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Abstract. Robustness is urgently needed when neural network models
are deployed under adversarial environments. Typically, a model learns to
separate data points into different classes while training. A more robust
model is more resistant to small perturbations within the local micro-
sphere space of a given data point. In this paper, we try to measure
the model’s robustness from the perspective of data separability. We
propose a modified data separability index Mahalanobis Distance-based
Separability Index (MDSI), and present a new robustness evaluation
framework Separability in Matrix-form for Adversarial Robustness of
neTwork (SMART). Specifically, we use multiple attacks to find adver-
sarial inputs, and incorporate them with clean data points. We use MDSI
to evaluate the separability of the new dataset with correct labels and
the model’s prediction, and then compute a SMART score to show the
model’s robustness. Compared with existing robustness measurement,
our framework builds up a connection between data separability and the
model’s robustness, showing openness, scalability, and pluggability in
architecture. The effectiveness of our method is verified in experiments.

Keywords: Neural network robustness · Data separability ·
Adversarial inputs · MDSI · SMART

1 Introduction

Recent work has demonstrated that neural networks (NNs) are vulnerable to
adversarial examples: visually imperceptible perturbations that can mislead a
well-trained model [1]. Safety is always a relative concept under adversarial envi-
ronments. [2] suggests that the existence of adversarial examples is an inevitable
part of the network architecture and an inherent weakness of network models.
It is necessary to measure and improve the robustness of different models to
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adversarial examples and mitigate the risks caused by the adversary. Currently,
many robustness measurements focus on the success rate of attacks and the min-
imal distortion to successfully generate adversarial examples, few consider data
separability when measuring robustness.

Separability is an intrinsic characteristic of a dataset. It describes how data
points of different labeled classes are mixed together. Typically, a model learns
to classify data points into different categories while training. The separability
difference between the original dataset and the adversarial dataset can reflect the
performance of models trained on them. [3] created a model-agnostic separability
index called Distance-based Separability Index (DSI). It uses Euclid distance as
its distance metric to measure how far data points are from each other.

In this work, we modify DSI and apply data separability to robustness evalua-
tion. First, we propose Mahalanobis Distance-based Separability Index (MDSI),
a modification of DSI that uses Mahalanobis distance as its metric and consid-
ers the correlation between different dimensions of a dataset when measuring
separability. For a given dataset, we use different attack techniques to general
some adversarial examples and mix them with the original clean examples to
form a new dataset. The new dataset with correct labels and model’s predicted
labels show difference in separability. We use MDSI to reflect the difference and
construct our robustness evaluation framework termed Separability in Matrix-
form for Adversarial Robustness of neTwork (SMART). We highlight our main
contributions in this paper as follows:

– We propose a data separability metric called MDSI. It shows the overall sep-
arability of a given dataset. In practice, we us e partitioned matrix operations
to optimize the efficiency of computing MDSI.

– We introduce SMART, a robustness evaluation framework for neural network
models. SMART measures model’s robustness by comparing MDSI results on
a new dataset consisting of clean data points and adversarial examples against
the model. Our framework is scalable and shows flexibility in the choice of
attacks and the proportion of adversarial examples generated.

– We use SMART and some mainstream metrics to evaluate the robustness of
several state-of-the-art NN models. The results verify the effectiveness of our
SMART framework.

2 Related Work

2.1 Adversarial Examples

A counter-intuitive property of neural networks found by [1] is the existence of
adversarial examples, a hardly perceptible perturbation to a clean image can
cause misclassification. [4] observes that the direction of perturbation matters
most and proposes the Fast Gradient Sign Method (FGSM) to generate adver-
sarial examples. Basic Iteration Method (BIM) [5] is an extension of FGSM by
applying a smaller step size. Jacobian Saliency Map-based Attack (JSMA) [6]
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only modifies a limited amount of pixels of input to search for adversarial exam-
ples. DeepFool [7] uses geometry concepts as its guide for search. C&W attack
[8] formulates finding adversarial examples as a distance minimization problem
and can find adversary with a significantly smaller perturbed distance.

