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Abstract. We propose a method for computing binary orthogonal non-
negative matrix factorization (BONMF) for clustering and classification.
The method is tested on several representative real-world data sets. The
numerical results confirm that the method has improved accuracy com-
pared to the related techniques. The proposed method is fast for training
and classification and space efficient.

Keywords: Binary orthogonal non-negative matrix factorization ·
Non-convex optimization problem · Classification

1 Introduction

For a data matrix X of size m×n, WH ≈ X (where W is of size m× k, H is of
size k×n) is considered as a low rank approximation (k � n) of the data matrix
X. Low rank approximations are essential in machine learning applications and
especially in natural language processing and topic modelling where the data
matrix is constructed over a collection of words from a vocabulary and a usually
large collection of documents [10,21,24,34].

Singular value decomposition (SVD) [28] is an early approach for computing
such a low rank approximation of data. SVD minimizes the Frobenius norm and
the spectral norm simultaneously; not only that, the columns of W are orthog-
onal, and the rows of H are also orthogonal. However, the entries in W,H may
be negative, which reduces the utility of SVD for data matrix X in which the
entries are positive as the factors in W do not have an intuitive explanation.
Non-negative matrix factorization (NMF), WH ≈ X and X,W,H ≥ 0, was
introduced by Paatero and Tapper [20] to overcome this difficulty of interpreta-
tion of the factors. NMF was shown to be NP-complete by Vavasis [27]. NMF
does not require the columns of W to be orthogonal, and this is considered a
severe drawback in some applications as the columns (factors) of W are not
separable by a large angle. Keeping this limitation in mind Ding et al. [34] intro-
duced orthogonality constraints in NMF, X ≈ WH and X,W,H ≥ 0, the rows
of H are orthogonal and demonstrated that is an effective approach for clustering
of documents.
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We consider the following problem: given a m×n data matrix X, we wish to
represent X as a product of two matrices W,H with dimensions m×k and k×n
respectively with the following restrictions: entries in W are positive, the entries
in H are either 0 or 1, HHT = I and the norm ||X − WH||2 is minimized.
Additionally, we want k to be small compared to n,m. The columns of the
data matrix X can be thought of as the n samples. Low rank W represents the
latent features. We call this problem the binary orthogonal nonnegative matrix
factorization problem (BONMF).

1.1 Contributions

This paper gives a new method (Algorithm 1) for computing a binary orthogonal
NMF using the two-phase iterative approach. In the first phase, we use a known
update rule [16] to compute the factor W. In the second phase, we use the
observation that the binary constraints on H have a geometric interpretation.
This gives an efficient rule to update H in each iteration (Eq. (12)). The entries
in H are binary, and they are computed column-wise. If all the entries in H are
non-zero, then O(nk) space is needed. However, H is binary, and the rows of H
are orthogonal. Therefore, only O(n) space is needed. If we compute the entries
of H columns-wise, intermediate states also need O(n) space. The computation
for each column of H takes O(n2k) steps. Therefore, the method is space efficient.

We evaluate the method’s performance (in Sect. 4) for training and testing on
reference data sets from the ML repository. The experiments demonstrate that
the training and the classification phase are efficient (Table 2). The method is
accurate and outperforms the state of art methods (Table 2). This method uses
k dot products of m element vectors to update each column of the coefficient
matrix H where k is the number of classes in the data set. This is a significant
reduction in the computation needed compared to the algorithms of [15,32,34]
in the classification phase. The method is also space efficient as H is sparse.

2 Related Work

We begin with NMF and the related background needed to describe our algo-
rithm. Given a non-negative matrix X ∈ R

m×n, a non-negative matrix factor-
ization of X finds two non-negative matrices W ∈ R

m×k and H ∈ R
k×n with

k � min(m,n) such that:
X ≈ WH,

and the entries in W,H are positive. The factorization has a natural inter-
pretation [15] and can be computed using various unsupervised machine learning
methods. Due to its intuitive interpretation, NMF has found numerous appli-
cations such as data consolidation [8], image clustering [6], topic modelling [2],
community detection [29], recommender systems [22], and gene expression pro-
filing [33].
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BONMF is different from NMF. The entries in H are restricted to binary. If
the columns of H are orthogonal, then the columns can be used to cluster the
data. Therefore, BONMF factorization has several exciting applications [31].

