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Abstract. The current scene graph generation (SGG) task still follows
the method of first detecting objects-pairs and then predicting rela-
tionships between objects-pairs. This paper introduces a parallel SGG
thought that decouples relationship detection and object detection. In
detail, we propose an independent visual relationship detection method,
‘Relationship You Only Look Once’ (RYOLO), which calculates rela-
tionships directly from the input image. For SGG, we present Similar
Relationship Suppression and Object Matching Rules to match relation-
ships and detected objects. In this way, the relationship detection and
object detection can be calculated in parallel, and detected relationships
can easily cooperate with detected objects to generate diversified scene
graphs. Finally, our thought has verified the feasibility on the public
Visual Genome dataset, and our method may be the first to attain real-
time SGG.

Keywords: Relationship Detection · Scene Graph Generation ·
Relationship You Only Look Once

1 Introduction

Recently, computer vision has achieved great success in visual perceptual tasks,
such as object detection. However, generating cognitive relationships from per-
ceptual objects is still challenging. Scene graph generation (SGG) is an essential
method for building relationship graphs between individual objects in the scene.
In fact, the scene graph is often used as an introductory module to help high-
level visual understanding tasks, such as image captioning [1], visual question
answering [2], and visual grounding [3].

In the SGG task, one relationship between two objects can be represented as
a triple: <subject, relation, object>, such as <man,wear, shirt>. Traditional
SGG works [4–8] always relies on a series structure, as shown in Fig. 1(A). In
the first stage, an image is fed into an object detection model to get object
proposals, and in the second stage, a relationship prediction model is used to
predict relationships based on these object proposals. In this case, some SGG
works [5,8] rely on the two-stage object detection [9,10] to obtain intermediate
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Fig. 1. (A) Traditional series SGG thought. (B) Our parallel SGG thought. (C) Inde-
pendent object detection results calculate the center of the bounding box. (D) Our
relationship detection results on the grids. (E) Object matching for scene graph gen-
eration. (F) The direction anchor for our relationship detection method.

features of object proposals through RoIAlign. Other SGG works [7,11] take the
bounding box and category from the object detection as input to the predicted
relationships. In general, the series structure makes the relationship prediction
need wait for object detection processing, which restricts the real-time scene
graph generation. In addition, each object-pair (subject and object) must per-
form one operation to predict the relationship, which is a quadratic number
time complexity [4]. A large number of objects detected will seriously slow down
the inference speed of SGG. However, for agents such as robots, the surround-
ing scene is changing in all the time, so a real-time SGG method is of great
significance for rapid response of agents.

In this paper, we propose a parallel SGG thought with decoupling object
detection and relationship detection for the real time SGG, shown in Fig. 1(B).
In our thought, the object detection and the relationship detection are performed
in parallel, and the scene graph is generated by combining the two results. For
an image, we use a normal object detection method such as YOLOv5 [12] to get
the position and category of objects as shown in Fig. 1(C). Meanwhile, we use
another independent visual relationship detection method to predict the relation-
ships existing in the image. Each predicted relationship contains a start position,
an end position and a relation type, as shown in Fig. 1(D). Afterward, we use
the start and end positions to match the nearest object based on the object
center positions from object detection results. Once the start and end positions
are both matched by different objects, the triple relationship in the scene graph
is established, as shown in Fig. 1(E). The object matched by the start position is
the subject-object in the triple relationship, while the object matched by the end
position is the object-object in the triple relationship, and the relation type is
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the predicate. In this way, matching the nearest object is a batch minimum oper-
ation that replaces previous objects-pairs predictions and improves operational
efficiency. In addition, because the visual relationship detection is independent,
it can easily cooperate with any object detection model to generate scene graphs.

The key technology of our SGG thought is the visual relationship detection
method. Inspired by the YOLO [13], we propose a novel independent visual rela-
tionship detection method RYOLO that can predict relationships from a whole
image without intermediate steps such as object proposals [5,14] or knowledge
embedding [15,16]. In detail, same as common visual tasks, an image is input
into a backbone network and get a feature map. The feature map is composed
of W × H grid cells. As shown in Fig. 1(F), for each grid cell, we preset some
direction anchors in the polar coordinate. Each direction anchor contains an
initial length ρanchor and an initial radian direction θanchor. One object can be
assigned to a unique grid cell based on its center position. Then, the relationship
of this object can be expressed as a direction vector from the grid cell, pointing to
the center position of another object. Therefore, the neural network will predict
direction offsets of the direction anchor Δρ, Δθ and make direction anchors close
to direction vectors after regulating by direction offsets. In addition, in order to
get the relation type, the neural network will output a confidence score and
relation type scores for each direction anchor while predicting direction offsets.
Overall, our contribution can be summarized as:

• We propose a new parallel scene graph generation thought that decouples
object detection and relationship detection. We verify the feasibility of this
thought on the public dataset and achieve real-time scene graph generation.