On the opposite side of adversarial attacks, many defense techniques have
been proposed to identify or reduce adversarial examples. There is an arms
race between attacks and defenses. Adversarial training can improve robustness
by retraining the model on adversarial examples [4]. It is by far the strongest
empirical defense. There is no defense technique that is effective to all attacks.

2.2 Robustness Evaluation

Adversarial robustness is defined as the performance of a neural network model
facing adversarial examples [9]. Some research formalizes their notion of robust-
ness by giving their own definitions, including point-wise robustness [10], local
robustness [11] and categorial robustness [12]. The core is when input changes
within a small range, the output of a robust model shouldn’t show large fluctu-
ation. The evaluation of robustness can be achieved from different perspectives.

Accuracy. Model’s accuracy on adversarial examples is the direct indicator of
robustness. Model’s accuracy on clean examples also reflects its performance and
generalization. For convenience, we refer to the latter one as Nature Accuracy
(NA).

Minimal Distortion Radius. The minimal distortion radius represents the
range of adversarial perturbation for generating successful adversarial examples.
In general, a model with a larger radius suggests higher adversarial robustness.

An upper bound of the radius is usually computed via some attacks and
its tightness depends on the effectiveness of the attack [8]. We name the upper
bound found by PGD attack as Empirical Radius (ER).

A lower bound is usually provided by certified methods, it guagrantees that
the model is robust to any perturbations smaller than it. [13] proposed an attack-
independent robustness metric CLEVER to gain a lower bound. However, [14]
pointed out that gradient masking can misguide CLEVER to overestimation.
Later discussion demonstrated that CLEVER can handle gradient masking prob-
lems [15].

2.3 Separability Index

Separability is an inherent characteristic of a dataset which measures the rela-
tionship between classes. [3] created Distance-based Separability Index (DSI) as
a novel separability measure. It represents the universal relations between the
data points in a dataset. A higher DSI score indicates that the dataset is easier
to separate into different classes. When the DSI score is close to zero, it means
that different classes of data have nearly identical distribution and are the most
difficult to separate.
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3 Method

In 3.1, we discuss about the relationship between model’s robustness and data
separability. On the basis of previous work on DSI mentioned in 2.3, we introduce
a modified separability measure named MDSI in 3.2. In 3.3, we apply data sepa-
rability to model’s robustness evaluation and present our robustness evaluation
framework SMART.

3.1 Model’s Robustness and Data Separability

Given a NN model and its input space X , let δ be the minimal distortion required
to craft an adversarial example x′ from a clean one x. Larger δ indicates that
model is more robust around x. Consider the following two scenarios.

– Scenario I: In X , only a few data points have relatively small δs.
– Scenario II: In X , many data points have relatively moderate δs.

Robustness evaluation metrics that seek the bound of the minimal distortion
radius focus on a single data point in the dataset at a time. These metrics
often find models in Scenario I less robust because they have smaller minimal
distortion radius. It is questionable because models in Scenario I generally work
well when these few unrobust points are filtered out, while models in scenario II
need to be strenghened at many unrobust locations before deployment.

Our method explores a novel approach based on data separability that simul-
taneously considers all data points in the dataset when evaluating robustness,
and can reflect the overall robustness of neural network models.

3.2 The Separability Index MDSI

We propose Mahalanobis Distance-based Separability Index (MDSI) as a mod-
ification of DSI mentioned in 2.3. Intuitively, MDSI uses Mahalanobis distance
as its distance metric, which has wide applications in image processing [19] and
neurocomputing [18] areas.

Mahalanobis distance is unitless, scale-invariant, and takes the correlations
of the dataset into account [16], and can better reflect the overall data sepa-
rability when applied in MDSI. It requires to pass through all variables in the
dataset to compute the underlying inter-correlation structure, so it is usually
computationally more expensive than Euclidean distance [17].

