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Abstract. In this paper, we present an approach how reject options are
integrated into Classification-by-Component networks. Classification-
by-Component networks are relatively accurate classifiers that offer a
fair interpretability. Yet, their performance can be increased by allow-
ing rejection of an uncertain classification. We will modify the origi-
nal Classification-by-Component model so that the adaptive parameters
adapt, taking reject options into account.
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1 Introduction

Classification by Components (CbC) networks [1] are robust interpretable clas-
sifiers with high performance. Nonetheless, reject options [2] can increase the
performance of CbC, when a wrong classification costs considerably. Therefore,
in this paper, we investigate the details of reject options for CbC networks.
There has been much effort gone into modifying reject options since the original
work of Chow. However, most of the papers in the field are not directly relat-
able or applicable to CbC networks. Here, we mention a few of such work. A
paper by Musavishavazi et al. [3] has a comparable mathematical formulation
to this paper. Nonetheless, it cannot be immediately used for CbC, because of
the contrastive CbC objective function. In another paper, Y. Geifman and R.
EL-Yaniv [4] designed a selective classifier, that is more suitable for pre-trained
deep neural networks. A similar approach is RISAN [5], that has more similar
reject-classification formulation to our work in this paper.

Reject options can be introduced for classification systems, in which a wrong
decision can lead to catastrophic outcomes [2,6]. In case a classifier is not sure
about the class of an input, it can refuse labelling it at a lower cost. Originally,
Chow [6] defined reject options and the optimal decision strategy for an optimum
system [2] were determined. The labels, for each data, is crisp and the conditional
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probabilities are estimated based on a Bayesian estimator. Note that Chow’s
reject option is originally applied to a previously trained model. Later, variations
of reject options emerged [7,8] as the proposed classifiers intended to train the
adaptable parameters, while reject options are taken into account. We would like
to adopt this approach, in this paper, such that we use Chow’s optimal threshold
as our threshold. However, the model that estimates conditional probabilities for
prediction will be slightly different and, consequently, the prediction probabilities
will be different. Also, the Error-Reject curve, as described by Chow [2], will be
different for CbC with reject option. Villmann et al. [9] introduced a general loss
function that reaches Chow’s optimal threshold. The loss function, which is a
weighted sum of error and rejection rates, is the inspiration of this paper.

The paper is structured as follows: In Sect. 2, CbC networks are introduced.
Section 3 provides a background about reject options. In Sect. 4, reject options
are investigated for a classifier, with contrastive loss. Section5, contains the
gradients, with respect to adaptable parameters, for the sake of comparison
with the original CbC. The experiments and simulations are in Sect. 6. Finally,
we conclude the paper in Sect. 7.

2 The Original CbC

A brief description of CbC model [1] is given in this section. We define compo-
nents as a set K = {Ky,...,K;} existing in data space X C R™. Also, a set
C = {1,2,...,c} of data classes is defined. Detection probability function d; :
X — [0,1] determines the probability to detect the component K; in data point
%. Hence, d;(x) = 0 means the full absence of component K; in % and d;(x) = 1
means the full presence. For a data point %, we define the detection vector

d(z) = [d1(%), ..., dp(x)]" (1)

To study the effect of components, the reasoning quantity r;; € (0,1) is
introduced as the probability that the component K; is important and must be
detected to support the class hypothesis j according to Biederman’s cognitive
model [10]. Additionally, negative reasoning is considered in CbC by a reasoning
quantity r;; € (0,1), taken as the probability that the component K; is impor-
tant and must not be detected to support the class hypothesis j. Finally, an
indefinite reasoning is introduced: If the presence of the component KC; reveals
no information about the occurrence of class j, then component K; has a non-
vanishing neutral (indefinite) reasoning over class j, i.e. r% > 0 is interpreted as
the probability that component /C; is not important for class hypothesis j. We
assume that the three quantities satisfy the restriction r;; +r;+ r?j =1.

Given a classification problem, i.e. a training set T" = {(x,y)}j_1, % €
X C R™,y, € C, we consider a set of trainable components C; € K together
with adjustable reasoning parameters r;;,ri_j,rgj. According to [1], CbC is to
minimize the contrastive loss

1(%,y) = p(maz{p;(®)]j # y,j € C} — py(x)) (2)



588 M. M. Bakhtiari and T. Villmann
where (x,y) € T and ¢ : [-1,1] — R is a monotonically increasing function. The

class hypothesis possibilities p;(z) are defined as
+
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In original CbC, optimal components are found using a Convolutional Neural

Network (CNN) feature extractor [11] and the reasoning parameters are found,
using Stochastic Gradient Descent (SGD).

