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Abstract. Autoencoder, which compresses the information into latent
variables, is widely used in various domains. However, how to make these
latent variables understandable and controllable is a major challenge.
While the β-VAE family is aiming to find disentangled representations
and acquire human-interpretable generative factors like what indepen-
dent component analysis (ICA) does in the linear domain, we propose
Progressive Autoencoder (PAE), a novel autoencoder based model, as a
correspondence to principal component analysis (PCA) in the non-linear
domain. The main idea is to train an autoencoder with one latent variable
first, then add latent variables progressively with decreasing weights to
refine the reconstruction results. This brings PAE two remarkable char-
acteristics. Firstly, the latent variables of PAE are ordered by the impor-
tance of a downtrend. Secondly, the latent variables acquired are stable
and robust regardless of the network initial states. Since our main work
is to analyze the gas turbine, we create a toy dataset with a custom-made
non-linear system as a simulation of gas turbine system to test the model
and to demonstrate the two key features of PAE. In light of PAE as well
as β-VAE is derivative of Autoencoder, the structure of β-VAE could be
easily added to our model with the capability of disentanglement. And
the specialty of PAE could also be demonstrated by comparing it with
the original β-VAE. Furthermore, the experiment on the MNIST dataset
demonstrates how PAE could be applied to more sophisticated tasks.

Keywords: Stable representation · Latent variable model ·
Autoencoders · machine learning · non-linear system analysis

1 Introduction

The Autoencoders (AE) have been used to automatically extract features from
data without supervision for many years. Since then, a lot of work has been done
to enhance this elegant structure. A particular enhancement direction focuses on
extracting latent variables with properties that are useful for non-linear system
analysis, like disentanglement or interpretability. Rifai et al. (2011) restrict the
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learned representations within contractive space and got a better robustness
using contractive autoencoder [1]. Variational autoencoder [2] by Diederik P
Kingma and Max Welling (2014) root in the methods of Variational Bayesian
and graphical model, mapping the input into a distribution instead of individual
variables. Diederik P. Kingma, et al., in the same year also introduced condi-
tional VAE [3] to learn with labeled data and obtain meaningful latent variables
with semi-supervised learning. Then β-VAE [4,5] is proposed by Irina Higgins,
et al., (2017), trying to learn disentangled representations by strengthening the
punishment of KL term with a hyperparameter beta and narrowing the infor-
mation bottleneck. β-TC VAE [6] by TianQi Chen, et al., (2018) further refined
their work until Babak Esmaeili, et al., (2019) unified all methods that modify
the objective function with HFVAE [7].

From the GAN [8] family, some methods try to learn disentangled represen-
tations, a few milestones are conditional GAN (2014) [9] that involves label to
input data, BiGAN (2017) [10] with a bidirectional structure to project data
back to latent space, InfoGAN (2017) [11] that learns disentangled representa-
tions with information-theoretic extended GAN, and InfoGAN-CR (2020) [12]
that references techniques from the β-VAE branch.

Behind the observable variables of an unknown system, there are usually
a few independent source variables whose changes represent the entire system.
These variables are usually hidden from sight and physically difficult to acquire,
but once dug out, and made clear their relationship to the observable variables,
they can help us fully understand the system. Excavating them from the data,
however, is extremely hard and sometimes impossible. For easier understanding,
Fig. 1 displays the relationship between these variables and concepts. Against the
background of gas turbine condition monitoring, which is the main work of our
lab, the observable variables are performance parameters collected by sensors
such as temperature, pressure, and etc. These parameters are entangled with
each other and incomplete as well. To get a clear and intact presentation of the
state of gas turbines, we proposed a new model to achieve these aims.

In this paper, Progressive Autoencoder (PAE) is proposed with a new Pro-
gressive Patching Decoder (PPD) structure to learn representations with another
unique property: stability. The representations learned by PAE are ranked by
their importance for reconstruction, and for the same dataset PAE always pro-
vides a stable result because latent variables always learn the same features. The
reconstruction error is progressively reduced by adding new latent variables until
another new freedom degree could not contribute to the reduction of reconstruc-
tion error. Good robustness is achieved by introducing a denoising structure [13]
to PAE using a dropout layer, this allows the PAE to perform a self-supervised
learning task [14] to understand the non-linear system better. The highly flexi-
ble structure also enables PAE to work both on a supervised and unsupervised
manner.

