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Abstract. Time-Frequency (T-F) domain masking is currently the
dominant method for single-channel speech enhancement, while little
attention has been paid to phase information. A speech enhancement
method, named PHASEN-SS, is proposed in this paper. Our method
is divided into two steps, first a deep neural network (DNN) with two-
branch communication using a combination of mask and phase for speech
enhancement, and then a data post-processing after the DNN processes
the noisy speech. PHASEN-SS uses two branches to predict the ampli-
tude mask and the phase separately, which improves the accuracy of
prediction by exchanging information between two branches, and then
further the enhancement by denoising the residual noise through spec-
tral subtraction. The experiments are conducted on the publicly available
Voice Bank + DEMAND dataset, as well as a noisy speech dataset is syn-
thesized with 4 common noises in Noise92 and Voice Bank clean speech
according to the specified signal-to-noise ratio (SNR). The results show
that the proposed method improves on the original one, and has better
robustness to speech containing babble noise at higher SNRs for different
SNRs.

Keywords: spectral subtraction · neural network · phase prediction ·
speech enhancement · time-frequency mask

1 Introduction

There are two main types of speech enhancement methods: traditional methods
and deep learning methods. Among the traditional methods, speech enhance-
ment methods include spectral subtraction [1], Wiener filtering [2], statistical
model-based methods [3] and subspace algorithms [4,5], etc., which are more
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suitable for dealing with linear relationships between signals. Since the develop-
ment of deep learning, neural networks have been widely used for speech enhance-
ment [6,7]. In recent years, self-encoder structures [8] have been adopted, and
methods based on GAN [9–11], DNN [12,13], RNN [14], CNN [15], U-net [16]
have also emerged. These deep learning methods are more often used to solve
the problem of non-linear relationships between acoustic signals in denoising.

Among deep learning methods, they can be roughly divided into two aspects
according to the signal domain in which they work: time domain and time-
frequency domain. Our method is based on the second. Early T-F masking
methods aimed only at recovering the magnitude of the target speech. After rec-
ognizing the importance of phase information, Williamson pioneered the complex
Ideal Ratio Mask (cIRM) [17], and their goal is to fully recover the spectrogram
of the complex T-F. In Cartesian coordinates, they observed that structure exists
in the real and imaginary parts of cIRM, so they devised a DNN-based method
to estimate the real and imaginary parts of cIRM.

Yin [18] found that simply changing the training target to cIRM did not
recover the phase information, so the parallel branch network used to predict
amplitude mask and phase respectively was proposed. Because the phase spec-
trum in polar coordinates has no structure, Yin added the process of amplitude
and phase information exchange in the parallel branch architecture, so that the
phase prediction can be guided by the predicted amplitude. At the same time,
frequency translation block (FTB) is used to capture the global correlation along
the frequency axis, and the harmonics are fully utilized in the DNN model.

However, the speech processed by DNN still has some residual noise that
cannot be distinguished by human ears, but some of the methods mentioned pre-
viously pay little attention to this point. At the same time, data post-processing
methods are usually used to remove residual noise. Therefore, a speech enhance-
ment method named PHASEN-SS was proposed in this paper, which first pre-
dicts the magnitude mask and phase, and then post-processes the noisy speech.

This paper achieves three contributions: the first is to combine the time-
frequency domain signal processing method with the traditional method; the
second is to use the traditional method to post-process the speech data; and the
last is to synthesize a new dataset according to different signal-to-noise ratios
and noises, and the model is trained and tested on it. A more suitable application
scenario is obtained in the synthetic dataset, which reflects the robustness of the
model.

