aerenchyma formation (Sumimoto 2008). Respiratory Burst Oxidase 
Homolog (RBOH), which genes for an NADPH oxidase found in the plasma mem-
brane for the production of H2O2, controls the accumulation of ROS (Steffens 2014).  

7  Agronomic Practices to Grow the Crop 
in Waterlogged Soil 

Given how weather-sensitive agronomic crop production is, global climate change 
has an impact on the agricultural industry (Aderonmu 2015). The amount of sea-
sonal precipitation as a whole, as well as the differences between and within 
seasonal precipitation events, have changed due to climatic fluctuations. Extremes 
in water availability, particularly waterlogging, have increased during the past 
50 years in agricultural districts all over the globe (Aderonmu 2015; Bailey-Serres 
et al. 2012). Whenever all or a portion of a plant is submerged in water, the condi-
tion is referred to as “flooding” (Bailey-Serres et al. 2012). Figure 7 illustrates sug-
gested procedures for various wet environments. The measures listed below can 
help you deal with the effects of waterlogging:  

• Minor 

Tolerant variety or 
agronomic practices 

• Moderate 

Crop management 
(tolerant 
species+agronomic 
practices) 

• Severe 

Combination of 
drainage and crop 
management 

Fig. 7 Recommendations for managing soil and crops dependent on the severity of waterlogging 
(Manik et al. 2019)  
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8  Modeling of Crops and Decision-Making Systems 

Numerous models, such as DRAINMOD, can simulate how crops respond to water-
logging in the soil in terms of growth and yield (Skaggs 2008). These models can be 
used to determine which places or circumstances will result in a decrease in yield 
and to evaluate the effect of management practice modifications on the reduction of 
flooding stress on crop plants. For instance, the Agricultural Production Systems 
Simulator (APSIM-Wheat) was used in order to predict impacts on wheat due to 
waterlogging at various dates of the plantation. It was discovered, only in places 
with a minimal to medium risk of waterlogging will an earlier planting date boost 
crop output, yet had no effect in areas that frequently experienced waterlogging 
(Bassu et al. 2009). However, the effectiveness of these simulation models for use 
in evaluating waterlogging stress depends on how well the processes are represented 
in them (Shaw et al. 2013). Additionally, remote sensing and GIS are utilized to 
locate fields’ sensitive areas to soil flooding or dry conditions and can assist in the 
precise positioning of crops or strategies of management of nutrients thus lessening 
waterlogging stress. Selectively regions with the greatest nutrient losses, employ-
ment of cover crops may lower the cost of planting cover crops and result in finan-
cial savings for farmers. For producers to make decisions on the precise placement 
of various crop management measures to reduce the stress caused by soil waterlog-
ging, they need decision support tools. The Right, Practice, Right, Place (RPRP) 
Toolbox, which consists of collection preservation strategizing tools online that 
connect at the local, watersheds, and field level, applying the “right practice of 
conservation “ to the “right spot” can help increase the efficacy as well as efficiency 
of efforts to improve quality of the water. (McLellan et  al. 2018). Using several 
BMPs (Best Management Practices), individually /collectively, to reduce the loss of 
nutrients in crop fields is evaluated using the SWAT (Water Assessment Tool) model 
(Merriman et al. 2019). Although these decision-support systems have been tested 
for identifying BMPs for improving the quality of water, yet not been examined in 
determining how well BMPs mitigate stresses like flooding in various situations. 
Crop producers can use these models as tools to help them make well-informed 
choices about the use of techniques of crop management for locations where the 
chances of waterlogging stress are high. Still no information regarding how to apply 
these systems for deploying methods for management at individual sites are avail-
able (Kaur et al. 2020). 

