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Abstract. Knowledge graph embedding models characterize entities and
relations in structured knowledge graphs as vectors, which is essential for
many downstream tasks. Some studies show that knowledge graph embed-
ding models based on graph neural networks can exploit higher-order
neighborhood information and generate meaningful representations. How-
ever, most models suffer from interference from distant neighborhood noise
information. To address the challenge, we propose a graph contrastive
learning knowledge graph embedding (GCL-KGE)model to enhance the
representation of entities. Specifically, we use the graph attention net-
work to aggregate multi-order neighbor information optimizing the pre-
trained entity representation. To avoid the inclusion of redundant infor-
mation in the graph attention network, we combine contrastive learning to
provide auxiliary supervised signals. A new method of constructing posi-
tive instances in contrastive learning makes the entity representation in the
hidden layer produce a marked effect in this paper. We use a triple scoring
function to evaluate representation on link prediction. The experimental
results on four datasets show that our model can alleviate the interactive
noise and achieve better results than baseline models.

Keywords: Knowledge graph · Contrastive learning · Graph attention
networks

1 Introduction

The knowledge graph(KG) stores facts in the real world as graph structures,
e.g., in the form of a triple: (The Hours, starred actors, Meryl Streep). The facts
in the knowledge graph are always incomplete and manual completion is time-
consuming and laborious. One way to complete the knowledge graph is knowl-
edge graph embedding(KGE), which is the process of embedding entities and
relations of the knowledge graph into a continuous vector space while preserving
the structural and semantic information.

Knowledge graph embedding models apply a scoring function to measure
the confidence of triples. Earlier knowledge graph embedding models are tra-
ditionally divided into distance-based models and tensor decomposition-based
models [1]. They have high computational efficiency or a strong ability to
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express the model. With the widespread application of neural networks, some
researchers apply graph attention networks(GAT) [2] to enrich entity represen-
tations because of the ability to exploit higher-order neighbor information. More
recently, a number of studies [3,4] demonstrate that contrastive learning has the
superiority to train effective graph representation learning when given unlabelled
graph data. Some studies attempt to apply contrastive learning to knowledge
graph embedding model to mine semantic similarities between triples.

Inspired by the success of the above studies, we explore the technical appli-
cation of graph contrastive learning to knowledge graph embedding. We identify
two potential challenges in current knowledge graph embedding models. They
are: (i) Most models usually deal with each entity independently and ignore the
structural relations of neighborhood triples in the knowledge graph. Therefore
they only marginally model the graph structure of the knowledge graph. (ii)
The representation of entities is susceptible to interaction noise due to the extra
information of the graph attention network extending to distant nodes with little
relevance. Besides, how to avoid changing the triples semantics in the process
of constructing positive instances is a challenging question for the success of
contrastive learning in the knowledge graph embedding model.

In this work, we propose a graph contrastive learning knowledge graph
embedding model(GCL-KGE) to address these challenges. An encoder-decoder
framework combined with contrastive learning is used in our model which obtains
the structure information of the knowledge graph while utilizing the interactive
noise to optimize the representation. Specifically, we first use the GAT which
gives attention with different levels to neighbors to associate entities with neigh-
bors optimizing the pre-trained entity embedding. Then we use a scoring function
of a convolutional neural network-based knowledge graph embedding model for
link prediction to evaluate the level of embedding. To decrease the influence of
interactive noise, we perform contrastive learning based on the GAT without
data augmentation which will change the semantics of the triple. The core idea
is taking GAT’s hidden representations as positive instances which are semanti-
cally similar to the final entity representation. The knowledge graph embedding
is learned by maximizing the consistency between different augmented views of
the same data in the hidden space. Experimental studies on four datasets demon-
strate the effectiveness of GCL-KGE, which significantly improves the accuracy.

In summary, our contributions are as follows:

1. We propose a graph contrastive learning knowledge graph embedding(GCL-
KGE) model to improve accuracy and robustness of existing knowledge graph
embedding models.

2. Our proposed contrastive learning architecture provides auxiliary supervision
signals for knowledge graph embedding and we perform a theoretical deriva-
tion for the direction of entity representation in contrastive learning.

