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Abstract. Short-time auditory attention detection (AAD) based on
electroencephalography (EEG) can be utilized to help hearing-impaired
people improve their perception abilities in multi-speaker environments.
However, the large individual differences and very low signal-to-noise
ratio (SNR) of EEG signals may prevent the AAD from working effec-
tively across subjects in a short time duration. To address the above
issues, this paper firstly used a sparse autoencoder with the same trial
constraint (SAE-T) method to extract common features across subjects
from EEG signals in a 2-s time window. Then we use a CNN-based
speech temporal amplitude envelopes (TAEs) reconstruction model for
attention detection by comparing the reconstructed accuracy of attended
with unattended speech, and the time delay and segmented SAE-T fea-
tures were also considered in the model. Moreover, the dataset we used
has no directional information of speech, which can train a more general
model for practical application. Experimental results show that the pro-
posed method can achieve AAD detection accuracy to 86.31%, higher
than the method of removing time delay or segmented SAE-T features.

Keywords: Auditory Attention Detection · EEG · Speech Stimulus
Reconstruction · Short-time · Cross-subject

1 Introduction

According to the results of the latest Global Burden of Disease (GBD) study,
the burden of hearing loss due to aging has increased over time, and the demand
for hearing aids has thus increased globally [1]. The general picture that has
emerged is that hearing-impaired elderly people spend most of their time wearing
hearing aids in favorable listening conditions, such as in quiet or speech-moderate
environments, rather than in noise or speech with noise scenarios [2]. Traditional
hearing aids have been improved somewhat by the use of a built-in microphone to
reduce the noise and a beamforming method to enhance the speech of a specific
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speaker [3]. However, this approach is not suitable for situations typified by
competitive speech, because in such cases, it is impossible to distinguish which
is the target speech and which is the background noise.

To resolve this issue, some studies have analyzed electrophysiological signals
by using electroencephalography (EEG) or magnetoencephalography (MEG) to
detect the auditory attention of listeners [4,5], which is called auditory attention
detection (AAD) [6]. These studies were based on previous findings that persis-
tent neural excitability oscillations can modulate responses and affect percep-
tual, motoric, and cognitive processes [7], and intrinsic oscillations are entrained
by external rhythms, which allows the brain to optimize the processing of pre-
dictable events, such as speech. In 2008, Aiken et al. showed that the human
auditory cortex either directly follows the speech temporal amplitude envelopes
(TAEs) or consistently responds to changes in these envelopes [8]. In the scenario
of a cocktail party, selective attention has been found to enhance the cortical
entrainment of the focused speech and inhibit synchronization with the ignored
speech [6]. AAD can potentially be combined with speech separation for appli-
cation to smart hearing aids in the brain-computer interface (BCI) field in the
future.

Earlier research on the AAD method mainly utilized the multivariate tem-
poral response function (mTRF) method to perform a linear mapping between
EEG and attended TAE [9]. Through this linear regression model, EEG can be
used to reconstruct TAE and detect attention by comparing the Pearson corre-
lation between the reconstructed TAE and the two original TAEs. The classifi-
cation accuracy can reach about 85% within a 60-s time window [5]. However,
the detection accuracy dramatically declines when using a subject-independent
AAD algorithm [10]. Deep learning technology has been increasingly used in the
field of BCI. When applied in EEG signal processing, it has shown excellent
automatic feature extraction ability and a competitive decoding performance
[11]. Some studies have used deep neural network (DNN) models to reconstruct
the TAE of the attended speech. The cross-subject detection accuracy in a 2-
second time window is about 67.8% [12]. In addition to stimulus reconstruction,
many studies also used direct classification of EEG signals by utilizing orienta-
tion information. Some researchers have used the convolutional neural network
(CNN) to perform AAD within a smaller time windos (1–2 s) and found that the
within-subject decoding accuracy was increased to about 80% [13]. Compared
with the above-mentioned within-subject AAD studies, a recent study performed
cross-subject AAD in a 2-s time window using a multi-task learning model, in
which the direct AAD classification task was assisted by the TAE reconstruction
task, and the results showed an AAD accuracy of 82% [14].

