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Abstract. A main challenge for training convolutional neural net-
works (CNNs) is improving the robustness against adversarial examples,
which are images with added the artificial perturbations to induce mis-
classification in a CNNs. This challenge can be solved only by adversar-
ial training, which uses adversarial examples rather than natural images
for CNN training. Since its introduction, adversarial training has been
continuously refined from various points of view. Some methods focus
on constraining CNN outputs between adversarial examples and natural
images, resembling knowledge distillation training. Knowledge distilla-
tion was originally intended to constrain the outputs of teacher–student
CNNs to promote generalization of the student CNN. However, recent
methods for knowledge distillation constrain intermediate representa-
tions rather than outputs to improve performance for natural images
because it directly works well to preserve intraclass cohesiveness. To
further investigate adversarial training using recent knowledge distilla-
tion methodology (i.e., constraining intermediate representations), we
attempted to evaluate this method and compared it with conventional
ones. We first visualized intermediate representations and experimentally
found that cohesiveness is essential to properly classify not only natural
images but also adversarial examples. Then, we devised knowledge dis-
tillation using intermediate representations for adversarial training and
demonstrated its improved accuracy compared with output constraining
for classifying both natural images and adversarial examples.

Keywords: Convolutional neural network · Adversarial training ·
Knowledge distillation · Intermediate representation · Manifold
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1 Introduction

Convolutional neural networks (CNNs) play a central role in computer vision
for tasks such as an image classification [4,6,11]. However, recent studies have
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demonstrated that adversarial perturbations, which are artificially made to
induce misclassification in a CNN, can cause a drastic decrease in the classi-
fication accuracy [16]. In general, humans can naturally and correctly classify
adversarial examples, which are images with adversarial perturbations. Since
CNNs are originally inspired by human visual systems [4], they should be able
to treat adversarial examples in the same way as natural images, like humans.
Thus, a main challenge in training CNNs is improving their robustness against
adversarial examples, as humans naturally do.

To correctly classify adversarial examples, M ↪adry et al. [13] introduced adver-
sarial training, which uses adversarial examples instead of natural images for
CNN training (Fig. 1(a)). Athalye et al. [1] found that only adversarial train-
ing improves classification robustness for adversarial examples, although diverse
methods have been explored. Therefore, subsequent studies have been focused
on improving adversarial training [9,10,15,17]. For instance, various methods
improve the robustness by constraining the CNN output. For example, ALP [10]
and TRADES [17] force the CNN output to be similar for adversarial examples
and natural images during adversarial training (Fig. 1(b)). Hence, the corre-
sponding CNNs provide similar outputs regardless of adversarial perturbation.
More recent methods such as Smooth Logits [2] or LBGAT [3] employ knowl-
edge distillation, whose constraints bring the outputs of a student (adversarial-
trained) CNN closer to those of a teacher (pretrained) CNN (Fig. 1(c)). Knowl-
edge distillation is effective for adversarial training because it enables the student
CNN to imitate the decision boundary of the teacher CNN, which is sufficiently
generalized after pretraining.

Remarkably, knowledge distillation using intermediate representations rather
than outputs in CNNs can further improve the classification performance for
usual natural image classification [7,14]. This is because intermediate represen-
tations easily determine the decision boundary between classes and preserve
intraclass cohesiveness.

As the adversarial training methods in [2,3,10,17] focus only on outputs,
the CNNs may not properly reflect intraclass cohesiveness. In contrast, if a
CNN with adversarial training can use intermediate representations to simi-
larly classify natural images and adversarial examples, its performance may
be improved (Fig. 1(d)). Thus, intermediate representations of CNNs during
adversarial training should be further explored. Accordingly, we analyzed CNNs
trained with adversarial training by 1) visualizing the intermediate representa-
tions and 2) resembling knowledge distillation in intermediate representations to
improve the performance of adversarial training.

The contributions of this study can be summarized as follows:

– We confirm phenomena observed in intermediate representations of CNNs
trained with adversarial training.

– We visualized intermediate representations and experimentally verify that
cohesiveness is essential to correctly classify not only natural images but also
adversarial examples.
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– We introduce knowledge distillation using intermediate representations and
demonstrate that this method is more effective than knowledge distillation at
the outputs for improving the classification accuracy of both natural images
and adversarial examples.

2 Experimental Analysis in CNNs with Adversarial
Training

We begin by formulating adversarial training and investigate phenomena
observed in the corresponding CNNs. First, we explain adversarial training and
then explain phenomena observed in CNNs based on the ResNet-18 architec-
ture [6] (Fig. 2).