3 Reject Options for a Probabilistic Classifier

In this section, we introduce the original reject options [2], that is applied to a
probabilistic classifier, after training phase. Then, we introduce an empirical loss
function, such that its optimal threshold is the same as the optimal threshold of
the original reject options. Optimizing the empirical loss function allows us to
train CbC networks, while reject options are taken into account.

The original reject options is as follows. We assume training set T =
{(#p,yp)}7_,, as defined in previous section. A probabilistic classifier p;(x) is
trained to classify a new input xz. Note that

Zpi(ﬂ) =1Vx (5)

Chow [2] defined the decision-rejection rule, given a threshold ¢: x is rejected
to be classified if
m(zx) <1—t (6)

where m(x) = maz;{p;(x)}. Otherwise, z is accepted to be classified. The
predicted class of the data x is

C(x) = argmaz;{p;(x)} (7)

Given c¢,, ¢, and ¢, are costs of rejecting a data, miss-classifying a data, and
correctly classifying a data, respectively, Chow [2] derived the optimal threshold
to be t* = £=="¢. Note that the order ¢, < ¢, < c, is an important assumption.

Here, we assume ¢c = 0 to have the threshold

c
th =" 8
- ®)
Now, we define the general empirical loss function for a probabilistic classifier
with reject option. Inspired by [9], the general loss function, to be optimised, is
defined as

L(t) = co - E(t) + ¢, - R(%) (9)
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where E(t) and R(t) are error rate and reject rate, respectively and they are
both functions of the threshold ¢. It can be proven that, given the decisions are
Bayesian optimal, the optimal threshold of (9) is (8). A proof is provided in
appendix A.

The empirical version of (9), that is more suitable for learning, is defined as
below.

L(t) = % S e H(m@) +t—1)- (1—6(Cx),))
(»z,y)eT
—|—L- Z ¢ -H(—m((x) —t+1) (10)
|T| (%,y)€T

0(i,7), for i,j € C, is the Kronecker delta function and H(z), for = € R,
is the Heaviside function. Note that the argument of Heaviside functions, in
(10), are taken from inequality (6). Therefore, H (m (x) +t — 1) is equal to one,
when data is accepted to be classified. Also, 1—4 (C(x),y) is a miss-classification
indicator. If the prediction and the true label matched for a data point, then
1 -6 (C(x),y) would be 0, and 1 otherwise. Similar approach is taken by Shah
and Manwani [12], when combining classification and rejection.

Finally, we plug the optimal threshold (8) into (10) to have

L:ﬁ. Z ce  Himx)+t*—1)- (1-6(C(»n),y))
(x,y)eT
+i. Z er-H(—m(x) —t"+1) (11)
|T| (x,9)€T

4 Reject Options for CbC Networks

We still need to modify (11), so the loss function of CbC is involved. CbC uses
the contrastive loss function

1(2,y) = ¢ (Ap(%,y)) (12)
where
Ap(2,y) = ps(%,y) — py (%) (13)
and
ps(%,y) = maz{p; (r) |j # vy, j € C} (14)

We would like to define function ¢ more accurately, so we can use it as
miss-classification indication 1 —0 (C(x),y), that appears in (11). We choose the
Sigmoid function as below.

1

() = a(z) = T+ exp(—Z)
A

(15)
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Now, the term 1 — 6(C(%,y), in (11), can be substituted by ¢x(Ap(x,y)).
Note that the function ¢y (Ap(z,y)) goes to zero, given a confident correct clas-
sification and it becomes 1, when we have miss-classified an input. In short, the
Sigmoid function serves as a smooth indicator function, when A goes to 0.

Now, we approximate the Heaviside function, appearing in (11), with another
Sigmoid function, so we can derive required gradients later.

1

“Trew(-D) 16)

In the above function, we achieve better approximation of Heaviside function
as 7y goes to 0.

The new loss function for CbC, with reject options, is achieved when we
integrate the modifications (15) and (16) into (11) as follows.

L:%. D> cer Hy(m(2) +t* —1) - 6a(Ap(=,y))
er. Z CT.H,Y(fm(ﬂ)*t*Jrl) (17)

It can be shown that
H,(-z)=1-H,(x) (18)

Therefore, we can further manipulate the loss function to have

S H (- 1) (mmp(x,y))—?) (19)

(x,y)€T €

Recalling (8), we substitute &= with ¢* in the above equation. Also, the mul-
tiplier ‘C:;i‘ in the above equatlon does not change the optimum of the function

and, hence, it is dropped as well. So, we get the final loss for CbC, when reject
options are taken into account.