However, these studies come with several problems and challenges. First,
most of them had success primarily with the within-subject AAD performance,
while the cross-subject accuracy remained unclear or not good because of the
large inter-subject difference. Therefore, we need an effective method for extract-
ing the common features among subjects in order to improve the cross-subject
AAD accuracy. Second, most of these previous studies used data with orientation
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information, such as the classic binaural listening experiment. In such cases, the
AAD may be affected by not just the attention of the audio but also that of the
direction. Therefore, in the present study, we use a data set without direction
information and build a general algorithm that can achieve real-time attention
decoding in cross-subject situations.

In this work, we firstly developed a sparse autoencoder with the same trial
constraint (SAE-T) method to preprocess the data before AAD training. This
method extracts the common features of EEG across subjects and reduces the
dimensionality of input samples. Secondly, we developed a CNN-based segmented
reconstruction model and reconstructed the attended TAE to detect the atten-
tion in a 2-s time window. The response delay and the two original TAEs were
also considered to assist reconstruction of TAE. The segmented input makes the
size of the model smaller, which improves the training efficiency.

2 Proposed Method

2.1 Sparse Autoencoder with the Same Trial Constraint (SAE-T)
Method for Extracting Common Features

Due to the large individual difference of subjects and the low SNR of EEG
signals, the cross-subject accuracy of AAD is low. Therefore, we propose a SAE-
T method to extract common features between subjects and further reduce the
noise and dimension of EEG signals. The autoencoder has the characteristics of
good noise reduction and dimensionality reduction, so it has been increasingly
applied to the EEG features and achieved good results [15]. The autoencoder is
an unsupervised learning model, where the distribution of the number of neurons
is symmetrical between layers, usually decreasing first and then increasing layer
by layer, simulating the process of encoding and then decoding. The number
of neurons in the final output layer of the autoencoder is the same as that of
the input layer. Usually, the autoencoder uses the mean square error (MSE) of
the output layer and the input layer as the cost function for training, and the
output of the intermediate layer is used as the result of encoding. The sparse
autoencoder (SAE) increases the sparsity constraint based on the autoencoder.
The sparsity constraint makes the expressions passed at each layer as sparse as
possible. The principle is similar to the propagation of neurons in the human
brain, that is, certain stimuli will only activate some neurons, and most of the
remaining neurons are inactivated, so the sparse expressions are usually more
effective than other expressions.

The structure of the proposed SAE-T method is shown in Fig. 1. In order
to extract the common features from different subjects, we added the average
signals of different subjects under the same trial as a constraint when training
the SAE because all subjects listened to the same speech stimuli. Under the
training of the autoencoder, the reconstructed sample is not only close to itself
but also close to the signals of other subjects in the same trial. The SAE-T is
trained by minimizing the Pearson correlation between the input sample X and
the reconstructed sample X ′, the Pearson correlation between the reconstructed
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Fig. 1. Proposed SAE-T for reducing the impact of cross-subject EEG variations.

sample X ′ and the mean of other original samples Xave in the same class, and the
sparsity constraints. The cost function is shown in formula (1). Corr() represents
the Pearson correlation between two sets of signals. ρ is the sparse parameter, and
ρ̂j means the average activation of the hidden layer. On the basis of correlation
as a loss function, we added regularization and added KL divergence as sparsity
constraints.

C(X) = (1 − Corr(X,X ′)) + (1 − Corr(Xave,X
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In order to reduce the complexity of the training model, we cut the samples
by a sliding window across the time points and then input the window blocks.
The size of the EEG sample is (channel × timepoint), and each sample is divided
into (channel × 1) blocks along the timepoint through the sliding window. Each
window block is used as input and obtained the (channel × 1) reconstruction
block, the reconstruction sample (channel × timepoint) can finally be obtained.