2 Related Work

There are three main ideas of this paper: masking methods in the time-frequency
domain, phase prediction and spectral subtraction for doing post-processing.
This section focuses on the study and application of these three methods.
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2.1 Time-Frequency Masking

The key issues to be solved in mask method are mask type and mask predic-
tion. Early T-F masking methods used ideal binary masks (IBM) [19], ideal
ratio mask (IRM) [20] or spectral amplitude mask (SMM) [21] to obtain the
enhanced amplitude, and finally the enhanced speech was obtained by transfor-
mation. Later studies by Paliwal [22] showed that phase plays an important role
in speech quality and intelligibility. In order to recover phase, a Phase Sensitive
Mask (PSM) was proposed [23]. In addition, the previously mentioned cIRM is
a complex-valued mask that can better recover amplitude and phase. But when
Williamson uses cIRM, the real and imaginary parts of the cIRM estimated to
enhance the amplitude and phase spectra were not as effective as the PSM.

Recently, some methods based on the characteristics of masks have been
studied. The supervised DNN estimation ideal ratio mask method was used by
Selvaraj [24] in the research of target speech signal enhancement, which designed
a SWEMD-VVMDH-DNN model in the network to learn the features of the
speech signal, thus reconstructing a noise-free speech signal. Complementary
features of multiple masks are used by Zhou [25] to improve speech performance,
and the main module of the network is to estimate two complementary templates
simultaneously for multi-objective learning. On the other hand, the multi branch
extended convolutional network is applied by Zhang [26], and the multi-objective
learning framework of complex spectrum and ideal ratio mask is used to enhance
the amplitude and phase of speech.

However, the focus of these methods is mainly on the improvement of masking
methods, while less attention has been paid to phase features and the connection
between phase and mask.

2.2 Phase Prediction

In recent years, phase information has also been deeply studied in speech direc-
tion. For example, a complex masking method in polar coordinates is proposed
by Choi [27], and the U-Net network with complex depth was used to reflect
the distribution of complex ideal ratio masking, and the weighted source distor-
tion rate (wSDR) loss was used to enhance the perception of phase information.
A single channel speech enhancement technology based on phase sensitive mask
was proposed by Sidheswar [28], which is named PSMGAN. This technique intro-
duces PSM in the end-to-end GAN model and gives importance to the problem
of ignoring phase information in traditional end-to-end models. In these meth-
ods, they have paid some attention to the phase, but also only studied it in the
time domain.

In subsequent research, there are other methods to use amplitude mask and
phase information [29–31], and they have also dealt with phase reconstruction
asynchronously using amplitude estimation, with the aim of reconstructing the
phase based on a given amplitude spectrogram. All these methods show the
advantages of phase reconstruction, but they do not make full use of the infor-
mation in the phase of input noisy in their approaches. So methods for amplitude
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and phase communication become necessary, and for the implementation of com-
munication methods, the FTB proposed by Yin in the paper plays a key role.

2.3 Spectral Subtraction Processing

In the spectral subtractio [1] usage scenario, the noise is smooth and is additive.
It defaults that the first few frames in the noisy signal are ambient noise, and
the average amplitude spectrum (energy spectrum) of the first few frames of the
noisy signal is taken as the amplitude spectrum (energy spectrum) of the esti-
mated noise. Finally, the amplitude spectrum of the clean signal is obtained by
subtracting the estimated noise signal amplitude spectrum from the amplitude
spectrum of the noisy signal.

In the process of spectral subtraction, it will judge whether each frame con-
tains speech, then use different methods to process frames containing speech
and frames not containing speech. In the absence of speech, the noise spectrum
is smoothed and updated to obtain the maximum residual noise value. In the
presence of speech, noise cancellation is performed to reduce the residual noise
value. This mode of processing with spectral reduction is a better approach to
residual noise in the processing of network models and is more appropriate as
post-processing of data. In our method, both DNN and spectral subtraction
methods are used to better deal with noisy speech.

3 Methods

3.1 Overall Network Structure

The basic idea of PHASEN-SS is that phase and mask features are predicted
by two parallel branches respectively. Branch A is used for magnitude mask
prediction and branch P is used for phase prediction [18]. The branches are
merged at the end of the element-wise product, and finally the residual noise
is further removed by spectral subtraction. The overall network structure of
PHASEN-SS is shown in Fig. 1.