Orthogonal NMF (ONMF) in which X ≈ WH and W,H ≥ 0 and HHT = I
was defined by Ding et al. [34] who gave an algorithm based on solving the
Lagrangian relaxation. The entries in H in ONMF are not required to be binary.
ONMF use for data clustering was popularized by Seung and Lee [23]. One of
the first notable applications of orthogonal NMF to document clustering is in
[30] who gave improved algorithms and showed that ONMF performed better
at document clustering than NMF. K-means [19] is one of the most widely used
algorithms for unsupervised learning. Bauckhage [3] showed that the objective
function of K-means can be rewritten as ONMF if the entries in H are binary,
and the following condition holds:

∑

i

Hij = 1 ∀j (1)

Therefore, BONMF is equivalent to K-means clustering. BONMF was also
studied by Zdunek [31] and differs from the well-studied non-negative matrix
factorization (NMF). Lee et al. [16] studied BONMF without the condition (1)
on H and gave an algorithm for determining such a factorization. However,
applications to classification are not many. In this paper, we study BONMF for
its use in prediction and classifying data, including clustering.

2.1 NMF

NMF can be formulated as the following optimization problem that minimizes
the square of the Frobenius norm:1

F (W,H) = min
W,H≥0

1
2
‖X − WH‖2F . (2)

Most of the methods for computing NMF are based on iterative update rules.
A popular set of update rules given below is due to Lee and Seung [15], the
iteration number is in superscript.

Wt+1
ia = Wt

ia

(XHtT )ia
(WtHtHtT )ia

, ∀i, a; (3)

Ht+1
bj = Ht

bj

(Wt+1TX)bj
(Wt+1TWt+1Ht)bj

, ∀b, j. (4)

For many more variations on such update rules, see [11]. Optimization
approaches such as block-coordinate descent, projected gradient descent, and
alternating non-negative least squares (ANLS) [18] have also been used for NMF.
ANLS transforms the problem in (2) into two convex optimization problems:

1 ||A||F =
√

tr(AT × A) =
∑

i,j |aij |2.
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Wt+1 = min
W≥0

f(W,Ht) = min
W≥0

1
2
‖X − WHt‖2F , (5)

Ht+1 = min
H≥0

f(Wt+1,H) = min
H≥0

1
2
‖X − Wt+1H‖2F . (6)

We can solve the optimization problems given by (5) and (6) in a few ways.
[12,13] gave the Rank-one Residue Iteration (RRI) algorithm for computing
NMF. This algorithm was also independently proposed by Cichocki et al. [5],
which is called the Hierarchical Alternating Least Squares (HALS) algorithm.
The solution to (5) and (6) in HALS/RRI is given by explicit formulas, which
make for easy implementation. Kim et al. [14] used Newton and quasi-Newton
methods to solve (5), (6) and showed that their method has faster convergence.
However, these methods require determining a suitable active set of the con-
straints in each iteration [4]. Two efficient algorithms for approximately orthog-
onal NMF were given by Li et al. [17]. Asymmetric NMF with Beta-divergences
approach was studied by Lee et al. [16].

NMF is a quadratic boolean optimization problem, so it can also be solved
using the Quantum Simulated Annealing (QSA) approach of Farhi et al. [7].
Recently, Golden and O’Malley [9] used a combination of forward and reverse
annealing in the quantum annealing to obtain improved performance of QSA for
NMF.

2.2 Binary Orthogonal NMF

Given a non-negative matrix X ∈ R
m×n, a BONMF of X finds the non-negative

matrix W ∈ R
m×k and a binary H ∈ {0, 1}k×n with k � min(m,n). The

BONMF can be written as the following optimization problem:

F (W,H) = min
W∈Rm×k ,H{0,1}k×n

1
2
‖X − WH‖2F . (7)

Using the ANLS approach [18] we can transform (7) into the following sub-
problems:

Wt+1 = min
W≥0

1
2
‖X − WHt‖2F , (8)

Ht+1 = min
H∈{0,1}

1
2
‖X − Wt+1H‖2F . (9)

The problem (8) can be solved using the update rule (3) of [15]. Sub-problem
(9) is solved in two different ways in the following papers. Zhang et al. [32]
update each row of the matrix H using the following strategy:

h = sgn

(
XT z − 1

2
IzT z − H′TW′T z

)
, (10)
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where

sgn(x) =
{

1, if x > 0
0, otherwise,

and z is the k-th column of W, and W′ is the matrix of W excluding z; hT is
the k-th row of H and H′ is the matrix of H excluding hT . In addition, I ∈ R

n

is a vector whose entries are all one. Zdunek [31] presented another method for
updating H under the assumption that H is orthogonal, which uses simulated
annealing. Since they use a different approach, we don’t describe it in detail.

3 The Algorithm

This section describes our approach. The method solves the optimization prob-
lems given by (8) and (9). To solve (8), we use the update rule given by equation
(3) [15] where W is computed using

Wt+1
ia ← Wt

ia

(XHtT )ia
(WtHtHtT )ia

, ∀i, a.

