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Abstract. When the image algorithm is directly applied to the video
scene and the video is processed frame by frame, an obvious pixel flick-
ering phenomenon is happened, that is the problem of temporal incon-
sistency. In this paper, a temporal consistency enhancement algorithm
based on pixel flicker correction is proposed to enhance video tempo-
ral consistency. The algorithm consists of temporal stabilization module
TSM-Net, optical flow constraint module and loss calculation module.
The innovation of TSM-Net is that the ConvGRU network is embedded
layer by layer with dual-channel parallel structure in the decoder, which
effectively enhances the information extraction ability of the neural net-
work in the time domain space through feature fusion. This paper also
proposes a hybrid loss based on optical flow, which sums the temporal
loss and the spatial loss to better balance the dominant role of the two
during training. It improves temporal consistency while ensuring better
perceptual similarity. Since the algorithm does not require optical flow
during testing, it achieves real-time performance. This paper conducts
experiments based on public datasets to verify the effectiveness of the
pixel flicker correction algorithm.

Keywords: short video creation · deep learning · temporal
consistency · optical flow

1 Introduction

Recently, the advances of deep neural networks (DNNs) have led to the rapid
development of image processing. Convolutional neural networks [1] (CNNs) take
an input image and convert it into the desired output image. This technology
has played an important role in image enhancement [2], style transfer [3], image
translation [4]. It is nontrivial to extend CNN-based methods to video because
of the objective factors such as video datasets and computational constraints. To
solve this problem, video is normally processed frame by frame with image algo-
rithms. However, it often leads to undesired inconsistent results in output video
with applying image algorithms independently, which is manifested as serious
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pixel flickering between frames. Therefore, enhancing temporal consistency aims
at eliminating this flickering phenomenon.

The mainstream strategies are divided into task-dependent algorithms and
post-processing algorithms. Task-dependent algorithms process each frame inde-
pendently, relying on stabilization modules or loss functions to maintain tem-
poral consistency. The network architecture of this kind of algorithm has a high
degree of coupling and low flexibility. At the same time, the stabilization mod-
ule, as part of the algorithm, needs to be jointly trained with the task network.
While enhancing the temporal consistency, it influences the effect of the original
task. Another algorithm is called post-processing algorithm, which is blind to the
image algorithm. The principle is to perform secondary processing on the result
of the image algorithm. Compared with task-dependent algorithms, it is able to
handle multiple tasks. Therefore, post-processing algorithm is the research fron-
tier to solve the problem of temporal consistency. It takes adjacent video frames
as input during training and uses optical flow information to achieve consistency.

However, the effect of post-processing algorithms is still insufficient. The rea-
son for this problem is the insufficient ability of temporal stability module to
perceive temporal series information. The obtained inter-frame temporal correla-
tion is not rich enough, which leads to the lack of sufficient temporal information
when the decoder restores the image.

In this work, a temporal consistency enhancement algorithm is proposed,
which can remove flickering in videos. Since the algorithm is blind to the specific
image algorithm, it is suitable for various scenarios such as video style transfer,
video defogging, and video super-resolution. The algorithm adopts a network
architecture based on optical flow constraints, which is divided into temporal
stability module TSM-Net, optical flow constraint module and loss calculation
module. The optical flow is only calculated during training, while testing is not,
which effectively guarantees a high processing speed.

We make the following contributions in this work: (1) We propose a new
temporal stabilization module TSM-Net. The module embeds the ConvGRU
network layer-by-layer in the decoder to enhance the decoder’s perception of
temporal correlations when restoring images. The single-channel serial structure
is extended to a dual-channel parallel structure, balancing the guiding role of
temporal information and spatial information on the deconvolution layer. At
the same time, multi-scale features are fused between the encoder and decoder
in a skip connection manner. (2) We propose a new hybrid loss. The loss is
divided into long-term and short-term temporal loss and spatial loss. The long-
term temporal loss calculates the temporal difference between video frames with
interval u. Training model by minimizing the loss function to enhance temporal
consistency and ensure perceptual similarity.
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2 Related Work