The spectrogram of noisy speech is used as the input of PHASEN-SS. First,
the noisy speech signal is converted from time domain to frequency domain
through short-time Fourier transform. The input is denoted as Sin ∈ RT×F×2,
where T denotes the time step and F denotes the number of frequency bands.
Then the graph is input into branch A and branch P respectively. Two different
features are generated through different 2D convolutions. The upper part is
the amplitude mask prediction, and the obtained features are denoted as SA ∈
RT×F×CA. The second half is the phase prediction, and the obtained features
are denoted as SP ∈ RT×F×CP , where CA and CP are the number of channels
in branch A and branch P respectively.

The communication process between branch A and branch P is mainly
reflected in the component TSB, and the number is set to 3. The exchange
of feature information is carried out at the end of each component. The FTB
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Fig. 1. The overall network structure of PHASEN-SS. The left is the amplitude pre-
diction and the phase prediction, the position shown by the middle dashed box is the
communication module (TSB), and the right is the post-processing process.

[18] module is used to extract harmonics in branch A, which is used to capture
global correlations along the frequency axis.

At the end of the three TSB modules, for the output of branch A, the channel
is reduced to Cr = 8 by 1 × 1 convolution, then reshaped into a 1D feature map,
whose dimension is T × (F • Cr). Finally the feature map is feed Bi-LSTM and
three fully connected (FC) to predict an amplitude mask M ∈ RT×F×1. The
Sigmaid function is used as the activation function for the last fully connected
layer, and ReLU is used as the activation function for the other two fully con-
nected layers. The output of branch P reduces the number of channels to 2 by
1 × 1 convolution to form a complex value feature map SP ∈ RT×F×2, and the
two channels correspond to the real and imaginary parts of the phase, respec-
tively. Amplitude of this complex feature map is normalized to 1 for each T-F
unit, so the feature map only contains phase information. The phase prediction
result is denoted by Ψ . Finally, the predicted spectrogram can be computed by
the following Eq. (1).

Sout = abs(Sin) ◦ M ◦ Ψ (1)

where ◦ represents element-wise multiplication.

3.2 Branch Communication

Branch A: Three 2D convolutional layers are used to handle the local time-
frequency correlation of the input features. To obtain the global correlation of
the frequency axis, the frequency transform block (FTB) is used before and
after the three convolution layers. The combination of 2D convolution and FTB
effectively captures global and local correlations, allowing the following blocks
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to extract high level features for amplitude prediction. The calculation process
of branch A is shown in Eq. (2), (3) and (4).

SA1 = FTBin(SA) (2)

SA2 = conv(SA1), (conv = 3) (3)

SAout1 = FTBout(SA2) (4)

where SA represents the input of the first FTB, SA1 is the input of conv and is
also the output of the first FTB. The first layer uses a 5 × 5 convolution kernel,
the second convolutional layer uses a 25 × 1 convolution kernel, and the third
layer uses a 5 × 5 convolution kernel. SA2 represents the output of the three
convolutional layers and is also the input of the second FTB. SAout1 represents
the output of the second FTB and also the input of branch A in the second
round of TSB module. This is the flow of the first TSB module of branch A, and
TSB loops 3 times.

SP is only processed by two 2D convolution layers in branch P. The execution
process is shown in Eq. (5), (6).

SP1 = SP (5)

SP2 = conv(SP1), (conv = 3) (6)

SP1 represents the input of the first TSB in the P branch, and conv represents
the convolutional layer. The first layer uses a 5 × 3 convolution kernel, and the
second convolutional layer uses a 25 × 1 convolution kernel to capture long-range
temporal correlations. And global layer normalization (GLN) is performed before
each convolutional layer. SP2 represents the output of the convolutional layer
and is also the input of the next TSB module.

3.3 Spectral Subtraction Denoising

The settings for spectral subtraction are as follows. Let the noisy speech be y(n),
the clean speech is x(n), and the noisy speech is e(n).

y(n) = x(n) + e(n) (7)

Among them, y(n), x(n), and e(n) are the representations of speech in the time
domain, which are transformed to the frequency domain by Fourier transform,
and are represented as Y (ω), X(ω), and E(ω), respectively.

