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Abstract. Predicting facts that occur in the future is a challenging task
in temporal knowledge graphs (TKGs). TKGs represent temporal facts
about entities and their relations, where each fact is associated with a
timestamp. Inspired from the human inference process that predictions
are usually made by analyzing relevant historical clues, in this paper, we
propose a model based on temporal evolution and temporal graph atten-
tion mechanism to infer future facts. Specifically, we construct a node
pool to keep the importance of all nodes encountered in the historical
search. We learn temporal evolution features and sub-graph structures
based on temporal random walks and graph attention networks. More-
over, these sub-graphs are sets of objects with the same subjects and
relations as the query. Experiments on five temporal datasets demon-
strate the effectiveness of the model compared with the state-of-the-art
methods. Codes are available at https://github.com/lendie/SWGAT.

Keywords: Temporal knowledge graph · Spatio-Temporal walks ·
Future facts

1 Introduction

Knowledge graphs (KGs) are directed graphs which excel at organizing rela-
tional facts. They represent factual entities as nodes and semantic relations as
edges. Each fact is presented as a triple of the form (subject, relation, object),
e.g., (Donald Trump, PresidentOf, USA). Large-scale knowledge graphs have
been used in various artificial intelligence applications including recommender
system [11] and information retrieval [12]. Knowledge graph reasoning [1] refers
to inferring missing facts from existing facts, but they treat a knowledge graph
as a static graph, meaning that the entities and relationships do not change
over time. However, in reality, many facts are only true at a certain point in
time or period of time. For example, (Donald Trump, PresidentOf, USA) is
valid only from January 2017 to January 2021. To this end, temporal knowl-
edge graphs (TKGs) were introduced. A TKG represents a temporal fact as a
quadruple (subject, relation, object, timestamp), describing that this fact is valid
at this timestamp. Recently, research on temporal knowledge graph reasoning
has received increasingly more attentions, which can be categorized into inter-
polation and extrapolation tasks [27]. The former studies reasoning facts within
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a known time range, while the latter studies predicting facts in the future and
is more challenging. In this paper, we focus on the extrapolation tasks.

To solve extrapolation problems, different TKG embedding approaches have
been developed. These approaches maps entities, relations and time information
into a continuous vector space to capture the semantic meanings of a temporal
knowledge graph. However, there exist two main challenges for current TKG
embedding approaches. Firstly, how to model the evolutionary patterns of his-
torical facts to accurately predict future facts. Secondly, how to model the topo-
logical structure of a TKG. Latest top-tier works focus on either side but not
take both of them into consideration.

Inspired from the process of human reasoning, in this paper, we propose to
tackle extrapolation problems by iterative spatio-temporal random walks fol-
lowed by a temporal relation graph attention layer. In spatio-temporal random
module, we select the one-hop neighbors that are close to the subject, and then
calculate their importance scores by the relationship between these neighbors and
the subject. Then, after assigning an importance score to each one-hop neigh-
bor, we iteratively walk from the neighbors with the top-n importance scores,
and select the two-hop neighbors of the subject. After that, TRGAT is used to
capture the topological structure which select sub-graphs that are sets of objects
with the same subject and relation as the query. Similar to CyGNet [28], this
layer is mainly used to capture repetitive facts related to the query, except that
we use graph attention network to capture such repetitive patterns. The key
contributions of this paper can be summarized as follows:

– The reasoning idea of temporal knowledge graph is derived from the human
cognitive process, consisting of iterative spatio-temporal walks and temporal
graph attention mechanism.

– We resort to graph attention networks to capture repetitive patterns.
– Our model achieves state-of-the-art performance in five temporal datasets.