9  Crop Management Practices 

9.1  Application of Nutrients 

Nutrient deficiency is among the main impacts of waterlogging upon plants, which 
reduces net carbon fixation and photosynthesis and, eventually, growth and produc-
tion (Bange et al. 2004). Increased productivity will result from the application of 
vital nutrients, which will help to lessen the effects of abiotic pressures such as 
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waterlogging (Noreen et al. 2018). N fertilizer applications may increase and speed 
up a plant’s ability to adapt to waterlogging stress, including root regrowth and 
adventitious root growth following a flooding event. This may raise a plant’s toler-
ance to waterlog stress. Due to low O2 during flooding, which may prevent plants 
from absorbing N, its loss through leaching and denitrification may result in N defi-
cits, decrease nitrogen availability, and restrict root function (Nielsen 2015), as seen 
in Fig. 8. The application of enhanced-efficiency N fertilizers, such as slow-release 
or controlled-release (SR/CR) fertilizers, under wet conditions, is crucial for 
enhancing plant growth and development (Shaviv 2001; Varadachari and Goertz 
2010). By coordinating nitrogen release with crop needs, throughout growing crops, 
slow-release fertilizers can emit nitrogen across a long duration of time, maximiz-
ing (NUE) nitrogen use efficiency (Trenkel 2021). Externally applied fertilizers 
may be effective if the nutrient ions infiltrate the root architecture, enabling plants 
to heal from waterlogging-related damage, claims many research studies (Ashraf 
et al. 2011; Habibzadeh et al. 2012; Najeeb et al. 2015). Wheat (Pereira et al. 2017; 
Zheng et al. 2017), barley (Pang et al. 2007), corn (Kaur et al. 2018), canola (Kaur 
et al. 2017), and cotton (Wu et al. 2012; Li et al. 2013) are among the crops that are 
(Habibzadeh et  al. 2012). Application of fertilizer also extends the time that the 
canopy is open and speeds up the development of photo-assimilates that are trans-
ferred to grain rather than straw, raising HI (harvest index) (Kisaakye et al. 2015, 
2017). Additionally noted that potassium fertilizer can mitigate the negative impacts 
of waterlogging in a variety of crops, including rapeseed and cotton (Cong et al. 
2009; Ashraf et  al. 2011). In phosphorous deficiency, during a rainy growing 
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Fig. 8 Different soil conditions, both aerated and anaerobic, are used to demonstrate the nitrifica-
tion and denitrification processes. Available at: https://civiljungle.com/waterlogging/  
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season, external application of different phosphorus (P) sources, such as Meat & 
Bone Meal (MBM) and Dairy Cow Manure (DCM), is beneficial for providing the 
highest yields (Ylivainio et al. 2008, 2018). Under flooded conditions, the adminis-
tration of FYM (Farm Yard Manure), greatly enhanced iron, zinc and copper con-
centrations in grain (Masunaga and Fong 2018).

Even with high-value crops, the application of fertilizer to prevent waterlogging 
loss in extensive farming is limited due to the lack of research on their potential 
benefits for improving crop performance in waterlogged circumstances (Trenkel 
2021). To prevent tissue toxicities (such as manganese) and nutrient imbalance from 
harming soil ecology, it is important to examine the application techniques, nutrient 
types, timing, and rate that are acceptable (Rochester et  al. 2001; Jackson and 
Ricard 2003). 

9.2  Plant Growth Regulator 

Applying PGRs at the proper growth stage can reduce the damage that waterlogging 
causes to plants (Wu et al. 2018; Ren et al. 2018). Plant growth under wet conditions 
is improved by plant growth regulator administration (Pang et al. 2007; Ren et al. 
2016a, b, c). In waterlogged barley, auxin (synthetic) 1-NAA (1-naphthalene acetic 
acid) encourages adventitious roots formation (Pang et al. 2007), while the external 
administration of cytokinin 6-BA (6-benzyl adenine) can reduce the effects of 
waterlogging and boost maize output (Ren et al. 2016a, b, c, 2018). By enhancing 
leaf photosynthesis, pre-waterlogging ABA foliar treatment enhanced the resistance 
of cotton plants to subsequent waterlogging-related damage (Pandey et al. 2002; 
Kim et  al. 2018). Triazole is recognized to be a fungus-toxicants, and they also 
affect how plants respond to stress and regulate their growth (Rademacher 2015). 
For instance, paclobutrazol reduces the harm caused by waterlogging in sweet 
potato plants and canola (Lin et al. 2008). 5-methyl-1,2,4-triazole (3,4-b) benzo-
thiazole (Tricyclazole) treatment reduces plant damage when there is waterlogging 
(Habibzadeh et al. 2013). However, there hasn’t been much usage of plant growth 
regulators to lessen waterlogging damage due to inconsistent results at the commer-
cial level (Manik et al. 2019). 