Y (ω) = X(ω) + E(ω) (7)
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| ̂X(ω)| is the modulo value of the estimated clean speech, representing the mag-
nitude spectrum of the estimated speech, which is calculated by Eq. (8). When
| ̂X(ω)| is less than 0, it is replaced with 0, where |Y (ω)| and |E(ω)| represent
Y (ω) and the modulus of E(ω).

| ̂X(ω)| = |Y (ω)| − |E(ω)| (8)

| ̂X(ω)| =
{

0, | ̂X(ω)| < 0

| ̂X(ω)|, other
(9)

̂X(ω) is the spectrum of the estimated speech, which is obtained by combining
the amplitude spectrum of the estimated speech and the phase spectrum of the
noisy speech Y (ω), denoted by ejϕY (ω) the phase spectrum of Y (ω). The specific
calculation is expressed as Eq. (10).

̂X(ω) = | ̂X(ω)|ejϕY (ω) (10)

Finally, the estimated clean speech spectrum is transformed into the time domain
through an inverse fourier transform, and the result is the enhanced speech after
denoising by spectral subtraction. The specific spectral subtraction denoising
processing flow is shown in Fig. 2.

x̂(t) = ISTFT ( ̂X(ω)) (11)

Fig. 2. Spectral subtraction denoising process.
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4 Experiments

4.1 Dataset

Two datasets were used in our experiment. The first dataset is Voice Bank +
DEMAND [35]: A total of 30 speakers, 28 speakers were included in the training
set and 2 speakers were included in the validation set. The training and test sets
contain 11,572 and 824 speech pairs, respectively.

The second noisy speech dataset(VB-Noise92) is synthesized with 4 common
noises in Noise92 (babble, buccaneer1, factory1, white) and Voice Bank clean
speech according to the specified signal-to-noise ratio (–5, 10, 20). The training
and test sets are the same size as the first dataset.

4.2 Evaluation Indicators

This paper will use the following four common indicators to evaluate PHASEN-
SS and other network models. The higher the score the better.

PESQ: Perceptual assessment of speech quality (from –0.5 to 4.5).
CSIG: Mean Opinion Score (MOS) prediction only involves signal distortion

(from 1 to 5) of speech signals.
CBAK: MOS prediction of background noise intrusiveness (from 1 to 5).
COVL: MOS’s prediction of the overall effect (from 1 to 5).

4.3 Comparative Experiment

Hardware: Server with graphics card memory size 2080 TI. Software: Linux sys-
tem, Pytorch platform. Other data preparation: All audio was resampled to 16
kHz, and STFT was calculated using a Hanning window with a window length
of 25 ms, a jump length of 10 ms and FFT size of 512. Duing to equipment lim-
itations, both the original model and the improved network model were trained
at 6 epochs, with each epoch of size 5786. Adam optimizer with a fixed learning
rate of 0.0005 andstep size of 6000 is used, and the batch size is set to 2.

Noisy speech is the baseline of the experiment. Our method is compared with
those of the traditional Wiener method and the neural network models SEGAN
[9], SASEGAN [32], MMSE-GAN [33], MDPhD [34], PHASEN [18].

The first dataset. Firstly, we compared with Wiener filtering and find that the
objective index after Wiener filtering is relatively low, and the neural network
model is better, and the effect of PHASE-SS is more obvious. Then we com-
pared with the time-domain methods: SEGAN, SASEGAN and MMSE-GAN. It
is found that the T-F domain phase acquisition method is better than the time-
domain method in the same data set, and it also proves that the network used
in capturing phase-related information is contributing to the results. Finally, we
compared with the other two hybrid time-domain and time-frequency domain
models (MDPhD, PHASEN), and the objective metrics in the PHASEN results
are also slightly higher than these two models, which also indicates that our
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model is improved to some extent. This shows that spectral subtraction is effec-
tive in residual noise removal. All comparison results are shown in Table 1, and
PHASEN-SS is our model.