2 Related Work

2.1 Static KG Representation Learning

There is a growing interest in knowledge graph embedding methods. This type
of method is broadly classified into three paradigms: (1) Translational distance-
based models [1,25]. (2) Tensor factorization-based models [14,15]. (3) Neu-
ral network-based models [4,13]. Translation-based models consider the trans-
lation operation between entity and relation embedding, such as TransE [1]
and TransH [25]. Factorization-based models assume KG as a third-order ten-
sor matrix, and the triple score can be carried out through matrix decomposi-
tion, including RESCAL [15], HOLE [14]. Other models use convolutional neural
networks or graph neural networks to model scoring functions, like ConvE [4],
KBGAT [13]. However, all the above methods cannot predict future events, as
all entities and relations are treated as static.
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2.2 Temporal KG Representation Learning

In order to better capture the dynamic changes of information, the temporal
knowledge graph embedding(TKGE) model encodes temporal information into
entities or relationships. A number of recent works have attempted to model the
changing facts in TKGs. Temporal knowledge graph inferring can be divided into
interpolation [6] and extrapolation problems [28]. The former attempts to rea-
son about facts in known time, while the latter, which is the focus of this paper,
attempts to predict future facts. On the interpolation task, DE-SimplE [6] defines
a function that takes entities and relations as input and then produces time-
specific embeddings. But this approach ignores the dynamic changes of entities
and relationships. On the extrapolation task, some models estimate the condi-
tional probability to predict future facts via temporal point process taking all
historical events into consideration. RE-NET [9] is used to capture the evolution-
ary patterns of fixed-length subgraphs specific to a query. CyGNet [28] models
repeated facts with sequential copy-generation networks. xERTE [8] learns to
find the query-related subgraphs with a fixed number of hops. Glean [3] enriches
entity information by introducing time-dependent descriptions. EvoKG [17] per-
forms temporal graph inference by jointly modeling event time and network
structure.

3 Our Model

We describe our model in a top-down fashion where we provide an overview in
Sect. 3.1, and then in Sect. 3.2 and 3.3 we explain each module separately.

3.1 Model Overview

Our model performs the inference process from walking sequences obtained by
dynamic sampling on temporal knowledge graph and temporal relation graph
attention layer (TRGAT). Our model contains two parts, spatio-temporal walks
and TRGAT. Specifically, part 1 focuses on sampling dynamic node sequences
whose semantic and temporal information is closely related to the given query.
Afterwards, the sampled node sequences are provided to the temporal inference
cell, which focuses on modeling the node sequence information and then assigning
importance scores to each node related to the query. In the TRGAT module, we
sample objects with the same subject and relationship as the query from the
history information. And we note that different objects and subjects should also
have different importance under the same relationship (Fig. 1).
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Fig. 1. Overview of model architecture.
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links can be found).

3.2 Spatio-temporal Walking

We assume that the older the event is, the less impact on the inference. So
instead of using all the historical event information, we choose the set consisting
of nodes V that are closer to the time of the query, where V denotes the subset
of all entities in the historical event that are directly linked to the query subject
entity. We sample the connected links by backtracking over time to extract the
potential time-evolving relations of temporal knowledge graph. According to our
hypothesis, more recent events may contain more information and thus we use
time-aware weighted sampling P(qv = (si, rk, oj , t

′)) = exp (t′ − t), where t is
previous sampled timestamp before t′. We show a toy example in Fig. 2. Given
a query (es, rp, ?, ts), we use A to denote node es. We first find the most recent
moment of node A from historical events, such as t − 1. Since we use time



Evolving Temporal Knowledge Graphs by Iterative Spatio-Temporal Walks 505

backtracking to search for historical information, in the next step, we will search
for nodes that have direct link with node A from facts with less than or equal to
t− 1. As shown in Fig. 2, we obtain three walks, { (A → B), (A → C), (A → D)
}, and here we omit the relationship and timestamp for simplicity. Then we put
these walks into the time unit to calculate the relevance score of nodes B, C
and D to the query. After, the walk continues, which we call iterative walk. To
reduce the path selection time, we use the Top-n pruning method to continue
the walking only from the n neighboring nodes with highest relevance scores.

Sampled Walks. We define sampled edges Sv,t = {(e, t′) | e ∈ G, t′ ≤ t, v ∈
e} to include the links contained before node v. The walking sequence of the
temporal knowledge graph can be expressed as:

E = ((w0, t0) , (w1, t1) , . . . , (wm, tm)) , t0 ≥ · · · ≥ tm,

(wi, ti) ∈ S (1)

where (wi, ti) denotes quadruples (ei, ri, oi, ti).