9.3  Pretreatment with Hydrogen Peroxide 

Pre-treating plants with an agent could be a successful method to boost their toler-
ance to various stresses as shown in Fig. 9. For instance, pretreating crops with H2O2 
can shield them from oxidative harm brought on by waterlogging, intense light, 
chilly weather, salt stress, drought, and heavy metal exposure (Gechev et al. 2002; 
Rajaeian and Ehsanpour 2015; Andrade et al. 2018). Increases in the diameter of the 
stem, high accumulation of biomass, the volume of the root, and photosynthetic 
pigments were also brought about by H2O2 pretreatment (Andrade et al. 2018). H2O2 
pretreatment resistant against waterlogging, despite substantial research being done 
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Fig. 9 Reactive oxygen species are shown to be produced by heavy metals in a schematic repre-
sentation, and hydrogen peroxide is used since it is a signaling substance to activate the antioxidant 
system, that lowers the concentration of reactive oxygen species and safeguards plants from harm 
caused by heavy metal stress (Htet et al. 2019)  

on treatments against both biotic and abiotic stresses, is still in its infancy (Mustafa 
et al. 2017; Lal et al. 2018; Ashraf et al. 2018). 

9.4  Utilization of Tolerant Varieties and Species 

Waterlogging tolerance is one of the most effective ways to reduce the loss brought 
on by flooding in available plant species (Zhou 2010; Wani et al. 2018). There are 
genetic variations in waterlogging resistance among several crops, including wheat 
and barley (Zhang et al. 2015; Huang et al. 2015; Herzog et al. 2016; Wu et al. 2018; 
Nguyen et al. 2018a, b). Waterlogging tolerance, however, is a dynamic condition 
that is regulated by a diverse range of mechanisms, including the maintenance of 
membrane potential (Gill et al. 2018), the control of ROS production under stress 
conditions, resilience to metabolites (Pang et al. 2006), toxicity of ion (Huang et al. 
2018), aerenchyma formation in roots under waterlogging stress, and many quanti-
tative trait loci (QTL) (Gill et al. 2018). The identification of genes that are associ-
ated with different tolerance mechanisms is crucial for the success of breeding 
programs because it enables producers to elevate tolerance genes. Depending on the 
region and the weather, flooding can happen at any stage of the crop’s growth. 
Waterlogging brought on by heavy rains in the fall can delay crop harvesting, so it’s 
critical to breeding crop varieties with traits like strong stems, superior seed quality, 
and reduced sensitivity to diseases and pests. It is important to create variety with 
tolerance both to cold and floods stress since flooding in the early part of the grow-
ing season often subjects crops to cold soil temperatures. In conclusion, it’s critical 
to create and test novel varieties of crops that are resistant to a variety of biotic or 
abiotic stresses, such as heat, drought, and waterlogging stress, along with disease 
vectors (Kaur et al. 2020). 
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9.5  Adjusting Dates of Planting 

In order to encourage favorable crop emergence and development during the initial 
spring season, planting dates might be modified to minimize waterlogging circum-
stances. The emergence of crop and plant development vigor can be delayed by 
cool, damp soils. A short growth period and exposure to dryness subsequently in the 
planting season may result in decreased crop yields, while later sowing dates may 
prevent potential initial extreme rainfall events and saturated soil conditions. 
Droughts that occur over the summer have pushed the dates of the plantation, sooner 
into the spring (Kucharik 2006). The creation of cultivars resistant to unfavorable 
weather conditions and diseases, treatment of seed, enhanced plantation tools, crop 
protection products, and the use of time-saving crop management techniques like 
conservation tillage are further variables that contribute to early planting dates 
(Kucharik 2006). By extending the time for solar radiation absorption and biomass 
accumulation, early planting dates enable a longer growing period and larger yields 
(Kucharik 2006). Crop varieties chosen for early planting ought to be resistant to a 
low temperature of soil that develops after or during planting because there is a 
danger of plant injuries due to inadequate soil temperature at these early planting 
dates. Changing planting dates to reduce soil waterlogging depends on when and 
how long the waterlogging lasts (Kaur et al. 2020). 