L= %" H,(m®)+1t" —1)-(6x(4p(xy)) — ") (20)

(x,y)ET

The loss function (20) has the term ¢ (Ap(x,y)) —t*, that is a shifted version
(by a constant t*) of CbC loss (12). However, reject option plays role as a multi-
plier this time, with the term H, (m (x) + t* — 1). The loss function (20) is used
to train the CbC network, using SGD. Since the optimization method of interest
is stochastic gradient descent, we further define the local loss L = L(x,y), asso-
ciated with training pair (x,y), to be a single term of the summation (20). In
other words L(z,y) = H, (m (z) +t* — 1) - (¢r(Ap(x,y)) — t*). Assuming that
the arguments of the local loss L(x,%y) are known, we may drop the arguments
and simply denote the local loss as L.
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5 Derivation and Comparison of Gradients

In this section, we first mention the gradients of original CbC, with respect
to the reasoning parameters. Then, the gradients of CbC, with reject option,
with respect to the same parameters are included. We would like to mark the
differences between the adaptation rules of the methods.

For CbC, we take ¢ to be (15). Then, the gradients of CbC loss function (12)
, with respect to general adaptive parameter r, is as below.

iy, 220D (1)
with
Wy X) = 5o = 3 6r (Ap () - (1= 62 (Ap(x9) (22
0Ap(z,y) A
The partial derivative in (21) is
0Ap(%,y) _ Ips(y)  OApy(%) (23)

or or or

Based on the above gradients, in each learning step with training pair (x,y),
a parameter is updated to raise the probability p,(x) and lower the probability
ps(%,y).

Now, the gradients of a local loss of the main loss function (20) for CbC,
with reject option, are found.

oL )
with
— l . _ 2z %)) - 7 g L am(ﬂ) 6¢>\(X7 y)
V=3 (1= Hy(x,t%) - (9a(n,y) =) - —5 = + =5 (25)

Also, we have made the following shorthand notations in (24) and (25) .
HL (5, %) = H (m () + £ — 1) (26)

and

dr(%,y) = o (Ap(%,y)) (27)

Note that the term 8(%7(:”’) = %, appearing in (25), is basically the original
CbC gradient (21).
In (24), if Hy(%,t*) ~ 1, meaning data x is accepted to be classified, then the
gradient (24) becomes
OL 9l _ 96x(xy)
or or or
which is simply the gradient of original CbC that is mentioned in (21).

(28)
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If H,(%,t*) ~ 0, then the gradient (24) obviously vanishes. This means that
we prefer to keep uncertain data points in rejection area to keep the overall risk
low. However, if 0 <« H,(%,t*) < 1, that happens when x is close to rejection
border (as defined by Chow [2]), then the term ¢x(x,y) — t*, in (25), plays an
important role. The term ¢ (%, y) —t* basically makes a certain balance between
error rate and rejection rate, since the sign of the coefficient of 8?—7@ in (25)
depends on the term. We suppose the case that x is correctly classified, which

means m(x) = py(x). Then, argﬁx) = apgiy) and the gradient (24) becomes

oL Opy(x)  Oda(x
o _ HV(Y/Z, )-8 pgﬁ ) + (b)\(;rvy) (29)
where 8 = % (1= Hy(%,t%)) - (da(%,y) — t*).

Since the term %T(ﬂ) exists in the derivative %%7(:2711) (23), with a negative

coeflicient, the magnitude of coefficient of apgiﬁ becomes even larger in (29), if
oa(%,y) —t* < 0. This happens when ¢* is relatively large, meaning that cost
of misclassification is low or comparable to cost of rejection. In this case the
algorithm is less cautious and alter the parameters with larger rates. On the
other hand, if ¢* is relatively small (cost of misclassification is higher than cost
of rejection), then we potentially have ¢y (%,y) — t* > 0 and, consequently, the
coefficient of 8”5’77@ in (29) becomes small, since we fear misclassifying a correctly
classified input.

This section is summarized as follows for gradients of CbC, with reject
options. In the region that data is accepted to be classified, the method roughly
applies the original CbC rules to data points. Also, if a data is firmly rejected, it
stays in rejection region with a high probability. Close to the border of rejection
and accepting, the method carefully looks for the best performance, based on
the term ¢y (%, y) — t*, that shows the compromise between error and rejection.

6 Experiments and Simulations

For experiments, the "Two Moons” data set (TMDS) serves to visualize the
difference between components of the original CbC and CbC with reject options.
Further, the MNIST data set is considered that has been used in the original
CbC [1] for comparison.