3. Experimental results show the effectiveness of our model on the knowledge
graph link prediction.
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2 Related Works

Knowledge graph embedding has become a popular research topic attracting a
wide range of researchers. These methods both determine the reality of a triple
by constructing a scoring function.

The traditional knowledge graph embedding methods are mainly divided
into two types: the distance-based models and the tensor decomposition-based
models. The distance-based model focuses on calculating the distance between
entities to set the scoring function. TransE [6] is the most widely used of these
and regards the relation vector as the translation between the head entity and the
tail entity. Based on it, researchers propose more variants in complex relations,
such as TransR [22], TransD [23]. The tensor decomposition-based models map
head entities to tail entities by multiplying the relationship matrices. RESCAL
[7] uses vectors to represent the latent semantics of the entities and matrices to
represent relations to model the semantics between potential factors. To better
model asymmetric matrices, ComplEx [14] extends the model to the complex
space. However, these models separately optimize each triple with the scoring
function, overlooking the relations between the triples.

Recent studies use neural networks to learn representations of knowledge
graphs. ConvKB [5] uses the convolutional neural networks(CNN) to extract
triple features for link prediction. R-GCN [8] applies graph convolution net-
works(GCN) to link prediction and assigns the same weight to the neighboring
entities of each entity. To reflect the different importance of different relations for
entities, SCAN [9] sets the weight of aggregated neighbor information related to
the class of relations. Referring to the idea of the GAT, work [1] proposes aggre-
gating the overall neighbor triple information to train the representation. Nev-
ertheless, as the graph attention network hierarchy deepens, information from
more distant entities is aggregated into the entity representation, which leads to
the introduction of more noisy information.

Contrastive learning is treated as an instrumental part of self-supervised
learning and it has ability to learn a good representation based on the data’s
characteristics. The goal of contrastive learning is to pull the semantically close
pairs together and push apart the negative pairs. Some models often use data
augmentation to construct positive and negative instances, such as image flip,
rotation, and cutout in computer vision [10,11]. In natural language processing,
some studies use sentence crop, span deletion and reordering [12,13]. But the
triples in the knowledge graph are different from the sentences in other tasks.
If we add random noise to the embedding space, the semantic of the original
triple will be changed and the incompleteness of the knowledge graph will be
deepened.

To address the above issues, we propose the GCL-KGE to learn the knowl-
edge graph embedding. We apply the graph attention network in GCL-KGE to
aggregate the neighbor triple information to cope with separate training. And
we propose a new way to construct positive instances to solve noise interference
without semantic deficits.
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Fig. 1. Framework of the GCL-KGE model. We train the contrastive loss as a auxiliary
task together with the link prediction loss.

3 Proposed Model

3.1 Overview

In this section, we describe our model which utilizes contrastive learning to learn
the KG embedding. We present an encoder-decoder model called GCL-KGE
in Fig. 1. The encoder learns knowledge graph embedding through the graph
attention network to aggregate neighbor’s information. And the decoder provides
predictions for possible entities based on a triplet scoring function. We extend
the existing model by introducing an auxiliary task to cope with interaction
noise encountered in graph attention networks. First of all, we denote directed
the KG as G = (ν, ξ) with nodes(entities) v ∈ ν and edges(relations) r ∈ ξ. Then
we will introduce the details of the model.

3.2 Encoder

The neural network-based models encode entities and relations individually,
ignoring the connections between the various triples in the knowledge graph.
To capture the triple interaction information and graph structure information
in the knowledge graph, we use a graph attention network to encode entities
and relations based on work [1]. First, we obtain the initial embedding of enti-
ties and relations through a pre-trained model, using widely used embedding
models. Then we place the embedding into the graph attention network to learn
new representations. We learn new entity embedding h′

i in the form of the triple
tijk = (hi, hk, hj) where k is the relation link the entity i and entity j. A single
GAT layer can be described as

aijk = softmax(LeakyRELU(W2bijk)) (1)

bijk = W1[hi : hk : hj ] (2)

where aijk is the attention score of the neighbor j. W1 and W2 are the linear
transformation matrix mapping the initial embedding to a higher dimensional
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space. bijk is the embedding of a triple tijk . Vector hi,hj and hk denote embed-
dings of entities i, j and relation k respectively. Attention score is the importance
of the neighbor j for entity i. Softmax is applied in Eq. (1) to compute the atten-
tion score.