Position Encoder. Inspired by CAW [23], in order to make the model induc-
tive, we use the method mentioned in CAW [23] to remove the node identifiers to
encode the relative position information. Let the set of walks sampled from node
es be Se. Each node from Se is replaced by a vector that encode a positional
frequency of the node in each corresponding positions of walks in Se. For node
es, the vector of position frequencies relative to all walks in Se is defined as:

PE(es, Se) = {|{W | W ∈ Se, es = Wm,m ∈ {1, . . . , m}}|} (2)

This equation simply expresses that the position of node es is encoded as
a vector, so that the mth component of this vector is equal to the number of
occurrences of node es at the mth position of all walks in Se.

Finally, we will encode the relative positions of the nodes in each walk:

̂E = (PE (w0) , PE (w1) , . . . , PE (wm)) (3)

Representation of each position of each walk, i.e., ̂E, is passed through a
multi-layered perceptron (MLP) to obtain the corresponding position embed-
ding:

f0( ̂E) = MLP( ̂E) (4)

Iterative Update. Just like the human learning process [24], humans update
their existing knowledge base when they gain new observations. In our condition,
the existing knowledge base is the node scores to be discovered, which we call
the node pool. When new nodes are reached, our spatio-temporal random walk
module updates the importance scores in the node pool, including known nodes
and new nodes. As shown in the Fig. 2, the query node is found in the historical
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information, and then the nearest spatio-temporal neighbors are selected start-
ing from the query node, called one-hop spatio-temporal neighbors. The node
sequences are then fed into the GRU model to calculate their node importance.
Subsequently, the spatio-temporal walking is performed again, starting from its
one-hop neighbors. As the walking continues, the model’s knowledge of the query
subject node is constantly updated, and finally we make predictions using the
node pool. We obtain the encoding of E as follows:

Encode(E) = GRU({F1(hi, f1(ti)) ⊕ hr ⊕ f0( ̂E)}i=0,1,...,m) (5)

where F1 is the time-aware encoding function, hi and hr are the hidden repre-
sentation of node and relation, respectively, f1 is the time embedding function,
̂E is the relative position embeddings, ⊕ is the concatenation operation. The F1

conducts nonlinear transformation as:

F1(hi, f1(ti)) = W1(hi ⊕ f1(ti)) (6)

where W1 is the time-aware trainable parameter. For f1, we adopt Bochner Time
Embedding [23].

f1(t) = [cos(w1t), sin(w2t), . . . , cos(wdt), sin(wdt)] (7)

where wi’s are learnable parameters.
To get the relevance of the discovered nodes to our query, we consider the

node and relation information of the query and then update the seen entity
scores in the node pool by computing the query-related attention scores using:

Att(E, q) = f(Wλ(hs ⊕ Encode(E) ⊕ hr)) (8)

where Att is the attention score of the seen nodes regarding the query q =
(es, rp, ?, ts), Wλ is the weight matric for aggregating features from evolving
node sequences and query, hs and hp denotes the embeddings of entity es and
relation ep related to the query, respectively, and f(·) is an activation function.

3.3 TRGAT

As for the TRGAT module, we only consider those objects in history that have
a connection to a given subject under same relation rq. We define Ot(esi

, epi
)

to represent the set of objects that have a relation rp with the subject entity
at a history timestamp t(0 ≤ t ≤ ts). The TRGAT module can be considered
as a special kind of neighborhood aggregation. We assume that there are differ-
ences between different entities under the same relationship. We assign different
weights to each edge by computing the attention.

aes,Ot
= f(W2(F1(hes

, f1(t)) ⊕ hpi
⊕ hOt)) (9)

where aes,Ot
is the attention of O and the subject entity, W2 is the relation-

aware transformation matric, hpi
and hOt

is the embeddings of relation epi
and

Ot, respectively.
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To get the relative attention values, a softmax function is applied over aes,Ot
:

αes,Oi
= softmax(aes,Oi

) =
exp(aes,Oi

)
∑

n∈Ot exp(aes,On )

(10)

We aggregate the representations of prior neighbors and weight them using
the normalized attention scores, which is written as

˜hes
=

∑

n∈Ot

αes,nhn (11)

After, we use the updated subject entity and the object entity in set Ot to
update the scores in the node pool.