Given X,H, to solve (9) we write the problem as:

F (H) = min
H∈{0,1}k×n

‖X − WH‖2F . (11)

Each column of the matrix H is computed in two steps as follows:

– In the first step, we calculate the angular distance between column i of X
and column j of matrix W to obtain Hj,i.

Hj,i =
〈X:,i,W:,j〉

‖X:,i‖‖W:,j‖ , (12)

where X:,i denotes the i-th column of matrix X and 〈., .〉 is the inner product.
– In the second step, the maximum value (any) in each matrix column H is

changed to 1, and other values are changed to 0. The process can be summa-
rized as follows:

Hj,i =
{

1, if Hj,i = maxH:,i

0, otherwise.
(13)

The pseudo-code for the method is in Algorithm 1. These steps are executed
column by column for H.
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Algorithm 1. BONMF
1: Input: Matrix X ∈ R

m×n, and T
2: Output: Matrices W ∈ R

m×k and H ∈ {0, 1}k×n

3: Initialize matrices W and H
4: While iterations < max & ¬convergence

5: Wt+1
ia ← Wt

ia
(XHtT )ia

(WtHtHtT )ia
, ∀i, a;

� Update W using (3).

6: Ht+1
j,i ← 〈X:,i,W

t+1
:,j 〉

‖X:,i‖‖Wt+1
:,j ‖ ∀j, i

� Update H using (12)

7: Ht+1
j,i ←

{
1, if Ht+1

j,i = maxHt+1
:,i

0, otherwise
∀j, i

� Update H using (13)
8: end
9: return W and H

4 Empirical Evaluation

This section examines three characteristics of Algorithm 1. We study the time
needed for classification, the accuracy, and the time required for computing the
factorization (training time) for the data sets shown in Table 1. The data sets
are representative of the varying complexity of machine learning; some are easy
(digits), some are hard (diabetes), and some have a significant number of features
(ORL). These are popular datasets from the OpenML repository [26]. These data
sets have multiple single label classes and serve as a nice testbed for evaluating
unsupervised learning algorithms, even in deep learning.

Table 1. Data Sets

Name # samples # features # classes

ORL 400 4,096 40

Optdigits 5,619 65 10

Phishing 11,055 68 2

Monkey 471 6 2

Pendigits 10,992 17 2

Diabetes 7,67 8 2

W8a 49,748 300 2

Banking 8237 13 3

Svmguide 3,087 5 2

We compare the performance of Algorithm 1 with the algorithms for orthog-
onal matrix factorization [34], non-negative matrix factorization [15], and semi-
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binary non negative matrix factorization [32]. We examine the relative perfor-
mance of these algorithms for accuracy and classification time. We use two meth-
ods for ONMF to classify a new data point j (column vector of X). Typically,
ONMF uses the index i of the maximum entry in column H:,j for classification,
which gives the cluster to which data j belongs. The data points in cluster i
may have different labels, and the label of j is the label of the point in cluster
i that is closest (distance-wise). We refer to this default scheme for determining
the label as ONMF in Table 2. The second scheme we use to determine the label
uses the label on i′, which is the point in cluster i that forms the smallest angle
data point (vector for j); then, the label of i′ is used to classify point j. The
cluster to which data point j belongs is again computed based on the angles
to the columns of W, the closest column of W determines the cluster, and the
closest point in the cluster (angle-wise) determines the label. The second scheme
is ONMF-cos in Table 2. The other two algorithms that we used to compare are
i) the popular and the foundational algorithm of [15] for NMF, labelled “Lee
and Seung” and ii) the algorithm of [32] for NMF with the constraint that the
entries in H are binary (labelled “Zhang et al.”). We use only the matrix-based
method factorization algorithms closest to the K-means for evaluation. As part
of a future study, it would be interesting to see how these algorithms perform
against a highly optimized implementation of K-means.

We report on experiments that were run on a laptop (i5-7200U, 12GB of
RAM). The algorithms [15,32] were coded in Python 3.1. We used the number
of classes as the rank in factorization. Eighty percent of the data was used for
training, and the remaining was used for testing the accuracy. We use the python
library (ionmf.factorization.onmf) for ONMF [25]. Initialization of W,H is done
using the following scheme: we sort the columns of the matrix X based on its
norm. To determine the ith column of W, use the average of ten randomly chosen
columns from the first thirty columns of X as in [1]. Initial matrix H0 is computed
using H0 = (WTW)−1WTX. Since the initial values of W are random, we run
the algorithm thirty times and report the averages in Table 2. The first thing to
note is that in Algorithm 1 extra computation is needed to convert H to binary
in each iteration. This computation increases the time needed for factorization
relative to ONMF and NMF and is linear in the size of H. However, given the
factorization, the classification phase is more efficient, and H is sparse.