Briefly, PAE has two outstanding features. First is that the latent variables
are learned by decreasing order of importance and the second is the high stability
of latent variables learned by PAE. Additionally, by combining of beta-VAE, the
disentanglement ability could be added to PAE and form beta-PAE.
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Fig. 1. The relationships between observable variables, source variables, labels, latent
variables, and representations of source variables.

2 Framework of Progressive Autoencoder

The structure of PAE is illustrated in Fig. 2. Similar to a classical autoencoder,
PAE is made of 2 parts, an encoder and a decoder. The encoder of PAE can
be further divided into 2 neural nets, Encoder1 is used for generating unsuper-
vised latent variables zi, (i = 1, 2... n) and Encoder0 is prepared for supervised
learning. Encoder0 could either provides z0 as a result of unsupervised learning
or gives ŷ with the supervision of labels. The decoder of PAE is a multi-level
decoder called Progressive Patching Decoder (PPD), it takes in not all the latent
variable of z but one at a time to progressively patch the Median code mi with
Process variable pi generated from z with neural nets named NNi, then followed
by a normal Decoder to reconstruct original data x.

The main objectives for Progressive Autoencoder are: 1. minimizing the dis-
tance (usually the mean square error (MSE)) between input data vector x and
reconstructed data vector x̂i; 2. minimizing the label loss if any label is provided;
3. Minimizing the KL-divergence between prior and posterior distribution from
VAE. What’s special about PAE is that instead of having one reconstructed
result, we have n of them. Each of the reconstructed result x̂i uses the first i
latent variables, from z0 to zi, as if we are training n individual autoencoders
with 1 ∼ n latent variables simultaneously with shared weights.

2.1 Encoder Network

Encoder1 is like the VAE Encoder. it learns to output a distribution as latent
representations from the input data x. The final result of Encoder1, z, is sampled
from the Gaussian distribution ε ∼ N (0, 1) with parameters μ and σ using
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Fig. 2. Structure of Progressive Autoencoder.

the reparameterization trick proposed in VAE. μ and σ are the outputs of the
Encoder1:

z = μ + σ · ε (1)

Encoder0 is prepared for semi-supervised learning. If looked separately, it’s
exactly the same as a normal supervised Neural Network. The purpose of
Encoder0 is for extracting labels (human-selected representations) from the data.

When there is no label available, it can also work without supervision to
extract the “Principal latent variable” of the data. The input of Encoder0 is the
data vector x, and the output is either the predicted label vector ŷ which has
the same dimension as the label or the principal latent variable z0.

When used with labels, the objective of Encoder0 is to minimize the difference
between actual label y and output ŷ. With an individual loss function:

LEncoder0 = Ex,y∼Pd (y − ŷ)2 (2)

With continuous labels, Mean Squared Error is used to calculate the error
between the predicted and actual label, for categorical labels, Cross Entropy
can be used instead.

To improve the robustness of the feature extractor Encoder0 and Encoder1,
noise is added to the data x before it’s fed into the neural nets. To help handle
data with missing values, a dropout layer is used in this case to add noise. The
special layer can set a certain amount of input to 0, forcing the encoder nets to
extract representations with fewer observable variables.

2.2 Progressive Patching Decoder

The latent vector z is generated one column at a time by the encoder network of
PAE, each of them contributing a new degree of freedom to the reconstruction
result. PPD takes in the n-dimensional z and produces n results using 1, 2... n
latent variables. PPD is designed to be a multi-level structure where the newly
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added latent variable is used to “patch” the previous result and refine it by
giving more information.

From a regular feature fusion point of view, the “patching” process should
either be done by concatenating the vectors, or adding them together. However,
we cannot add the latent variables together directly, as it would limit the width of
AE bottlenecks and provide fewer degrees of freedom. Concatenating also doesn’t
work in this case, as the input shape for a neural network layer should normally
be fixed, the structure with adaptive shapes and elements from the continual
learning domain might work, but is unnecessarily difficult for this task.