Following are the steps to compute MDSI. Given a dataset X and two points
p, q ∈ X , let S be the covariance matrix of the dataset, dM be the Mahalanobis
distance between p and q:

dM = dM(p,q) =
√

(p − q)TS−1(p − q) (1)

First, consider two classes Xm,Xn ⊂ X that satisfy Xm

⋂ Xn = ∅, they have
the same distribution and sufficient data points. The Intra-class Mahalanobis
Distance (IMDm) set contains dM between any two points in the same class Xm.

IMDm = {dM(xi,xj) | xi, xj ∈ Xm ;xi �= xj} (2)
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The Between-class Mahalanobis Distance (BMDm,n) set contains dM between
any two points that are from different classes Xm,Xn.

BMDm,n = {dM(xi,xj) | xi ∈ Xm ;xj ∈ Xn} (3)

The Kolmogorov-Smirnov (KS) test quantifies a distance between the empir-
ical distribution functions of two samples. Compared with other data distribu-
tion measures like Kullback-Leibler divergence, Jensen-Shannon divergence, and
Wasserstein distance, KS test works when the samples have different number of
points and is more sensitive when measuring separability [3].

MDSI uses KS test to examine the similarity of the distributions of IMD and
BMD sets. Consider a n-class dataset X , its subset Xi,Xī satisfies Xi

⋂ Xī =
∅,Xi

⋃ Xī = X . The MDSI score of X is defined as:

MDSI(X ) =
1
n

n∑
i=1

KS(IMDi,BMDīi) (4)

X has the lowest separability when the distributions of the IMD and BMD
sets are nearly the same, and it shows the lowest MDSI score.

Advantages of MDSI. We using the sklearn.datasets.make blobs function in
Python to create eight two-class and five-class datasets and compare their DSI
[3] and MDSI. Each dataset has 1000 data points and one cluster center per
class, the Standard Variation (SD) of the clusters is set between 1 and 8. The
results are shown in Fig. 1.

Fig. 1. DSI and MDSI scores on n-class datasets with different SDs.

As SD increases, the distributions of different classes overlap more and more,
DSI and MDSI show the same downward trend, which is in line with our per-
ception. The curves in (a) almost overlap, because the dimension is low and the
correlation between dimensions is not obvious. In (b), the curves of MDSI is
lower, indicating that when the class increases, the effect of dimensional correla-
tion begins to appear, and the separability exhibited by MDSI is more realistic.

The comparison of the two experimental results shows that when the feature
dimension of the dataset increases, the correlation between them has a greater
impact on MDSI, and the difference between DSI and MDSI is more obvious. We
consider MDSI to be a better separability metric because it takes into account the
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influence of the dimensional correlation of the dataset and can more realistically
reflect the overall data separability.

Here are some optimizations we made to the calculation of MDSI. The time
cost for computing IMD and BMD sets increases quadratically with the number
of data points. [3] encountered a similar problem and suggested that random sam-
pling can reduce time cost without significantly affecting the results. However,
we think their approach has its inherent defect. We optimize the computation
of IMD, BMD, and MDSI by introducing partitioned matrix operation.

Small Batch. First, we apply the idea of training a neural network in small
batches to the generation of BMD sets. Choosing an appropriate batch size can
avoid out-of-memory issues no matter how large the dataset grows.

Partitioned Matrix Operation. By converting raw data points into matrices,
we can use CUDA to speed up matrix operations and reduce the time cost.
The operation is shown in Fig. 2. Xi is a class of dataset X where Xi

⋂Xī =
∅,Xi

⋃ Xī = X . The number of data points in Xi,Xī are M and N . The feature
dimension of each point is F . When the covariance matrix S of the dataset is
not full rank, it will be replaced by its pseudo-inverse matrix. P = PM×F =
(P1, . . . , PM )T and Q = QN×F = (Q1, . . . , QN )T are two input matrices, each
row represents a data point.

Fig. 2. The matrix operations in computation of IMD and BMD sets.