Table 1. Comparison results of different models on Voice Bank +DEMAND

Metric CSIG CBAK COVL PESQ

Noisy 3.35 2.44 2.63 1.97
Wiener 3.23 2.68 2.67 2.22
SEGAN 3.48 2.94 2.80 2.16
SASEGAN 3.54 3.08 2.93 2.36
MMSE-GAN 3.80 3.12 3.14 2.53
MDPhD 3.85 3.39 3.27 2.70
PHASEN 4.02 3.14 3.43 2.83
PHASEN-SS 4.12 3.19 3.52 2.91

The effect of the improved model can also be reflected from the spectrograms
of different voices. Figure 3 is a spectrum comparison diagram of each speech:
(a) is a clean spectrogram, and (b) is a noisy spectrogram, and (c) is a PHASEN
enhanced spectrogram, and (d) is a PHASEN-SS enhanced spectrogram. The
spectrogram of all speech can also be clearly seen from the figure, and the spec-
trogram obtained by the improved model is closer to the spectrogram of clean
speech. In terms of details, our results are closer to clean speech than that of
PHASEN, while this also shows that the our model has a better effect on speech
and the degree of restoration is higher.

Fig. 3. Spectrum comparison chart.

The second dataset. Firstly, when the signal-to-noise ratio is -5, the compari-
son results enhanced with PHASEN-SS are shown in Table 2. The results of four
indicators show that our model has the greatest impact on the noise of bucca-
neer1, but the effect of comparing the noise-bearing voices with multi-channel
mixing (shown underlined) decreases instead. This indicates that the our model
is not ideal for noise denoising at low signal-to-noise ratios. It can also be found
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Table 2. SNR = –5, 4 kinds of noise comparison results on VB-Noise92

Metric CSIG CBAK COVL PESQ

DEMAND 4.12 3.19 3.52 2.91
Babble 2.85 2.26 2.16 1.59
Buccaneer1 2.93 2.59 2.33 1.81
Factory1 2.63 2.21 2.01 1.50
White 2.72 2.54 2.17 1.71

that the improved model works best for noisy buccaneer1 and worst for noisy
factory1 under low SNR.

Then, when the signal-to-noise ratio is 10, the comparison results of using
PHASEN-SS enhancement are shown in the Table 3. It can be seen that the indi-
cators CSIG and COVL of the PHASEN-SS method for processing speech with
babble noise are improved, and the results of CBAK and PESQ for buccaneer1
are better than those for multi-channel noise speech. The experimental results
show that our method improves the CSIG and COVL indexes of bubble and
CBAK and PESQ indexes of buccaneer1 respectively when the SNR is medium.

Table 3. SNR = 10, 4 kinds of noise comparison results on VB-Noise92

Metric CSIG CBAK COVL PESQ

DEMAND 4.12 3.19 3.52 2.91
Babble 4.19 3.31 3.56 2.93
Buccaneer1 4.03 3.44 3.49 2.95
Factory1 3.86 3.13 3.25 2.67
White 3.52 3.29 3.10 2.68

Finally, experiments were carried out with a signal-to-noise ratio of 20, and
the comparison results using PHASEN-SS enhancement are shown in Table 4. It
is also clear from the metrics that the improved model has the most significant
enhancement effect on babble-containing data in particular, and its improvement
is much better than other speech. This also indicates that our model is more
friendly to babble-containing data at high SNR.
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Table 4. SNR = 20, 4 kinds of noise comparison results on VB-Noise92

Metric CSIG CBAK COVL PESQ

DEMAND 4.12 3.19 3.52 2.91
Babble 4.90 3.91 4.33 3.69
Buccaneer1 4.63 3.88 4.12 3.57
Factory1 4.62 3.68 4.07 3.51
White 4.07 3.79 3.70 3.30

5 Conclusion

We have utilized two stages to enhance speech: A two-branch network for speech
enhancement and spectral subtraction for data post-processing. In this paper,
traditional methods are combined with time-frequency domain signal processing
methods, and then the speech data are post-processed with traditional methods,
and a new noisy dataset is synthesized, on which it is trained and tested. How-
ever, there are still some shortcomings in our model, such as no more refined
improvement on the DNN model. In the future, we plan to add component loss to
the mask prediction of PHASEN-SS to improve the accuracy of mask prediction,
and set weighted source distortion rate loss in phase prediction to enhance phase
prediction. Finally, we wish our model can be applied to speech recognition.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (No. 61170093).

