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Abstract. Detecting adversarial examples and rejecting to input them
into a CNN classifier is a crucial defense method to prevent the CNN
being fooled by the adversarial examples. Considering that attackers
usually utilize down-sampling to match the input size of CNN and the
detection methods are commonly evaluated on down-sampled images,
we study how the detectability of adversarial examples is affected by
the interpolation algorithm if the legitimate image is down-sampled
prior to be attacked. Since the down-sampling changes the relationships
among neighboring pixels, the steganalysis-based detectors relying on
the neighborhood dependencies are probably affected sharply. Experi-
mental results on ImageNet verify that the detection accuracy varies
among different interpolation kernels dramatically (the largest difference
of accuracy is up to about 9%), and such novel phenomena appear valid
universally across the tested CNN models and attack algorithms for the
steganalysis-based detection method. Our work is of interest to both
attackers and defenders for the purpose of benchmarking the attack algo-
rithm and detection method respectively.
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1 Introduction

Adversarial examples have attracted attentions to the security of convolution
neural network (CNN) classifiers. Adversarial attacks, such as FGSM [1], BIM
[2], DeepFool [3], BP [4], C&W [5], craft imperceptive perturbations on a legiti-
mate image carefully to generate the adversarial image, and effectively force the
CNN to misclassify the original ground truth label. This form of attack throws
out some security threats in the CNN-based applications, especially in the secu-
rity sensitive field, for instance, self-driving cars [6], robots [7]. How to harden
CNNs against the adversarial attacks [8–13] is a hot topic.
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Fig. 1. The flow chart of a detector defense against the adversarial image. The detector
defense filters out the adversarial image, and only feeds the clean image into the CNN
for classification. In this work, we focus on how the pre-processing down-sampling in
the process of generating an adversarial image (dashed box) affects the detectability
of the detector defense.

Besides adversarial training [8,9,28], detecting the adversarial images and
filtering out them before inputting them into the CNN is another important
defense approach as illustrated in Fig. 1. Input transformation and steganalysis-
based method are two typical detection algorithms. Since adversarial perturba-
tions are not robust against image transformations, input transformation meth-
ods first feed a questioned image and its elaborately manipulated version into
the CNN, and then detect the questioned image as adversarial if the CNN out-
puts are inconsistent before and after the transformation, such as the denoising
filter composed by scalar quantization and smoothing spatial filter [14], feature
squeezing (FS for short) [15], image quilting [16], image resampling [31]. As indi-
cated by Goodfellow et al. [1] that the adversarial attack can be treated as a
sort of accidental steganography, some steganalysis-based methods are proposed
[17–21].

In this work, we study how the pre-processing down-sampling affects the
detectability of adversarial images. Unlike the post-processing re-sampling used
in the input transformation detection [31], the role of the down-sampling in our
work is a pre-processing operation. We consider it as an important topic for
several reasons. (1) Down-sampling is a commonly used operation when gener-
ating adversarial images as shown in Fig. 1. To save computation sources for the
deep architecture, the size of input image for CNN is usually small. For exam-
ple, ResNet [22] models accept RGB inputs of size 224 × 224 × 3. To match the
small input size of CNN, the image needs to be down-sampled before attack-
ing. Some adversarial platforms employ different down-sampling algorithms
for the attack. For example, Cleverhans1(bilinear), EvadeML2(nearest), Real-
Safe3(bilinear), Foolbox4(bicubic), Advertorch5(bilinear). (2) For the purpose
of benchmarking the detection method. Figure 1 shows that the down-sampling

1 https://github.com/cleverhans-lab/cleverhans.
2 https://evadeML.org/zoo.
3 https://github.com/thu-ml/ares.
4 https://github.com/bethgelab/foolbox.
5 https://github.com/BorealisAI/advertorch.
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https://github.com/thu-ml/ares
https://github.com/bethgelab/foolbox
https://github.com/BorealisAI/advertorch
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possibly be a factor affecting the detectability of detector defense. Many detec-
tion methods [1,14–21] are evaluated on the down-sampled adversarial images
but without considering the effects of down-sampling.