9.6  Use of Cover Crops 

By enhancing soil structure, lowering compaction, and boosting the rate of water 
infiltration, the use of cover crops may not just improve soil health but also reduce 
waterlogging (Blanco-Canqui et al. 2015). Cover crop roots can create more macro-
pores, which will result in more water moving through the soil. Increased cover crop 
transpiration during the spring may potentially dry the soil in time for earlier crop 
planting. Through larger evapotranspiration (ET) losses, cover crops with higher 
water requirements and warmer springtime temperatures can assist in eliminating 
extra moisture from the waterlogged soils. Numerous studies have documented how 
cover crops can reduce soil moisture content (Monteiro and Lopes 2007; Zhang and 
Schilling 2006). Reed canary grass (Phalaris arundinacea) had a reduced water table 
and soil moisture content due to increased ET losses, which decreased groundwater 
recharge, according to research on the impact of land cover on these variables 
(Zhang and Schilling 2006). Utilizing cover crops during the winter fallow season 
is another possible strategy for preventing soil waterlogging. However, depending 
on the soil type, climate, and cover crop species employed, the impact of cover 
crops on the water distribution in the soil profile can be beneficial, negative, or neu-
tral (Blanco-Canqui et al. 2015). Therefore, further research should be done on the 
utilization of different types of cover crops for fields that are prone to flooding or 
drought. Topography, which can affect nutrient and water dynamics within a field 
and provide variability biomass synthesis of cover crop and cash crop yields, is not 
always present in agricultural fields. Therefore, it is crucial to better assess how 
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topography and cover crops interact to lessen the stress caused by waterlogging in 
big agricultural areas. Using spatial modeling and remote sensing techniques from 
the geographic information system (GIS), it may be possible to spot parts of an 
agricultural field that are prone to flooding (Kaur et al. 2020). 

9.7  Using Conservation Tillage Techniques 

Conservation tillage techniques include mulch tillage, minimal (reduced) tillage, 
ridge tillage, and contour tillage. The term “minimum tillage” (MT) refers to soil 
manipulation with only a minimal amount of plowing utilizing primary tillage tools. 
No-tillage (NT) refers to field cultivation with little to no soil surface disturbance. 
Mulch tillage involves preparing or tilling the soil in a way that allows plant wastes 
or other materials that cover the surface to the greatest possible amount. In ridge 
tillage, crops are planted in rows either on top of or along the ridges that are formed 
at the start of a cropping season. Variations in conservation tillage’s effects on soil 
characteristics rely on the specific system selected. The soil qualities, particularly in 
the top few centimeters, have changed significantly as a result of no-till (NT) meth-
ods, that achieve high top soil coverage (Anikwe and Ubochi 2007). NT technolo-
gies are particularly successful at minimizing erosion losses, decreasing the amount 
of residue disturbance, and moderating soil evaporation (Lal et al. 2007). No-till 
soils have been linked to much more stable aggregates mostly in the soil’s upper 
surface than tilled soils, which leads to high permeability under NT plots. Over 
37–40 years of tillage operations in Gottingen, Germany, minimum tillage (MT) 
enhanced both levels of SOC and nitrogen inside the aggregate in the upper 5–8 cm 
soil depth as well as aggregate stability (Jacobs et al. 2009). In tropical and sub- 
humid tropics, no-till has been proven to be more beneficial in terms of water sav-
ing. Contrary to tilled plots, untilled plots hold more water (Kargas et al. 2012). 

Compared to normal plowing, minimum tillage increased the soil pores 
(0.5–50  mm), also many elongated transmission pores (50–500  mm), which 
improved the soil’s pore system (Pagliai et  al. 2004). The upper layer of soil 
(0–10 cm) under NT has been observed to have a greater holding capacity for water 
(McVay et al. 2006). Therefore, to improve soil water storage and increase water use 
efficiency (WUE), the majority of research has recommended shifting to conserva-
tion tillage rather than just traditional tillage (Fabrizzi et  al. 2005; Silburn et  al. 
2007). Table 2 lists many benefits and drawbacks of crop management techniques.

10  Adaptive Water Management 

Numerous initiatives have been launched to address the issue of waterlogging since 
the early 1960s. Farmers made no investments in the majority of these initiatives 
because they were subsidized by the government. Despite significant investment, 
progress in resolving land degradation issues has been slow. Waterlogging issues 
were not as easily handled as originally thought. A high groundwater level is a 
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Table 2 Merits and demerits of management techniques for crops 

The practice of 
managing the 
soil and crops Merits Demerits Reference 
Application of 
nutrition 
(particularly 
N) 

Promoting the 
development and 
growth of plants 

The right methods, 
nutrients, duration, and 
quantities should be 
considered for 
large-scale 
administration 

Rao et al. (2002), Pang 
et al. (2007), Wu et al. 
(2012), Najeeb et al. 
(2015), Pereira et al. 
(2017), Li et al. (2013), 
Kaur et al. (2017, 2018), 
Zheng et al. (2017) 

Plant growth 
regulators 

Encourage water- 
logged plants’ and 
photosynthetic ability 

When applying on a 
wide scale, the right 
timing, rate, and 
procedures should be 
taken into account 

Ren et al. (2016a, b, c, 
2018), Habibzadeh et al. 
(2013) 

