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Abstract. The dual neural network-based (DNN) k-winner-take-all
(kWTA) model is one of the simplest analog neural network models
for the kWTA process. This paper analyzes the behaviors of the DNN-
kWTA model under these two imperfections. The two imperfections are,
(1) the activation function of IO neurons is a logistic function rather than
an ideal step function, and (2) there are multiplicative Gaussian noise in
the inputs. With the two imperfections, the model may not be able to
perform correctly. Hence it is important to estimate the probability of the
imperfection model performing correctly. We first derive the equivalent
activation function of IO neurons under the two imperfections. Next, we
derive the sufficient conditions for the imperfect model to operate cor-
rectly. These results enable us to efficiently estimate the probability of
the imperfect model generating correct outputs. Additionally, we derive a
bound on the probability that the imperfect model generates the desired
outcomes for inputs with a uniform distribution. Finally, we discuss how
to generalize our findings to handle non-Gaussian multiplicative input
noise.

Keywords: DNN-kWTA · Logistic activation function · Threshold
logic units (tlus) · Multiplicative Input Noise

1 Introduction

The goal of the winner-take-all (WTA) process is to identify the largest number
from a set of n numbers [1]. The WTA process has many applications, including
sorting and statistical filtering [2,3]. An extension of the WTA process is the
k-winner-take-all (kWTA) process [4,5], which aims to identify the k largest
numbers from the set. From the dual neural network (DNN) concept, Hu and
Wang [5] proposed a low complexity kWTA model, namely DNN-kWTA. This
model contains n input-output (IO) neurons, one recurrent neuron, and only
2n + 1 connections.
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For ideal realization, the activation function of IO neurons should behave
like a step function and there are no noise in the inputs. However, for circuit
realization, the activation function often behaves like a logistic function [6,7].
In addition, the operation of IO neurons may be affected by random drifts and
thermal noise [8–10].

These two imperfections can affect the functional correctness. In [11,12],
Sum et al. and Feng et al. presented the analytical results of a noisy DNN-
kWTA network, including the convergence and the performance degradation.
However, Also, those results are based on the assumption that the noise are
additive. In some situations, noise level are proportional to the signal levels. For
instance, when we amplify the signal, the noise are amplified too. Hence, it is
more suitable to use the multiplicative noise model to describe the behavior of
the input noise [13,14].

This paper analyzes the imperfect DNN-kWTA model with non-ideal acti-
vation function and existence of multiplicative input noise. We first assume that
the multiplicative input noise are zero mean Gaussian distributed and then per-
form the analysis. Afterwards, we generalize our result to the non-Gaussian input
noise. We derive an equivalent model to describe the behaviour of the imperfect
DNN-kWTA model. From the equivalent model, we derive sufficient conditions
to check whether the imperfect model can generate the desired results or not.
We can use this condition to study the probability of the model generating cor-
rect outputs without simulating the neural dynamics. For uniformly distributed
inputs, we derive a lower bound formula to estimate the probability that the
imperfect mode can generate the correct outputs. Finally, we generalize our
results to the non-Gaussian multiplicative input noise case.

This paper is organized as follows. Section 2 presents the background of the
DNN-kWTA model. Section 3 studies the properties and performance of the
DNN-kWTA models under the two imperfections. Section 4 extends the result
to the non-Gaussian input noise case. Experimental results are shown in Sect. 5.
Section 6 summarizes our results.

Fig. 1. Structure of a DNN-kWTA network.

2 Basic DNN-kWTA

Figure 1 illustrates the DNN-kWTA structure, which consists of a recurrent
neuron and n input-output (IO) neurons. The state of the recurrent neuron
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is denoted as y(t). Each of the IO neurons has an external input, denoted as
{u1, , un}. It of them is associated an output, denoted as xi. All inputs ui are
distinct and range from 0 to 1. In the context of the DNN-kWTA model, the
recurrent state y(t) is governed by

ε
dy(t)
dt

=
n∑

i=1

xi (t) − k, where xi(t) = h(ui−y (t)) and h(ϕ)=
{

1 if ϕ ≥ 0,
0 otherwise.(1)

where ε is the characteristic time constant, which depends on the recurrent
neuron’s capacitance and resistance. In (1), h(·) denotes the activation function
of IO neurons. In the original DNN-kWTA model, h(·) is an ideal step function.
A nice property of the DNN-kWTA model is that its state converges to an
equilibrium state in finite time. At the equilibrium state, only the IO neurons
with the k largest inputs produce outputs of 1. All other neurons produce outputs
of 0.