To our best knowledge, the role of the pre-processing down-sampling and its
influence on detection method has not been studied so far. Many works [23–26]
have analyzed the impacts of pre-processing and post-processing on steganalysis
and forensics. Inspired by these works, we select three typical interpolation algo-
rithms, two typical attacks, BIM [2], and C&W [5], two CNN models, ResNet-50
[22] and Inception-V3 [29], two typical detection methods, ESRM [19] and FS
[15], for considerations. Experimental results reveal that the detection accu-
racies vary quite dramatically among different interpolation kernels and attack
parameters for the state-of-the-art steganalysis-based method ESRM [19]. These
results may provide some implications to attackers and defenders, and assist
them develop their own optimal strategies to evade detection or improve defense
ability.

2 Motivation Experiment

Jan Kodovský et.al. [23,24] find that down-sampling remarkably affects the ste-
ganalysis results. As steganography versus steganalysis is analogous to adversar-
ial attack versus detection defense [17], we also study how the down-sampling
affects the detectability of adversarial images.

To motivate our study, we select 1000 images from the validation dataset
of ImageNet-1000(ILSVRC-2012) as source image database. Next, we prepare
three kinds of down-sampled database generated on three commonly used inter-
polation kernels: nearest, bilinear and lanczos using resizing algorithm Resize (·)
in PyTorch. All source images are down-sampled so that the smaller side of the
image is 224 pixels, finally central-cropped to 224 × 224 pixels.

Fig. 2 illustrates the results of ESRM [19] detecting untargeted BIM adver-
sarial images which are generated on ResNet-50. For each attack strength budget
ε, an ESRM detector is constructed by training the ensemble classifier [27] with
using ESRM feature. Half of the images are used for training and the other half
are for testing, while the performance is evaluated by the detection accuracy
(Acc) under equal number of legitimate images and adversarial images.

The results in Fig. 2 show that striking discrepancies of Acc is reflected
in detecting different versions of down-sampled database. For example, at the
attack strength budget ε = 1, the Acc of nearest kernel is 83.1%, being about
10.0% lower than the Acc of the bilinear kernel. These results indicate that the
choice of the interpolation kernel significantly affects the detectability, and thus
a deeper understanding of this phenomenon is of a great importance for fairly
benchmarking the detection method.



Effect of Image Down-sampling on Detection of Adversarial Examples 553

Fig. 2. The accuracies (Accs, % ) of ESRM detecting BIM down-sampled adversarial
images created with three different interpolation kernels against ResNet-50. The x axis
is the attack strength budget ε.

3 Further Investigation

Inspired by the results shown in Fig. 2, we select two adversarial attacks (BIM [2],
C&W [5]) attacking two CNN classifiers (ResNet-50 [22], Inception-V3 [29]), and
further investigate how the interpolation kernel affects two detection methods
(ESRM [19], FS [15]) on a larger image database.

3.1 Down-Sampling Algorithm

The image down-sampling is executed before attacking CNN classifiers as shown
in Fig. 1. The down-sampling process is executed as follows: (1) Determine the
position of new pixels based on the scaling factor; (2) Input the distances between
the new pixels and neighbor old pixels to the interposition kernel to compute
the weights; (3) Sum weights of intensities of neighbor old pixels as the values
of new pixels. Obviously, the interpolation kernel and scaling factor are two
primary factors. In this work, we focus on the interpolation kernel and employ
the PyTorch function Resize (·) with three commonly used interpolation kernels
nearest neighbor ϕn, bilinear ϕb, and lanczos ϕl in the experiments. As indicated
by the formula (1)-(3), the bilinear and lanczos kernels consider more neighboring
pixels than the nearest neighbor kernel. The bilinear and lanczos kernels are
expected to cause stronger dependencies of neighboring pixels on the down-
sampled images than the nearest neighbor kernel does.
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The resolutions of the images in the validation dataset of ImageNet-
1000 (ILSVRC-2012) are larger than the input size of our used ResNet-50
[22] and Inception-V3 [29], such as 500 × 375 × 3, 500 × 333 × 3, 375 × 500 × 3,
500 × 500 × 3. To match the input size of our CNNs, we first down-sample the
short side to 224 and 299, and then crop the center part to form the resized
image of size 224 × 224 × 3 for ResNet-50 and 299 × 299 × 3 for Inception-V3
respectively.