Take any row Pi and Qj for example, their Mahalanobis distance is

dM(Pi,Qj) =
√

PiS−1PT
i − QjS−1PT

i − PiS−1QT
j + QjS−1QT

j (5)

There are four matrix multiplication operations in the above formula. Extend
the above formula to all data points, we get the distance matrix D2 = BMDīi

of size M × N . In a distance matrix, each element dij represents a distance. D2

can still be regarded as a combination of four matrix multiplication operations.

D2 =
√

M1 − (QS−1PT )T − PS−1QT + M2 (6)
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In Formula 6, M1 and M2 are two M×N matrices. First take out the diagonal
elements of the M × M matrix PS−1PT and get a M × 1 vector, then replicate
and extend it to a M × N matrix M1. Similarly, replicate the N × 1 vector
consisting of the diagonal elements of matrix QS−1QT , extend it to a N × M
matrix which is the transpose of M2. All elements in D2 form the BMDīi set.

The distance matrix D1 = IMDi =
√

2 · M3 − 2 · PS−1PT is a symmetric
matrix, only elements in its strictly lower triangular matrix is needed to form
the IMDi set. M3 can be obtained in the similar way as M1 and M2.

When the size of the input matrices P or Q is too large, we use the combi-
nation of small batch and matrix operation (i.e. partitioned matrix operation)
for optimization. The above operations still apply to partitioned matrices.

We verified our optimization on Google Colab and the results show signifi-
cant improvement. Computing MDSI on MNIST is almost 200 times faster, the
calculation time reduced from 3387.79 s to 17.76 s. When we set partition size
to 5000, the calculation time is 17.88 s, almost the same. The results indicate
that matrix operation is far more efficient and small batch can solve the out-of-
memory problem without significantly affect performance. For convenience, the
default partition size is set to 10000, and partition matrix operations are applied
when more samples are added.

3.3 The Robustness Evaluation Framework SMART

In this section, we combine MDSI and neural network models. We evaluate the
model’s robustness by measuring the separability difference between the datasets
with correct labels and with model predicted labels.

Figure 3 shows the evaluation process for our framework SMART. We com-
bine the standard and adversarial test sets into a new dataset. The score MDSI0
of the new dataset with correct labels is considered as the separability reference
result. The score MDSI1 of the new dataset with model predicted labels is con-
sidered as the separability measurement result. We can use these two MDSIs to
calculate the final SMART score that represents the model’s robustness.

Fig. 3. The robustness evaluation framework SMART.

Attack DB. A flexible and critical component of our framework is the Attack
Database (Attack DB). The idea is to put some typical attacks in the DB and
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mix the generated adversarial examples with clean examples in appropriate pro-
portions. In practice, FGSM [4], BIM [5], PGD [2], DeepFool [7] and C&W [8]
are selected to join the Attack DB.

The proportion K of adversarial examples generated by different attacks in
attack database A is basically an empirical parameter, which can be tuned by
researchers using SMART. We think attacks with high time complexity should
generate fewer samples. In practice, we use the time T for the attacks in A
to generate the same number of adversarial examples on the same dataset as a
reference for time complexity, and use it to determine the proportion K. Different
ai, aj ∈ A may vary widely in ti, tj ∈ T , so the relationship between ki, kj ∈ K
is determined by ki/kj = log tj/ log ti.

SMART Formula. We expect to create a formula that utilizes the difference
of the separability reference result MDSI0 and measurement result MDSI1 to
reflect robustness. Through observation, we preset the following three formulas:

y1 = 2 − MDSI1
MDSI0

, y2 = tanh(y1), y3 = Sigmoid(y1) =
1

1 + e−y1
(7)

Intuitively, higher SMART score represents a more robust model. We experi-
mented with the above formulas using the configuration in 4.1. Their curves are
in line with the expected trend, suggesting their validity in representing robust-
ness. Among them, y3 is more sensitive to changes and its results are normalized.
We determine the final SMART score as y = y3 = Sigmoid(2 − MDSI1/MDSI0)
and present the results in 4.1.