3 Logistic DNN-kWTA with Input Noise

3.1 DNN-kKWTA Under Imperfection

In realization, the activation function of IO neurons often resembles a logistic
function [6], and noise is unavoidable in analog circuits. This paper considers
the coexistence of these two imperfections in the DNN-kWTA model. The first
imperfection is that the activation function is a logistic function, given by

hα(ϕ) =
1

1 + e−αϕ
, (2)

where α is the gain factor. Also, there are multiplicative noise at the inputs of
IO neurons. That is, the noisy inputs are given by

ui + εi (t) ui, (3)

where εi (t)ui is the input noise for the i-th input. In this model, the noise level
depends the normalized noise εi (t), as well as input ui. In this paper, we assume
that εi (t)’s are Gaussian distributed with zero mean and variance of σ2.

With the two imperfections, the behaviour of the DNN-kWTA can be
described as

dy(t)
dt

=
n∑

i=1

x̃i(t) − k, (4)

x̃i(t) = hα(ui + uiεi (t) − y (t)), (5)

hα (ϕ′
i) =

1
1 + e−αϕ′

i

, where ϕ′
i = ui + uiεi (t) − y (t) . (6)

In the presence of noise in the inputs, the outputs x̃i(t) may change with time.
Therefore, for the DNN-kWTA model with input noise, it is necessary to take
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multiple measurements of the outputs of IO neurons to obtain the average output
values as the neurons’ outputs.

Figure 2 illustrates the effect of non-activation function and multiplicative
Gaussian noise. In the first case, as shown in Fig. 2(a), When the gain factor is
large enough and the noise variance is small, the recurrent state converges to
around 0.5299 and thus the outputs of the network are correct. When the gain
parameter α is reduced to 15, the recurrent state converges to 0.5145 and thus
the outputs are incorrect, as shown in Fig. 2(b). If we increase the noise level to
0.2, the recurrent state converges to 0.5164 and thus the outputs are incorrect
too, as shown in Fig. 2(c). Clearly, the gain parameter value α and the noise
level σ2 can affect the operational correctness.
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Fig. 2. The dynamics of the recurrent state in a DNN-kWTA with n = 5 and k = 3.
The inputs are {u1, · · · , u5} = {0.54, 0.61, 0.52, 0.55, 0.51}. (a) Gain α = 100 and noise
level σ = 0.02. At the equilibrium, the recurrent state converges to 0.5299 and thus
the outputs are {x1, · · · , x5} = {0.744, 0.999, 0.273, 0, 0.867, 0.137}. Clearly, only x1,
x2 and x4 are greater than 0.5, and the outputs are correct. (b) Gain α = 100 and
noise level σ = 0.2. At the equilibrium, the recurrent state is 0.5145, the outputs are
{x1, · · · , x5} = {0.592, 0.818, 0.528, 0, 0.587, 0.491} and they are incorrect. (c) Gain
α = 15 and noise level σ = 0.02. At the equilibrium, the recurrent state is 0.5164.
Thus, final outputs are {x1, · · · , x5} = {0.591, 0.806, 0.503, 0, 0.632, 0.485} and they
are incorrect.

3.2 Equivalent Model

This subsection derive a model to simulate the dynamic behaviour of the model
under the two imperfections. We use the Haley’s approximation for the Gaussian
distribution [15].

Lemma 1. Haley’s approximation: A logistic function 1
1+e−ρz can be model by

the distribution function of Gaussian random variables, given by

1
1 + e−ρz

≈
∫ z

−∞

1√
2π

e− v2
2 dv. (7)

where ρ = 1.702.