2.1 Task-Dependent Algorithms

Such algorithms normally embed a temporal stabilization module into a deep
neural network and retrain the network model with an optical flow-based loss
function [5]. Gupta et al. [6] proposes a recurrent neural network for style trans-
fer. The network does not require optical flow during testing and is able to
generate time-stable stylized video in real time. Liu et al. [7] adopts a strategy
of partial convolution to suppress the jitter phenomenon by using contextual
semantic information and correlation. Liu et al. [8] proposes a framework which
consists of prediction network, stylized network and loss network. The prediction
network and the stylized network extract style information and style information
respectively. The loss network is used to train the prediction network and the
stylized network. Wei et al. [9] designs a multi-instance normalization block to
learn styles, while improving temporal consistency with ConvLSTM [10]. Huang
et al. [5] proposes a hybrid loss function that utilizes the content information,
style information and temporal information of the input image to improve the
stabilization effect of the video. Using the results of salient object segmentation
and depth estimation, Liu et al. [11] proposes depth consistency loss and long-
term and short-term temporal loss for object occlusion. Xu et al. [12] proposes
the frame difference loss function, defined as the spatial distance between the
stylized frame and the original frame. The performance of the proposed loss
function is excellent. Wang et al. [13] proposes to regularize the temporal series
to better balance the spatial and temporal series characteristics, and deal with
the complex changes and violent motion in the video.

2.2 Post-processing Algorithms

Post-processing algorithms. Such algorithms use image algorithms to preprocess
the video, and then use post-processing techniques to rectify the output. Bonneel
et al. [14] proposes a post-processing algorithm that is independent of specific
image algorithms. This method takes the original video frame and the video
frame processed by the image algorithm as input, and solves the problem of
gradient domain optimization by training the model by minimizing the temporal
distortion error between frames. On this basis, Yao et al. [15] further improves
the effect by estimating optical flow occlusion by selecting key frames. However,
the above methods all have high limitations and cannot be applied to the field
of image generation, such as style transfer, image defogging, super-resolution.
In view of the above shortcomings, Lai et al. [16] regards the video temporal
consistency problem as a learnable task and proposes a deep neural network
framework. The algorithm takes the raw video and the processing result of the
image algorithm as input, and generates an output video with stable temporal.
Zhou et al. [17]regards the video temporal consistency problem as a denoising
problem and proposes a temporal denoising mask synthesis network (TDMS-
Net). It jointly predicts motion masks, optical flow, and refinement masks to
synthesize stable frames.
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In addition, Lei et al. [18] proposes a general framework that draws on the
idea of Deep Video Prior (DVP) to mine the temporal information contained in
the original videos. Although the algorithm can solve the flickering problem of
image denoising and super-resolution, it needs to train each test video separately
during testing, which cannot achieve the effect of practical application.

3 Methodology

Figure 1 shows the temporal consistency enhancement algorithm with temporal
stabilization module (TSM-Net), loss calculation module and optical flow con-
straint module. The input is the Image Package, which consists of four images
It−1, Ot−1, It and Pt, corresponding to the current time t, representing the input
frame and output frame at time t− 1, and the input frame and image algorithm
processing result at time t.

Fig. 1. The Framework of the Temporal Consistency Enhancement Algorithm

During training, the algorithm enhances the ability of temporal consistency
enhancement with optical flow constraint module and ensures the perceptual
similarity with loss calculation module. Since optical flow is not needed during
testing, the calculation amount of the process is greatly reduced. As a result, it
has a faster processing speed in practical applications and can achieve real-time
performance. This paper employs warp error and learned perceptual metric to
evaluate the quality of the output video. Experiments show that the proposed
algorithm achieves a good balance between enhancing temporal consistency and
perceptual similarity.