In order to make the network capture more abundant neighbor information
about various aspects, we use a multi-head attention mechanism to learn the
embedding of entities. The formula shows the output of a layer:

h′
i = σ(

∑

j∈νi

∑

k∈ξij

aijkbijk) (3)

where νi denotes the neighbors of entity i and ξij denotes the set of relations
between entities i and j. The process of concatenating N attention heads is shown
as follows.

h′
i = ||Nn=1 σ(

∑

j∈νi

∑

k∈ξij

an
ijkbn

ijk) (4)

where || represents concatation. σ represents a non-liner function. an
ijk is the

normalized attention coefficients of the neighbor calculated in the n-th attention
head.

In the final layer of the GAT, we employ averaging to get the final embedding
of entities instead of the concatenation operation, as shown:

h′
i = σ(

1
N

N∑

n=1

∑

j∈νi

∑

k∈ξij

an
ijkbn

ijk) (5)

We obtain the final entity embedding h′
i through the process described above.

The graph attention network as the encoder of the whole model aggregates
information about the surrounding neighbors into the entity’s representation. In
brief, an m-layer graph attention network module is able to gather information
about the m-hop neighborhood.

3.3 Decoder and Score

The link prediction task is used to evaluate the effectiveness of our embeddings.
We use ConvKB as the decoder of the GCL-KGE. Multiple filters are used
to generate different feature graphs to capture global relations and transition
characteristics between entities. We determine whether each triple (h, r, t) is a
true triple by the scoring function.

f(tkij) = (concat(g[hi, hk, hj ] ∗ Ω)) · W (6)

where W is a linear transformation matrix to score the triple. g is the activate
function. Ω is the number of layers of convolutional filter layers and the * is a
convolution operator.
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3.4 Contrastive Learning

The encoder-optimized entity representations are scored in the decoder. We
observe that there are some entities with similar representations which lead
to incorrect predictions by the decoder. To make the model more sensitive to
entity semantics, we adopt a contrastive learning approach: we treat pre-trained
entities’ embedding and the hidden state of the GAT as the positive instances
for the entity i. We use h+

i to denote the representation of the positive instance
of entity i in the set ν. Different entities in the same batch are used as negative
instances in the set μ. Before calculating the contrastive loss, we map the entity
representation to the same embedding space through the projection head layer.
We adopt the contrastive loss, InfoNCE, about an instance i.

Lc =
∑

i∈ν

−log
exp(sim(hi, h

+
i ))/τ∑

j∈μ exp(sim(hi, hj))/τ
(7)

where τ is a temperature hyperparameter. sim is the similarity calculation func-
tion and we use dot product operations in our models. As shown in Fig. 1, our
model uses the hidden states in the previous m-1 layers as positive instance rep-
resentations of entities. They are semantically similar and more pure to the final
output of the graph attention networks.

3.5 Training Objective

For the given knowledge graph, we train its embedding using the proposed model,
the loss of our framework is :

L(h, r, t) = Ls + Lc (8)

where Lc is the contrastive loss we introduced above. We train the GCl-KGE
model using the Adam optimizer to minimize the loss function Ls. We use the
L2 as the regularizer in our work.

Ls =
∑

(h,r,t)∈{G∪G′}
log(1 + exp(l(hrt) · f(h, r, t))) +

λ

2
||w||22

l(hrt) = 1 for(hrt) ∈ G

l(hrt) = −1 for(hrt) ∈ G′

(9)

3.6 Theoretical Analyses

We discuss Eq. (7) to explain how contrastive learning in GCL-KGE make it
work inspired. Contrastive learning performs meaningful gradient optimization
to guide the embedding of entities. The gradient of the contrastive learning to
the entity i is as follows [3]:
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∂Lc(hi)
∂hi

= − ∂

∂hi
(hi · h+

i /τ) +
∂

∂hi
log

∑

j∈N

exp(hi · hj/τ)

=
1
τ

{
−h+

i +

∑
j∈μ hjexp(hi · hj/τ)

∑
j∈μ exp(hi · hj/τ)

} (10)

where Lc(hi) is the gradient of a single entity i. Then we can derive the trend of
change when entity i is updated:

hn+1
i = hn

i − γ
∂Lc(hi)