From Lemma 1, the equivalent dynamics can be described by Theorem 1.
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Theorem 1. For the imperfect DNN-kWTA model with the two mentioned
imperfections, we can use the following equations to describe its dynamic
behaviour, given by

dy(t)
dt

=
n∑

i=1

x̄i(t) − k, (8)

x̄i(t) = hα̃i
(ui − y(t)), (9)

hα̃i
(ϕi) =

1
1 + e−α̃ϕi

, where α̃ =
1√

1
α2 + σ2u2

i

ρ2

and ϕi = ui − y (t) . (10)

Proof: From (4), the update of the recurrent state can be written as

y(t + δ)=y(t)+δ
dy(t)
dt

=y(t)+
∫ t+δ

t

dy(τ)
dτ

dτ =y(t)+

(
n∑

i=1

∫ t+δ

t

x̃i(τ)dτ −kδ

)
(11)

where δ is a small positive real number. The term
∫ t+δ

t
x̃i(τ)dτ can be expressed

as
∫ t+δ

t
x̃i(τ)dτ = lim

M→∞
ζM

∑M
j=1

x̃i(t+jζ)
M , where ζ × M = δ. We can further

rewrite
∫ t+δ

t
x̃i(τ)dτ as

∫ t+δ

t

x̃i (τ) dτ =δ × (mean of x̃i (t)) = δ × E [x̃i (t)]=δ × x̄i(t)=δ × E [hα (ϕ′
i)] ,

where ϕ′
i = ui +εi (t) ui −y (t) is the input of the i-th IO neuron. It contains the

noise component εi (t) ui. As εi (t) is zero mean Gaussian distributed, we have

E [hα(ϕ′
i)] =

∫ ∞

−∞

1
1 + e−α(ϕi+εiui)

× 1√
2πσ2

e− ε2i
2σ2 dεi,

where ϕi = ui − y (t). Furthermore, from Lemma 1,

E [hα (ϕ′
i)] =

∫ ∞

−∞

∫ ϕi

−∞

1√
2πη

e− (v+uiεi)
2

2η × 1√
2πσ2

e− ε2i
2σ2 dvdεi

=
1√
2πη

1√
2πσ2

∫ ∞

−∞

∫ ϕ

−∞
exp

(
− v2

2 (η + σ2u2
i )

)

× exp

⎛

⎜⎝−
(
εi + vuiσ

2

σ2u2
i +η

)2

2ησ2/ (σ2ui + η)

⎞

⎟⎠ dvdεi, (12)

where η = ρ2/α2. Taking the integration with respect to εi and applying
Lemma 1 again, we obtain

E[hα(ϕ′
i)] =

1
1 + e−α̃is

� x̄i(t) � hα̃i
(ϕi), (13)
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where ϕi=ui−y(t), η=ρ2/α2 and α̃i = 1√
1

α2+
σ2u2

i
ρ2

. Equation (11) can be rewritten

as

y(t + δ) = y(t) + δ(
n∑

i=1

x̄i(t) − k) = y(t) + δ
dy(t)
dt

. (14)

With (13) and (14), (4)–(6) can be written as

dy(t)
dt

=
n∑

i=1

x̄i(t) − k, (15)

x̄i(t) = hα̃(ui − y(t)), (16)

hα̃i
(ϕi) =

1
1 + e−α̃iϕi

, (17)

where α̃i = 1√
1

α2 +
σ2u2

i
ρ2

and ϕi = ui − y(t). The proof is completed. �

It is important to note that we are not proposing a new model. Introducing
the equivalent model, as stated in equations (15)–(17), helps us to analyze the
properties of the imperfect model.

From Theorem 1, a convergence result of the DNN-kWTA network with the
multiplicative Gaussian noise and non-ideal activation function is obtained. The
result is presented in Theorem 2.

Theorem 2. For the imperfect DNN-kWTA network, the recurrent state y(t)
converges to a unique equilibrium point.

Proof: Recall that dy
dt =

∑n
i=1

1

1+e−α̃i(ui−y) − k. For very large y, dy
dt = −k < 0.