Hydrogen 
peroxide 
pre-treatment 

Defend plants from 
oxidative harm 
brought on by 
waterlogging 

Unproven in 
commercial agriculture 

Gechev et al. (2002), 
Ishibashi et al. (2011), 
Savvides et al. (2016) 

Tolerant 
species and 
varieties 

Economical for 
farmers 

It takes time and effort 
to introduce 
waterlogging tolerance 
into current plant 
varieties 

Zhou et al. (2007), Gill 
et al. (2018) 

Modifying 
plant dates 

Utilizing the soil’s 
current water acts as a 
buffer and prevents 
catastrophic 
waterlogging incidents 

Small benefit in cases 
of extreme 
waterlogging 

Bassu et al. (2009), 
Sundgren et al. (2018), 
Wollmer et al. (2018)

problem for 20–30% of the population as a result of excessive surface water use 
(Smedema 2000). 

10.1  Drainage Systems 

One of the key strategies for increasing yields per available agricultural area is land 
drainage (Malano and Van Hofwegen 2018; Singh 2018b). The two major goals of 
agricultural drainage are to decrease soil submergence and open up a new areas for 
agriculture (Singh 2018b). When compared to irrigation, drainage is a more effec-
tive agriculture engineering solution to fight to waterlog; nevertheless, neither indi-
vidual farmers nor governmental organizations have given it the same priority as 
irrigation. Around the world, drainage is utilized to reduce waterlogging (Milroy 
et al. 2009). Numerous research from North America, Europe, and England show 
that draining can successfully lower the water table and boost crop production 
(Gramlich et al. 2018). Many techniques to lessen the waterlogging problems have 
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been proposed (Kazmi et  al. 2012; Singh 2012, 2016). These techniques are 
explained below: 

10.1.1  Surface Drainage 
Surface drainage is the method of employing manufactured channels to safely 
remove surplus water from the surface of the ground (Ritzema et al. 2008; Ayars and 
Evans 2015). Surface drainage systems have been proven to be cost-effective, with 
cost-benefit ratios ranging from 1.2–3.2, average return rates from 20 to 58%, and 
payoff times of 3 to 9 years (Ritzema et al. 2008). The simplest and most affordable 
option is to keep the surface drains that already exist and build additional ones 
across edges or via depressions while considering their proper size and placement. 
Using cut-off drains to stop water from flowing from higher to lower paddocks is 
also a smart option (Palla et al. 2018). However, inadequate lateral water flow or 
internal soil drainage qualities frequently limit the effectiveness of surface drainage, 
resulting in poor drainage near the drains (Saadat et al. 2018). This means that the 
solutions to these issues may involve both subsurface and surface drainage. 

Raised Beds 
In semi-arid and arid areas, these are re-utilized to address hurdles like irrigation 
requirements and also waterlogging (Govaerts et al. 2007). By preserving a suitable 
moisture level in soil via enhanced seepage and acting as a channel to distribute 
irrigation water, raised seedbeds can improve crop yields (Velmurugan et al. 2016). 
It increases drainage, and aggregate stability and reduces bulk density (Hassan et al. 
2005). To prevent compaction of soil, which promotes penetration of soil, develop-
ment of roots, and surface and subsurface infiltration, traffic in the furrows should 
be kept to a minimum. In comparison to flat seedbed planting, raised bed planting 
has been shown in several studies to increase crop yields in soil that is saturated with 
water (Blessitt 2007). Soil structure enhancement as seen by infiltration rate and 
lower bulk densities in clay soil (duplex), which decreased the likelihood of water-
logging and promotes rates of runoff seen in raised beds due to the availability of 
furrows (Bakker et al. 2005a). As the top 15 centimeters are kept dry during planting 
in raised beds, as shown in Fig. 10, raised bed planting minimized waterlogging 
stress. Raised beds have helped to lessen the consequences caused by flooding, but 
it also has some demerits. These include the price of modifying and adapting 
machinery, the difficulty of managing drainage water, the use is restricted where the 
water table is too high, handling stubble and preserving fodder, firefighting and 
mobilizing livestock, the possibility of pesticide contamination of waterways and 
leaching into the water table, ineffectiveness of machinery, and weed management 
in furrows (Bakker et al. 2005b; Gibson 2014).

10.1.2  Subsurface Drainage 
Due to the thick soil composition, compact layers, and naturally occurring or artifi-
cial hard pan as well as water flowing downhill from springs or from higher slopes, 
which raises the water table, poor subsurface water mobility occurs (Ward et  al. 
2018). Subsurface drainage reduces the water table or perched water and creates an 
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Fig. 10 Tackle waterlogging problematic soil, via Raised Beds (Source: Glenn McDonald 2022)  

environment that is conducive to waterlogging in the root region (Christen and 
Skehan 2001; Xian et al. 2017). Open and pipe drains with varying drain depths and 
spacing constitute subsurface drainage systems (Ritzema et al. 2008). The sort of 
drain that should be installed often relies on the topography, the soil, and the needed 
drainage rate. 