Algorithm 1 summarizes the process of calculating SMART scores.

Algorithm 1: SMART score
Input: Dataset X and corresponding label C, model f , attack database A and

proportion K, total number of attacks n, SMART formula y.
Output: SMART score ρ.

1 ρ = 0;
2 calculate the model’s predicted labels Y = f(X) on the clean dataset X;
3 for i ← 1 to n do
4 use ai ∈ A to generate corresponding adversarial examples X ′

i = ai(f, X);
/* | � | represents the total number of elements in set � */

5 use ki ∈ K to randomly choose X ′′
i ⊆ X ′

i that satisfies |X ′′
i | = ki · |X ′

i|;
6 calculate the predictions Y ′′

i = f(X ′′
i ) and correct labels C′′

i on X ′′
i ;

7 combine X, X ′′
i and compute their separability MDSI0 under labels C, C′′

i ;
8 combine X, X ′′

i and compute their separability MDSI1 under labels Y, Y ′′
i ;

9 ρ = ρ + y(MDSI0, MDSI1);
10 i=i+1;

11 end
12 return ρ = ρ/n
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4 Experiments

In this section, we make some experiments to demonstrate the sensitivity and
validity of SMART in 4.1, and compare SMART with existing robustness eval-
uation metrics in 4.2.

For evaluation purposes, we implemented Algorithm 1 as a proof-of-concept
tool, which is written in Python 3.8 and uses the PyTorch frameworks. All exper-
iments mentioned in this section were run on the Google Colab environment.

4.1 The Validity of SMART

The upper limit of perturbation ε is set between 0 and 1 in increments of Δ = 0.1.
We compute the SMART scores of an AlexNet pre-trained on MNIST (nature
accuracy 99.19%) under different ε and present the results in Table 1.

Table 1. The SMART scores of a pre-trained AlexNet under different ε

ε 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SMART 0.721 0.626 0.550 0.527 0.494 0.469 0.464 0.459 0.457 0.433

A larger ε indicates that larger perturbations may appear, and the probabil-
ity of misclassification will increase accordingly. For the same model, when the
perturbation gradually increases, it will appear to be less robust. As shown in
Table 1, the SMART score of the AlexNet decreases as ε increases, which verifies
the validity of SMART.

When ε is fixed, a more robust model will have more similar MDSI0 and
MDSI1 with its SMART score closer to 1, a less robust model will have a SMART
score farther from 1. SMART is more sensitive when ε ≤ 0.5.

4.2 SMART and Mainstream Robustness Metrics

We further experiment on the MNIST and CIFAR-10 (CIFAR for short) datasets,
comparing SMART and mainstream robustness metrics, including Natural Accu-
racy (NA), Empirical Radius (ER), and CLEVER score mentioned in 2.2.

Table 2. Robustness evaluation results on MNIST.

NA(%) ER(×10−4) CLEVER SMART

Std Adv Std Adv Std Adv Std Adv

LeNet-5 99.22 99.00 1.202 1.467 0.185 0.237 0.583 0.728

AlexNet 99.29 98.85 1.192 1.232 0.319 0.362 0.689 0.726
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ER represents the upper bound of the minimal perturbation computed by
attacks under the l2 norm. CLEVER is set according to the original paper [8]
where the sampling parameters batch size Nb = 500, the number of samples per
batch Ns = 1024, the maximum perturbation R = 2 under l2 norm and 100
test-set images for CIFAR and MNIST.

On MNIST, we evaluate these metrics on relatively small models Lenet-5 and
AlexNet. Each model has a standard trained version (Std) and an adversarial
trained version (Adv). The Adv models are enhenced via PGD [2] adversarial
training with ε = 0.3, α = 0.1, iteration = 40 and random initiation.

The evaluation results are shown in Table 2. The change in natural accuracy
shows that adversarial training slightly reduces the generalization ability of the
model. ER and CLEVER show that adversarial training indeed makes the model
more robust, showing higher scores. Comparing the SMART scores of the Std and
Adv columns, the results show that the robustness of both models is improved
after PGD adversarial training.