For very small y, dy
dt = n − k > 0. Furthermore, it is worth noting that dy

dt is a
strictly monotonically decreasing function of y. Therefore, there exists a unique
equilibrium point y∗ such that dy

dt |y=y∗ = 0. Additionally, we can obtain the
following properties of the model:

if y(t) > y∗, then dy
dt < 0, and if y(t) < y∗, then dy

dt > 0.

Suppose that at time to, the recurrent state y(to) is greater than y∗. In this
case, we have dy

dt < 0, and y(t) decreases with time until it reaches y∗. On the
other hand, if at time to the recurrent state y(to) is less than y∗, then y(t) also
decreases with time until it reaches y∗. This completes the proof. �

Since the output x̄i(t) of the imperfect model is not strictly binary, we need
to introduce new definitions for “winner” neurons and “loser” neurons.

Definition 1. At the equilibrium, if x̄i ≥ 0.5, then we call the i-th IO neuron
is a winner. Otherwise, we call the i-th IO neuron is a loser.

There are some relationship among equilibrium point y∗, winners and losers.
The results are summarized in Theorem 3.
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Theorem 3. Consider that the inputs are {u1, · · · , un}. Denote the sorted
inputs in the ascending order are {uπ1 , · · · , uπn

}, where {uπ1 , uπ2 , · · · , uπn
} is

the sorted index list. If uπn−k
< y∗ ≤ uπn−k+1 , then the imperfect model can

generate correct outputs.

Proof: From (16) and (17), we know for a given y, if ui < ui′ , then hα̃i
(ui−y) <

hα̃i′ (ui′ − y). Also, hα̃i
(0) = 0.5 and hα̃i

(ui − y) is an increasing function
of ui. Thus, if uπn−k

< y∗, then x̄π1 < · · · < x̄πn−k
< 0.5. Hence IO

neuron π1 to IO neuron πn−k are losers. Similarly, if uπn−k+1 ≥ y∗, then
0.5 ≥ x̄πn−k+1 > · · · > x̄πn

. Hence IO neuron πn−k+1 to IO neuron πn are
winners. The proof is completed. �

There is a common misconception that we can use Theorem 3 to study the
probability of the imperfect model operating correctly. This approach involves
simulating the neural dynamics for many sets of inputs, obtaining the equi-
librium point y∗ for each set, and then checking whether the imperfect model
produces correct outputs or not. However, simulating the dynamics is quite time-
consuming. Therefore, it is of interest to find a more efficient way to estimate
the probability value of correct operation. The following theorem, based on the
equivalent model, provides us with a convenient way to estimate the probability
value without the need to simulate the neural dynamics.

Theorem 4. Denote the sorted inputs in the ascending order
are {uπ1 , · · · , uπn

}, where {uπ1 , uπ2 , · · · , uπn
} is the sorted index list. For the

imperfect model,
n∑

i=1

hα̃i
(ui − y)

∣∣
y=uπn−k

> k and
n∑

i=1

hα̃i
(ui − y)

∣∣
y=uπn−k+1

≤ k, (18)

if and only if

uπn−k
< y∗ ≤ uπn−k+1 .

In addition, if
n∑

i=1

hα̃i
(ui − y)

∣∣
y=uπn−k

> k and
n∑

i=1

hα̃i
(ui − y)

∣∣
y=uπn−k+1

≤ k,

then the model generates the desired outputs.

Proof: Denote H(y) =
∑n

i=1 hα̃i
(ui − y) − k. As y → ∞, H(y) = −k. Also,

as y → −∞, H(y) = n − k. Since H(y) is a strictly monotonically decreasing
function of y, we have H(y) > 0, ∀y < y∗, and H(y) ≤ 0, ∀y ≥ y∗. Hence
H(uπn−k

) > 0, if and only if, uπn−k
< y∗. In addition, we have: H(uπn−k+1) ≤ 0,

if and only if, uπn−k+1 ≥ y∗. Furthermore,

if
n∑

i=1

hα̃i
(ui − y)

∣∣
y=uπn−k

> k and
n∑

i=1

hα̃i
(ui − y)