Horizontal Subsurface Drainage 
The crop root zone is drained of excess water via horizontal subsurface drainage 
(Teixeira et al. 2018). The drainage system is made up of pathways of perforated 
pipes below the surface of the earth. Higher agricultural yields can be achieved by 
draining surplus soil moisture, to enhance root emergence and growth (Nelson et al. 
2009, 2011). Flooded soil drainage can be improved globally through subsurface 
drainage technology (Nelson et al. 2012; Sharma et al. 2016). Using tiny pipes con-
structed of concrete that is placed at a predetermined depth, tile drainage is a form 
of horizontal subsurface drainage. In agricultural fields where subsurface excess 
water is a regular issue, tile drainage is widely used (Williams et al. 2015). In places 
with shallow groundwater and dense soil conditions, to strengthen the system typi-
cally gravel is utilized as a backfill material just above tile seepage (Filipović et al. 
2014). This method might not be acceptable for agricultural locations where the top 
soils are prone to seasonal waterlogging due to inadequate hydraulic conductivity 
and the need to find a suitable outfall for drained water (Christen and Skehan 2001; 
Singh 2018a). 

Tile Drainage 
Agricultural fields with tile drainage may lose nitrate due to factors such as precipi-
tation volume and time, initial soil moisture, season, tile depth, and tile distance 
(Drury et al. 2009). Figure 11 illustrates a study finding that this method enhanced 
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Fig. 11 Tile drainage advantages. Available at: https://pami.ca/ 
beneficial-management-practices-for-agricultural- tile- drainage- in- manitoba/  

moisture in the soil. In contrast to nondrained plots, it enabled soybean planting 
earlier at least 17 days and enhanced its output from 9% to 22%. Reducing nitrate 
that enters surface or groundwater systems, crop output can be increased using sub-
surface drainage systems that include controlled drainage and sub-irrigation (CDSI), 
increase the effectiveness with which nitrogen is used, and lessen the likelihood of 
adverse impacts on the quality of water (Drury et  al. 2009; Frankenberger et  al. 
2004). Another possible strategy for addressing the water quality challenges while 
also offering crop production systems with flood and drought resilience is to con-
nect subsurface tile-drainage to the irrigation reservoirs. However, this requires 
more analysis. 

Vertical Subsurface Drainage 
Sand compaction piles prefabricated vertical drains (PVDs), gravel piles, stone col-
umns, and sand drains are a few examples of vertical subsurface drainage (Indraratna 
et al. 2005; Indraratna 2017). Compared to other subsurface drainage systems, the 
VD system has a few advantages. For instance, VDs are frequently chosen over 
other types of drainage because of their comparatively inexpensive cost of construc-
tion, also the surface drains shorter length that they provide (Christen and Skehan 
2001). However, because operating a network of tube wells requires a lot of energy, 
the operating and maintenance expense compared to horizontal drainage is more 
(Food and Agriculture Organization [FAO] 2002; Prathapar et  al. 2018). Vertical 
drainage is more effective for areas with a high water table. 
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Mole Drains 
Subsurface drainage also includes mole drainage. In terms of design and functional-
ity, mole drains are comparable to tile drainage as a semi-permanent solution 
(Dhakad et al. 2018; Tuohy et al. 2018). It is typically put in place to address issues 
with soil salinization and rising groundwater levels (Kolekar et  al. 2014). Mole 
drainage depends on densely packed channels and subsoil fissures (Tuohy et  al. 
2015). The optimum applications for mole drains, which are put next to tile drains, 
are heavy soils with low permeability, such as clay (Monaghan et al. 2002; Monaghan 
and Smith 2004). We must put it, to the height of no more than 600 mm above the 
ground, forming a circle of drainage that is 40 to 50 mm in diameter (Gibson 2014). 
By dragging a metal object through the ground, such as a mole plow or a bullet with 
a blade-like foot, a mole drain can be created, as shown in Fig. 12. This method cre-
ates an open channel. The expense of installing mole drainage is less, but to main-
tain the integrity of the channel and improve system efficiency, the moles must be 
reformed every 2–5 years (Tuohy et al. 2018). To assist with drainage management 
in a flooded landscape and to successfully duplicate water balance and a drainage 
network system over a watershed, integrated drainage systems (tile and mole drain-
age) may be employed (Tuohy et al. 2018). 