3.1 Temporal Stability Module

Temporal Stabilization Module is the core of the algorithm to extract features
and restore images. As shown in Fig. 2, it consists of network layers such as Con-
vlayer, Upsample-Layer, ConvGRU-Layer, and residual modules. Among them,
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⊕ represents the element-wise addition operation, c© represents the concat oper-
ation, and → represents the transfer direction of image features. The architecture
is divided into a contraction path and an expansion path. The left shrinking path
is used as an encoder to obtain contextual information. It extracts features layer
by layer through convolution operations. The symmetrical expansion path on
the right is used as a decoder to restore the image. As the rich temporal infor-
mation between the original video frames, the adjacent video frames It−1 and It
are input to the module. The features are extracted by downsampling and fused
with other features, which can help the decoder to output images related to the
timing of the previous moment. The purpose of inputting Ot−1 and Pt into this
module is to extract rich spatial detail features. Summing the output features
with Pt can fuse the semantic information of shallow and deep layers, making
the algorithm more robust.

Fig. 2. The Structure of TSM-Net

In order to avoid transmitting the low-level features to decoder and bringing
noise to the color space, the image is divided into two branches before the down-
sampling. As shown in Fig. 3, the two branches here do not set up two layers
of convolution for Input1 and Input2 separately, but use the same convolution
layer.

The decoder uses three deconvolution layers to restore the image, and the
kernel size is opposite to the corresponding encoder, which are 3 × 3, 3 × 3 and
7×7 respectively and the stride is 1. After extracted features by the convolutional
neural network, the size of the output normally becomes smaller. Deconvolution
layer can restore the image to its original size, enabling small to large resolution
mapping.

ConvGRU-Layer consists of ConvGRU and Upsample-Layer, that are con-
nected in series to capture the spatiotemporal correlation of video. The effective-
ness of this idea has been confirmed in the Matting [19] task. Different from this
design, this paper expands the single-channel serial network into a dual-channel
parallel network, and the input of each layer is multi-scale fusion features.
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Fig. 3. The Shared Parameters

Features are input into ConvGRU-Layer and deconvolutional layers for upsam-
pling, respectively, and then summed by pixel-wise.

3.2 Hybrid Loss Function

The hybrid loss includes spatial loss and temporal loss. The spatial loss is used to
supervise the network restoration and the detailed features of the video frames
processed by the image algorithm, and the temporal loss is used to reduce the
temporal difference between the video frames.

Spatial Loss. We compute the content similarity between Ot and Pt. The spatial
features of Ot and Pt are extracted by the pretrained VGG-19 classification
network, and then the content loss is calculated, which is defined as:

Lp =
T∑

t=2

N∑

i=1

‖ϕi(Ot) − ϕi(Pt)‖1 (1)

where ϕi(·) represents the feature vector extracted by the ith layer VGG-19
network, and N represents the number of VGG network layers, T represents the
total number of video sequence samples. Here we calculate the loss of the entire
video frame with L1 loss function. Since the first frame does not participate in
the calculation, the spatial loss calculation time is 2 to T.

Short-Term Temporal Loss. We compute L1 loss between Ot and O′
t−1 to

measure the warping error between the output frames:

Ls
t =

T∑

t=2

Mt→t−1 � ‖Ot − O′
t−1‖1 (2)

where O′
t−1 represents the frame warped by optical flow, Mt→t−1 represents

the optical flow confidence of each pixel, � represents element-wise operation
process. During the experiment, we select FlowNet2.0 to calculate the optical
flow. The optical flow only needs to be used once during training, while is not
required during testing.