Fig. 1. (a) – (c): Conventional methods for comparison. (d): Our proposed method
based on adversarial training.

2.1 Adversarial Training

CNN training using natural images can be formulated as follows:

min
θ

Ep(x,y) [Lclass(x, y;θ)] , (1)

where (x, y) is the pair of input image and its true label and Lclass(x, y;θ) is
the classification loss given CNN parameters θ and data (x, y). Cross-entropy is
commonly used as the classification loss. Equation (1) can be interpreted as an
optimization problem to search parameters θ that minimize classification loss
Lclass.
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Meanwhile, adversarial training is formulated as follows:

min
θ

Ep(x,y)

[
max

δ :||δ ||q≤ε
(Lclass(x + δ, y;θ))

]
, (2)

where δ is an adversarial perturbation bounded by an �q-norm ball. Equation (2)
solves the minimization in Eq. (1) after solving the maximization problem for
loss function Lclass for x given θ, x, and y. Min–max optimization is repeated
to obtain parameter θ that is robust to adversarial examples. As the maximiza-
tion problem in Eq. (2) cannot be solved explicitly, it is often approximated by
applying a strong attack method called projected gradient descent (PGD) [13].

2.2 Visualization of Intermediate Representations in CNNs

We also evaluate intermediate representations between vanilla-CNN trained only
with natural images and adv-CNN with conventional adversarial training [13].
Specifically, we visualize and compare intermediate representations of the CNNs
by using t-SNE [12] for dimensionality reduction of intermediate representations.
We use ResNet-18 [6] (Fig. 2) as the CNN and PGD for adversarial attack [13].
PGD performs strong adversarial attacks by repeatedly generating adversarial
perturbations using the fast-gradient sign method [5]. In this study, we used 10
and 20 iterations for the adversarial attack during training and testing, respec-
tively, and the CIFAR-10 as the image classification dataset.

Fig. 2. ResNet-18 architecture (L is described in Eq. (3)).

Fig. 3. Visualization of intermediate representations in vanilla-CNN (former two row)
and adv-CNN (latter two row) for natural images and adversarial examples.
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The former two row of Fig. 3 shows intermediate representations in vanilla-
CNN after dimensionality reduction. The upper-left graph of Fig. 3 shows the
intermediate representations for natural images, while the upper-right graph
shows the representations for adversarial examples. Vanilla-CNN can suitably
gather intermediate representations for each class in natural images. The clus-
ters of intermediate representations can contribute to higher classification accu-
racy for natural images. When the natural images are affected by adversarial
perturbations, the clusters are dispersed in the feature space. Hence, adversar-
ial examples degrade intraclass cohesiveness and cause a drastic decrease in the
classification accuracy.

The latter two row of Fig. 3 shows intermediate representations in adv-CNN.
As shown in the figure, using adv-CNN, similar intermediate representations
are obtained for adversarial examples and natural images. However, adv-CNN
provides inferior intermediate representations for natural images compared with
vanilla-CNN (lower-left graph of Fig. 3) In fact, adv-CNN provides lower accu-
racy than vanilla-CNN for natural images because it cannot establish clear deci-
sion boundaries to classify such images.

Fig. 4. Diagram of proposed method.

3 Proposed Method: Adversarial Training
with Knowledge Distillation

As we mentioned above, vanilla-CNN should have acquired effective representa-
tions for classifying natural images. Therefore, in this section, we propose a novel
method that adversarially trains the CNN while constraining its representation
to preserving the one of vanilla-CNN for natural images.

3.1 Knowledge Distillation

Knowledge distillation [8] shares the representations and constrains the output of
a student model from that of a teacher model. Hense, it improve the performance
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of the student model (training target). Among a lot of knowledge distillation
method, we employed a method using intermediate constraint loss, which aims
to bring intermediate representation of the student model closer to those in the
teacher model [7,14].

3.2 Adversarial Training with Knowledge Distillation

We propose an adversarial training method with knowledge distillation that
employs a CNN trained with natural images as the teacher model. Figure 4
shows a diagram of the proposed method. The student model is the target of
adversarial training, and the teacher vanilla-CNN accurately classifies natural
images. We aim to make the intermediate representations of the training target
similar to those of the teacher vanilla-CNN.