Att(es,Ot) = f(Wμ( ˜hes
, hOt

)) (12)

4 Experiments

In this section, we demonstrate the effectiveness of our model using five public
datasets. We first explain the experimental setup, including datasets, implemen-
tation details, benchmark methods and evaluation metrics. After that, we discuss
the experimental results. In particular, we also conduct several ablation studies
to analyze the impact of entity/relationship embedding and various components
of SWGAT.

4.1 Experimental Setup

Datasets. In previous studies, there are five typical TKGs commonly used,
namely, ICEWS14, ICEWS18, WIKI, YAGO and GDELT. Integrated Crisis
Early Warning System(ICEWS) dataset contains political events annotated with
specific time, e.g. (Barack Obama, visit, Malaysia, 2014-02-19). ICEWS14 and
ICEWS18 are subsets of ICEWS, corresponding to facts from 2014 and facts from
2018, respectively. It is worth noting that all time annotations in the ICEWS
dataset are time points. WIKI and YAGO are knowledge bases with tempo-
rally associated facts. Global Database of Events, Language, and Tone(GDELT)
dataset is an initiative to construct a global dataset of all events, connecting
people, organizations, and news sources.

Baseline Methods. Our model is compared with two categories of mod-
els: static KG reasoning models and TKG reasoning models. DistMult [26],
RGCN [18], ConvE [4] and RotateE [20] are selected as static models.
Temporal methods include TA-DistMult [5], R-GCRN [19], HyTE [2], dyn-
graph2vecAE [7], EvolveGCN [16], know-Evolve [21], know-Evolve+MLP [21],
DyRep [22], CyGNet [28], RE-Net [9], xERTE [8] and EvoKG [17]. We note that
both T-GAP [10] and xERTE [8] use subgraph extraction and attention flow
walks, but the former is used for the interpolation problem.
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Table 1. Experiments results for the extrapolation task on five temporal datasets.
Hits@N values are in percentage. The best score is in BoldBoldBold and the second is underlined.
The results of all the baseline methods are taken from [17].

MethodMethodMethod ICEWS14ICEWS14ICEWS14 ICEWS18ICEWS18ICEWS18 WIKIWIKIWIKI YAGOYAGOYAGO GDELTGDELTGDELT

MRR Hits@3 Hits@10 MRR Hits@3 Hits@10 MRR Hits@3 Hits@10 MRR Hits@3 Hits@10 MRR Hits@3 Hits@10

Static DistMult [26] 9.72 10.09 22.53 13.86 15.22 31.26 27.96 32.45 39.51 44.05 49.70 59.94 8.61 8.27 17.04

R-GCN [18] 15.03 16.12 31.47 15.05 16.49 29.00 13.96 15.75 22.05 27.43 31.24 44.75 12.17 12.37 20.63

ConvE [4] 21.64 23.16 38.37 22.56 25.41 41.67 26.41 30.36 39.41 41.31 47.10 59.67 18.43 19.57 32.25

RotateE [20] 9.79 9.37 22.24 11.63 12.31 28.03 26.08 31.63 38.51 42.08 46.77 59.39 3.62 2.26 8.37

Temporal TA-DistMult [5] 11.29 11.60 23.71 15.62 17.09 32.21 26.44 31.36 38.97 44.98 50.64 61.11 10.34 10.44 21.63

HyTE [2] 7.72 7.94 20.16 7.41 7.33 16.01 25.40 29.16 37.54 14.42 39.73 46.98 6.69 7.57 19.06

dyngraph2vecAE [7] 6.95 8.17 12.18 1.36 1.54 1.61 2.67 2.75 3.00 0.81 0.74 0.76 4.53 1.87 1.87