ϕn(x) =

{
1, − 1

2 ≤ x < 1
2

0, otherwise
(1)

ϕb(x) =

{
1 − |x|, |x| ≤ 1
0, otherwise

(2)

ϕl(x) =

⎧⎪⎨
⎪⎩

1, x = 0
2sin(πx)sin(πx

2 )

π2x2 , 0 < |x| < 2
0, otherwise

(3)

3.2 Adversarial Attacks

After creating the down-sampled images to match the input size of CNN, the
adversarial image is generated on Advertorch platform6. Two typical attack
algorithms BIM [2] and C&W [5] are considered for attacking against com-
monly used pre-trained CNN models ResNet-50 [22]7 and Inception-V3 [29]8

respectively. BIM [2] is an iterative gradient-based attack. For an image x of
label ytrue, with initializing xadv

0 = x, it can be formulated as (4), where f(·)
is a CNN classifier, ∇(J(·)) is the gradient of the loss function J(·), clipx,ε(·)
limits the perturbation is less than ε. We set the iteration number to be 10,
α = 1 and ε = 1, 3, 5 to ensure attacking successfully and adding imper-
ceptive perturbations on the legitimate image. C&W [5] is an optimization-
based attack. It optimizes the problem (5) to generate adversarial images,
where c is a hyperparameter tuning the L2 distance and the prediction function
F (xadv) = max(Z(xadv)l∗ − max{Z(xadv)i, i �= l∗},−κ) for untargeted attack
which makes the true label l∗ least-likely. We set the confidence κ = 0, 10, 20
and the other parameters used default value in the Advertorch platform.

xadv
i+1 = xadv

i + clipx,ε(αsign(∇xadv
i

J(f(xadv
i ), ytrue))) (4)

arg min
xadv

||xadv − x||2 + cF (xadv)

s.t.xadv
ij ∈ [0, 1]

(5)

6 https://github.com/BorealisAI/advertorch.
7 https://download.pytorch.org/models/resnet50-0676ba61.pth.
8 https://download.pytorch.org/models/inception v3 google-0cc3c7bd.pth.

https://github.com/BorealisAI/advertorch
https://download.pytorch.org/models/resnet50-0676ba61.pth
https://download.pytorch.org/models/inception_v3_google-0cc3c7bd.pth
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3.3 Detection Results of ESRM for Different Interpolation Kernels

ESRM [19] is a steganalysis-based detection method. It enhances the steganalysis
feature SRM [30] via considering the modification probability of each pixel and
allocating large weights to the probably modified pixels when calculating co-
occurrences. As ESRM feature is a composition of co-occurrences of multiple
high frequency residuals, it yields tremendous dimensions up to 34671 and it
is susceptible to neighboring pixels dependencies. The FLD ensemble classifier
with default settings is employed [19,27] to construct the binary detector for
detecting adversarial images from legitimate images.

To evaluate the detection accuracy of ESRM, we randomly select 5000
images that consists of 5 images per class from the famous validation dataset
of ImageNet-1000(ILSVRC-2012) as the source dataset. The ratio of training
samples and testing samples is 1:1.

Table 1 denotes the results of ESRM detecting BIM and C&W adversarial
images attacking ResNet-50. It is shown that the Acc varies sharply when detect-
ing different down-sampled adversarial images. For each attack strength, the Acc
of detecting bilinear down-scaled images is the highest, while that of detecting
nearest neighbor down-scaled images is the lowest. The minimum and maximum
difference between them are 4.15% (at BIM, ε = 5) and 8.3% (at BIM, ε = 1)
respectively. The mainly reason for these discrepancies of Acc is that different
interpolation kernels result in different dependencies of neighboring pixels which
finally cause different detection accuracies of ESRM method. For the down-
scaling with the nearest interpolation kernel, it skips some original pixels and
assigns the new resized pixel value based on the formula (1) via replacing it with
the nearest original pixel value. However, for the bilinear and lanczos kernel, the
pixel values in the down-scaled image are interpolated as a certain linear combi-
nation of the original pixel values. Obviously, for the down-sampling fixing other
parameters, the bilinear and lanczos kernel results in stronger neighboring pixel
dependencies than the nearest kernel. As indicated in steganalysis [23,24,30],
the stronger dependencies will be disturbed more when adding adversarial per-
turbations onto the legitimate image to generate the adversarial image. This
means that attacking on the bilinear and lanczos down-scaled image will alter
more on neighboring pixel dependencies than attacking on the nearest neighbor
down-scaled image. Since ESRM feature is based on the neighboring pixel depen-
dencies, it is expected that ESRM detector possesses superior detectability on
the bilinear and lanczos resized adversarial images than on the nearest resized
adversarial images as empirically verified in Table 1.