11  Strategies Adopted in Pakistan 

In Pakistan, waterlogged soils have been repaired using reclamation, engineering, 
and bioremediation techniques. In addition to using subsurface drainage systems 
and industrial waste water conveyance lines, municipal surface drainage systems 
have been employed to remove extra water from agricultural areas. In fresh ground-
water areas, Pakistan decided to construct tube wells in irrigated areas up to 
14,000 in number that cover 2.6 Mha area, to lower the groundwater level to handle 

Fig. 12 Sketch of mole drainage. (Source: Don Bennett 2022). Available at: https://agriculture. 
vic.gov.au/livestock- and- animals/dairy/managing- wet- soils/mole- drainage- systems  
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waterlogging and to boost irrigation resources at the gate of the farm via blending 
canal and pumped ground water. The above decision was made after a thorough 
survey of the depth and salinity of the groundwater table in the 1950s. 63 projects 
costing 2 billion US$ covering an area of a total of 8 Mha were completed under-
neath this Salinity Control and Reclamation Projects (SCARPs) over the past 
40 years (Qureshi 2011). With the help of the SCARPs initiative, the waterlogging 
issues were successfully managed, if not reversed, and more water was made avail-
able for irrigation. Cropping intensities increased, as a result, rising from 84 to 
115% in the majority of SCARP locations. However, as time went on, rising main-
tenance and operational costs as well as an increase in the salinity of the groundwa-
ter being pumped diminished the effectiveness of SCARPs, causing water tables to 
rise and crop yield to decline. With the belief that with the passage of time drainage 
water quality would improve, increasing the likelihood of using drainage water for 
irrigation, thinking switched to horizontal (pipe) drainage systems in the middle of 
the 1970s. There will also be less of an issue with the disposal. In Pakistan since 
then, around ten significant horizontal drainage projects collectively drainage pipes 
of 12,600 km been constructed (Qureshi et al. 2008). In order to address this issue, 
Pakistan constructed a 2000 km surface drainage on the left bank of the Indus River 
to transport drainage water from over 500,000 acres of soil to the sea (Qureshi et al. 
2008). Although the drain’s initial results were highly positive, seepage quickly 
caused the neighboring communities to become flooded. This heightened interpro-
vincial conflict between the Sindh and Punjab provinces led to a blockage of 
Punjab’s drainage water’s path through Sindh and ultimately into the sea. This 
makes Punjab’s waterlogging issues worse. The advantages and disadvantages of 
the aforementioned adaptive management techniques for waterlogged conditions 
are shown in Table 3. 

11.1  Bioremediation Strategies/Bio-Drainage 

Scientists and engineers began considering alternate solutions that are more sustain-
able and cost-effective as a result of the limited effectiveness in addressing water-
logging issues despite significant investments. Using biological methods to reduce 
the water table is one of the possible solutions. The idea of improved evapotranspi-
ration serves as the foundation for the utilization of bioremediation in wet environ-
ments (Ram et al. 2011). Figure 13 illustrates the fundamental idea of transpiration, 
absorption, and movement involved in bio-drainage. Waterlogging may be decreased 
by using herbaceous perennial legumes that are suited to flooding and waterlogging, 
like Messina (Melilotus siculus), lucerne (Medicago sativa), and Clovers (Genus: 
Trifolium), in cropping systems (Cocks 2001; Nichols 2018). Typically, compared 
to other annual crops, these deeply rooted pasture species can drain water and cause 
the soil to dry to greater depths (McCaskill and Kearney 2016). The suitability of 
different pasture species for seed production technologies, also to merge them thus 
providing the greatest merits have been thought of as information gaps that call for 
further research (Cocks 2001) because different pasture species’ tolerance levels 
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Table 3 Merits and demerits of adaptive management practices of waterlogging condition 

Crop and soil 
management 
techniques Benefits Drawbacks Reference 
Surface 
drainage 

Both installations 
along with care are 
the least expensive 

Less agricultural space 
due to open drainage; 
requires routine upkeep 

Ritzema et al. (2008), 
Ayars and Evans (2015) 

Raised bed 
system 

The structure of the 
soil is modified 

Crop acreage affects its 
efficacy, control of 
weeds in the furrows, 
equipment modification 
expense 

Zhang (2005), Acuña 
et al. (2011), Bakker et al. 
(2005b, 2007) 