• We propose an independent visual relation detection method RYOLO with
preset direction anchors in the polar coordinate. RYOLO can cooperate with
any object detection model to generate scene graph.

2 Related Work

From the perspective of the inputting information, we categorize recent SGG
researches into three: First, using external knowledge. VRD [17] and UVTransE
[15] introduce an external language model to embed word features of objects
and relations. GB-NET [6] introduces an external commonsense knowledge graph
into SGG. Second, using statistical context information from the dataset, VCTree
[18] constructs tree structure with statistical information, while KERN [19] con-
structs knowledge graph. Third, only using the visual image, IMP [20], Graph
R-CNN [4] and FCSGG [21] input the whole image and output the scene graph
without additional operation. Our method also falls into this category.

From the perspective of the relationship prediction method, MOTIFS [5],
VCTree [18], CogTree [22] construct grouping ordered objects structures and
use RNN or LSTM to predict relationships. Graph R-CNN [4], GPS-Net [14]
and KERN [19] construct graph structures and use graph neural networks to
predict relationships. TDE [23] and PUM [24] put forward new modules, and
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Fig. 2. The example of our relationship detection method RYOLO and scene graph
generation method. We use the yolov5 backbone for feature extraction and gener-
ate multi-scale feature maps through the neck structure. Different direction anchors
are preset on feature maps. Each grid tensor contains some clusters and each cluster
contains a confidence, a direction offset and some relation type scores. The detected
relationships generates a scene graph through similarity relationship suppression (SRS)
and object matching.

improve the performance based on previous methods. However, these methods
are all based on the series SGG structure: using Faster-RCNN to get object pro-
posals or features, then objects-pairs feature finetunes iteratively for relationship
prediction. This structure causes the relationship prediction heavily dependent
on the object detection, and the inference speed is slow. Pixels2Graphs [25] and
FCSGG [21] predict objects and relationships in one model which tends to the
parallel structure. This paper, we propose a parallel SGG thought and introduce
RYOLO to detect potential relationships with direction directly from images.

3 Method

3.1 Independent Relationship Detection

We redesign the output of an excellent object detection work yolov5 [12] and
make it can be used for visual relationship detection. We call it ‘Relationship
You Only Look Once’, RYOLO. As shown in Fig. 2, the whole image is input
into the yolov5’s backbone to extract features. The neck structure can generate
multi-scale feature maps, and we finally get F different scale feature maps. We
preset a set of direction anchors for each feature map, including ρanchor and
θanchor, and direction anchors apply to all grid cells. On each grid cell of the
feature map, the grid tensor outputs several clusters, which contains direction
offsets Δρ, Δθ, confidence c of the relationship, and scores s of each relation
type. We will introduce how to get the start position, the end position, and the
relation type based on the direction anchor in detail.

Relationship Calculation. On the whole, we can get F feature maps, and we
set F = 3 means 3 different scale feature maps. For each feature map f with
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f ∈ F , it has i × j grid cells, while i, j ∈ Wf ,Hf and W , H are the scale of the
feature map. The scale between the input image and the feature map f can be
expressed as Sf . Each grid cell on the feature map can be the starting position:

start positionfij = i × Sf , j × Sf . (1)

On each feature map f , we preset K direction anchors in the polar coordinate
system, and we set K = 6 means 6 different directions. For each direction anchor
danchorfk , we can represent as danchorfk = [ρanchorfk , θanchorfk ], f ∈ F and k ∈ K

with ρanchorfk ∈ [0, 1] and θanchorfk ∈ [0, 2π]. ρanchorfk is the normalized length
in the polar coordinate system, while θanchorfk is the radian direction. In our
work, we divide the radian direction θanchor into K evenly for diverse directions.
We hope to predict the short-distance relationship on the large-scale feature
map while the long-distance relationship on the small-scale feature map. The
larger the feature map, the smaller ρanchor. On the feature map f , each grid
tensor also contains K predicted clusters. Each cluster contains the direction
offset Δdfkij = [Δρfkij ,Δθfkij ] for the direction anchor [ρanchorfk , θanchorfk ] on the
grid cell i, j, which makes the direction anchor can point to the end position.
Therefore, we can calculate the end position by the following formula:

d xfkij = ρanchorfk Δρfkijcos(θanchorfk + Δθfkij)

d yfkij = ρanchorfk Δρfkijsin(θanchorfk + Δθfkij),
(2)

end positionfkij = start positionfij + dfkij

= i × Sf + d xfkij , j × Sf + d yfkij ,
(3)