∣∣
y=uπn−k+1

≤ k,

then uπn−k
< y∗ ≤ uπn−k+1 . (19)
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According to the result of Theorem 3, the condition “uπn−k
< y∗ ≤ uπn−k+1”

implies that the model correctly identifies the winner and loser neurons for the
given n numbers. �

Theorem 4 provides us with an efficient way to estimate the probability value
of the imperfect model correctly identifying the winner and loser neurons without
the need to simulate the neural dynamics. To do so, we can consider many sets of
inputs and sort the data for each input set. Then, we can compute the following
expression:

n∑

i=1

hα̃i
(ui − y)

∣∣
y=uπn−k

− k and
n∑

i=1

hα̃i
(ui − y)

∣∣
y=uπn−k+1

− k

to determine whether the model can generate the correct output or not. It should
be noticed that the aforementioned procedures are suitable for the data with any
distribution. When the inputs are iid uniform random variables between zero and
one, Theorem 5 provides us with a lower bound on the probability value.

Theorem 5. If the inputs are iid uniform random variables with a range from
zero to 1, the probability Prob(correct) that the imperfect model correctly identi-
fies the winner and loser neurons can be expressed as:

Prob(correct) ≥ 1 − 2

(
1 −

(
1 − 2

α̃

)n−1 (
1 + (n − 1)

2
α̃

))
,

where α̃ = 1/
√

1
α2 + σ2

ρ2 .

Proof. Since the complete proof is lengthy, we only outline the flow of the proof
here. Since the effect of zero-mean Gaussian noise is equivalent to decreasing the
gain factor of the logistic function, we can use the flow of the proof in Theorem 4
of [7] to obtain our result. �

Probability theory tells us that any non-uniformly distributed data can be
mapped into a uniform distribution through histogram equalization. This map-
ping does not affect the ordering of the original non-uniform inputs. Therefore,
we can apply Theorem 5 to handle non-uniformly distributed data.

4 Non-gaussian Multiplicative Input Noise

Although we focus on the multiplicative input noise with the Gaussian distribu-
tion, our analysis can be extended to cases where the multiplicative input noise
has a non-Gaussian distribution. This technique is based on the idea of the Gaus-
sian mixture model (GMM) [16]. We can use the GMM concept to approximate
the density function of the normalized noise component εi(t). In the context of
GMM, the density function of εi(t) can be represented as follows:

f(εi(t)) =
L∑

l=1

Ξl√
2πς2

l

exp
{

− (εi(t) − μl)2

2ς2
l

}
, (20)
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where μl is the mean of the l-th component, ς2
l is the variance of the l-th com-

ponent, and Ξl is the weighting of the l-th component. Note that the sum of
Ξl’s is equal to 1. By following the steps presented in Sect. 3, we can derive the
equivalent dynamics for the case of non-Gaussian multiplicative input noise and
non-ideal activation function. The equivalent dynamics are sated in the following
theorem.

Theorem 6. The equivalent dynamics for the non-Gaussian multiplicative
input noise and non-ideal activation function are given by

dy

dt
=

n∑

i=1

x̄i(t) − k, (21)

ōi(t) = hi(ui − y(t)), (22)

hi(ui − y(t)) =
L∑

l=1

Ξl

1 + e−α̃i,l(ui−y(t)+uiμi)
, (23)

α̃i,l =
1√

1
α2 + u2

i ς2l
ρ2

. (24)

Similar to the approach presented in Sect. 3, we can also develop an efficient
method to estimate the probability of the model generating correct winner and
loser neurons for the case of non-Gaussian multiplicative input noise and non-
ideal activation function.

Theorem 7. For the non-Gaussian multiplicative input noise and non-
ideal activation function, if

∑n
i=1 hi(ui − y(t))|y(t)=uπn−k

> k and
∑n

i=1

hi(ui − y(t))|y(t)=uπn−k+1
≤k, then the model has the correct operation.

5 Simulation Results

In Theorem 1 and Theorem 6, we introduce equivalent models to describe the
behaviour of the imperfect DNN-kWTA model. Afterwards, based on the equiv-
alent model, we propose the ways (Theorem 4, Theorem 5 and Theorem 7) to
predict the performance of the imperfect model. The aim of this section is verified
our results.