Achieving both utility and simplicity, PPD uses a hierarchical structure:
the first latent variable is converted by a neural network NN0 into the base
median vector m0, the newly added latent variables are converted by NNi into
the patcher vector pi and “patch” m0 one by one, then both the patched and
under-patched median vectors are used for reconstruction. The median vectors
should have dimensions bigger than n, so it can include all information from
latent variables. The patching process can be done by simply adding the patcher
vector to the median vector:

mi = pi + mi−1 (3)

As we discovered later, a 2-step linear transformation achieves the same result
and converges faster:

mi = pi1 + pi2 · mi−1 (4)

where pi1 is called adder patcher vector and pi2 is called multiplier patcher
vector. The two patchers are both generated by NNi and have the same shape
with mi. pi1 is initialized to be a gaussian distribution that is 0-mean and pi2 is to
have 1-mean. NNi generates the progressive patcher for median code to calculate
the refined median codes. The total amount of NNi is decided according to the
task. The input for NNi is zi generated by Encoder, and the output is pi1 and
pi2 the adder and multiplier patcher.

2.3 Training Method

When dealing with an unsupervised task, for each column of z, a reconstruction
result x̂i is generated by the PPD, and the goal is to minimize the differences
between each x̂i and input data x. A hyperparameter ξ is involved in the loss
function to balance the optimization process, and to put equal effort on each
reconstruction result - that the reconstruction error weighted by ξ should be
roughly the same. According to experiment results, we decided that using a
geometric series is appropriate, α is the common ratio of the geometric series,
normally α = 2

3 . Therefore, the reconstruction loss term of the loss function is:

LRL = Ex Pd

{
n∑

i=0

[
(x − x̂i)

2 ·
(

ξ · 1 − αi

1 − α
+ 1

)]}
(5)

Adding the KL divergence term that encourages the posterior q (z|x) to be as
close to the Gaussian prior p (z), the complete Encoder loss function is:
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Lcomplete = LRL +
1
n

·
n∑

i=0

DKL[q (zi|x) ‖ p (zi)] (6)

When it comes to a supervised task, the only difference is the training of
Encoder0, the loss function is mentioned in Sect. 2.1. LEncoder0 is used to update
the parameters of Encoder0 and Lcomplete responsible for other parameters of
the model.

3 Experiments

To assess the quality of the proposed network, we conducted experiments on
a toy dataset sampled from a custom-made non-linear system. Results on PAE
with different settings are collected and compared to the more classical VAE and
beta-VAE framework. Mutual Information [15] is used to measure the relativity
of the representations extracted and generative factors.

3.1 Non-linear Toy Dataset

We want to present the full potential of Progressive Autoencoder in a clear yet
not too easy or challenging way. And as our ultimate aim is condition monitoring
of gas turbine, we decided to design a non-linear toy dataset and test our model
on this dataset. This dataset could imitate the performance parameters of gas
turbine which is under the influence of internal state and environmental influ-
ence. Furthermore, the toy datasets are easy to control and allow us to discover
some interesting properties of PAE.

Fig. 3. This figure shows a few systems outputs changing accordingly to one input
varying while other inputs are fixed to 0. Figure left shows the result without noise
and figure right is what the dataset truly looks like when adding Gaussian noise with
a std of 0.125.

For the dataset, we first created a mathematical model for the custom-made
non-linear memoryless time-invariant system, and use the model to generate



544 Z. Li et al.

the data. Figure 3 shows the degree of non-linearity of the mappings used for
the costume-made system. The system has 5 inputs (generative factors) and 48
outputs (observable variables), each output is determined by the 5 inputs under
a random non-linear transformation with Gaussian noise.

Each input from the toy dataset is not equivalent to each other, as the “impor-
tance” of each input variable is different, determined by its overall contribution
to the outputs. A less “important” input variable would have a smaller impact
to output variables with the same degree of changes, and the non-linearity of the
impact is also reduced. In our toy datasets, the 1st and 2nd input variables (gen-
erative factors) S1, S2 have equal importance and S3 S5 have gradually decreased
importance. The dataset is then generated from the model with 5 inputs indepen-
dently sampled from truncated Gaussian distributions with a standard deviation
of 1.