References

1. Berouti, M, Schwartz, R., Makhoul, J.: Enhancement of speech corrupted by acous-
tic noise. In: ICASSP IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. 4, pp. 208–211 (1979)

2. Lim, J., Oppenheim, A.: All-pole modeling of degraded speech. IEEE Trans.
Acoust. Speech Signal Process. 26(3), 197–210 (1978)

3. Ephraim Y.: Statistical-model-based speech enhancement systems. In: Proceedings
of the IEEE, vol. 80, no. 10, pp. 1526–1555 (1992)

4. Dendrinos, M., Ba Kamidis, S.G., Carayannis, G.: Speech enhancement from noise:
a regenerative approach. Speech Commun. 10(1), 45–57 (1991)

5. Ephraim, Y., Trees, H.V.: A signal subspace approach for speech enhancement.
IEEE Trans. Speech Audio Process. 3(4), 251–266 (1995)

6. Tamura, S., Waibel, A.: Noise reduction using connectionist models. In: ICASSP,
pp. 553–556 (1988)

7. Parveen, S., Green, P.: Speech enhancement with missing data techniques using
recurrent neural networks. In: IEEE International Conference on Acoustics, Speech
and Signal Processing(ICASSP), pp. 733–736 (2004)

8. Lu, X.G., Tsao, Y., Matsuda, S., et al.: Speech enhancement based on deep denois-
ing autoencoder. In: Conference of the International Speech Communication Asso-
ciation, ISCA, pp. 436–440 (2013)



A Speech Enhancement Method Combining Two-Branch Communication 121

9. Pascual, S., Bonafonte, A., Serrà, J.: SEGAN: speech enhancement generative
adversarial network. Interspeech, 3642–3646 (2017)

10. Abdulatif, S., Armanious, K., Guirguis, K., et al.: Aegan: time-frequency speech
denoising via generative adversarial networks. EUSIPCO, pp. 451–455 (2020)

11. Pan, Q., Gao, T., Zhou, J., et al.: CycleGAN with dual adversarial loss for bone-
conducted speech enhancement. CoRR.2021:2111.01430

12. Yasuda, M., Koizumi, Y., Mazzon, L., et al.: DOA estimation by DNN-based
denoising and dereverberation from sound intensity vector. CORR.2019:1910.04415

13. Yasuda, M., Koizumi, Y., Saito, S., et al.: Sound event localization based on sound
intensity vector refined by DNN-based denoising and source separation. In: ICASSP
2020–2020 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 651–655 (2020)

14. Le, X., Chen, H., Chen, K., et al.: DPCRN: dual-path convolution recurrent net-
work for single channel speech enhancement. In: Interspeech, pp. 2811–2815 (2021)

15. Pandey, A., Wang, D.: Dense CNN with self-attention for time-domain speech
enhancement. IEEE/ACM Transactions on Audio, Speech, and Language Process-
ing, vol. 29, pp. 1270–1279 (2021)

16. Jansson, A., Sackfield, A.W., Sung, C.C.: Singing voice separation with deep u-net
convolutional networks: US20210256994A1 (2021)

17. Williamson, D.S., Wang, Y., Wang, D.L.: Complex ratio masking for monaural
speech separation. IEEE/ACM Trans. Audio Speech Lang. Process. 24(3), 483–
492 (2016)

18. Yin, D., Luo, C., Xiong, Z., et al.: Phasen: a phase-and-harmonics-aware speech
enhancement network. In: Conference on Artificial Intelligence. Association for the
Advancement of Artificial Intelligence (AAAI).2020: 9458–9465