Particularly, a sample of TMDS with added Gaussian noise of standard devi-
ation 0.1, is considered. We suppose 4 components wy, ¢t € {1,...,4} in the
2d-data space initialized as random data points from the training set. The
detection functions, for a component ¢, is defined as the Gaussian d;(x) =
exp(—2 - |[x — w¢||?). The parameter A, in (15), was set to 0.01. In all exper-
iments of this paper, the training data is split into training and test data and
a 6-fold cross validation, with 3 x 103 learning steps, is used. After applying
original CbC, we report the accuracy (95 + 0.05)% for the test data. The learnt
components, as well as the corresponding reasoning parameters, are depicted in
the first column of Fig. 1.
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Fig. 1. Visualization of Two Moons. First, second, and third columns, are for normal
CbC, CbC with reject option (¢t* = 0.49), and CbC with reject option (¢* = 0.495),
respectively. In each row, the top image shows the location of learnt components in red.
The black points represent the misclassified data points. Blue points represent rejected
samples. The second and third images, from top, depicts reasoning parameters of Purple
and Yellow classes, respectively. The last row shows a gray-scale map for reading values.
(Color figure online)

Then, we applied CbC, with reject options, to the same problem. The ini-
tialization was same as the original CbC. Theoretically, v is required to be close
to 0. In practice, however, a small v makes a large fraction %, that appears
in the coeflicient of the gradient (24). This reduces the effect of the gradient
845%7(:“3’), in (24), that is responsible for making the predictions accurate. There-
fore, we need to slowly reduce v during learning. The simulations showed that,
for both TMDS and MNIST problems, v = % (I is the learning step) makes
a suitable starting value and the final value will be desirably small. We report
a higher accuracy of (99.9 £ 0.01)% and the rejection rate (23 £ 0.02)%, when
t* = Z—: = 0.49. The learnt components, as well as the corresponding reasoning
parameters, are depicted in the second column of Fig.1. A careful balancing
between reject and misclassification costs is needed. Therefore, we increased
reject cost to have t* = i—’e‘ = 0.495. The accuracy is (97 & 0.02)%, while the
rejection rate is (21 £ 0.04)%. See the third column of Fig. 1.

Original CbC was applied to MNIST [1], without feature extraction to achieve
89.5% accuracy. We chose A = 0.01 (15) and v = }, for ¢,. 10 prototypes are
initialized, at the center of each class, in the feature space. The data points, as
well as the prototypes, are kept normalized at all time. The detection function
is d¢ (%) = max({x,w) + b,0), where (.,.) indicates the inner product and b is
a margin parameter. We have taken b = 0.3 by trial and error. The error and
rejection rate for t* = &= = 0.9 are (23 £0.1)% and (0.1 & 0.11)%, respectively.

For t* = 2—: = 0.89, we have a careful balance between the error and rejection
costs. The error and rejection rates are (19+£0.09)% and (36+£0.1)% respectively.
For case t* = 0.89, we have depicted the learnt components and the reasoning
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parameters in Fig. 2. Then, we reduced the number of prototypes to 9 and ini-
tiated the prototypes at the center of the first 9 classes (class 0 to 8). The rest
of the setting is the same as the case with 10 prototypes. The error and rejec-
tion rate for t* = £ = 0.9 are (31 £0.1)% and (0.1 & 0.1)%, respectively. For

t* = z—z = 0.88, the error and rejection rates considerably changed to (0.2+0.1)%
and (69 £ 0.09)% respectively. This relatively high rejection rate suggests that
using feature extractors [1] for components might be necessary, when there are
9 or less components.

r r+
r- r-
I‘O IO
abcdefghlj abcdefghij abcdefghij abcdefghij abcdefghij
5 6 7 8 9
r+
F F -
o o ]
abcdefghij abcdefghij abcdefghij abcdefghij abcdefghij

r+ r+
r -
n n

Fig. 2. Visualization of CbC, with reject options (t* = CT = 0.89) and 10 compo-
nents, applied to MNIST. The top two rows show the components denoted by letters
{a,b,c,d,e, f,g,h,i,7}. The bottom two rows show the reasoning parameters for each
class {0,1,2,3,4,5,6,7,8,9}. Each class is denoted by its digit.

7 Conclusion

In this paper, we integrated reject options in CbC networks. The new method
keeps Chow’s optimal threshold, but let the system know about reject options for
better adaptation. We have improved the performance of CbC in a scenario that

false classification is costlier than rejection. The method was examined using a
toy and MNIST data sets.

A Proof of Optimality of Chow’s Threshold

Here , we prove t = ¢= is the optimal solution for the function

L(z,y,t) = c. - E(t) + ¢ - R(t)
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The derivative of the above function, with respect to ¢, is
8E(t) OR(t)

o T o
0 B OE(t) OR(t) OR(t)
art ) =cegpay T T Ty

Section IV of [2] contains a relation between E(¢) and R(T), given a Bayes
optimal decision system, in form of Riemann-Stieltjes integral. The relation is

0
at (ﬂ yat) = Ce
or

(30)

t
E(t) = —/ T-dR(T)
t=0
and the differential form is

OE(t)

\./

=~

OR(t)
We use the above result in (30) to have the following.
0 OR(t) OR(t)
ot L(z,y,t) = Ce.t.T—i_CT'T
The above derivative it set to 0.
OR(t
78£ ) (=Ce-t+e)=0

Then, we solve for ¢t and the result is t* = <=,

Ce
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