In fact, although we named Δρ direction offset, it is actually a scale factor to
adjust the length ρanchor. Δθ add on θanchor to adjust the radian direction. In
this way, each cluster can generate a predicted direction for connection between
a start position and an end position. The confidence c in each cluster is used to
judge whether the relationship is established. Each cluster also contains scores s
independently of the R relation type, which is used to predict the relation type
between the start position and end position.

Loss and Training. The loss consists of direction loss, confidence loss, relation
loss. We first pick out the start positionfij with the relationship, which can gen-
erate a direction vector dvectorfij . For direction loss Ldir, the label direction offset
Δdlabelfkij = [Δρlabelfkij ,Δθlabelfkij ] from the direction anchor danchorfkij to the direction
vector dvectorfij can be simply expressed as:

Δρlabelfkij = ρvectorfij /ρanchorfkij ,Δθlabelfkij = θvectorfij − θanchorfkij , (4)

We calculate the loss between the predicted direction Δdpredfkij and the label direc-
tion Δdlabelfkij through L2 loss, which hopes the predicted direction vector is equal
to the label direction vector as much as possible.

For confidence loss Lconf , when the start positionfij cannot generate direc-
tion vectors, we set clabelfij to 0. But when there is a direction vector on the
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start positionfij , we compare the distance between the direction vector and
direction anchors. We retain direction anchors that close to the direction vector,
and set the clabelfkij to 1. Other direction anchors set clabelfkij to 0.

For relation loss Lrel, relation types between subjects and objects
are not unique in labels. For an object-pair, <man,wears, shirt> and
<man, has, shirt> may both exist in the label. We set each relation type score
slabelfkijr to 1 if the relation type exists in the label for the corresponding cluster.
We also use BCELoss to calculate relation loss Lrel and confidence loss Lconf .

In summary, the toal loss can be expressed as:

Loss = Lconf + Lrel + Ldir

1
Nconf
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1
Ndir
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F∑

f=1
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k=1

W∑

i=1

H∑

j=1

||Δdpredfkij ,Δdlabelfkij ||2,

(5)

In the Eq. 5, Nconf , Nrel and Ndir are used to calculate the average of Lconf ,
Lrel and Ldir. Only when clabelfkij = 1, the corresponding Lrel and Ldir are counted
into loss.

During our following training, the size of input images is variable multi-scale
similiar with yolov5, and the initial learning rate is 0.04. After 100k interations,
the learning rate decay to 0.001. The model is trained end-to-end using SGD
optimizer with the batch size of 32.

3.2 Scene Graph Generation

Similar Relationship Suppression. We can get many relationships
through our relationship detection RYOLO, and each relationship contains a
start position, an end position, and a relation type. We design multiple direc-
tion anchors in multi-scale feature maps and multiple directions, but different
direction anchors may predict the same relationships. We propose a similar rela-
tionship suppression (SRS) method during SGG. In detail, we filter out all rela-
tionships by threshold tc, that cpredfkij > tc. Then, we compare the relationship
<start position, end position, relation type> sorted by cpred with rest relation-
ships. During the comparison, SRS will suppress similar relationships. The sup-
pression condition can be expressed as:

⎧
⎨

⎩

start positionfkij − start positionf ′k′i′j′ < td

end positionfkij − end positionf ′k′i′j′ < td

relation typefkij �= relation typef ′k′i′j′ ,
(6)
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Table 1. R@K and ng-R@K evaluation results on VG-150 dataset. G1, G2, G3 stands
for group 1, 2, 3. The SGG works in group 1 draw on external knowledge and in group
2 draw on statistical context information. The works in group 3 only use visual images
for SGG. Ours work falls into group 3.