3.2 Experiment Settings

The architecture of Progressive Autoencoder used in the experiment session is
shown in Table 1. Experiments for other frameworks are also conducted on this
architecture, with different NNi unit amounts. In order to avoid confusion, while
describing the experiment results we use L1∼Ln to represent the nth latent
variable rather than zi from the architecture. S1∼S5 are used to represent the
generative factors or the inputs of the dataset respectively.

Table 1. Progressive Autoencoder architecture for Non-linear Toy datasets

Encoder0 and Encoder NNi Decoder

Input 48 1d array Input zi ∈ R
1 Input mi ∈ R

50

Dropout (Drop Ratio: 0.2)

FC. 64 SeLU FC. 32 SeLU FC. 64 SeLU

FC. 64 SeLU FC. 32 SeLU FC. 64 SeLU

FC. 2 · n∗(μi, σi) FC. 2 · 50(pi1, pi2) FC. 48

n∗ is determined according to the experiment requirements

In each experiment, 10,000 data pieces are sampled from the toy dataset and
a total of 20000 training iterations are conducted (whether it’s converged or not)
using Adam optimizer with batch size = 500 and learning rate = 0.001. Note that
each experiment presents in this section is done individually, they have different
network random initial states and do not share any trainable parameters with
each other. Each experiment is done more than once with different initial states
to prove reproduction stability. In the first two experiment, dataset is the toy
dataset mentioned in Sect. 3.1, and in the last experiment, we test the model on
MNIST.
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Fig. 4. (a) shows the distribution of adder patcher (blue) and multiplier patcher
(orange) which is mentioned in Sect. 3. 2. (b) shows the reconstruction loss lowered
by each latent variable. (c) and (d) show the non-linear mapping between L1 L6 and
S1 S5 in two separate experiments. (Color figure online)

3.3 Results of Toy Dataset

Figure 4 shows the result of PAE with 6 latent variables. As shown in Fig. 4a,
the distributions which count every vector component of patchers are gradually
closing into the center, meaning that they are contributing less and less to the
final result and the significance of new latent variable is on the decline. This is
also reflected in Fig. 4b in which the reconstruction error is decreasing with more
latent variables added at a level that also gradually reduces. Until L6 is added,
the variation of loss seems to cease because there are only five generative factors
and the first five latent variables have almost learned all features of them. When
given the 6th latent variable, it becomes redundant could hardly refine the result
any further.

Figures 4c and 4d, which come from two individual experiments with different
random initialization, present the relationship between S and L. In the title
of each subgraph, SiLj means that the horizontal axis is Si and the vertical
axis is Lj , while MI (short for mutual information) is calculated to measure
the relativity of Si and Lj . By comparing the two graphs, we could easily find
that the corresponding subgraphs are extremely similar which proves that latent
variables in same place always learn same features and this is exactly the stability
we talked above. However, the feature learned by PAE is still Entangled, in other
to solve this problem, the structure of β-VAE is imported in next experiment.

Figure 5 shows the result of supervised PAE with 6 latent variables. The first
two latent variables have learned good features by the supervision of S1 and S2.
The other latent variable could also Provide proof of the stability of PAE.
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Fig. 5. Demonstration of the results of supervised PAE.

Table. 2 shows the reconstruction errors of all the PAE experiments beta-PAE
and supervised PAE, with different latent variables available to use. Reconstruc-
tion errors of model with same latent variables are similar and Reconstruction
errors in same row increase gradually. The reconstruction error of L2 of Super-
vised PAE is greater than others’ because what they learn is restricted by super-
vision while the reconstruction error of L6 of Supervised PAE is the smallest
one because it can learn better with the “patch” of other latent variables. The
experiment that will be described next is about Beta-PAE, which sacrifices some
ability of reconstruction and acquires the ability of disentanglement.