Pipe drains Dependable 
technique in extreme 
flooding 

Expensive to install Filipović et al. (2014), 
Teixeira et al. (2018) 

Vertical 
drainage 

Dependable 
technique for extreme 
waterlogging 

Compared to horizontal 
pipe drainage systems, 
maintenance and 
operational expenses are 
higher 

Christen and Skehan 
(2001), Kijne (2006), 
Prathapar et al. (2018) 

Mole drains Effective technique; 
less expensive than 
alternative 
subterranean drainage 

Periodic care is required; 
dispersive soils will 
cause the integrity to be 
lost 

Dhakad et al. (2018), 
Tuohy et al. (2018) 

Bio-drainage Successfully tried 
and tested in 
numerous places 

Requires specialized 
plantation methods, 
thinning, pruning, and 
harvesting 

Kapoor (2000), Lerch 
et al. (2017), Dash et al. 
(2005), Lin et al. (2011), 
Sarkar et al. (2018), 
Munoz-Carpena et al. 
(2018)

differ significantly from waterlogging. In order to deal with drainage congestion 
and environmental dangers, bio-drainage, or vertical drainage in soil water utilizing 
specialized forms of rapidly developing trees with a high evapotranspiration need 
(Kapoor 2000; Heuperman and Kapoor 2003; Sarkar et al. 2018). Trees in particular 
are often referred to as “biological pumps” and are crucial to the whole water cycle 
in a particular area. There is no need for us to:

• Stimulate soil water movement toward a pipe drain or tube well. 
• Construct main and collector drains to remove water from the drainage area in 

bioremediation systems, which are advantageous compared to typical subsurface 
drainage systems. 

• Run pumps to remove drained water, then transfer it to disposal facilities. 
• Build disposal facilities (for example: through evaporation ponds). 

  
Bioremediation’s durable viability has been heavily debated. As an alternative to 

conventional field drainage techniques, it has been suggested that bioremediation 
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Fig. 13 Concept of biodrainage  

Transpiration 

Translocation 
Absorption 

Soil 

may be employed in “parallel field drainage” designs for canal leakage interception 
and flooded landscape depressions (Smedema 2000). The bottom line is that this is 
a “pro-poor” technique that increases the revenue of struggling producers who 
might otherwise leave their properties fallow. 

In Pakistan, waterlogged soils have been restored via bioremediation. Poplar 
(Populus deltoides), Eucalyptus, Tamarix, Gum arabic tree (Acacia nilotica), and 
mesquite (Prosopis juliflora), are among the trees that belong to this category. Non- 
woody plants, like shrubs, sedges, grasses, and herbs, can have deeply rooted sys-
tems that come into contact with groundwater like that of woody plants (Choudhry 
and Bhutta 2000). A recent study found that 2.5% of the 200 million irrigated agri-
cultural trees in Punjab province are eucalyptus trees (Shah et al. 2011). The water 
table wouldn’t be expected to be significantly affected by such a plantation until the 
plants occupy a sizable enough portion of the catchments so that their combined 
water demand equals the catchments’ whole recharge. In Pakistan, the capacity of 
productive tree plantations to drain shallow groundwater is seen as a vital tool for 
controlling rising water levels. 
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12  Conclusion 

Waterlogging of the soil significantly reduces crop yields around the world and has 
a negative impact on plant growth. The fluctuating precipitation patterns and tem-
perature brought on by climate change are expected to increase crop losses owing to 
soil waterlogging in many regions. Waterlogging is a major problem for Pakistan’s 
irrigated agriculture sector, depriving farmers of their productive resources and 
endangering their livelihoods. In general, plants can acquire some adaptive features, 
such as the expansion of adventitious roots or aerenchyma tissue to endure soil 
waterlogging stress. Commercial cultivars that are not resistant to waterlogging 
stress might anticipate experiencing yield losses. This article provides a summary of 
potential management techniques that land managers and farmers can use to increase 
production. However, the implementation of any management strategies will be 
region-specific depending on how simple it is to apply in the producers’ current 
management plans. There are still large gaps in our knowledge of the advantages 
and disadvantages of appropriate management techniques for various types of soil 
or crop types, the governance of additional micro as well as macronutrients, and the 
genetic basis of plant responses to hypoxia and elemental toxicity in flooded soils. 
Cost-benefit analyses of these management strategies should be the main focus of 
future research in order to confirm their commercial feasibility and to create man-
agement plans that will encourage sustainable crop production from intermittent 
and variable duration waterlogged soils. 
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