To further verify our investigation, we repeat experiments of ESRM detect-
ing adversarial images attacking Inception-V3. The results in Table 2 also illus-
trate that the Acc varies when detecting different down-sampled adversarial
images. Similarly, the Acc of detecting nearest, lanczos, and bilinear resized
images are ascending. Because the down-scaling factor used for Inception-V3 is
lower than that for ResNet-50 and the changes on neighboring pixel dependencies
are weakened. Compared with the results in Table 1, the discrepancies of Acc for
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Table 1. The Acc (%) of ESRM detecting different down-sampled adversarial images
attacking ResNet-50.

BIM Interpolation kernel ε = 1 ε = 3 ε = 5

nearest 83.78 92.48 94.82

bilinear 92.08 92.08 98.97

lanczos 86.48 86.48 97.83

C&W Interpolation kernel κ = 0 κ = 10 κ = 20

nearest 54.31 67.51 74.86

bilinear 59.37 59.37 82.33

lanczos 82.33 70.49 77.87

detecting three kinds of down-scaled adversarial images become smaller as shown
in Table 2.

The results in Tables 1 and 2 indicates that ESRM feature based on the
neighboring pixel dependencies is affected by the interpolation kernel, and
thus the detectability of ESRM detector is different for detecting adversar-
ial images generated from different down-sampled legitimate images. Besides,
we figure out that detecting BIM adversarial images are easier than detecting
C&W adversarial images. Because BIM adds more adversarial perturbations
onto legitimate image, which disturbs the neighboring pixel dependencies more.
Under this reason, detecting the adversarial images generated by stronger attack
strength(larger ε, κ) also become easier as shown in Tables 1 and 2.

Table 2. The Acc (%) of ESRM detecting different down-sampled adversarial images
attacking Inception-V3.

BIM Interpolation kernel ε = 1 ε = 3 ε = 5

nearest 89.28 94.71 95.95

bilinear 91.86 97.83 98.38

lanczos 89.84 96.39 97.50

C&W Interpolation kernel κ = 0 κ = 10 κ = 20

nearest 58.44 69.71 79.37

bilinear 63.54 75.89 85.31

lanczos 60.61 72.72 82.28

3.4 Detection Results of FS for Different Interpolation Kernels

FS [15] is a typical transformation-based method, which is built on the assump-
tion that the legitimate image is more robust against image transformations than
the adversarial image. For a questioned image, the detection process of FS is as
follows. (1) Employ bit depth reduction, median filtering, and non-local mean
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methods successively to squeeze input space. (2) Input the original image and
its squeezed version to the CNN to get the corresponding SoftMax outputs. (3)
Calculate the L1 distance of two SoftMax outputs. (4) Compare the distance
with a threshold distance T and predict the one whose distance is larger than
T as adversarial, otherwise legitimate. The default best joint detection method
of FS is employed in the experiment, where the threshold T is determined via
fixing FPR=5% (i.e., at most 5% legitimate images are misclassified as adver-
sarial). We randomly select 11000 images that consists of 11 images per class
from ILSVRC-2012 as the source dataset. One half of the legitimate image is
used for determining the threshold T. We report the detection accuracy of the
other half legitimate images and their corresponding adversarial images.

The experimental results in Tables 3 and 4 show that the Accs of detect-
ing nearest, bilinear and lanczos resized image are different at the same attack
strength level. The greatest difference among them occurs at detecting C&W on
ResNet-50 with κ = 0, where the Acc of detecting nearest, bilinear and lanczos
resized image are 61.55%, 72.09% and 73.47% respectively. On the contrary, for
a stronger attack or a more robust CNN classifier, the difference in the Acc of
detecting different down-sampled images has become smaller.

Notice that FS is different from ESRM, it is a transformation-based detec-
tor, whose detectability is determined not only by the difference between the
legitimate image and adversarial image, but also by the robustness of the CNN
classifier. Hence, we find out the reason for the above decreased discrepancy
probably be that the robust CNN model and the strong attack smooth out the
differences caused by different interpolation kernels. For example, the classifica-
tion accuracies of pre-trained Inception-V3 [29] on nearest, bilinear and lanczos
resized images are 84.53%, 84.63% and 85.07% respectively. These similar results
indicate that these CNN models have similar robustness against image squeezing
operations, so it is expected that the Accs are nearly same for different down-
scaled images as shown in Table 4. The attack with strong attack strength also
yields Accs be nearly same as shown in Table 3.