Long-Term Temporal Loss. Although short-term loss can ensure the tempo-
ral stability between adjacent frames, it is slightly insufficient for long sequences



A Temporal Consistency Enhancement Algorithm 71

of video frames. An intuitive way to enhance long-term stability is to compute
the temporal loss between Ot with all other frames in the sequence, but it is
computationally expensive. Another method is to calculate the error between
Ot with the first frame as a long-term loss. Although this method can reduce
the amount of calculation, it causes a larger error because the interval is too
long. To this end, a new long-term loss is proposed, it is defined as:

Ll
t =

T∑

t=u

Mt→t−u � ‖Ot − O′
t−u‖1 (3)

where u represents the interval, T represents the total number of video sequence
samples. During training, s = 5, T = 25. The advantage is that the calculation
amount and the correction effect are well balanced.

Hybrid Loss. The hybrid loss combines the spatial loss and the temporal loss,
which is defined as:

L = λpLp + λs
tLs

t + λl
tLl

t (4)

where λp, λs
t , λl

t represent the weights corresponding to the spatial loss Lp, the
short-term temporal loss Ls

t and the long-term temporal loss Ll
t.

4 Experiments

4.1 Datasets

The dataset used for training is divided into the DAVIS-2017 dataset [20] and
the open dataset collected by Lai et al. DAVIS-2017 is a VOS dataset in the
field of instance segmentation with more video frame sequences multiple moving
objects and motion types. It includes 60 video clips for training and 30 video
clips for validation. There are 10731 frames of 150 videos in total, including
4209 frames of 60 videos in the training set and 2023 frames of 30 videos in the
validation set. However, the videos in the DAVIS dataset are usually short in
length, on average less than 3 s. To this end, Lai et al. collected 100 additional
high-quality videos from Video.net [21], of which 80 videos are used for training
and 20 videos are used for testing. We select the style transfer algorithm WCT
[22], the image enhancement algorithm [2]] and the image colorization algorithm
of Zhang et al. [23] and Bell et al. [24] to preprocess the dataset.

4.2 Model Training and Inference

In terms of dataset, the image size is set to 192 × 192; the length of the input
video clip is 25; the weights of the loss are 100, 100 and 10 respectively; the
video frame interval u is set to 5; the scale used to extract image features is set
to 4; the initial learning rate is 0.0001, which decays every 20 cycles with a decay
rate of 0.5; the minimum learning rate is 0.00001; the optimizer is Adam; the
batchsize is set to 2. One Tesla P100 GPU is used in training.
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4.3 Evaluation Metrics

This paper is to correct the flickering of pixels between frames and generate
a stable output video, while ensuring the perceptual similarity between each
output frame. To this end, the following two metrics are used to measure the
temporal stability and perceptual similarity of videos.

Temporal Stability. The temporal stability of the video is measured based on
the optical flow distortion error between two frames:

εwrap(Ot, O
′
t+1) =

1
∑W×H×C

i=1 M
(i)
t

W×H×C∑

i=1

M
(i)
t � ‖O(i)

t − O′(i)t+1‖1 (5)

where O′
t+1 represents the distorted frame obtained by FlowNet at time t + 1,

Ot represents the output frame at time t, Mt is an occlusion estimation, �
represents pixel product.

Ewrap(O) =
1

T − 1

T−1∑

t=1

εwrap(Ot, Ot+1) (6)

Equation 6 expresses the mean value of all distortion errors from the first
frame to the T-1 frame as the temporal error of entire video sequence.

Perceptual Similarity. The pretrained VGG network can extract image fea-
tures and be used as an effective loss computing network to supervise TSM-Net
to generate more realistic images. This performance has been verified in mul-
tiple vision tasks. On this basis, Zhang et al. [23] et al. proposes a perceptual
metric and introduced a new human perceptual similarity judgment dataset.
This indicator can effectively correspond to human perceptual judgment, and
has good performance in tasks such as super-resolution frame interpolation and
image deblurring. In this paper, this indicator is used to measure the perceptual
distance between the processed video P and the output video O. The equation
is expressed as:

Dperceptual(P,O) =
1

T − 1

T−1∑

t=2

δwrap(Ot, Pt) (7)

where δ(·) represents the calibration model LPIPS, similar to the algorithms
proposed by Lai, the algorithm proposed in this paper also excludes the first
frame when calculating the perceptual distance.