Table 3. Robustness evaluation results on CIFAR-10.

NA(%) ER CLEVER SMART

Std Adv Std Adv Std Adv Std Adv

LeNet-5 63.82 62.58 0.07255 0.07279 0.0726 0.0875 0.2560 0.2610

ResNet-18 78.49 72.14 0.07278 0.07283 0.0181 0.0466 0.2558 0.2830

SqueezeNet 79.8 77.25 0.07273 0.07294 0.013 0.0603 0.2429 0.2653

VGG-16 81.93 74.51 0.07266 0.07298 0.0118 0.2271 0.2533 0.2746

AlexNet 82.94 77.99 0.07277 0.07281 0.0718 0.1682 0.2552 0.2602

DenseNet-121 89.42 70.87 0.07285 0.07311 0.0409 0.1837 0.2507 0.2855

On CIFAR-10, we additionally evaluate four other models VGG-16,
DenseNet-121, ResNet-18 and SqueezeNet, the results are shown in Table 3. Both
ER and CLEVER show that adversarial training improves the robustness of the
models, although the changes in ER are very slight. The SMART scores of the
Adv models are higher than those of Std models, which can reflect the changes
in robustness of a single model unfer different training methods. Comparing
SMART scores between different models under the same training method, the
results in the last two columns show that after adversarial training, DenseNet
and ResNet are more robust.

The above experiments verify that SMART is a reliable robustness evaluation
framework, which matches well with mainstream robustness metrics such as ER
and CLEVER on various models. Now we discuss the advantages of SMART
over these attack-based or certification metrics.

SMART and Attacks. In theory, adversarial attacks developed to search for
anti-robust perturbations of models around data points can only optimize to
some local minima. In a sense, the attack-based method ER can only achieve
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partial guarantees. Thus, a holistic robustness evaluation method is expected
to be developed to reflect a more comprehensive robustness distribution in the
input space. Compared to adversarial attacks that seek the upper bound of local
minimal perturbations, SMART exploits all the anti-robust perturbations found
by tools in the Attack DB and reflects the overall robustness of neural networks.

SMART and Certifications. CLEVER is an attack-agnostic robustness met-
ric to estimate a lower bound of the minimal perturbation, which transforms the
robustness evaluation process into a local Lipschitz constant estimation problem
and applies the extreme value theory to solve it. While certification methods
such as CLEVER and randomized smoothing can provide lower bound guaran-
tees, SMART can be used to measure the overall robustness explored by Attack
DB. Its evaluation results for a single model are as effective as the mainstream
robustness evaluation metrics, and can also well reflect the robustness differences
between different models.

Moreover, many current and future adversarial methods can be plugged into
our attack library, Attack DB, according to the evaluation process in Fig. 3.
Our proposed data separability index MDSI enables reasonable integration of
all generated adversarial data. Therefore, SMART can be used as an open and
pluggable framework to evaluate robustness.

5 Conclusion

In this paper, we propose SMART, a novel robustness evaluation framework for
NN models. The main advantages of SMART over mainstream robustness evalu-
ation methods are: (i) we develope a data separability index MDSI, which allows
SMART to evaluate robustness more stably and suitably from the perspective
of the overall dataset separability; (ii) we use partitioned matrix operations to
significantly reduce the computation time of SMART and fix the out-of-memory
issue; (iii) the Attack DB in SMART is open to accommodate a wide variety of
adversarial methods, which makes our framework expandable.

Currently, the applicability of SMART has been verified with extensive exper-
iments on datasets including MNIST and CIFAR-10 and on models including
LeNet-5, AlexNet, ResNet-18, SqueezeNet, VGG-16, and DenseNet-121. The
results show that SMART scores match and outperform mainstream robust-
ness metrics when evaluating both natural and defended models. We plan to
extend our work to ImageNet in future work.
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