The SAE-T model we used has four layers and the encoding process has
two layers. The number of neurons in each encoding layer is 60 and 30, respec-
tively. The number of neurons in the decoding layer is symmetrical: 30 and 60,
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respectively. Therefore, after training through SAE-T, we obtain the (30 × time-
points) data output by the encoding process, which means that we reduce the
dimensionality of the EEG data from the number of original channels to 30. The
optimizer we use is RMSProp, the learning rate is set to 1×10−3, the decay rate
of the learning rate is 0.99, and the sparsity weight is 0.03.

2.2 Proposed Segmented R Model with Added TAEs for AAD

In the AAD task, the two original speech signals, and the EEG data are known.
We use the EEG signal to reconstruct the attended speech so we can detect
which of the two originals is the attended speech by a higher correlation of
reconstructed speech with the original one, which is called the reconstruction
model (R model). This model is different from the direction binary classification
model (D model) that skips the reconstruction step and performs classification
directly.

Generally, when two original speech signals have other features, such as dif-
ferent direction information, the D model is quite effective and easy to use [16].
However, for practical applications, if the azimuths of the two sound sources are
very close, it may have a negative impact on the detection performance of the
D model, but the detection accuracy of the R model will not be affected.

In order to ameliorate the R model to obtain better detection accuracy, we
propose the segmented R model with added TAEs method, which is shown in
Fig. 2. First, we add the TAE features of the two original speech signals to the
EEG. Prior studies have speculated that unattended speech is also processed in
the brain [17,18], so we believe that adding the original attended and unattended
TAEs to the training model will help to improve the reconstruction performance.
Next, in each sample, we use a sliding window with a certain window length (e.g.
100 ms) and step length of one sampling point to intercept the samples and add
them to the model in blocks. This significantly reduces the complexity of the
model compared with putting the entire sample in. We use a CNN-based model
for training. The learning rate is set to 5×10−5 and the Adam optimizer is used.
We set up a total of four convolutional layers, and the size of the convolution
kernel of each layer is 3 × 3. Each convolutional layer is followed by a ReLU
activation function and a pooling layer. After the feature is extracted by con-
volution, there are four fully connected layers, and the number of neurons is 6,
3, 2, and 1, respectively. Every time we gave an input block, it outputs a corre-
sponding timepoint of the reconstruction data. As the sliding window traverses
the timepoint of the entire sample, we obtain a reconstruction TAE of length
(1× timepoint). The cost function is the difference between the Pearson corre-
lation of the attended TAE and the unattended TAE as shown in formula (2).
Y ′ represents reconstructed TAE and the Ya and Yu represent original attended
TAE and unattended TAE, respectively.

C(Y ′, Ya, Yu) = Corr(Y ′, Yu) − Corr(Y ′, Ya) (2)
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Fig. 2. Proposed Segmented R model with added TAEs method for AAD.

Using this method, we can train a model for reconstructing the attended
TAE and then detect which speech the listener wants to focus on by comparing
the correlation between the reconstructed TAE and the two original TAEs.

3 Experiments

3.1 Participants

The experimental dataset was collected by ourselves. A total of 21 participants
(mean ± standard deviation age, 21 ± 2.2 years; eleven women, ten men) took
part in the study. All participants were undergraduate or graduate students, had
normal or corrected to normal vision, normal hearing, and were native people.
All were judged to be right-handed after applying the Edinburgh Handedness
Inventory [19]. All subjects provided written informed consent to participate
in the study and received a corresponding reward for their participation. This
study was approved by the Institutional Review Board at Tianjin University
before the experiment and was carried out in accordance with the principles of
the Declaration of Helsinki [20].