EvolveGCN [16] 8.32 7.64 18.81 10.31 10.52 23.65 27.19 31.35 38.13 40.50 45.78 55.29 6.54 5.64 15.22

Know-Evovle [21] 0.05 0.00 0.10 0.11 0.00 0.47 0.03 0.00 0.04 0.02 0.00 0.01 0.11 0.02 0.10

Know-Evolve+MLP [21] 16.81 18.63 29.20 7.41 7.87 14.76 10.54 13.08 20.21 5.23 5.63 10.23 15.88 15.69 22.28

DyRep+MLP [22] 17.54 19.87 30.34 7.82 7.73 16.33 10.41 12.06 20.93 4.98 5.54 10.19 16.25 16.45 23.86

R-GCRN+MLP [19] 21.39 23.60 38.96 23.46 26.62 41.96 28.68 31.44 38.58 43.71 48.53 56.98 18.63 19.80 32.42

CyGNet [28] 22.83 25.36 39.97 25.43 28.95 43.86 33.89 36.10 41.86 52.07 56.12 63.77 18.05 19.11 31.50

RE-Net [9] 23.91 26.63 42.70 26.81 30.58 45.92 31.55 34.45 42.26 46.37 51.95 61.59 19.44 20.73 33.81

xERTE [8] 23.92 27.30 39.54 27.14 31.08 43.31 70.52 75.01 76.46 84.12 88.62 89.90 21.21 22.93 26.60

EvoKG [17] 27.18 30.84 47.67 29.28 33.94 50.09 68.03 79.60 85.91 68.59 81.13 92.73 19.28 20.55 34.44

SWGAT (our) 27.8127.8127.81 31.7531.7531.75 43.84 30.1530.1530.15 35.1235.1235.12 47.54 82.7682.7682.76 84.4484.4484.44 86.8386.8386.83 87.6387.6387.63 90.5290.5290.52 91.25 22.1022.1022.10 24.5424.5424.54 36.4936.4936.49

4.2 Results on TKG Reasoning

Table 1 summarizes the time-aware filtered results of link prediction task on
the ICEWS14, ICEWS18, WIKI, YAGO,and GDELT datasets. The bench-
mark results are obtained from [17]. Our model outperforms basically all base-
line methods on different datasets. Compared with the best benchmark model
EvoKG [17], our model achieves 2.3% and 2.8% improvement in MRR and
Hits@3 on the ICEWS14 dataset, 3% and 3.5% improvement in MRR and Hits@1
on the ICEWS18 dataset, 21.6%, 6% and 1.1% improvement in MRR, Hits3 and
Hits10 on the WIKI dataset, 27.7% and 11.6% improvement in MRR and Hits3
on the YAGO dataset, 14.6%, 19.5% and 5.9% improvement in MRR, Hits3 and
Hits10 on the GDELT dataset, respectively. And our model significantly outper-
forms all other benchmark methods on all metrics, indicating that learning time
series and directly related spatio-temporal neighbors can help the model find
correct target nodes. In particular, on the YAGO dataset, it is 4.2% and 27.7%
higher MRR than xERTE [8] and EvoKG [17], respectively, probably due to the
fact that the YAGO dataset contains events that occur with relative regular-
ity and have a small number of neighbouring entities, which allow SWGAT to
find target entities quickly and accurately. Among the benchmark methods, the
static methods have relatively poor performance because they do not consider
temporal information.
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4.3 Ablation Study

To evaluate the effectiveness of SWGAT, we conduct ablation studies on dataset
ICEWS18.

Impact of Two Components. To verify the importance of each component of
SWGAT, we mask the saptio-temporal random walk and the TRGAT module,
respectively. The experimental results are shown in Fig. 3. We find that the
spatio-temporal walk component has a considerable impact on the performance
of the model. From the results, we can obtain that SWGAT performs better
than when the two components act alone, which suggests that SWGAT can
integrate the properties of the two components, i.e., exploration of temporal
evolution and structural features.