4.4 Experimental Results and Analysis

The temporal series correction network TSM-Net proposed in this paper is a
post-processing technology, which has nothing to do with the specific algorithm
used to preprocess the video frame sequence. In the training process, a variety of
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task algorithms are selected to generate the training set, including style transfer,
image dehazing, super-resolution, etc. In the model effect evaluation, only the
wave-style model in the style transfer algorithm WCT is selected to generate
the pre-processed video based on DAVIS-2017, and then the performance of the
model is tested as a test set. The total data set used for evaluation is 30 video
clips, 2023 frames. The final output video is obtained by inputting the above
video frames into TSM-Net.

100 models are saved during training. We calculate the corresponding Ewarp

and Dperceptual, and draw a scatter plot (as shown in Fig. 4). It shows that
the two indicators are in opposition. As the Ewarp decreases, the Dperceptual

increases. Videos with high perceptual similarity have obvious flickering problem,
so the balance of the two play an important role in the actual effect of the
model. According to Lai, it is found that: when r = λp\λt is greater than 0.1,
the corrected output video still has obvious pixel flickering; while r is less than
0.1, the influence of supervision of temporal loss is greater and the output video
becomes very blurry at this point. Therefore, if r is fixed at 0.1, it can balance
the two phenomena better, and this setting is also suitable for other tasks.

Fig. 4. Test Result of TSM-Net

The red dot in Fig. 4 corresponds to the model with the highest temporal
consistency, and Ewarp is 0.232 and Dperceptual is 0.977. The two green dots cor-
respond to models that combine temporal consistency and perceptual similarity.
These two models well balance the phenomenon of pixel flickering and video blur,
and are suitable for application. The red dots in Fig. 4 also correspond to the
models with the highest temporal consistency. Its Ewarp is 0.302 and Dperceptual

is 0.745. Comparing the results of TSM-Net and the algorithm proposed by Lai,
the temporal consistency is improved by 23.18%. The two green dots in Fig. 4
are compared with Fig. 5. The perceptual similarity of the model with better
comprehensive effect is in the range of 0.6 ∼ 0.7, while the Ewarp of TSM-Net
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Fig. 5. Test Result of the Algorithm Proposed by Lai et al.

is significantly lower than that of Lai, indicating that the perceived similarity
unchanged and the correction effect of TSM-Net is better than that of Lai.

Fig. 6. Comparison of Visualization

As shown in Fig. 6, each row has five pictures taken from the output frame
sequence in chronological order. From top to bottom, the original input video,
the preprocessed video, the output video of Lai’s algorithm and the output video
of TSM-Net are displayed in order. We can clearly see that the background of
the preprocessed video has obvious pixel flickering. Although there has been a
certain improvement in temporal consistency of the algorithm of Lai et al., the
correction effect of TSM-Net is even better. As shown in Table 1, the results of
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temporal consistency metrics are presented. The first two columns represent the
results of the preprocessed videos as controls. Compared with the preprocessed
video, the test results of the algorithm proposed by Lai have been improved
to a certain extent, but the effect is limited. The last two columns show the
test results of TSM-Net. Our algorithm performs the best for different image
processing tasks whether it is the DAVIS-2017 dataset or the videvo dataset
(Table 2).

Table 1. Comparision of State of Art Algorithm

Task Vp (10-2) Lai (10-2) Ours (10-2)