3.2 Experiment and Hardware

The content of the auditory stimulation was short stories by the Japanese writer
Shinichi Hoshi translated into the mother language. Auditory stimuli consisted
of pre-recorded natural speeches of a male and female broadcaster recorded in
a soundproof room with an LCT450 professional microphone and iCon Ultra4
sound card. There were three types of auditory stimuli: forward sequence play-
back, reverse sequence playback, and mixed playback of two speeches. These
three categories of stimuli were played randomly in the experiment, but the con-
tinuity and sequence of the story were guaranteed. We only used the mixed audio
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sequence, which included 20 trials with a duration of around 60 s per trial. The
remaining data were used for other studies [21].

All trials were set to equal root mean square intensities that were considered
equally loud. All audios kept the mute segment within 500 ms so as to prevent the
attention from other unimportant speech when the target speaker was paused
between sentences. We mixed two speeches without applying head-related trans-
fer function to ensure that any attentional effects observed were entirely due to
top-down selective attention and not produced by a more general allocation of
spatial attention.

The subjects were asked to pay attention to a specific speaker (male or
female) during the mixed audio experiment. After each trial, participants
answered questions about the content of the listening materials to make sure
they were taking the experiment seriously. The number of the trials that partici-
pants were asked to attend to female or male speakers are equal. The experiment
was carried out in an electromagnetic shielding and soundproof room. We used a
128-channel Quick Cap EEG cap and a Neuroscan system (Neuroscan, USA) to
record EEG data at a sampling rate of 1000 Hz Hz. The auditory stimulus was
low-pass filtered with a cut-off frequency of 44,100 Hz and presented through
Etymotic ER2 air conduction headphones with an electromagnetic shielding box
and a JDS LABS power amplifier at 60 dBA, which can reduce electromagnetic
interference and ensure that the sound quality is not damaged.

3.3 Data Preprocessing

In order to improve the SNR of EEG data, we preprocessed it through the fol-
lowing steps. We first removed unnecessary electrodes such as electrooculogram
(EOG) and picked out the desired EEG channels, for a total of 122. The data
was down-sampled 250 Hz and then passed through a 1-Hz highpass filter and a
40-Hz low-pass filter. We then used the Artifact Subspace Reconstruction (ASR)
component in EEGLAB toolbox [22] to remove any bad channels of the EEG
data and performed an interpolation calculation through the electrode signals
around it to obtain the replacement channel. Then, the whole brain signals were
averaged as a re-reference. We repeated this process of removing bad channels
and replacing them with re-references a total of three times to obtain the best
preprocessing effect. Because we added the reference electrode in the preprocess-
ing, after that, we obtained a total of 123 channels of electrode signals. Finally, we
performed independent component analysis (ICA) on the EEG data to remove
interfering signals such as or electromyography.

We downsampled the preprocessed EEG data and stimuli data 100 Hz to
make the sample sizes uniform. To achieve real-time auditory attention detec-
tion, we cut the preprocessed EEG data into 2-s data samples through a sliding
window with an overlap rate of 50%. At the same time, we used the Hilbert
method to extract TAE features for the original two audios and used the same
cutting method to cut them into corresponding 2-s data. We standardize all data
including EEG and TAEs through Z-score.
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In total, we used data from 21 participants. The data of three subjects were
randomly selected as the test set, and that of the remaining 18 subjects were
used as the training set. After data cutting and shuffling, we had a total of 21,834
training set samples and 3639 test set samples. In the training set, the number
of samples attending to male speeches is 10,530 and the number of samples
attending to female speeches is 11,304. In the test set, the number of samples
attending to male and female speeches are 1755 and 1884, respectively.