R@K Method mAP @50 FPS PredCls SGCls SGDet

R@20/50/100 R@20/50/100 R@20/50/100

G1 GB-Net-β – 1.92 –/66.6/68.2 –/37.3/38.0 –/26.3/29.9

UVTransE 23.8 – –/65.3/67.3 –/35.9/36.6 –/30.1/33.6

G2 KERN – 1.27 –/65.8/67.6 –/36.7/37.4 –/27.1/29.8

GPS-Net – – 67.6/69.7/69.7 41.8/42.3/42.3 22.3/28.9/33.2

MOTIFS-TDE – 1.15 33.6/46.2/51.4 21.7/27.7/29.9 12.4/16.9/20.3

VCTree – 0.75 60.1/66.4/68.1 35.2/38.1/38.8 22.0/27.9/31.3

G3 IMP 20.0 – 58.5/65.2/67.1 31.7/34.6/35.4 14.6/20.7/24.5

Graph RCNN 23.0 5.26 –/54.2/59.1 –/29.6/31.6 –/11.4/13.7

FCSGG 25.0 12.50 24.2/31.0/34.6 13.6/17.1/18.8 11.5/15.5/18.4

Ours RYOLOs +yolov5s 20.2 35.71 22.9/30.9/32.6 8.8/13.6/15.8 7.6/11.9/14.7

+yolov5l 26.2 25.82 10.8/16.4/19.0 8.7/13.6/16.9

RYOLOl +yolov5s 20.2 22.42 23.4/32.1/33.9 8.9/13.8/16.1 7.6/12.0/15.0

+yolov5l 26.2 17.59 11.0/16.9/19.7 8.7/13.7/17.2

R@K Method mAP @50 FPS PredCls SGCls SGDet

ng-R@20/50/100 ng-R@20/50/100 ng-R@20/50/100

G1 GB-Net-β – 1.92 –/83.5/90.3 –/46.9/50.3 –/29.3/35.0

G2 KERN – 1.27 –/81.9/88.9 –/45.9/49.0 –/30.9/35.8

LSBR – – 77.9/82.5/90.2 43.6/46.2/50.2 26.9/31.4/36.5

G3 Pixels2Graphs – 0.28 –/68.0/75.2 –/26.5/30.0 –/9.7/11.3

FCSGG 25.0 12.50 28.1/40.3/50.0 14.2/19.6/24.0 12.7/18.3/23.0

Ours RYOLOs +yolov5s 20.2 35.71 29.1/42.1/50.8 9.3/13.6/17.2 10.0/14.7/18.4

+yolov5l 26.2 25.82 11.7/17.4/21.7 12.0/17.7/21.9

RYOLOl +yolov5s 20.2 22.42 29.9/43.3/52.1 9.5/13.9/17.4 10.2/15.0/18.7

+yolov5l 26.2 17.59 12.0/17.8/22.0 12.2/18.0/22.3

In suppression condition Eq. 6, f ′k′i′j′ �= fkij, and td is the preset distance
threshold. If relationships satisfy all three suppression conditions at the same
time, low-confidence relationships will be suppressed, and only the highest-
confidence relationship will be retained.

Object Matching. To generate a scene graph, we need to employ the results of
object detection. In other word, we need to match relationships and objects on
the image. The start position or end position will query all center coordinates
of detected objects and find the nearest object for matching as the subject-object
or object-object, shown in Fig. 1(C). During Object Matching, we use the sim-
ple distance threshold to eliminate failed matching between the start position
or end position and the center point of objects. The start position and the
end position cannot be matched by the same object.
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Table 2. mR@K, zsR@K and zsR@K, ng-zsR@K evaluation results on VG-150 dataset.