4.1 Classification

In the basic NMF approach given by update rules (3) and (4) (as in [15]), the
number of steps needed for the classification of new data (column vector of X)
is proportional to the number of columns in the factorization W,H. We need to
calculate the angle between the coefficient vector for the new data and all the
columns of H (as many as the columns in X) to determine the label for the data.
Algorithm 1 does not share this disadvantage. We can compute the angle of the
sample to every column of W (a low-rank matrix) and use the closest column
to determine the label. This observation is reflected in data in the row labelled
“TT (s)” in Table 2.
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4.2 Accuracy

The accuracy of the five methods is presented in Table 2. The entries in bold font
indicate that a particular method had the most accuracy). Six of eight data sets
(except pendigits and banking) have improved accuracy for classification when
cos angles are used to measure similarity, and the utility of using the angle (12)
is evident. The method presented here has the best accuracy on six of the eight
data sets (expect optdigits, phishing). Regarding classification time, it performs
best on seven of the eight datasets. Note that the other method ONMF+cos
which is as competitive as Algorithm 1 uses O(nk) space to store H whereas
Algorithm 1 uses O(n) space even in the intermediate stages of the calculations.

Table 2. Numerical Results

Name ONMF

Strazar et al.

Lee and Seung Algorithm 1 ONMF+ cos

Strazar et al.

Zhang et al.

ORL TT (s) 1.62 1.63 2.28 1.63 9.48

CT (s) 0.24 0.178 0.09 0.09 0.20

AC (%) 85.00 85.00 89.99 89.99 85.00

Optdigits TT (s) 0.38 0.62 2.60 0.36 3.72

CT (s) 45.24 38.97 13.03 13.23 37.91

AC (%) 53.45 62.27 80.78 88.96 48.12

Phishing TT (s) 0.87 0.80 3.42 1.05 1.96

CT (s) 156.24 142.92 52.22 53.14 146.40

AC (%) 54.76 54.76 91.85 92.14 54.76

Monkey TT (s) 0.01 0.01 0.10 0.01 0.06

CT (s) 0.45 0.34 0.14 0.12 0.31

AC (%) 48.80 48.80 80.95 80.95 53.12

Diabetes TT (s) 0.02 0.01 1.016 0.01 0.59

CT (s) 0.80 0.85 0.24 0.25 0.67

AC (%) 51.72 51.72 68.96 68.96 68.95

Banking TT (s) 0.05 0.06 2.01 0.07 1.56

CT (s) 77.07 70.87 25.25 27.42 73.74

AC (%) 87.05 76.09 87.05 87.05 87.05

Svmguide TT (s) 0.01 0.01 0.82 0.02 0.40

CT (s) 13.90 12.05 4.93 45.27 13.51

AC (%) 73.70 65.73 80.17 80.17 79.23

Pendigits TT (s) 2.33 2.72 5.08 2.22 4.86

CT (s) 161.30 161.50 53.19 54.39 170.83

AC (%) 90.47 82.29 90.47 90.47 90.47

W8a TT (s) 29.80 27.25 37.96 26.30 32.93

CT (s) 2851.52 2721.82 999.72 1006.71 2659.24

AC (%) 95.25 95.25 97.14 97.14 97.14

1. TT is the training time in seconds.

2. CT is the classification time in seconds.

3. AC is the accuracy in %.
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4.3 Running Time and Space

Table 2 shows the running time for the training and classification phase of the
five algorithms. The entries in bold signify that the running time is the smallest.
The proposed Algorithm 1 is as fast and accurate as the other best method in
the table, which is the modified version of ONMF in which angles are used for
classification. However, we cannot directly compare the factorization returned by
the two algorithms, as ONMF returns H with orthogonal rows in which entries
are real. In contrast, the method proposed here returns a sparse H, which is
binary and has orthogonal rows. Algorithm 1 is space efficient compared to the
ONMF+cos method, which is an essential consideration for large data sets.

Based on the data in Table 2, we can conclude that Algorithm 1 has compet-
itive accuracy and leads to better clustering with a natural interpretation and a
sparse representation. It also classifies new data faster.

5 Conclusion

This paper gives a new geometric approach for binary orthogonal non-negative
matrix factorization. The proposed method is space efficient. We also compared
the proposed Algorithm with three other methods [15,32,34] for accuracy and
time on representative datasets in machine learning. Our experiments show that
the method is fast and accurate on the data sets tested.
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