4 Results and Discussions

We compared the performance of different models on our dataset. We used the
CNN-based R model with segmented input as the baseline model. All models
have iterated 150 epochs. The EEG sample attended to male speech was assumed
to be a positive example, and the EEG sample attended to female speech was
assumed to be a negative example. We used accuracy as the evaluation index.
Because there were differences between the quantity of the positive and negative
samples, we also calculated the true positive rate (TPR), true negative rate
(TNR), and F1 score as evaluations by obtaining the confusion matrix of different
models. The results are shown in Table 1. First, the segmented R model with
added TAEs method was effective. Using the simplest CNN-based R model, or
the segmented R model with segmented input, the detection accuracy was very
low, close to the chance level. After adding TAEs to the input, the classification
accuracy increased from 52.02% to 71.94%. This demonstrates that adding the
original TAEs plays a very important role in the reconstruction of the attended
TAE.

Table 1. Attention detection performance using different models.

Models Accuracy TPR TNR F1 score

Segmented R model+CNN 0.5202 0.5231 0.5175 0.5126

Segmented R model with added TAEs+CNN 0.7194 0.5162 0.9087 0.6396

Segmented R model with added
TAEs+CNN+SAE-T

0.7593 0.6434 0.8447 0.7109

Segmented R model with added
TAEs+CNN+delay

0.9692 0.9452 0.9915 0.9673

Segmented R model with added
TAEs+CNN+SAE-T+delay

0.9708 0.9459 0.9942 0.9691

Segmented R model with added
TAEs+CNN+SAE-T+delay*

0.8631 0.8541 0.8715 0.8576

* denotes that the model uses a random TAE order for the experiments. In addition,
all other models use a fixed female-male TAE order for the experiments.

Second, SAE-T also played an important role in cross-subject detection. It
showed a good performance in the CNN model which increased the AAD accu-
racy from 71.94% to 75.93%. We also performed MSE and correlation analysis
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between the reconstructed EEG signal by SAE-T and the original signal and
found that SAE-T reduced the MSE of the EEG across different subjects from
1.6215× 10−2 to 1.0285× 10−3. Meanwhile, the Pearson correlation was slightly
improved, as shown in Table 2. These results demonstrate that SAE-T helps
reduce the difference among subjects.

Table 2. Comparison of MSE and Pearson correlation between reconstructed speech
and original ones without or with SAE-T processing.

Mean square error Pearson correlation

(AVE/STD) (AVE/STD)

No SAE-T 0.01621/0.00010 0.00283/0.00681

SAE-T 0.00103/0.00002 0.00308/0.00743

Third, prior studies have shown that the EEG signal has a time delay of 180
ms when tracking the attended TAE [9]. We adjusted the original unit length of
the sliding window from 10 ms to 180 ms to take into account the time delay.
After taking into account the time delay, the model detection accuracy increased
from 75.93% to 97.08%, which is a significant improvement.

Finally, to make our model more convenient for practical application, we
examined the detection accuracy of the cases in which the male and female
TAEs were put into a specific order and in random order also as shown in
Table 1. In the former case, the female and male TAEs were always placed in
the first and last rows of input data. However, it has a problem in that it is
necessary to classify the separated TAEs by gender in advance, which increases
the complexity of AAD. Therefore, we tried to randomly add these two TAEs
to the first and last rows, respectively, when assuming that the gender features
of the two TAEs were not known. Although the detection accuracy was reduced
to 86.31% when using random order of TAEs, it is still high and more suitable
for practical applications.

5 Conclusions and Future Work

In this paper, we proposed a novel approach for short-time auditory attention
detection based on EEG signals. First, we proposed the SAE-T method to extract
the common feature to reduce the impact of inter-subject differences and com-
press data dimensions. Then we proposed an AAD model, which segments the
data into a short time window, and added speech TAEs and EEG-speech delay
into a CNN model. Results showed an accuracy of 86.31%. Finally, in contrast
to the datasets in previous studies, we used a dataset without information about
the spatial locations of speakers, which helps to train a more general model for
daily life.



276 K. Yang et al.

Our study has two shortcomings. First, we did not examine whether our
method would also have a good detection performance on datasets with direc-
tional information. Second, we only used the mixed speech of one male and one
female for the experiment and did not consider the mixed speech from the same
gender or more than two speakers. These issues will be resolved in future work.
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