mR@K zsR@K PredCls SGCls SGDet

Method mR@ zsR@ mR@ zsR@ mR@ zsR@

50/100 50/100 50/100 50/100 50/100 50/100

GB-NET-β 22.1/24.0 – 12.7/13.4 – 7.1/8.5 –

KERN 17.7/19.4 – 9.4/10.0 – 6.4/7.3 –

VCTree 17.9/19.4 – 12.7/13.4 – 7.1/8.5 –

CogTree 28.4/31.0 – 15.7/16.7 – 11.1/12.7 –

MOTIFS-TDE 25.5/29.1 14.4/18.2 13.1/14.9 3.4/4.5 8.2/9.8 2.3/2.9

VCTree-TDE 25.4/28.4 14.3/17.6 12.2/14.0 3.2/4.0 9.3/11.1 2.6/3.2

FCSSG 5.2/6.1 8.6/10.9 2.9/3.4 1.7/2.1 2.6/3.1 1.0/1.4

RYOLOs+yolov5s 5.3/5.9 6.9/7.4 2.3/2.9 1.2/1.5 2.0/2.6 0.8/0.9

RYOLOs+yolov5l 2.8/3.5 1.7/2.1 2.3/2.9 1.1/1.4

RYOLOl+yolov5s 5.7/6.3 7.3/7.9 2.4/3.1 1.2/1.4 2.1/2.7 0.7/0.9

RYOLOl+yolov5l 2.9/3.7 1.6/2.0 2.4/3.1 1.2/1.5

ng-mR@K ng-zsR@K PredCls SGCls SGDet

Method ng-mR@ ng-zsR@ ng-mR@ ng-zsR@ ng-mR@ ng-zsR@

50/100 50/100 50/100 50/100 50/100 50/100

FCSSG 9.5/14.7 12.8/19.6 6.3/9.4 2.9/4.4 4.7/6.9 1.8/2.7

RYOLOs+yolov5s 9.7/15.4 12.2/19.2 3.9/6.0 1.6/2.7 4.5/6.8 1.6/2.8

RYOLOs+yolov5l 5.2/7.8 2.6/4.8 5.4/8.2 2.7/4.3

RYOLOl+yolov5s 10.2/16.1 12.5/19.6 4.1/6.2 1.5/2.5 4.6/7.1 1.6/2.6

RYOLOl+yolov5l 5.3/8.0 2.4/4.1 5.5/8.4 2.5/4.1

4 Experiment

4.1 Dataset, Model and Metrics

Dataset. We train and evaluate our models on the public VG-150 [23]. VG-
150 contains the most frequent 150 object categories and 50 predicate categories
from the Visual Genome dataset [26].

Model. We decouple the relationship detection and object detection for SGG.
For the object detection, we train independent model yolov5s and yolov5l with
different backbone [12]. Similarly, for the relationship detection, we introduce our
RYOLO method but use two backbone networks named RYOLOs and RYOLOl.
Both Yolov5 and RYOLO are trained in the VG-150 dataset. We will show
the impact of different performances object detection models and relationship
detection models on SGG.

Metrics. We analyze our method on three standard SGG evaluation tasks:
Predicate Classification (PredCls), Scene Graph Classification (SGCls), and
Scene Graph Detection (SGDet). The PredCls task only needs to perform our
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relationship detection and object information can be obtained from label. The
SGCls and SGDet tasks need to employ the results of object detection. The con-
ventional metric of SGG is Recall@K (R@K) [17]. Since predicates are not exclu-
sive, Pixels2Graphs [25] proposes No Graph Constraint Recall@K (ng-R@K).
Mean Recall@K (mR@K) [18] and No Graph Constraint Mean Recall@K (ng-
mR@K) optimize the influence of high-frequency predicates. For verify general-
ization of SGG, Zero Shot Recall@K (zR@K) [17] and No Graph Constraint Zero
Shot Recall@K (ng-zR@K) [23] count triplet relationships that not occurred in
the training. In addition, the object detection metric mAP@50 [28] is also dis-
played as a reference.

4.2 Results and Discussion

Results Analysis. The results of our work are shown in Table 1 and Table 2.
We decouple the dependence of relationship detection and object detection in
traditional series SGG, so our relationship detection method RYOLO can deal
with the PredCls task independently. The traditional SGG methods extract the
features of specific objects based on the ground truth bounding box and cat-
egory, and the predicted relationship is more accurate. RYOLO predicts the
relationship from the whole image whether the object bounding box is known or
not. The ground truth bounding box and category are only used in the object
matching process.

We introduce an additional independent object detection method yolov5 to
help RYOLO complete the SGCls and SGDet tasks. From the results, our method
cannot bring accuracy improvements in SGG tasks. For a fair comparison with
previous works, we divide previous works into three groups: using external knowl-
edge, using statistical context information, and only using visual images. Our
method is competitive in SGDet tasks compared with methods in G3. Com-
pared to previous methods in R@K and mR@K metrics, our method performs
similarly on SGCls and SGDet tasks. The main reason is that previous meth-
ods highly depend on object detection results, and biased detected objects drop
performance from SGCls to SGDet. But our method is independent and detects
relationships from the whole image. Biased detected object only affect object
matching slightly. In the No Graph Constraint condition, each objects-pair can
predict multiple possible relation types. Similar to other methods, RYOLO can
recall more relationships in this condition.