Table 3. The Acc (%) of FS detecting different down-sampled adversarial images
attacking ResNet-50.

BIM Interpolation kernel ε = 1 ε = 3 ε = 5

nearest 78.16 58.55 52.80

bilinear 77.43 56.85 51.32

lanczos 78.58 57.45 51.61

C&W Interpolation kernel κ = 0 κ = 10 κ = 20

nearest 61.55 82.38 77.99

bilinear 72.09 83.69 79.99

lanczos 73.47 84.38 79.77
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Table 4. The Acc (%) of FS detecting different down-sampled adversarial images
attacking Inception-V3.

BIM Interpolation kernel ε = 1 ε = 3 ε = 5

nearest 81.90 63.28 56.47

bilinear 81.22 62.86 55.69

lanczos 84.51 64.00 56.79

C&W Interpolation kernel κ = 0 κ = 10 κ = 20

nearest 81.95 90.43 83.87

bilinear 82.55 90.03 82.92

lanczos 83.59 90.74 83.30

Notice that FS is different from ESRM, it is a transformation-based detec-
tor, whose detectability is determined not only by the difference between the
legitimate image and adversarial image, but also by the robustness of the CNN
classifier. Hence, we find out the reason for the above decreased discrepancy
probably be that the robust CNN model and the strong attack smooth out the
differences caused by different interpolation kernels. For example, the classifica-
tion accuracies of pre-trained Inception-V3 [29] on nearest, bilinear and lanczos
resized images are 84.53%, 84.63% and 85.07% respectively. These similar results
indicate that these CNN models have similar robustness against image squeezing
operations, so it is expected that the Accs are nearly same for different down-
scaled images as shown in Table 4. The attack with strong attack strength also
yields Accs be nearly same as shown in Table 3.

3.5 Discussion

The results in Tables 1, 2, 3 and 4 verify that the pre-processing down-sampling
affects the detectability of the adversarial examples for the detector defense.
As diverse interpolation kernels change the dependencies of neighboring pix-
els differently, the down-sampling brings different impacts on the detectability
of the steganalysis-based detector ESRM which is relied on the neighborhood
dependencies. The bilinear and lanczos kernel results in stronger neighboring
pixel dependencies than the nearest kernel. Generally, the stronger neighbor-
hood dependencies will be disturbed more by the adversarial perturbation, thus
causing the bilinear and lanczos interpolated down-sampled images are easier
to be detected the nearest down-sampled images. Simultaneously, the down-
sampling also affects the detectability of the image transformation detector FS,
but with smaller differences of influences among different interpolation kernels.

The experimental results may give some implications for attackers and
defenders to develop their own optimal strategies under the attack and defense
confrontation situation. Since ESRM and FS bear relative low detection accura-
cies on the nearest down-scaled adversarial images, in order to evade the detec-
tion defense as much as possible, attackers tend to apply the nearest neighbor
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down-sampled images for adversarial attack. For defenders, as indicated by the
detection results of ResNet-50 and Inception-V3, develop more accurate and
robust CNN model is a choice of improving the defense ability.

4 Conclusion

The down-sampling is usually applied before generating the adversarial images.
In this paper, we study how the pre-processing down-sampling affects the
detectability of adversarial images. To our best knowledge, this paper is the
first work related to the influence of down-sampling on the detectability, and
it reveals a surprising sensitivity of steganalysis-based detection to the choice
of the interpolation kernel. To get complete empirically investigations, exper-
iments are executed on three interpolation kernels, two qualitatively different
attack algorithms, BIM and C&W, and two state-of-the-art detecting methods
named FS and ESRM. Since down-sampling alters the strength of dependencies
among neighboring image pixels, experimental results verify that the detectabil-
ity of steganalysis-based feature ESRM is affected heavily by the interpolation
kernel used in the down-sampling. Besides, the detectability of FS is also affected
by the interpolation kernel, but it is less affected than ESRM does.

The main contribution of this paper is explaining how the detectability of
adversarial images varies with the interpolation algorithms and its settings. Our
work is probably advantageous for attackers and defenders to benchmark their
performance as full as possible under the attack and defense confrontation situ-
ation. In the future, we will study how some other pre-processing factors (such
as smoothing, noising) affect the detectability of adversarial images.
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