Embedding Size. We set the embedding size (both temporal and structural
embedding) to 100, 200, 300, and 400. As shown in the Fig. 4, the best results
on ICEWS18 dataset are achieved with embedding size 200. However, a larger
embedding size, such as 400, will hurt the performance, probably because too
large dimensions can lead to overfitting.

Number of Walks. Figure 5 shows the performance of three evaluation met-
rics on the ICEWS18 dataset with different number of walks. We observe that
the performance increases as the number of walks increases. However, the per-
formance is close to the saturation state when the number of walks reaches 20,
i.e., only a small improvement in performance can be obtained regardless of the
increase in the number of walks.

Inductive Link Prediction. As time evolves, new nodes may appear, such as
new users or new posts. Therefore, a good model should have good inductive
representation capability to cope with unseen entities. For example, in the test
set of ICEWS14, we have a quadruple (Mehdi Hasan, Make an appeal or request,
Citizen(India), 2014-11-12). The entity Mehdi Hasan does not appear in the
training set, which means that the quadruple contains an entity that the model
does not observe in the training phase. Specifically, we divide the test dataset

Table 2. Experiments results for inductive link prediction on ICEWS18 datasets.
Hits@N values are in percentage. The best score is in BoldBoldBold and the second is underlined.

Methods ICEWS18 test set (Mixed entities)ICEWS18 test set (Mixed entities)ICEWS18 test set (Mixed entities) ICEWS18 test set (seen entities)ICEWS18 test set (seen entities)ICEWS18 test set (seen entities) ICEWS18 test set (unseen entities)ICEWS18 test set (unseen entities)ICEWS18 test set (unseen entities)

Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CyGNet [28] 25.43 16.09 28.95 43.86 26.37 16.68 30.05 45.51 2.08 1.18 1.99 3.45

RE-Net [9] 26.81 17.6 30.58 45.92 27.22 17.29 31.04 46.61 2.19 1.15 2.28 3.84

xERTE [8] 27.14 19.64 31.08 43.31 28.01 19.93 32.12 44.92 6.96 4.82 6.45 8.57

EvoKG [17] 29.28 19.02 33.94 50.09 30.39 19.58 35.16 51.83 4.13 2.71 4.45 6.34

SWGAT 30.15 21.52 35.12 47.54 31.24 22.14 36.33 49.67 7.52 6.01 8.52 10.68
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Fig. 3. Time-aware filtered metrics of
SWGAT with or without the TRGAT
module on ICEWS18.

Fig. 4. Embedding Size.

Fig. 5. Number Walks. Fig. 6. Training Time Cost.

into three categories, seen entities, unseen entities and mixed entities (containing
both seen and unseen entities), and the results are shown in Table 2. We find that
our proposed method SWGAT achieves optimal performance on all evaluation
metrics, showing the good performance of our model SWGAT on inductive link
prediction.

Time Cost. It is important to get strong performance while keeping the train-
ing time short on the model. To investigate the balance between accuracy and
efficiency of SWGAT, we report the total training time for convergence of our
model and four benchmarks on Fig. 6. We find that although Re-Net [9] is one
of the strongest performance baselines, it takes almost 13 times longer to train
compared with CyGNet [28] and xERTE [8]. Whereas our model ensures shorter
training time while maintaining state-of-the-art performance for the extrapola-
tion problem, which shows the superiority of our model.
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5 Conclusions

Representing and reasoning about temporal knowledge is a challenging problem.
In this paper, we propose a model for temporal graph prediction that learns
the evolution patterns of entities and relations over time and spatio-temporal
subgraph specific to the query entities and relations, respectively. Compared
with state-of-the-art methods, extensive experiments on five benchmark datasets
demonstrate the effectiveness of the model on the extrapolation problem. It is
necessary to study more efficient node/edge sampling strategies, because the
efficiency of the model is limited by the choice of nodes when the model is
extended to real-life temporal graph with tens of billions of nodes. Interesting
future work includes developing fast and efficient versions and applications in
streaming scenarios.
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