5.1 Effectiveness of Theorem 4

Three settings: {n = 6, k = 2, α = 500}, {n = 11, k = 2} and {n = 21, k = 5} are
considered. In this subsection, we consider that the inputs follow Beta distri-
bution with Betac,d(x) = Γ(c+d)

Γ(c)Γ(d)x
c−1 (1 − x)d−1, where c = d = 2, and Γ(.)

denotes the well known Gamma function. To study the probability value of the
imperfect model performing correctly, we generate 10,000 sets of inputs.

Time-varying multiplicative input noise “εi (t) ui” ’s are added into inputs,
where ε (t)’s are zero-mean Gaussian distributed with variance of σ2. We consider
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three gain values:{n = 6, k = 2, α = 500},
{n = 11, k = 2, α = 1000} and {n = 21, k = 5, α = 2500} .

When dealing with the non-uniform input case, we have two methods to
measure the probability values of the imperfect model correctly identifying the
winner and loser neurons. One way is to use the original neural dynamics stated
in (4)–(6).

Another method is to use Theorem 4 to check the performance of the imper-
fect model. In this method, we only need to use (18) to determine whether the
imperfect model can correctly identify the winner and loser neurons for each set
of inputs. The results are shown in Fig. 3. It can be seen that the results obtained
from Theorem 4 are quite close to the results obtained from the original neural
dynamics over a wide range of noise levels and various settings.

For example, from Fig 3, for the case of {n = 6, k = 2, α = 500, σ = 0.06309},
the two probability values from the two methods are 0.9416 and 0.09442, respec-
tively.
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Fig. 3. The inputs are with the Beta distribution in (0, 1), and the multiplicative
input noise components are εi(t)ui, where ε (t)’s are zero-mean Gaussian distributed
with variance of σ2.

5.2 Effectiveness of Theorem 5

In this subsection, we study the effectiveness of Theorem 5. For uniform inputs,
there is an additional method to estimate the performance. The simulation set-
tings are similar to those of Sect. 5.2, except that the inputs are uniformly dis-
tributed.

When the inputs are uniformly distributed, we can use the lower bound
from Theorem 5 to estimate the chance of identifying the correct winners and
losers. The results are shown in Fig. 4. There are three methods to estimate the
probability values. The first method is based on the original neural dynamics,
which is quite time consuming. The second method is from Theorem 4, in which
we should have input data sets. The last method involves using the lower bound
from Theorem 5. The advantage of this method is that there is no need to
perform the time-consuming simulation of the neural dynamics or require input
data sets.
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The results are in Fig 4. First, it can be seen that the probability values
obtained from Theorem 4 are very close to those obtained from simulating the
original neural dynamics. The probability values obtained from Theorem 5 are
lower than the values obtained the original neural dynamics and Theorem 4. It
is because Theorem 5 gives lower bounds on the probability values. But, the
advantage of Theorem 5 is that there is no need to have input data sets.

We can use our result to know the noise tolerant level of the model. For
example, for {n = 21, k = 5, β = 2500} with the target probability value equal
to 0.95, the input noise level σ should be less than 0.0157 from Theorem 4, while
the result of the low bound tells us that the input noise level σ should be less
than 0.00995.
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Fig. 4. The inputs are uniformly distributed in (0, 1), and the multiplicative input
noise components are εi(t)ui, where ε (t)’s are zero-mean Gaussian distributed with
variance of σ2.

5.3 Effectiveness of Theorem 7

We can Theorem 7 to predict the performance of the model for non-Gaussian
distributed multiplicative input noise. To study the performance in this case, we
consider that the inputs follow a uniform distribution with a range of (0, 1) in
this subsection. We generated 10,000 sets of inputs for this purpose.

We consider that multiplicative input noise are “εi (t) ui” ’s, where εi (t)’s
are uniformly distributed in the range [−Δ/2,Δ/2]. We chose to use a uniform
distribution to demonstrate that the GMM concept is capable of handling non-
bell-shaped distributions. This is because the uniform distribution has a rectan-
gular shape, which is significantly different from the Gaussian distribution.