∂hi

= hn
i + γ

h+
i

τ
− γ

∑
j∈μ hjexp(hi · hj/τ)

∑
j∈μ exp(hi · hj/τ)

(11)

in which hn
i is the representation of entity i at this time step and hn+1

i is the
representation of entity i at the next time step. The Eq. (11) shows that hi tends
to update in the direction of h+

i with the weighted value γ
τ . Entities optimally

retain their content while gaining information about their neighbors. This solves
the problem of the negative weight given by excessive redundancy when noise is
added. The other side, update of hi in a direction that is far from hj with the

weighted value γ
∑

j∈µ exp(hi·hj/τ)
∑

j∈µ exp(hi·hj/τ) . In the same vector space, this way pulls away
entities from their semantically similar entity representations.

4 Experiments

To evaluate the validity of our model and the usefulness of contrastive learning,
we conducted a series of experiments and explained them in this section.

4.1 Experimental Setup

Datsets. To evaluate our model, we use four knowledge graph datasets:
WN18RR [15], FB15k-237 [16], NELL-995 [17], and Alyawarra Kinship [18].
We show the setup of each dataset in Table 1. We need to specifically note that
WN18RR and FB15k-237 are expanded from WN18 [6] and FB15k [19], respec-
tively. Previous work [16] has shown that there is an inverse relationship in
WN18 and FB15k resulting in test sets missing and further causing overfitting
of the model. Therefore the researchers created two subsets of WN18RR and
FB15k-237 to solve the problem.

Parameter Settings. We set the graph attention network with two layers in
the model. The number of heads for multi-head attention to 2 and the last layer
for both entity and relation embeddings to 200. The optimizer for the model
uses the Adam optimizer with a learning rate of 0.001. We adjusted the optimal
result of the hyperparameter τ to 1.0.
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Table 1. Statistics of the datasets.

Dataset Entities Relations Train Valid Test Total

WN18RR 40,943 11 86,835 3,034 3,134 93,003

FB15K-237 14,541 237 272,115 17,535 20,466 310,116

NELL-995 75,492 200 149,678 543 3,992 154,213

Kinship 104 25 8,544 1,068 1,074 10,686

Comparable Methods. The baseline we choose are some of the most widely
used knowledge graph embedding models, including DistMult [20], ComplEx [14],
ConvE [16], TransE [6], ConvKB [5], R-GCN [8], ATTH [21] and KGE-CL [3].

4.2 Main Results

The evaluation metrics we use are MR, MRR and Hit@n. MR(Mean Rank) is
a data of averaging the ranking positions of all correct triples in the sort MRR
(Mean Reciprocal Rank) is the inverse of the ranking of all the results given by
the standard answers. Hit@n is the proportion of correct entities in the top n
ranking and we use Hit@1,Hit@3 and Hit@10.

Table 2. Link prediction results on WN18RR and NELL-995 datasets. We bold the
best score in the table.

Methods WN18RR NELL-995

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

DistMult 0.444 0.412 0.47 0.504 0.485 0.401 0.524 0.61

ComplEx 0.449 0.409 0.469 0.53 0.482 0.399 0.528 0.606

ConvE 0.456 0.419 0.47 0.531 0.491 0.403 0.531 0.613

TransE 0.243 0.427 0.441 0.532 0.401 0.344 0.472 0.501

ConvKB 0.265 0.582 0.445 0.558 0.43 0.37 0.47 0.545

R-GCN 0.123 0.207 0.137 0.08 0.12 0.082 0.126 0.188

ATTH 0.466 0.419 0.484 0.551 – – – –

KGE-CL 0.512 0.468 0.531 0.597 – – – –

Our method 0.522 0.477 0.49 0.581 0.541 0.456 0.596 0.698

Referring to previous work, we test our model in a filtered setting that we
remove some corrupt triples in the datasets. The experimental results of link pre-
diction in all datasets are presented in Table 2 and Table 3. Our method is effec-
tive in all four datasets. Specifically, we achieve optimal results on the FB15K-
237, NELL-995, and Kinship datasets. We also achieve comparable results to the
optimal results on the WN18RR dataset. Compared to the tensor decomposition-
based models and distance-based models, our model can preserve semantic infor-
mation while preserving the structural information of the knowledge graph. It
can expand the neighborhood information around the entity to encapsulate and
generate a meaningful entity representation. At the same time, compared to the
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Table 3. Link prediction results on FB15K-237 and Kinship datasets. We bold the
best score in the table.