DAVIS Videvo DAVIS Videvo DAVIS Videvo

WCT/wave 0.660 0.577 0.302 0.211 0.232 0.143

WCT/feathers 0.780 0.698 0.335 0.250 0.243 0.171

WCT/sketch 0.612 0.540 0.240 0.188 0.176 0.127

WCT/candy 0.865 0.703 0.380 0.235 0.309 0.177

WCT/asheville 1.039 0.886 0.478 0.308 0.353 0.204

WCT/antimono 0.591 0.476 0.257 0.150 0.215 0.124

FastNeural/princess 1.162 1.100 0.472 0.429 0.363 0.282

FastNeural/udnie 0.429 0.325 0.187 0.110 0.157 0.085

DBL/expertA 0.222 0.176 0.117 0.096 0.108 0.076

DBL/expertB 0.162 0.122 0.103 0.072 0.097 0.057

Intrinsic/reflectance 0.357 1.183 0.083 0.075 0.077 0.058

Intrinsic/shading 0.392 0.793 0.081 0.052 0.074 0.044

CycleGAN/ukiyoe 0.314 0.271 0.178 0.132 0.152 0.099

CycleGAN/vangogh 0.438 0.397 0.228 0.185 0.188 0.123

Average 0.573 0.590 0.246 0.178 0.196 0.126

Table 2. Experimental effects of technologies

Technologies E warp Decrease

Shared weight 0.302 2.71% (parameter)

Hybrid loss 0.263 15.34%(E warp)

Dual-channel parallel 0.276 11.21%(E warp)

TSM-Net 0.232 25.30%(E warp)

4.5 Ablation Experiments

This section mainly introduces the effectiveness of the related technologies used
in TMS-Net. As shown in Table 1, the Ewarp of the algorithm proposed by Lai
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is 0.302, which is used as the control experiment result. In this paper, the Con-
vGRU network is introduced into the temporal stabilization module, which is
connected in series between the residual module and the decoder to enhance
its ability to obtain temporal information. When the Ewarp remains unchanged,
the parameter quantity is reduced by 9.9%, which verifies the effectiveness of
ConvGRU. The network model of ConvGRU is used as a control experiment.

The shared weight strategy adopted by the first two layers in the downsam-
pling effectively reduces the complexity of the network, and the Ewarp of the test
results can remain unchanged. It means that the shared weight does not affect
the temporal stability effect, and can also complete the feature extraction goal.
At the same time, it avoids the passing of shallow information to the decoder.

This paper proposes a new hybrid loss including spatial loss and temporal
loss. The spatial loss integrates the multi-scale features extracted by the VGG
network, which is divided into short-term temporal loss and long-term temporal
loss. The long-term temporal loss with a calculation time interval of u enhances
the stability of the network for long video clips, and the Ewarp of the test results
is reduced by 15.34%, which verifies the effectiveness of the hybrid loss.

The ConvGRU network is connected in each Upsampling-Layer, and the
single-channel network is expanded into a dual-channel parallel network. Then
the output of the deconvolution layer and the output of the ConvGRU network
layer are fused. The Ewarp of the test results is reduced by 11.21%, which verifies
the effectiveness for temporal stability enhancement.

Applying all the above techniques to TSM-Net, the Ewarp is 0.2318, which
is 25.30% lower than the algorithm proposed by Lai. It proves the positive effect
of various techniques on enhancing temporal consistency.

5 Conclusion

In this paper, we propose a temporal consistency enhancement algorithm, which
can solve the problem of pixel flicker. Since the algorithm is blind to the specific
image algorithm, it is suitable for style transfer, defogging, and super-resolution
while ensuring high processing speed. The network adopts a network architecture
based on optical flow constraints, which is divided into temporal stabilization
module TSM-Net, loss calculation module and optical flow constraint module.
The algorithm only calculates the optical flow during training, and does not
need optical flow during testing, effectively ensuring that the algorithm can be
implemented for real-time requirements. Compared with the baseline model, the
temporal stabilization module and hybrid loss are innovative. On the one hand,
TSM-Net uses the ConvGRU layer-by-layer in the decoder with dual-channel
parallel structure. On the other hand, the long-term temporal loss calculates the
temporal difference between video frames with interval u. After experimental
verification, TSM-Net has greatly improved the ability to enhance temporal
consistency, and can balance the perceptual similarity well. Comparing with
state-of-the-art methods, our algorithm achieves the best results.
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