As for our results of zsR@K and ng-zsR@K, these two metrics are used to
judge whether the SGG method can predict the unseen triple relationship in
training. They are not common in previous SGG evaluations, and there are lim-
ited references. Since our SGG method is independent, it is not restricted by the
objects-pairs. From the ng-zsR@K results, our method can predict unseen triple
relationships more than the latest fully convolutional scene graph generation
method FCSGG. In addition, it seems that SGDet performs better than SGCls
when no graph constraint. The reason is that object matching uses detected
object positions before Non-Maximum Suppression in SGDet, rather than using
ground truth object bounding box in SGCls.
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Fig. 3. Visualization results of scene graph combined with OWOD [27] and our RYO-
LOs. In these examples, the color of the bounding box is the same as the color of the
text label and each objects-pair only shows the highest-confidence relation.

Advantages. The advantages of our SGG method with parallel thought lie in
its inference speed and flexibility. In terms of inference speed, our method has
an obvious advantage. To compare the speed with the previous works under the
same GPU condition [21], we also perform our method on an NVIDIA GeForce
GTX 1080 Ti GPU with batch size 1. Using the combination of RYOLOs and
yolov5s, our method realizes real-time scene graph generation (FPS > 30). Com-
pare the fast SGG method FCSGG (HRNetW48-1s) [21], our method improves
inference speed by nearly three times with less loss of precision, in Table 1. This
is because we adopt a light full convolutional backbone network from yolov5
with less computation and our method supports the parallel structure and can
simultaneously detect objects and relationships through multiple processes. In
addition, traditional methods with objects-pairs relationship detection have a
quadratic number time complexity, but RYOLO detects all relationships at the
same time. Object matching is a batch operation to find the minimum position
in the matrix operation, and it can maintain high-speed calculation. Further-
more, in the case of a single GPU, the parallel structure can not well reflect the
advantages. Object detection yolov5 and relationship detection RYOLO, run in
parallel only about 5% faster than running in series, as we show the inference
time in Table 1. But nearly 30% faster with multiple GPUs in our experiment.

In terms of flexibility, thanks to the decoupling of object detection and
relationship detection, RYOLO can easily cooperate with any object detec-
tion model to generate scene graphs. A better object detection model can
reduce false detections and missed detections, and improve the accuracy of
SGG. In Table 1, we can easily replace the different yolov5 models without
retraining the relationship detection model. We believe that this independent
method has a more comprehensive and wider practical application value. In
addition, we try to replace yolov5 with open-world object detection OWOD
[27] for the open-world scene graph generation. As shown in Fig. 3, OWOD can
detect unknown objects and mark them as unknown. Similar to human cog-
nition, humans may not recognize a new object but can analyze the relation-
ship between this object and other objects. Combining OWOD and RYOLO
in Fig. 3, we can generate some novel relationships, such as <unknow, near, tv>
and <unknow, on, diningtable>. Based on these relationships, the computer can
infer unknown attributes through knowledge, such as the unknown object on the
diningtable may be tableware.
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Limitations. Our method sacrifices accuracy for speed and flexibility. As
shown in Fig. 3, there are still some error relationships such as the relation-
ship <person, sitting on, car>. Due to our parallel thought, relationships are
detected directly from the whole image, the details of the objects themselves
will be ignored. Although our relationship detection and object detection are
independent, we rely on the consistency of the object center positions detected
in the SGG. The current object matching only considers location information
from object detection and relationship detection without contextual content. It
cannot avoid some false matches. For example, a man and a shirt may fall on
the same grid cell, and the nearest object matching may produce a wrong triple
<shirt, hold, cup> rather than <man, hold, cup>. In the long-distance direction
prediction in the polar coordinate, a slight shift in the radian causes a huge error
in the end position.

5 Conclusion

In this paper, we rethink the methods of SGG and introduce a parallel SGG
thought with an independent visual relationship detection method RYOLO. In
RYOLO, we design direction anchors to directly predict relationships from the
image without relying on object detection results. As for SGG, object detection
and relationship detection results are correlated through object matching rules
to generate triples and the scene graph. This way, we decouple object detection
and relationship detection and realize real-time SGG. We expect our method can
become a new baseline for the real-time scene graph generation. In the future,
we will consider incorporating knowledge and statistical context information to
improve the performance of real-time SGG.
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