Methods FB15K-237 Kinship

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

DistMult 0.281 0.199 0.301 0.446 0.516 0.367 0.581 0.867

ComplEx 0.278 0.194 0.297 0.45 0.823 0.733 0.899 0.971

ConvE 0.312 0.225 0.341 0.497 0.833 0.738 0.917 0.981

TransE 0.279 0.198 0.376 0.441 0.309 0.9 0.643 0.841

ConvKB 0.289 0.198 0.324 0.471 0.614 0.44 0.755 0.953

R-GCN 0.164 0.1 0.181 0.3 0.109 0.03 0.088 0.239

ATTH 0.324 0.236 0.354 0.501 – – – –

KGE-CL 0.37 0.276 0.408 0.56 – – – –

Our method 0.513 0.435 0.551 0.657 0.907 0.878 0.941 0.98

R-GCN, which also uses the graph neural network, our model incorporates con-
trastive learning as an auxiliary task to avoid the inclusion of noisy information
while improving the effectiveness of entity embedding.

4.3 Ablation Experiments

Effect of Hyperparameter. We conduct the ablation experiment to evaluate
the effect of parameter variations on the model. We confirm the importance of the
hyperparameter τ in the contrastive loss for improving the efficiency. The model
has the highest accuracy rates when the temperature parameter is 1.0 from the
results of the ablation experiment in Table 4. The smaller the temperature, the
more attention is paid to the difficult negative instances in the same batch. Part
of the negative instances dominate the gradient optimization process, and the
other negative samples do not work. Also, we evaluate the number of layers in
projector head in contrastive learning. The model works best when the number
of the neural network layers is 2.

Table 4. MRR, Hit@1, Hit@3 and Hit@10 results of different value of τ and projection
layers on the Kinship dataset.

Methods Kinship

MRR Hit@1 Hit@3 Hit@10

τ =0.01 0.886 0.845 0.909 0.967

τ =0.1 0.889 0.849 0.915 0.969

τ =0.5 0.891 0.878 0.936 0.977

τ =1.0 0.907 0.878 0.941 0.98

Projection-1 layer 0.863 0.814 0.892 0.958

Projection-2 layer 0.907 0.878 0.941 0.98

Projection-3 layer 0.875 0.818 0.91 0.96
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Effect of Contrastive Loss. We apply ablation experiments to the effect
of contrastive learning. We remove the contrastive loss on the encoder-decoder
framework called G-KGE. Figure 2 shows the comparison of the five metrics vs
epoch on the kinship dataset. From the five subgraphs, we observe that GCL-
KGE is significantly more effective than G-KGE without contrastive learning as
an auxiliary task on the four metrics(Hit@10, Hit@3, Hit@1, MRR). (e) indicates
the data on MR of GCL-KGE is lower than G-KGE. The figures also illustrate
the improvement of contrastive learning on the GCL-KGE and the effectiveness
of the choice of positive instances and negative instances.

Fig. 2. Hit@10, Hit@3, Hit@1, MRR and MR vs Epoch for GCL-KGE and the model
without contrastive loss(G-KGE) on kinship dataset. GCL-KGE (black) represents the
entire model.

5 Conclusion

In this work, we propose a knowledge graph embedding model combined with
contrastive learning. We train the representation of entities and relations by
graph attention networks, which aggregate graph structure information and
multi-order neighbor semantic information. Then the triple scoring function in
the ConvKB is used as a decoder for solving the link prediction task. In addition,
we combine with contrastive learning as an auxiliary task to avoid the noise
of graph attention networks. We propose a new method to construct positive
instances which do not require data augmentation. The idea makes the entity
embedding of the hidden layer function. Experimental results on four datasets
demonstrate the effectiveness of our model.

In future work, we expect that contrastive learning can be applied more to
knowledge graph embedding because it has been demonstrated to be helpful in
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representation learning in many studies. We hope that the development of self-
supervised learning will be beneficial to solve the sparsity of knowledge graphs
and improve the generality and transferability of knowledge graph embedding
models.
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