Equation (3) shows the method formulation as an optimization problem.

min
θ

Ep(x ,y)

[
max

δ :||δ ||q≤ε

(
Lclass(x + δ, y; θ) + α · Linter(f

L
student(x + δ), fL

teacher(x))
)]

(3)
The loss in Eq. (3) consists of two functions, classification loss Lclass and inter-
mediate constraint loss Linter. In addition, fL is the intermediate representations
of layer L and α is a hyperparameter that determines the contribution of Linter

to training. Moreover, Lclass improves the classification accuracy for adversarial
examples x + δ, and it is the same loss as in conventional adversarial train-
ing [13], while loss Linter makes the intermediate representations of the student
model (fL

target(x + δ)) similar to those of vanilla-CNN (fL
teacher(x)).

Table 1. Classification accuracy of evaluated CNNs. The value in boldface indicates the
best result, and the underlined value indicates the second best result on each column.

Model Alpha Accuracy
(natural)

Accuracy
(adv)

vanilla-CNN - 0.949 0.0

adv-CNN - 0.847 0.483

outKD-CNN 0.01 0.849 0.486

outKD-CNN 0.1 0.855 0.500

outKD-CNN 0.5 0.857 0.502

interKD-CNN 1 0.850 0.493

interKD-CNN 50 0.870 0.522

interKD-CNN 100 0.866 0.521
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Fig. 5. Visualization of intermediate representations in outKD-CNN (former two row)
and interKD-CNN (latter two row) for natural images and adversarial examples.

4 Experimental Evaluation

We compared the proposed method with output constraining [2,3] and evaluated
the constraint effectiveness.

4.1 Experimental Setup

We conducted experiments under the same conditions as in the experimental
analysis reported in Sect. 2. We used the mean squared error as intermedi-
ate constraint loss Linter. Let us denote the CNN trained using the proposed
method (Eq. (3), Fig. 4) for constrained layer L = 20 (i.e., using outputs as
constraints) as outKD-CNN and the CNN with constrained layer L < 20 (i.e.,
using intermediate representations as constraints) as interKD-CNN.

4.2 Classification Accuracy

Table 1 lists the classification accuracy of vanilla-CNN trained only with natural
images, adv-CNN trained with conventional adversarial training [13], outKD-
CNN [2,3], and interKD-CNN. We evaluated weight α ∈ {1, 50, 100} for outKD-
CNN and α ∈ {0.01, 0.1, 0.5} for interKD-CNN. The CNNs with adversarial
training and knowledge distillation (outKD-CNN and interKD-CNN) tend to
achieve higher accuracy than adv-CNN for natural images and adversarial exam-
ples. InterKD-CNN (α = 50, L = 17) exhibits the highest accuracy for adversar-
ial examples and the second highest accuracy for natural images among the eval-
uated CNNs, even outperforming outKD-CNN. Thus, constraining intermediate
representations seems more effective for improving the classification accuracy
than constraining outputs.

4.3 Visualization of Intermediate Representations

To evaluate the representations obtained from training with the proposed
method, we evaluated the CNN trained using proposed method in terms of
intermediate representations, as in Sect. 2. Figure 5 (former two row) and Fig. 5
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(latter two row) show intermediate representations obtained from interKD-
CNN (α = 50, L = 17) and outKD-CNN (α = 0.5, L = 20), respectively. As
shown in Fig. 5, interKD-CNN obviously has cohesive intermediate representa-
tions compared with outKD-CNN, as we expected. Hence, knowledge distillation
in interKD-CNN effectively worked as an anchor to preserve the representations
of each class for natural images provided by vanilla-CNN and promotes the clas-
sification accuracy.

5 Conclusions

After evaluating intermediate representations in CNNs, we found that train-
ing using only natural images provides effective intermediate representations in
terms of classifying natural images, while conventional adversarial training does
not. This indicates that intraclass cohesiveness is important to correctly classify
natural images. Accordingly, we propose a method involving knowledge distilla-
tion using intermediate representations from a teacher CNN trained only using
natural images to a student CNN with adversarial training. This method aims
to preserve representations for natural images of the teacher, achieving a higher
accuracy than CNNs with conventional adversarial training.

As future works, we will further explore an effective training method in pre-
serving representation for adversarial examples and achieving higher classifica-
tion performance. Also, in this study, we used the mean squared error as the
intermediate constraint loss to achieve similar intermediate representations for
natural images and adversarial examples, but this loss may be inappropriate. In
future work, we will explore more appropriate loss functions for constraining by
considering the characteristics of intermediate representations (e.g., manifolds).
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