In the simulation, for each noise level, we build a GMM with 11 components.
We consider three settings: {n = 6, k = 2, α = 500}, {n = 11, k = 2, α = 1000}
and {n = 21, k = 5, α = 2000}.

To validate the effectiveness of Theorem 7, we also use the original neural
dynamics to estimate the probability of the model having the correct operation.
It should be noticed that this simulation method is quite time consuming. The
results are shown in Fig. 5. From the figure, the result of Theorem 7 is very close
to that of simulating the original neural dynamics.
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Again, we can use Theorem 7 to predict the tolerant level for input noise. For
example, for {n = 6, k = 2, α = 500} with the target probability value equal to
0.95, Theorem 7 tells us that the input noise range δ should be less than 0.1999.
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Fig. 5. The inputs are uniformly distributed in (0, 1), and the multiplicative input
noise components are εi(t)ui, where ε (t)’s are zero-mean uniformly distributed noise
in the range of [−Δ,−Δ].

6 Conclusion

This paper presented an analysis of the DNN-kWTA model with two imperfec-
tions, namely, multiplicative input noise and non-ideal activation in IO neurons.
We first developed an equivalent model to describe the dynamics of the imperfect
DNN-kWTA model. It should be aware that the equivalent model is introduced
for studying behaviour of the imperfect DNN-kWTA model and that it is not
a new model. Using the equivalent model, we derive sufficient conditions for
checking whether the imperfect model can correctly identify the winner and
loser neurons. For uniform-distributed inputs, we provide a formula to estimate
the lower bound on the probability value of the model with correct operation.
Lastly, we extend our results to handle the non-Gaussian multiplicative input
noise case. We validate our theoretical results through various simulations.
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8. Redouté, J.M., Steyaert, M.: Measurement of EMI induced input offset voltage of
an operational amplifier. Electron. Lett. 43(20), 1088–1090 (2007)

9. Kuang, X., Wang, T., Fan, F.: The design of low noise chopper operational amplifier
with inverter. In: 2015 IEEE 16th International Conference on Communication
Technology (ICCT), pp. 568–571. IEEE (2015)

10. Lee, P.: Low noise amplifier selection guide for optimal noise performance. Analog
Devices Application Note, AN-940 (2009)

11. Feng, R., Leung, C.S., Sum, J.: Robustness analysis on dual neural network-based
kWTA with input noise. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1082–1094
(2017)

12. Sum, J., Leung, C.S., Ho, K.I.J.: On Wang kWTA with input noise, output node
stochastic, and recurrent state noise. IEEE Trans. Neural Netw. Learn. Syst. 29(9),
4212–4222 (2017)

13. Semenova, N., et al.: Fundamental aspects of noise in analog-hardware neural net-
works. Chaos: Interdisc. J. Nonlinear Sci. 29(10), 103128 (2019)

14. Kariyappa, S., et al.: Noise-resilient DNN: tolerating noise in PCM-based AI accel-
erators via noise-aware training. IEEE Trans. Electron Devices 68(9), 4356–4362
(2021)

15. Haley, D.C.: Estimation of the dosage mortality relationship when the dose is sub-
ject to error. STANFORD UNIV CA APPLIED MATHEMATICS AND STATIS-
TICS LABS, Technical report (1952)

16. Radev, S.T., Mertens, U.K., Voss, A., Ardizzone, L., Kothe, U.: BayesFlow: learn-
ing complex stochastic models with invertible neural network. IEEE Trans. Neural
Netw. Learn. Syst. 33(4), 1452–1466 (2020)


	Effect of Logistic Activation Function and Multiplicative Input Noise on DNN-kWTA Model
	1 Introduction
	2 Basic DNN-kWTA
	3 Logistic DNN-kWTA with Input Noise
	3.1 DNN-kKWTA Under Imperfection
	3.2 Equivalent Model

	4 Non-gaussian Multiplicative Input Noise
	5 Simulation Results
	5.1 Effectiveness of Theorem 4
	5.2 Effectiveness of Theorem 5
	5.3 Effectiveness of Theorem 7

	6 Conclusion
	References