Table 2. Reconstruction Errors for Different Architectures with Different Amount of
Latent Variables

- R.E L1 R.E L2 R.E L3 R.E L4 R.E L5 R.E L6

PAE - 1 L.V 0.422 - - - - -

PAE - 2 L.V 0.431 0.305 - - - -

PAE - 3 L.V 0.455 0.308 0.235 - - -

PAE - 4 L.V 0.448 0.315 0.226 0.188 - -

PAE - 5 L.V 0.472 0.335 0.231 0.183 0.161 -

PAE - 6 L.V 0.484 0.348 0.235 0.179 0.149 0.147

β-PAE - 6 L.V 0.565 0.426 0.331 0.253 0.186 0.183

Supervised-PAE - 0.450 0.281 0.194 0.143 0.141

3.4 Comparison Between Beta-PAE and Beta-VAE

By combining beta-VAE and Progressive Autoencoder, we can learn disentangled
representations and rank them by importance at the same time. This could be
useful in industrial applications. Results of Progressive Autoencoder and beta-
VAE are shown in Fig. 6.
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Fig. 6. The result of beta-VAE and Progressive Autoencoder with 6 latent variables.

Through comparing Fig. 6a and Fig. 5c/Fig. 5d, we find that beta-PAE gains
the ability of disentanglement. From the comparison of Figs. 6a and 6b, though
beta-VAE separate generation factors a little better, beta-PAE is stable. Beta-
PAE always learns the generation factors in a fixed sequence, order of decreasing
importance, but the result of beta-VAE is different every time as we all know.

3.5 Experiments on MNIST

Fig. 7. The results of β-PAE with one latent variable varies each time and others fixed

From the experiments with the toy dataset, the characteristics of β-PAE are
shown. In this part, we will display the property of β-PAE in a more intuitive
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way. For MNIST dataset, β-PAE is used with supervision to generate the digits
first, then applied unsupervised approach to learn the other properties of the
hand-written digits. We turn the latent variables of trained model from −1 to 1
and fix the other latent variables to 0. The result is shown in Fig. 7.

In Fig. 7, the pictures are ordered by the sequence of latent variables. For
example, in Fig. 7a, the first latent variable, which is the most important one,
is changed from −1 to 1 and others are always 0. The first 3 properties learned
are human-interpretable: Angle, Width, and Thickness while the other prop-
erties learned are not so easily described. The 3 factors learned, according to
personal experiences, might just as well be the most important factors for digit
reconstruction.

Fig. 8. (a) is the result of β-PAE with one latent variables and (b)–(d) are results of
β-PAE by adding only one latent variables each time. (e) is the input that is placed
here for comparison

β-PAE can also generate the digits using only the first few latent variables,
the “intermediate products” as they are refined. Figure 8g shows how each latent
variable refines the reconstruction results. At first, PAE could only get what
number it is so that every picture of same number looks exactly the same. As new
latent variables are added, the mode could acquire Angle, Width, and Thickness
of the number and become increasingly clear.

4 Discussion and Conclusion

In this paper, we proposed a new Autoencoder-based model called Progressive
Autoencoder. In this model, the latent variables are ordered by their consequence
and have strong stability along with the structure called Progressive Patching
Decoder. Progressive Autoencoder could also gain the disentanglement ability
by combining the idea of β-VAE. We created a toy dataset to prove the property
of PAE. The results indicate that features learned by PAE are stable and order
by the way we want. We also showed how to use PAE on a supervised task
and designed experiments to prove the effect. Comparison of β-PAE and β-VAE
shows the combination of stability and ability of disentanglement. How does PAE
work is intuitively showed by the experiments on MNIST, in which we could find
variation of features which are visible.
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Overall, Progressive Autoencoder is a flexible architecture that can be used
in many real-life scenarios such as condition monitoring of gas turbine and can
help us analyze non-linear systems better, although we haven’t mentioned any of
these apps for space reasons but only explained the theory and characteristics.
In this paper, we just use Multi-layer Perceptron as a substructure of PAE. By
the combination of other structures such as Convolutional Neural Networks or
Attention Mechanism, PAE may become stronger and applicable to a variety of
fields.
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