19. Hu, G., Wang, D.L.: Speech segregation based on pitch tracking and amplitude
modulation. In: IEEE Workshop on Applications of Signal Processing to Audio &
Acoustics, pp. 553–556 (2002)

20. Srinivasan, S., Roman, N., Wang, D.L.: Binary and ratio time-frequency masks for
robust speech recognition. Speech Commun. 48(11), 1486–1501 (2006)

21. Wang, Y., Narayanan, A., Wang, D.L.: On training targets for supervised speech
separation. IEEE/ACM Trans. Audio Speech Lang. Process. 22(12), 1849–1858
(2014)

22. Paliwal, K., Wójcicki, K., Shannon, B.J.: The importance of phase in speech
enhancement. Speech Commun. 53(4), 465–494 (2011)

23. Erdogan, H., Hershey, J.R., Watanabe, S., et al.: Phase-sensitive and recognition-
boosted speech separation using deep recurrent neural networks. In: IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
708–712 (2015)

24. Selvaraj, P., Eswaran, C.: Ideal ratio mask estimation using supervised DNN app-
roach for target speech signal enhancement. 42(3), 1869–1883 (2021)

25. Zhou, L., Jiang, W., Xu, J., et al.: Masks fusion with multi-target learning for
speech enhancement. Electr. Eng. Syst. Sci. arXiv e-prints (2021)

26. Zhang, L., Wang, M., Zhang, Z., et al.: Deep interaction between masking and
mapping targets for single-channel speech enhancement. CORR.2021:2106.04878

27. Choi, H.S., Kim, J.H., Huh, J., et al.: Phase-aware speech enhancement with deep
complex U-Net In: ICLR. 2019:1903.03107

28. Routray, S., Mao, Q.: Phase sensitive masking-based single channel speech enhance-
ment using conditional generative adversarial network. Comput. Speech Lang. 71,
101270 (2021)



122 R. He et al.

29. Takahashi, N., Agrawal, P., Goswami, N., et al.: PhaseNet: discretized phase mod-
eling with deep neural networks for audio source separation. In: Interspeech, pp.
2713–2717 (2018)

30. Takamichi, S., Saito, Y., Takamune, N., et al.: Phase reconstruction from amplitude
spectrograms based on von-Mises-distribution deep neural network. In: IEEE 2018
16th International Workshop on Acoustic Signal Enhancement (IWAENC), pp.
286–290 (2018)

31. Masuyama, Y., Yatabe, K., Koizumi, Y., et al.: Deep griffin-lim iteration. In:
ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 61–65 (2019)

32. Phan, H., Nguyen, H.L., Chen, O.Y., et al.: Self-attention generative adversar-
ial network for speech enhancement. In: ICASSP 2021–2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7103–7107
(2021)

33. Soni, M.H., Shah, N., Patil, H.A.: Time-frequency masking-based speech enhance-
ment using generative adversarial network. In: ICASSP, pp. 5039–5043 (2018)

34. Kim, J.H., Yoo, J., Chun, S., et al.: Multi-domain processing via hybrid denoising
networks for speech enhancement. CoRR.2018:1812.08914

35. Valentini-Botinhao, C., Wang, X., Takaki, S., et al.: Investigating RNN-based
speech enhancement methods for noise-robust Text-to-Speech. In: 9th ISCA Speech
Synthesis Workshop, SSW, pp. 146–152 (2016)


	A Speech Enhancement Method Combining Two-Branch Communication and Spectral Subtraction
	1 Introduction
	2 Related Work
	2.1 Time-Frequency Masking
	2.2 Phase Prediction
	2.3 Spectral Subtraction Processing

	3 Methods
	3.1 Overall Network Structure
	3.2 Branch Communication
	3.3 Spectral Subtraction Denoising

	4 Experiments
	4.1 Dataset
	4.2 Evaluation Indicators
	4.3 Comparative Experiment

	5 Conclusion
	References




